Fiat—Shamir Bulletproofs are Non-Malleable (in AGM)

¹ Chaya Ganesh, ² Claudio Orlandi, ² **Mahak Pancholi**, ² Akira Takahashi, and ³ Daniel Tschudi

This Work

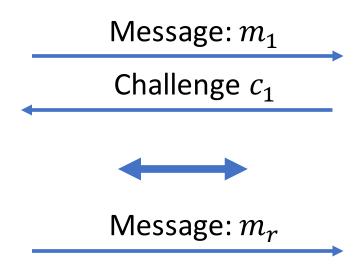
Concrete modular security analysis of simulation-extractability (SIM-EXT)

for multi-round Fiat-Shamir NIZK ==> non-malleability

• First to show **Fiat-Shamir Bulletproofs** satisfy **SIM-EXT** in the AGM.

Claim: $(x, w) \in R$

Prover (x,w)



Verifier x

Claim: $(x, w) \in R$

Prover

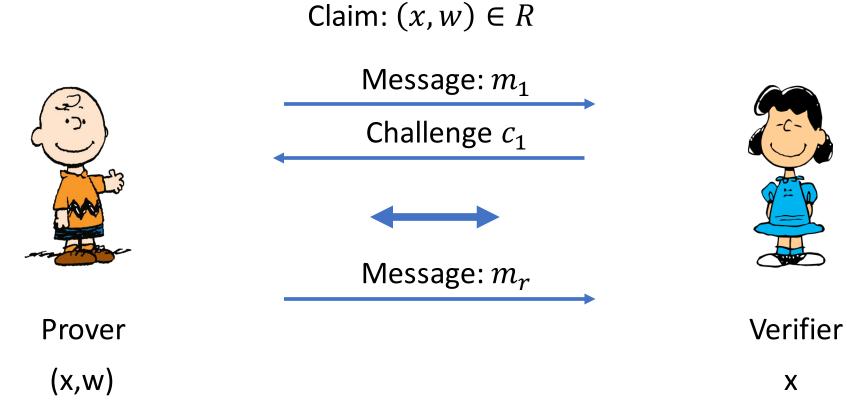
(x,w)

Message: m_1 Challenge c_1 Message: m_r

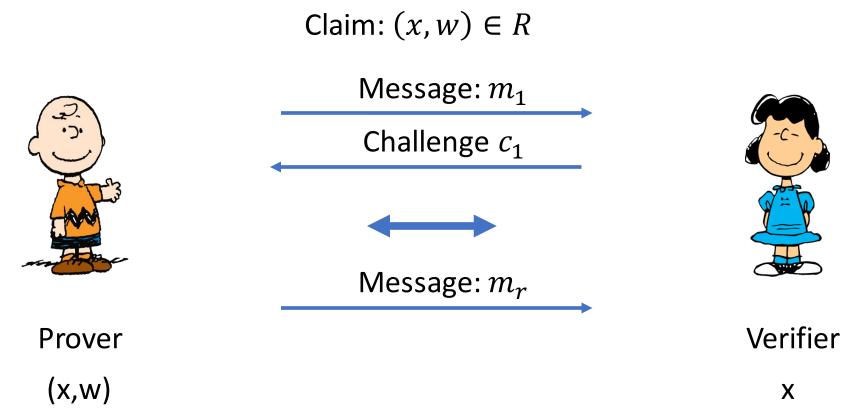
Verifier

X

Complete.

