
Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices

PKC 2021

eprint 2020/1110

Ivan Damgård1 Claudio Orlandi1 Akira Takahashi1 Mehdi Tibouchi2

1Aarhus University, Denmark

2NTT Corporation, Japan

Intro

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• Renewed interest in multi-party signing: upcoming NIST standardization,
Blockchain, etc.

• Many existing works on round-efficient n-party signatures in the discrete log
setting (cf. Drijvers et al. [DEF+19]).

• FSwA-style signature has a structure similar to Schnorr.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

1

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• Renewed interest in multi-party signing: upcoming NIST standardization,
Blockchain, etc.

• Many existing works on round-efficient n-party signatures in the discrete log
setting (cf. Drijvers et al. [DEF+19]).

• FSwA-style signature has a structure similar to Schnorr.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

1

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• Renewed interest in multi-party signing: upcoming NIST standardization,
Blockchain, etc.

• Many existing works on round-efficient n-party signatures in the discrete log
setting (cf. Drijvers et al. [DEF+19]).

• FSwA-style signature has a structure similar to Schnorr.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

1

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• Renewed interest in multi-party signing: upcoming NIST standardization,
Blockchain, etc.

• Many existing works on round-efficient n-party signatures in the discrete log
setting (cf. Drijvers et al. [DEF+19]).

• FSwA-style signature has a structure similar to Schnorr.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

1

2-out-of-2 Signing

Alice Bob

2

2-out-of-2 Signing

Alice Bob

2

2-out-of-2 Signing

Alice Bob

2

2-out-of-2 Signing

Alice Bob

2

2-out-of-2 Signing

Alice Bob

2

2-out-of-2 Signing

Alice Bob

Verify(,)=1Correctness ,

2

2-out-of-2 Signing : Game-based Security

Alice Corrupt

2

2-out-of-2 Signing : Game-based Security

Alice Corrupt

2

2-out-of-2 Signing : Game-based Security

Alice Corrupt

),(

2

2-out-of-2 Signing : Game-based Security

Alice Corrupt

Pr[Verify()=1∧Unforgeability] is negl.,,

2

Fiat–Shamir with Aborts: Dilithium ID

P(A, s) V(A, t = As)

y←$ Dℓ+k//D is Gaussian or uni.

w := Ay w c←$ C ⊂ R

z := cs + y c

If RejSamp(cs, z) = 0 : restart z Az− ct = w ∧ ∥z∥ is small

• Operate on a vector of polynomials in a quotient ring Rq = Zq[X]/(f(X)).

• Secret key is a small s ∈ Rℓ+k
q ; public key consists of A = [A′|I] with random A′ ∈ Rk×ℓ

q and
t = As.

• z ∈ Rℓ+k
q has to be small; c and y have to be small as well.

• RejSamp = rejection sampling: force z to be independent of s (non-linear operation)
3

Fiat–Shamir with Aborts: Dilithium ID vs. Schnorr ID

P(G, s) V(G, t = [s]G)

y←$Zq

w = [y]G w c←$ C ⊂ R

z := cs + y c

z [z]G− ct = w

• Operate on a vector of polynomials in a quotient ring Rq = Zq[X]/(f(X)).

• Secret key is a small s ∈ Rℓ+k
q ; public key consists of A = [A′|I] with random A′ ∈ Rk×ℓ

q and
t = As.

• z ∈ Rℓ+k
q has to be small; c and y have to be small as well.

• RejSamp = rejection sampling: force z to be independent of s (non-linear operation)
3

Security of FSwA

• Soundness from Module-SIS and Module-LWE
• Suppose P∗(A, t) can correctly answer c and c′ for the same w

; Az− ct = w = Az′ − c′t

• (A, t = As) ≈c (A, t←$ Rk
q) due to LWE.

• Then using P∗ find a non-zero solution to the SIS problem wrt [A|t]:

[A|t]
[

z− z′
c′ − c

]
= 0.

