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Nonce = Number used only once

0



“Nonce” in ECDSA/Schnorr-type Schemes

Alice Bob
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Sign
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0/1
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101101 ・・・

• k is a uniformly random value satisfying

k ≡ z︸︷︷︸
public

+ h︸︷︷︸
public

·x mod q.

• k should NEVER be reused/exposed as x = (z− z′)/(h′ − h) mod q
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Risk of Biased/Leaky Nonces
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Sign
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Bias

• What if k is slightly biased ?
• Secret key x is recovered by solving the hidden number problem (HNP)
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Randomness Failure in the Real World

• Poorly designed/implemented RNGs
• Predictable seed (srand(time(0))
• VM resets ; same snapshot will end up
with the same seed

• Side-channel leakage
• and many more. . .

BBC news. 2011. https://www.bbc.com/
news/technology-12116051
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Chronology of HNP: a 25-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!
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This work

1. Improved analysis of Fourier analysis-based attack (Bleichenbacher ’00) to
solve the HNP

• Allows us to exploit tiny amount of nonce leakage per signature

2. Novel class of cache timing attacks against the Montgomery ladder scalar
multiplication in OpenSSL 1.0.2u and 1.1.0l, and RELIC 0.4.0.

3. Implemented a full secret key recovery attack against OpenSSL ECDSA over
sect163r1 and NIST P-192.
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How to Exploit Nonce Leakage



How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
& 

Fewer signatures

Less bias/leakage 
& 

More signatures

Lattice

Fourier
Analysis
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Questions

• Can we reduce #signatures for Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

YES!
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Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution 1: Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: find many small linear combinations of integers h
• Detect the bias peak correctly and efficiently
• Contribution 2: Established time-data tradeoffs by applying algorithms for the
generalized birthday problem (GBP)!

8



Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution 1: Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: find many small linear combinations of integers h
• Detect the bias peak correctly and efficiently
• Contribution 2: Established time-data tradeoffs by applying algorithms for the
generalized birthday problem (GBP)!

8



Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution 1: Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: find many small linear combinations of integers h
• Detect the bias peak correctly and efficiently
• Contribution 2: Established time-data tradeoffs by applying algorithms for the
generalized birthday problem (GBP)!

8



K-list Sum for GBP (e.g., K = 4)

Initially
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Time–Data tradeoffs for 1-bit leakage
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Figure 1: Time–Data tradeoff graphs (in a log2 scale) when memory is fixed to 235

* Optimized data complexity by solving the linear programming problem
* Further optimization is feasible if > 1-bit leakage is available!

• Sample amplification via exhaustive K-sum search
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ECDSA key recovery attack: experimental records

Target Bias Facility Error rate Input Thread Time RAM Recovered
(Collision) (Collision) (Collision) MSBs

NIST P-192 1-bit AWS EC2 0 229 96 × 24 113h 492GB 39
NIST P-192 1-bit AWS EC2 1% 235 96 × 24 52h 492GB 39
sect163r1 1-bit Cluster 0 223 16 × 16 7h 80GB 36
sect163r1 1-bit Workstation 2.7% 224 48 42h 250GB 35

sect163r1 2-bit Cluster 0 1024 16 2h 96GB 32

Table 1: Computational results for the first round of Bleichenbacher

• Attack on P-192 is made possible by our highly optimized parallel
implementation.

• Attack on sect163r1 is even feasible with a laptop.
• Recovering remaining bits is much cheaper in Bleichenbacher’s framework. 11
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How to Acquire Nonce Leakage



LadderLeak: Tiny timing leakage from the Montgomery ladder

Algorithm 1 Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← 2R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

Conditions for the attack to work:

• Accumulators (R0,R1) are in
projective coordinates, but
initialized with the base point in
affine coordinates.

• Group order is 2n − δ

• Group law is non-constant time
wrt handling Z coordinates ;
Weierstrass model

Experiments were carried out with
Flush+Reload cache attack technique

; MSB of k was detected with > 99 %
accuracy. 12



Software countermeasures & coordinated disclosure

• Coordinated disclosure: reported in December 2019 (before EOL of OpenSSL
1.0.2)

• Fixed in April 2020 with randomized Z coordinates of the base point

13



Main takeaways

• ECDSA nonce is extremely sensitive!
• Even < 1-bit leakage/signature is exploitable, albeit with quite a few signatures
as input

• HNP is still relevant nowadays

• Interesting connection between the HNP and GBP
• Open question: Could #signatures for Bleichenbacher be as low as lattice?

Thank you! & Questions?
More details at https://ia.cr/2020/615
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