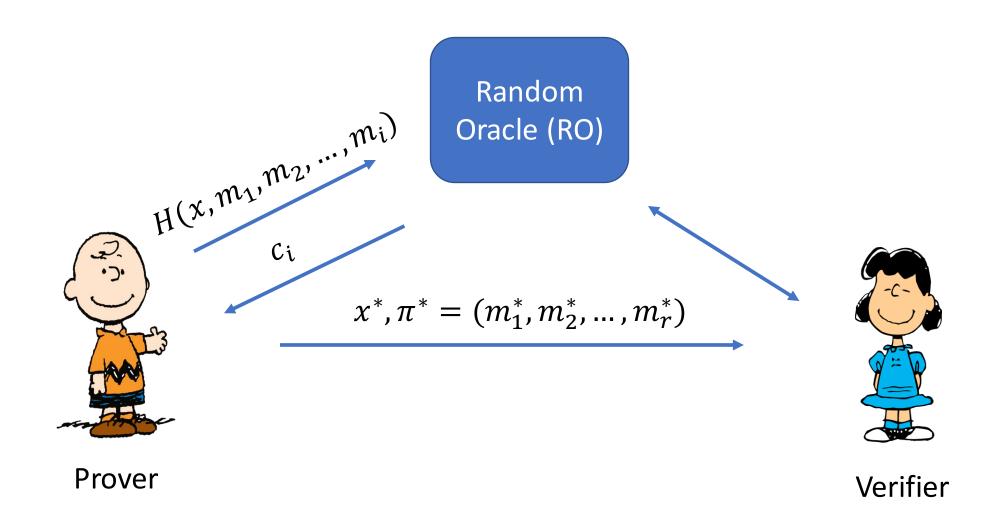


- Complete.
- **Proof of knowledge**: There exists an extractor that can extract a witness.

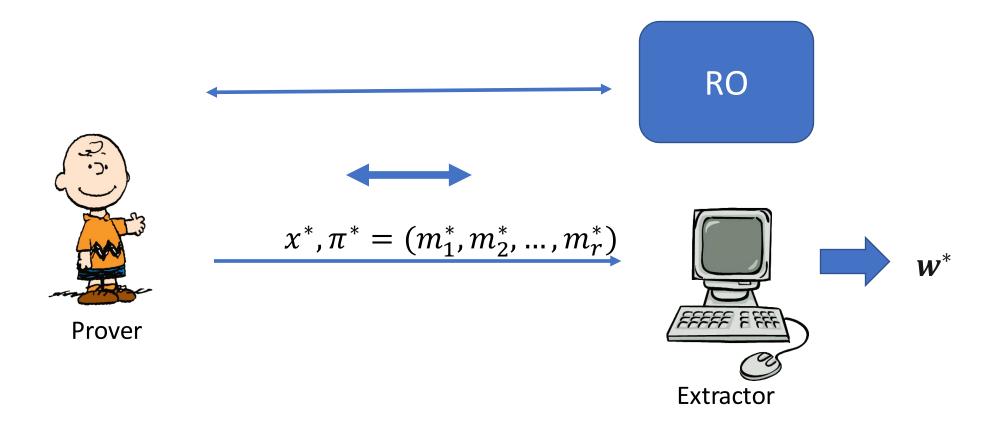


- Complete.
- Proof of knowledge: There exists an extractor that can extract a witness.
- Zero-Knowledge: There exists a simulator that can simulate corrupt Verifier's view.