• Non-aborting statistical HVZK
• If protocol doesn’t abort: simulator outputs (w = Az− ct, c, z←$ Dℓ+k).

4

Security of FSwA

• Soundness from Module-SIS and Module-LWE
• Suppose P∗(A, t) can correctly answer c and c′ for the same w

; Az− ct = w = Az′ − c′t

• (A, t = As) ≈c (A, t←$ Rk
q) due to LWE.

• Then using P∗ find a non-zero solution to the SIS problem wrt [A|t]:

[A|t]
[

z− z′
c′ − c

]
= 0.

• Non-aborting statistical HVZK
• If protocol doesn’t abort: simulator outputs (w = Az− ct, c, z←$ Dℓ+k).

4

Two-party Signing from FSwA

Our results

• Two-round multi-party FSwA signing with full security proof in CROM

• Two instantiations: n-out-of-n signatures and multi-signatures.

• This talk: focused on n = 2, but the approach can be generalized to n > 2.

5

Comparison with previous lattice-based multi-party signing

Functionality # Rounds Type Security Building blocks

[BGG+18] t-out-of-n 1 FSwA Lyubashevsky ’12 Threshold FHE
[BKP13] t-out-of-n 1 H&S GPV ’08 Honest-majority MPC
Our DS3 n-out-of-n 3 FSwA MLWE Homomorphic COM
Our DS2 n-out-of-n 2 FSwA MLWE & MSIS Homomorphic TDCOM
[BS16] Multisig 3 FSwA DCK —
[FH20] Multisig 3 FSwA Heuristic assumption / QROM —
Our MS2 Multisig 2 FSwA MLWE & MSIS Homomorphic TDCOM

6

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = [s1 + s2]G) P2(s2, pk)

y1 ←$Zq;w1 = [y1]G w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

z1

z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them

7

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling 7

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling 7

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling 7

Two issues of bare-bone protocol

1. Simulation of rejected (wi, c,⊥)
• Not a problem for single-user signing or NIZK
• Problematic in interactive FSwA protocols
• Just sending Commit(wi) is not enough: need w1 + w2 before computing
challenge

2. Malicious P2 can choose the first message depending on P1’s output!
• Naive: extra round for “committing to commitment” to construct an honest
party simulator

• Potential concurrent attack (variant of Drijvers et al. [DEF+19] against Schnorr
multisigs)

8

Two issues of bare-bone protocol

1. Simulation of rejected (wi, c,⊥)
• Not a problem for single-user signing or NIZK
• Problematic in interactive FSwA protocols
• Just sending Commit(wi) is not enough: need w1 + w2 before computing
challenge

2. Malicious P2 can choose the first message depending on P1’s output!
• Naive: extra round for “committing to commitment” to construct an honest
party simulator

• Potential concurrent attack (variant of Drijvers et al. [DEF+19] against Schnorr
multisigs)

8

Our solutions

1. Simulation of rejected (wi, c,⊥)
• Send homomorphic Commit(wi)

• Hide wi until the rejection sampling succeeds while computing w1 + w2 earlier.

2. Malicious P2 could choose w2 depending on w1!
• Use trapdoor homomorphic commitment to avoid an extra round

9

First step: Three-round protocol from “double” commitments

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 h1 = H(com1)

com1 ← Commitck(w1; r1) h2 = H(com2)

com1

Check H(com2) = h2 com2

c← H(com1 + com2,m, t)
z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m) 10

First step: Three-round protocol from “double” commitments

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 h1 = H(com1)

com1 ← Commitck(w1; r1) h2 = H(com2)

com1

Check H(com2) = h2 com2

c← H(com1 + com2,m, t)
z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m) 10

Signature verification

• Vf(com, z, r,m, ck, (A, t)):
1. Get a challenge c← H(com,m, t)
2. Reconstruct committed w = Az− ct
3. Verify

∥z∥ is small ∧ Openck(com, r,w) = 1

• Correctness holds since
• Linearity of fA(x) = Ax:

Az− ct = A(z1 + z2)− c(As1 + As2) = w1 + w2

• Homomorphism of the commitment:
Openck(com, r,w) = Openck(com1 + com2, r1 + r2,w1 + w2) = 1

• If zi follows Gaussian centered at 0 then ∥z∥ ≈
√

2 ∥zi∥

11

Signature verification

• Vf(com, z, r,m, ck, (A, t)):
1. Get a challenge c← H(com,m, t)
2. Reconstruct committed w = Az− ct
3. Verify

∥z∥ is small ∧ Openck(com, r,w) = 1

• Correctness holds since
• Linearity of fA(x) = Ax:

Az− ct = A(z1 + z2)− c(As1 + As2) = w1 + w2

• Homomorphism of the commitment:
Openck(com, r,w) = Openck(com1 + com2, r1 + r2,w1 + w2) = 1

• If zi follows Gaussian centered at 0 then ∥z∥ ≈
√

2 ∥zi∥

11

Security

, Provably Secure!

• If protocol doesn’t abort: Honest party oracle can be simulated with the
NA-HVZK simulator

• If protocol aborts: Hiding commitment reveals nothing about wi

• Security reduction to (Module) LWE without the forking lemma, thanks to the
lossy ID technique (Abdalla et al. [AFLT16])

12

Security

, Provably Secure!

• If protocol doesn’t abort: Honest party oracle can be simulated with the
NA-HVZK simulator

• If protocol aborts: Hiding commitment reveals nothing about wi

• Security reduction to (Module) LWE without the forking lemma, thanks to the
lossy ID technique (Abdalla et al. [AFLT16])

12

Security

, Provably Secure!

• If protocol doesn’t abort: Honest party oracle can be simulated with the
NA-HVZK simulator

• If protocol aborts: Hiding commitment reveals nothing about wi

• Security reduction to (Module) LWE without the forking lemma, thanks to the
lossy ID technique (Abdalla et al. [AFLT16])

12

Efficiency

, No expensive machinery like FHE, MPC, Gaussian sampling over lattices, etc.

• L2-norm of z grows by a factor of
√

n: given n discrete Gaussian samples
zi ∼ Dσ , their sum z = z1 + . . .+ zn is statistically close to D√nσ .

• Need to wait for all n parties to pass the rejection sampling: if each party
succeeds with prob. 1/M then the entire protocol restarts Mn times

• To keep Mn constant, σ grows by a factor of n.
• Or parallel repetition is required.

13

Efficiency

, No expensive machinery like FHE, MPC, Gaussian sampling over lattices, etc.

• L2-norm of z grows by a factor of
√

n: given n discrete Gaussian samples
zi ∼ Dσ , their sum z = z1 + . . .+ zn is statistically close to D√nσ .

• Need to wait for all n parties to pass the rejection sampling: if each party
succeeds with prob. 1/M then the entire protocol restarts Mn times

• To keep Mn constant, σ grows by a factor of n.
• Or parallel repetition is required.

13

Efficiency

, No expensive machinery like FHE, MPC, Gaussian sampling over lattices, etc.

• L2-norm of z grows by a factor of
√

n: given n discrete Gaussian samples
zi ∼ Dσ , their sum z = z1 + . . .+ zn is statistically close to D√nσ .

• Need to wait for all n parties to pass the rejection sampling: if each party
succeeds with prob. 1/M then the entire protocol restarts Mn times

• To keep Mn constant, σ grows by a factor of n.
• Or parallel repetition is required.

13

Two-round protocol

How to drop the extra round?

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 h2 = H(com2) com2 ← Commitck(w2; r2)

com1 = Commitck(w1; r1)

Check H(com2) = h2 com2

c← H(com1 + com2,m, t)
z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

14

How to drop the extra round?

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

15

Simulation fails!

Sim(t1, t = t1 + As2, ck) A(s2, t, ck)

z1 ←$ Dℓ+k; c←$ C;w1 = Az1 − ct1 com1 = Commitck(w1; r1)

com2 is not known! ; can’t program RO such that

H(com1 + com2,m, t) := c com2 = Commitck(w2; r2)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

16

Simulation fails!

