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Intro



Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• Renewed interest in multi-party signing: upcoming NIST standardization,
Blockchain, etc.

• Many existing works on round-efficient n-party signatures in the discrete log
setting (cf. Drijvers et al. [DEF+19]).

• FSwA-style signature has a structure similar to Schnorr.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?
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2-out-of-2 Signing

Alice Bob
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2-out-of-2 Signing : Game-based Security

Alice Corrupt
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2-out-of-2 Signing : Game-based Security
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Fiat–Shamir with Aborts: Dilithium ID

P(A, s) V(A, t = As)

y←$ Dℓ+k//D is Gaussian or uni.

w := Ay w c←$ C ⊂ R

z := cs + y c

If RejSamp(cs, z) = 0 : restart z Az− ct = w ∧ ∥z∥ is small

• Operate on a vector of polynomials in a quotient ring Rq = Zq[X]/(f(X)).

• Secret key is a small s ∈ Rℓ+k
q ; public key consists of A = [A′|I] with random A′ ∈ Rk×ℓ

q and
t = As.

• z ∈ Rℓ+k
q has to be small; c and y have to be small as well.

• RejSamp = rejection sampling: force z to be independent of s (non-linear operation)
3



Fiat–Shamir with Aborts: Dilithium ID vs. Schnorr ID

P(G, s) V(G, t = [s]G)

y←$Zq

w = [y]G w c←$ C ⊂ R

z := cs + y c

z [z]G− ct = w

• Operate on a vector of polynomials in a quotient ring Rq = Zq[X]/(f(X)).

• Secret key is a small s ∈ Rℓ+k
q ; public key consists of A = [A′|I] with random A′ ∈ Rk×ℓ

q and
t = As.

• z ∈ Rℓ+k
q has to be small; c and y have to be small as well.

• RejSamp = rejection sampling: force z to be independent of s (non-linear operation)
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Security of FSwA

• Soundness from Module-SIS and Module-LWE
• Suppose P∗(A, t) can correctly answer c and c′ for the same w

; Az− ct = w = Az′ − c′t

• (A, t = As) ≈c (A, t←$ Rk
q) due to LWE.

• Then using P∗ find a non-zero solution to the SIS problem wrt [A|t]:

[A|t]
[

z− z′
c′ − c

]
= 0.

• Non-aborting statistical HVZK
• If protocol doesn’t abort: simulator outputs (w = Az− ct, c, z←$ Dℓ+k).
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Two-party Signing from FSwA



Our results

• Two-round multi-party FSwA signing with full security proof in CROM

• Two instantiations: n-out-of-n signatures and multi-signatures.

• This talk: focused on n = 2, but the approach can be generalized to n > 2.
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Comparison with previous lattice-based multi-party signing

Functionality # Rounds Type Security Building blocks

[BGG+18] t-out-of-n 1 FSwA Lyubashevsky ’12 Threshold FHE
[BKP13] t-out-of-n 1 H&S GPV ’08 Honest-majority MPC
Our DS3 n-out-of-n 3 FSwA MLWE Homomorphic COM
Our DS2 n-out-of-n 2 FSwA MLWE & MSIS Homomorphic TDCOM
[BS16] Multisig 3 FSwA DCK —
[FH20] Multisig 3 FSwA Heuristic assumption / QROM —
Our MS2 Multisig 2 FSwA MLWE & MSIS Homomorphic TDCOM
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Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = [s1 + s2]G) P2(s2, pk)

y1 ←$Zq;w1 = [y1]G w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

z1

z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them

7
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Two issues of bare-bone protocol

1. Simulation of rejected (wi, c,⊥)
• Not a problem for single-user signing or NIZK
• Problematic in interactive FSwA protocols
• Just sending Commit(wi) is not enough: need w1 + w2 before computing
challenge

2. Malicious P2 can choose the first message depending on P1’s output!
• Naive: extra round for “committing to commitment” to construct an honest
party simulator

• Potential concurrent attack (variant of Drijvers et al. [DEF+19] against Schnorr
multisigs)
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Our solutions

1. Simulation of rejected (wi, c,⊥)
• Send homomorphic Commit(wi)

• Hide wi until the rejection sampling succeeds while computing w1 + w2 earlier.

2. Malicious P2 could choose w2 depending on w1!
• Use trapdoor homomorphic commitment to avoid an extra round

9



First step: Three-round protocol from “double” commitments

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 h1 = H(com1)

com1 ← Commitck(w1; r1) h2 = H(com2)

com1

Check H(com2) = h2 com2

c← H(com1 + com2,m, t)
z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m) 10
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Signature verification

• Vf(com, z, r,m, ck, (A, t)):
1. Get a challenge c← H(com,m, t)
2. Reconstruct committed w = Az− ct
3. Verify

∥z∥ is small ∧ Openck(com, r,w) = 1

• Correctness holds since
• Linearity of fA(x) = Ax:

Az− ct = A(z1 + z2)− c(As1 + As2) = w1 + w2

• Homomorphism of the commitment:
Openck(com, r,w) = Openck(com1 + com2, r1 + r2,w1 + w2) = 1

• If zi follows Gaussian centered at 0 then ∥z∥ ≈
√

2 ∥zi∥
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Security

, Provably Secure!