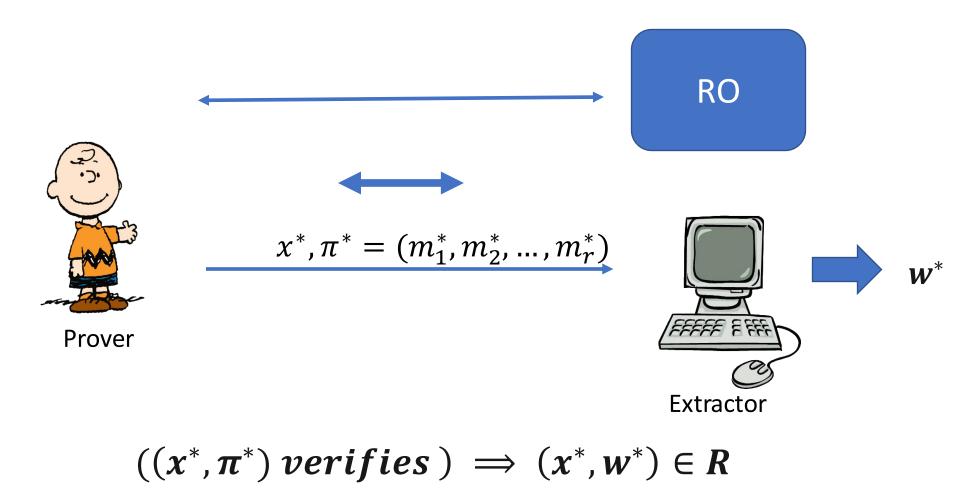
NIZK via Fiat-Shamir Transform



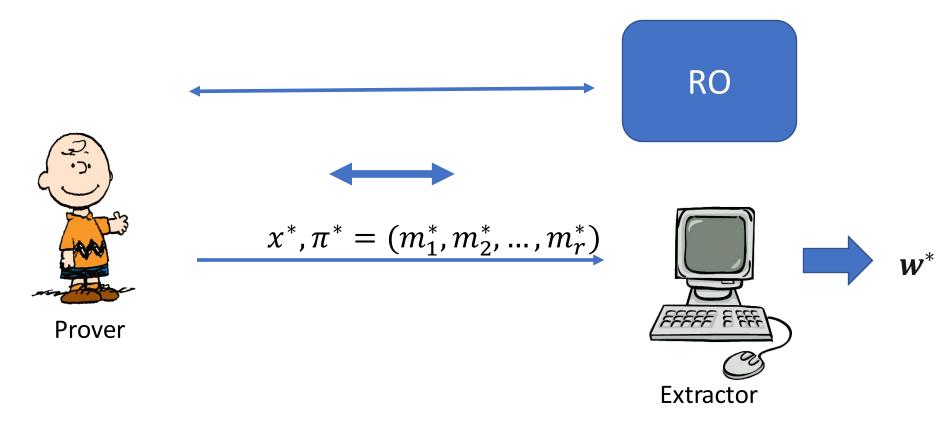
Proof of Knowledge (FS-EXT)



Proof of Knowledge (FS-EXT)



Proof of Knowledge (FS-EXT)



$$((x^*, \pi^*) \ verifies) \implies (x^*, w^*) \in R$$

Is extraction enough?

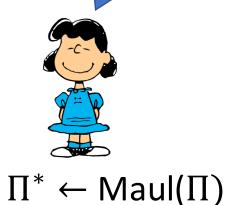
Why is Extraction not enough?

I have at least 100\$ and here's a proof, Π

Why is Extraction not enough?

I have at least 100\$ and here's a proof, Π

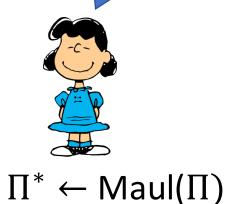
I also have at least 100\$ and here's a proof, Π^*



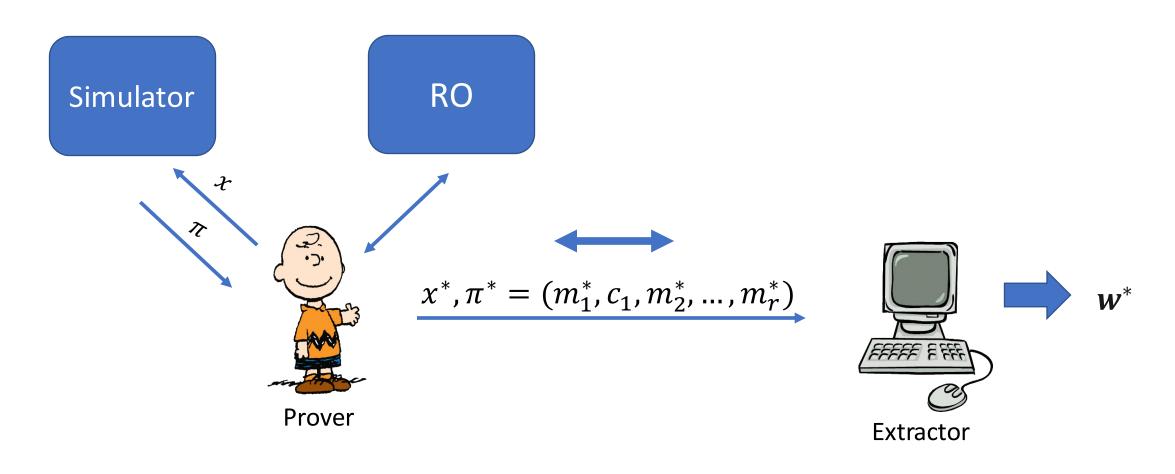
Why is Extraction not enough?

I have at least 100\$ and here's a proof, Π

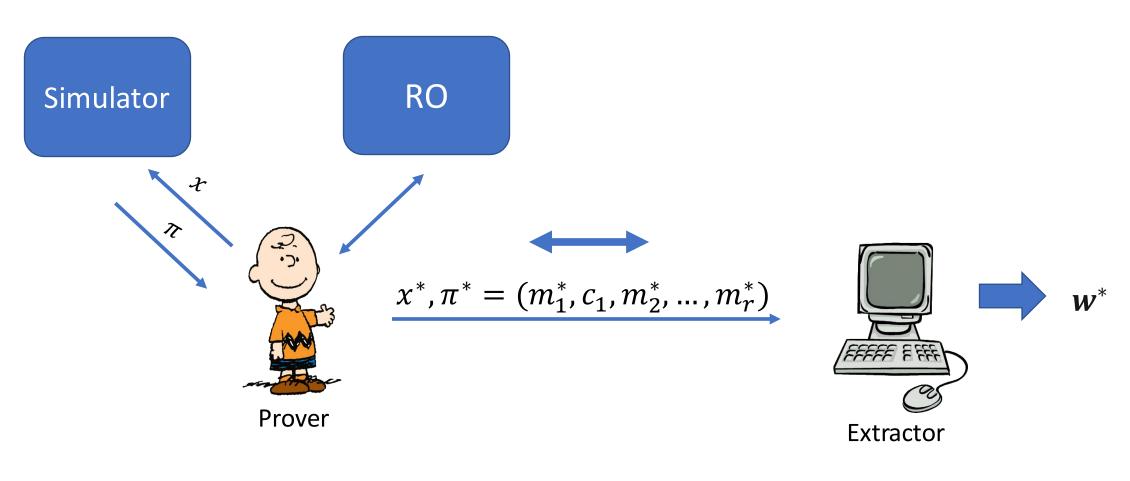
I also have at least 100\$ and here's a proof, Π^*