Sim(t1, t = t1 + As2, ck) A(s2, t, ck)

z1 ←$ Dℓ+k; c←$ C;w1 = Az1 − ct1 com1 = Commitck(w1; r1)

com2 is not known! ; can’t program RO such that

H(com1 + com2,m, t) := c com2 = Commitck(w2; r2)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

Also: If ck is fixed then the same concurrent attack applies!
; Need per-message keys ck = H(m, t) 16

Solution: Straight-line simulation with trapdoor commitment (Damgård ’00)

• Commitment key generation outputs an extra trapdoor td

• Given td a commitment can be opened to any message!

• Simulation sketch
1. Honest party simulator sends out a “fake” commitment com1 = TCommitck(td)

in the first round
2. com1 can be later equivocated to anything depending on the derived joint

challenge c.

17

Solution: Straight-line simulation with trapdoor commitment (Damgård ’00)

• Commitment key generation outputs an extra trapdoor td

• Given td a commitment can be opened to any message!

• Simulation sketch
1. Honest party simulator sends out a “fake” commitment com1 = TCommitck(td)

in the first round
2. com1 can be later equivocated to anything depending on the derived joint

challenge c.

17

Solution: Straight-line simulation with trapdoor commitment (Damgård ’00)

• Commitment key generation outputs an extra trapdoor td

• Given td a commitment can be opened to any message!

• Simulation sketch
1. Honest party simulator sends out a “fake” commitment com1 = TCommitck(td)

in the first round
2. com1 can be later equivocated to anything depending on the derived joint

challenge c.

17

Simulation with TDCOM

Sim(t1, t = t1 + As2, ck, td) A(s2, t, ck)

com1 = TCommitck(td)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 ←$ Dℓ+k;w1 = Az1 − ct1

r1 ← Eqvck(td, com1,w1)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

18

Simulation with TDCOM

Sim(t1, t = t1 + As2) A(s2, t)

ck← H(m, t)

//Invoke (ck, td)← TCGen and program H(m, t) := ck com1 = TCommitck(td)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 ←$ Dℓ+k;w1 = Az1 − ct1

r1 ← Eqvck(td, com1,w1)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

18

Our two-round protocol: the final form

P1(s1, t = A(s1 + s2)) P2(s2, t)

ck← H(m, t) ck← H(m, t)

y1 ←$ Dℓ+k;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

19

Summary of the two-round protocol

• Per-message ck prevents the concurrent k-list sum attack.

• TDCOM requires computationally binding ; security proof relies on the
forking lemma (leading to a larger security loss)

• Paper describes how to instantiate a lattice-based TDCOM from Baum et al’s
commitment [BDL+18] + Micciancio–Peikert lattice trapdoor [MP12].

20

Takeaways

• Multi-party FSwA signing with low round complexity & without FHE/MPC

• By deriving per-user challenges ci = H(com, µ, ti,L) our construction can be
turned into a two-round multi-signature secure in the plain public-key
model (= no dedicated key generation protocol is needed)

• Open questions:
• Make the signature size less dependent on the number of parties n
• Tighter security reduction & proof in QROM

Thank you! & Questions?
More details at https://ia.cr/2020/1110

21

https://ia.cr/2020/1110

Takeaways

• Multi-party FSwA signing with low round complexity & without FHE/MPC

• By deriving per-user challenges ci = H(com, µ, ti,L) our construction can be
turned into a two-round multi-signature secure in the plain public-key
model (= no dedicated key generation protocol is needed)

• Open questions:
• Make the signature size less dependent on the number of parties n
• Tighter security reduction & proof in QROM

Thank you! & Questions?
More details at https://ia.cr/2020/1110

21

https://ia.cr/2020/1110

Takeaways

• Multi-party FSwA signing with low round complexity & without FHE/MPC

• By deriving per-user challenges ci = H(com, µ, ti,L) our construction can be
turned into a two-round multi-signature secure in the plain public-key
model (= no dedicated key generation protocol is needed)