• If protocol doesn’t abort: Honest party oracle can be simulated with the
NA-HVZK simulator

• If protocol aborts: Hiding commitment reveals nothing about wi

• Security reduction to (Module) LWE without the forking lemma, thanks to the
lossy ID technique (Abdalla et al. [AFLT16])
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Efficiency

, No expensive machinery like FHE, MPC, Gaussian sampling over lattices, etc.

• L2-norm of z grows by a factor of
√

n: given n discrete Gaussian samples
zi ∼ Dσ , their sum z = z1 + . . .+ zn is statistically close to D√nσ .

• Need to wait for all n parties to pass the rejection sampling: if each party
succeeds with prob. 1/M then the entire protocol restarts Mn times

• To keep Mn constant, σ grows by a factor of n.
• Or parallel repetition is required.
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Two-round protocol



How to drop the extra round?

P1(s1, t = A(s1 + s2), ck) P2(s2, t, ck)

y1 ←$ Dℓ+k;w1 = Ay1 h2 = H(com2) com2 ← Commitck(w2; r2)

com1 = Commitck(w1; r1)

Check H(com2) = h2 com2

c← H(com1 + com2,m, t)
z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)
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Simulation fails!

Sim(t1, t = t1 + As2, ck) A(s2, t, ck)

z1 ←$ Dℓ+k; c←$ C;w1 = Az1 − ct1 com1 = Commitck(w1; r1)

com2 is not known! ; can’t program RO such that

H(com1 + com2,m, t) := c com2 = Commitck(w2; r2)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)
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If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

Also: If ck is fixed then the same concurrent attack applies!
; Need per-message keys ck = H(m, t) 16



Solution: Straight-line simulation with trapdoor commitment (Damgård ’00)

• Commitment key generation outputs an extra trapdoor td

• Given td a commitment can be opened to any message!

• Simulation sketch
1. Honest party simulator sends out a “fake” commitment com1 = TCommitck(td)

in the first round
2. com1 can be later equivocated to anything depending on the derived joint

challenge c.
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Simulation with TDCOM

Sim(t1, t = t1 + As2, ck, td) A(s2, t, ck)

com1 = TCommitck(td)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 ←$ Dℓ+k;w1 = Az1 − ct1

r1 ← Eqvck(td, com1,w1)

With prob. 1− 1/M : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)
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Simulation with TDCOM

Sim(t1, t = t1 + As2) A(s2, t)

ck← H(m, t)

//Invoke (ck, td)← TCGen and program H(m, t) := ck com1 = TCommitck(td)
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Our two-round protocol: the final form

P1(s1, t = A(s1 + s2)) P2(s2, t)

ck← H(m, t) ck← H(m, t)

y1 ←$ Dℓ+k;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, t) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)
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Summary of the two-round protocol

• Per-message ck prevents the concurrent k-list sum attack.

• TDCOM requires computationally binding ; security proof relies on the
forking lemma (leading to a larger security loss)

• Paper describes how to instantiate a lattice-based TDCOM from Baum et al’s
commitment [BDL+18] + Micciancio–Peikert lattice trapdoor [MP12].

20



Takeaways

• Multi-party FSwA signing with low round complexity & without FHE/MPC

• By deriving per-user challenges ci = H(com, µ, ti,L) our construction can be
turned into a two-round multi-signature secure in the plain public-key
model (= no dedicated key generation protocol is needed)

• Open questions:
• Make the signature size less dependent on the number of parties n
• Tighter security reduction & proof in QROM

Thank you! & Questions?
More details at https://ia.cr/2020/1110
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Concurrent attack against bare-bone protocol I

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk
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Concurrent attack against bare-bone protocol II

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck
• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting
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TDCOM

A trapdoor commitment scheme TCOM consists of the following algorithms in
addition to (CSetup, CGen, Commit,Open).

• TCGen(cpp)→ (ck, td): The trapdoor key generation algorithm that outputs a
key ck and the trapdoor td.

• TCommitck(td)→ com: The trapdoor committing algorithm that outputs a
commitment com.

• Eqvck(td, com,msg)→ r: The equivocation algorithm that outputs
randomness r.

• Security: for any msg ∈ Smsg, the distribution of (msg, ck, com, r) generated by
the above algorithms is indistinguishable from the one honestly generated
by CGen and Commit.
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