Simulation Extractability (FS-SIMEXT)



Simulation Extractability (FS-SIMEXT)



$$((x^*, \pi^*) \ verifies \land (x^*, \pi^*) \notin Q_s) \implies (x^*, w^*) \in R$$

Why Bulletproofs (BP)? [BBB+17]

- Public-coin, transparent setup
- Extremely efficient
- Real world applications (Monero, MobileCoin...)

Why Bulletproofs (BP)? [BBB+17]

- Public-coin, transparent setup
- Extremely efficient
- Real world applications (Monero, MobileCoin...)
- Challenge: Non-constant rounds

FS-SIMEXT for BP

- Challenge: Non-constant rounds
- Ghoshal and Tessaro [GT21]:
 - Online extraction for FS(BP).
 - In the Algebraic Group Model (AGM) and just extraction.

Online Extraction

• A stronger variant.

Online Extraction

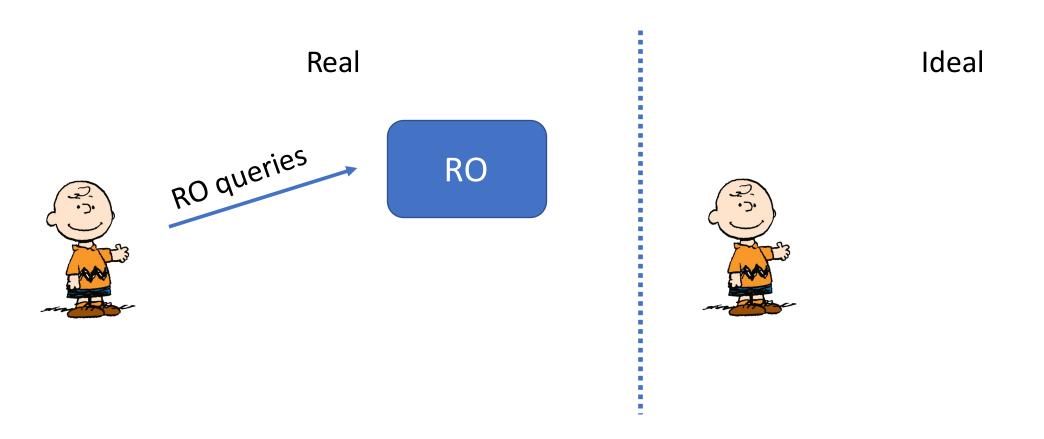
- A stronger variant.
- Extractor runs with the adversary. No need for rewinding.