• Open questions:
• Make the signature size less dependent on the number of parties n
• Tighter security reduction & proof in QROM

Thank you! & Questions?
More details at https://ia.cr/2020/1110

21

https://ia.cr/2020/1110

Takeaways

• Multi-party FSwA signing with low round complexity & without FHE/MPC

• By deriving per-user challenges ci = H(com, µ, ti,L) our construction can be
turned into a two-round multi-signature secure in the plain public-key
model (= no dedicated key generation protocol is needed)

• Open questions:
• Make the signature size less dependent on the number of parties n
• Tighter security reduction & proof in QROM

Thank you! & Questions?
More details at https://ia.cr/2020/1110

21

https://ia.cr/2020/1110

References i

Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi
Tibouchi.
Tightly secure signatures from lossy identification schemes.
Journal of Cryptology, 29(3):597–631, July 2016.

Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert.
More efficient commitments from structured lattice assumptions.
In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of
LNCS, pages 368–385. Springer, Heidelberg, September 2018.

References ii

Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai.
Threshold cryptosystems from threshold fully homomorphic encryption.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 565–596. Springer, Heidelberg, August 2018.

Rikke Bendlin, Sara Krehbiel, and Chris Peikert.
How to share a lattice trapdoor: Threshold protocols for signatures and
(H)IBE.
In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 218–236. Springer,
Heidelberg, June 2013.

References iii

Katharina Boudgoust and Adeline Roux-Langlois.
Compressed linear aggregate signatures based on module lattices.
Cryptology ePrint Archive, Report 2021/263, 2021.
https://eprint.iacr.org/2021/263.

Rachid El Bansarkhani and Jan Sturm.
An efficient lattice-based multisignature scheme with applications to
bitcoins.
In Sara Foresti and Giuseppe Persiano, editors, CANS 16, volume 10052 of
LNCS, pages 140–155. Springer, Heidelberg, November 2016.

https://eprint.iacr.org/2021/263

References iv

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs.
On the security of two-round multi-signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE
Computer Society Press, May 2019.

Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar.
Mmsat: A scheme for multimessage multiuser signature aggregation.
Cryptology ePrint Archive, Report 2020/520, 2020.
https://eprint.iacr.org/2020/520.

https://eprint.iacr.org/2020/520

References v

Masayuki Fukumitsu and Shingo Hasegawa.
A lattice-based provably secure multisignature scheme in quantum random
oracle model.
In ProvSec 2020, LNCS, pages xxx–xxx. Springer, 2020.

Freepik.
Icons made by Freepik from Flaticon.com.
http://www.flaticon.com.
Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197–206. ACM Press, May 2008.

http://www.flaticon.com

References vi

Vadim Lyubashevsky.
Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
598–616. Springer, Heidelberg, December 2009.

Daniele Micciancio and Chris Peikert.
Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

References vii

David Wagner.
A generalized birthday problem.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 288–303.
Springer, Heidelberg, August 2002.

Concurrent attack against bare-bone protocol I

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol I

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol I

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol I

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol II

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck
• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol II

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck
• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol II

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck
• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol II

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck
• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

TDCOM

A trapdoor commitment scheme TCOM consists of the following algorithms in
addition to (CSetup, CGen, Commit,Open).

• TCGen(cpp)→ (ck, td): The trapdoor key generation algorithm that outputs a
key ck and the trapdoor td.

• TCommitck(td)→ com: The trapdoor committing algorithm that outputs a
commitment com.

• Eqvck(td, com,msg)→ r: The equivocation algorithm that outputs
randomness r.

• Security: for any msg ∈ Smsg, the distribution of (msg, ck, com, r) generated by
the above algorithms is indistinguishable from the one honestly generated
by CGen and Commit.

	Intro
	Two-party Signing from FSwA
	Two-round protocol
	Appendix