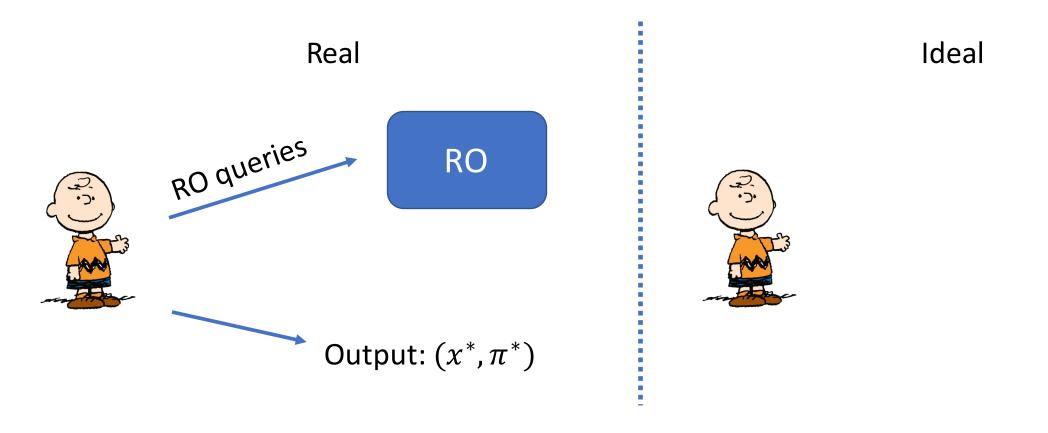
Online Extraction

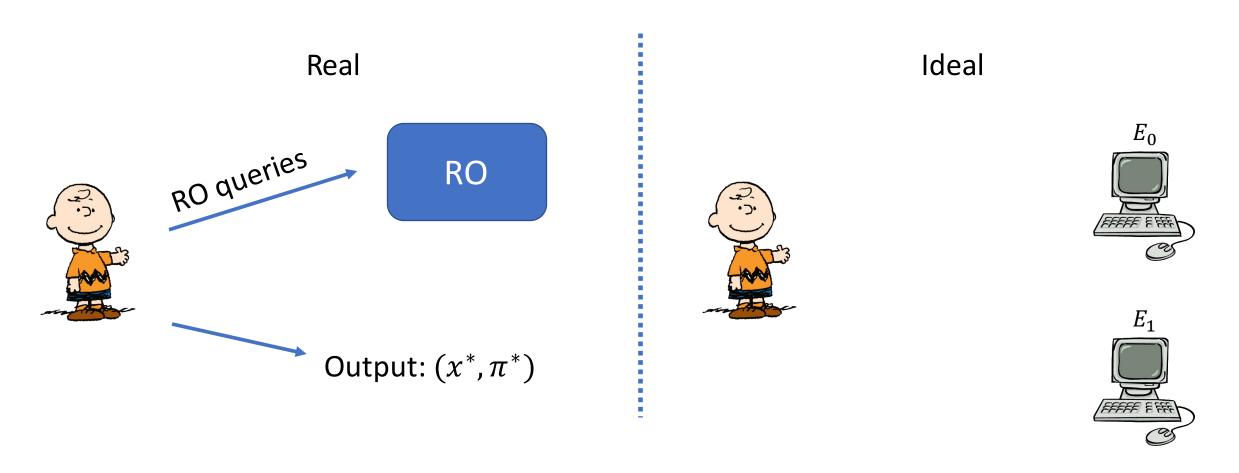
- A stronger variant.
- Extractor runs with the adversary. No need for rewinding.
- In this work, we assume AGM:

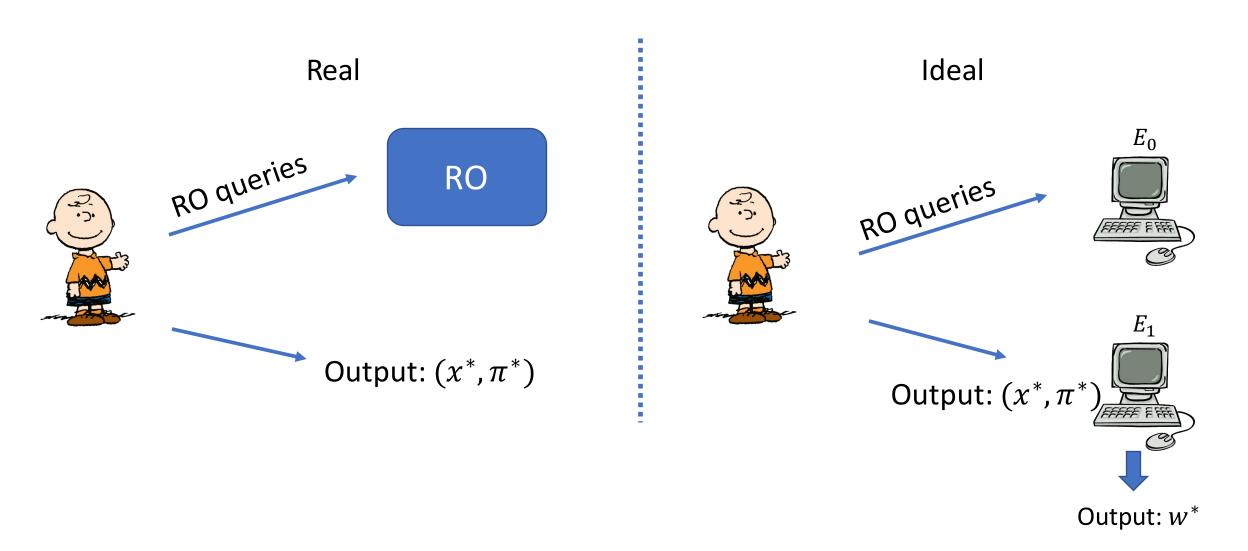
$$(y, e_1, e_2, \dots, e_n) \leftarrow A_{alg}(g_1, g_2, \dots, g_n)$$
 such that $y = g_1^{e_1} \times \dots \times g_n^{e_n}$

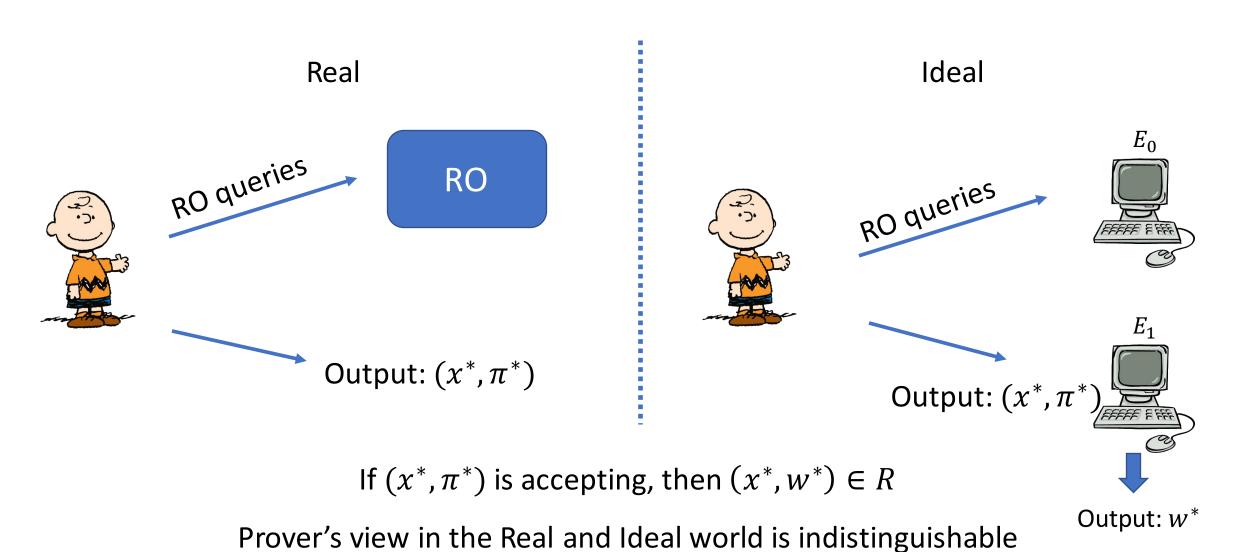
Real

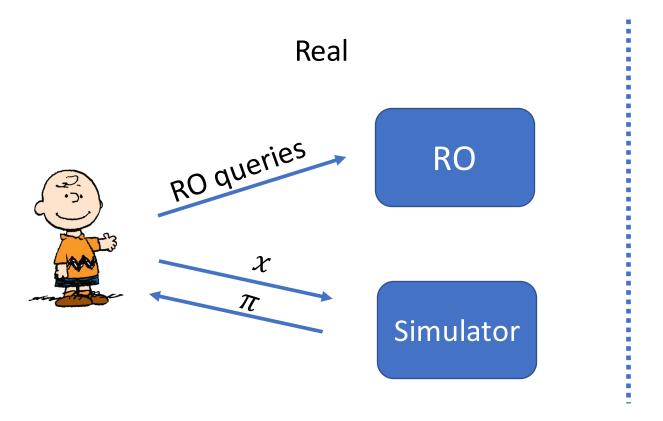


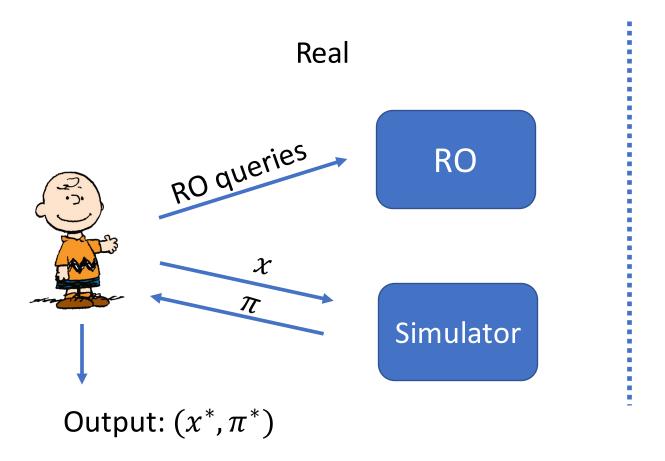


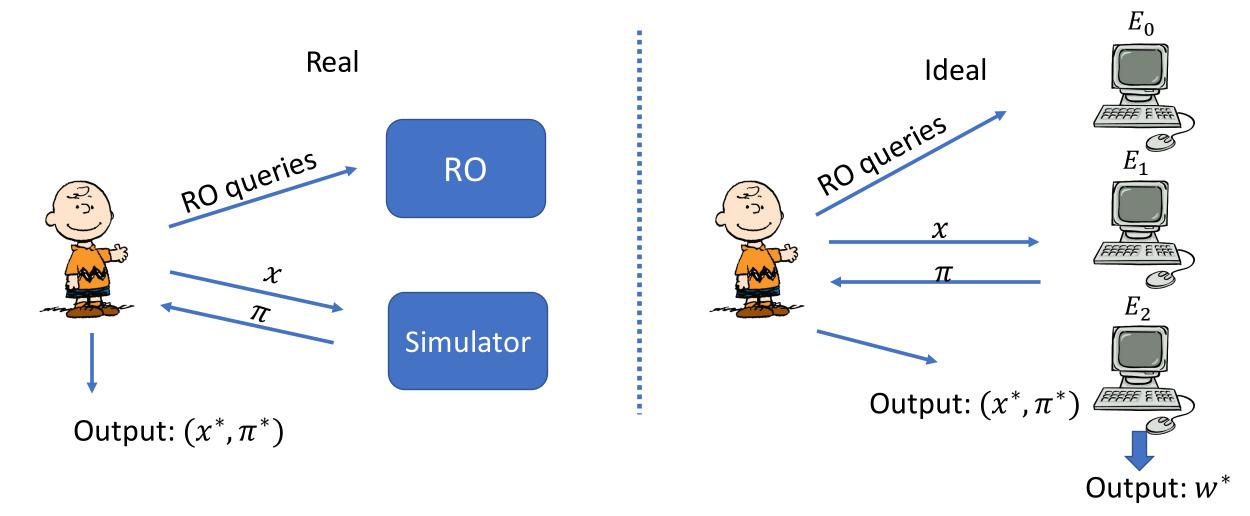


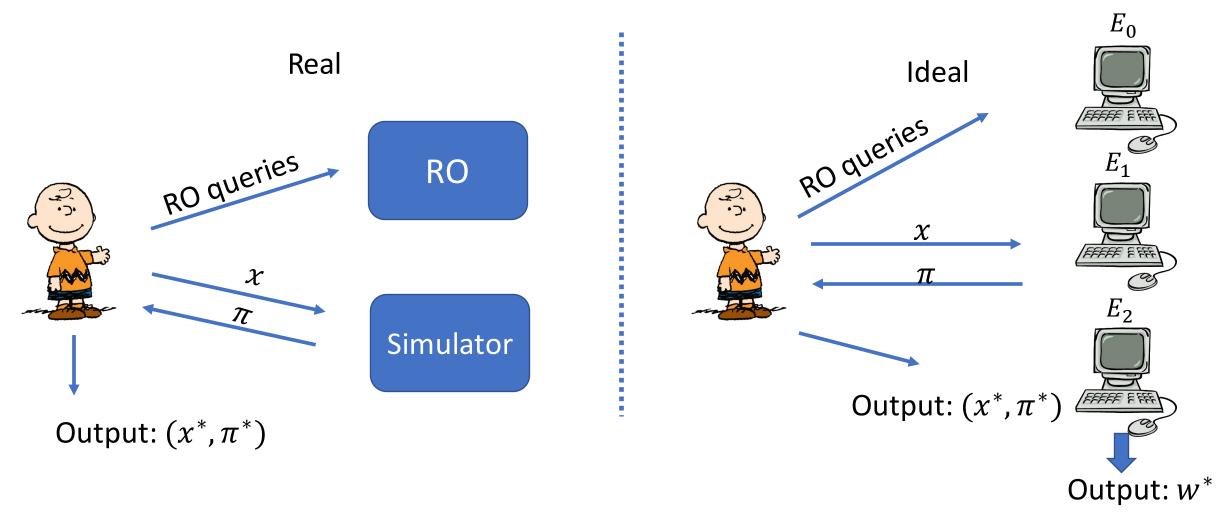












If (x^*, π^*) is accepting and (x^*, π^*) was not queried, then $(x^*, w^*) \in R$

Prover's view in the Real and Ideal world is indistinguishable

[FKMV12,GKK+21]

• Simulator gives **no extra power** to the adversary.

[FKMV12,GKK+21]

- Simulator gives **no extra power** to the adversary.
- Rely on **extractability** of $FS(\Pi)$.

[FKMV12,GKK+21]

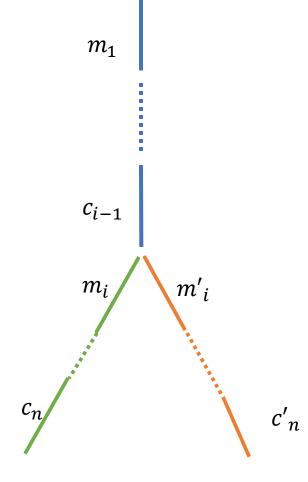
- Simulator gives **no extra power** to the adversary.
- Rely on **extractability** of $FS(\Pi)$.
- Use **unique response** for $FS(\Pi)$.

[FKMV12,GKK+21]

• Simulator gives **no extra power** to the adversary.

• Rely on **extractability** of $FS(\Pi)$.

• Use unique response for $FS(\Pi)$.

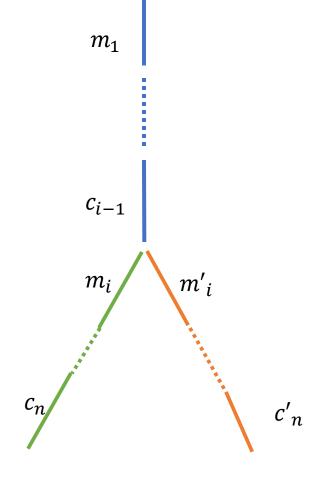


[FKMV12,GKK+21]

• Simulator gives **no extra power** to the adversary.

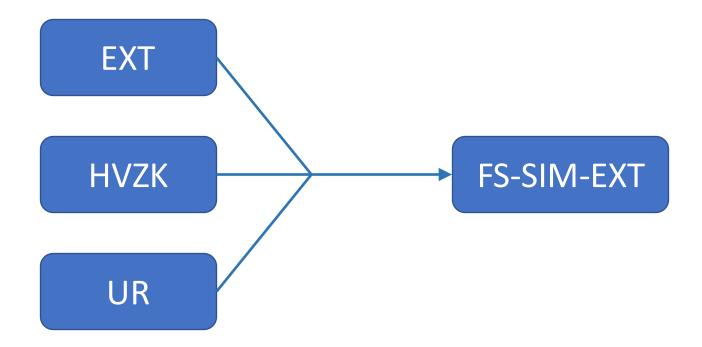
• Rely on **extractability** of $FS(\Pi)$.

- Use **unique response** for $FS(\Pi)$.
- > Adversary cannot reuse simulated transcript.



General Recipe

[FKMV12,GKK+21]



Proof: If the forged proof shares a prefix with one of the simulated transcripts, reduce it to UR property. Else, use the Extractor.

Missing Pieces

Is Non-interactive Bulletproofs:

- Online Extractable?
- Unique Response?

Is Non-interactive Bulletproofs Extractable?

Tight State-Restoration Soundness in the Algebraic Group Model*

Ashrujit Ghoshal and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering University of Washington, Seattle, USA {ashrujit, tessaro}@cs.washington.edu

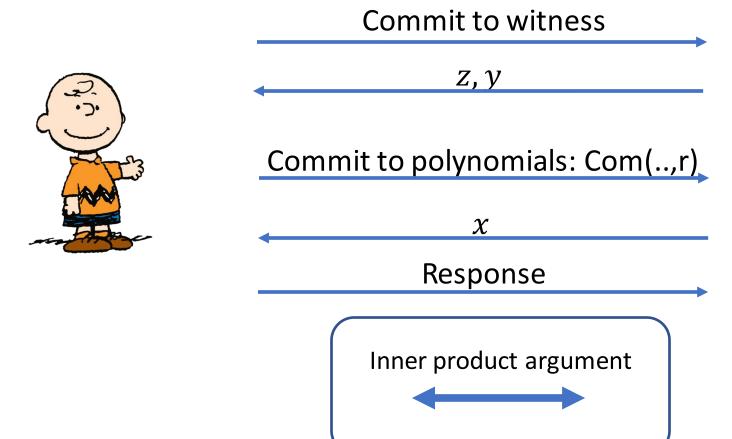
Result: FS(BP) is online extractable in the AGM.

Missing Pieces

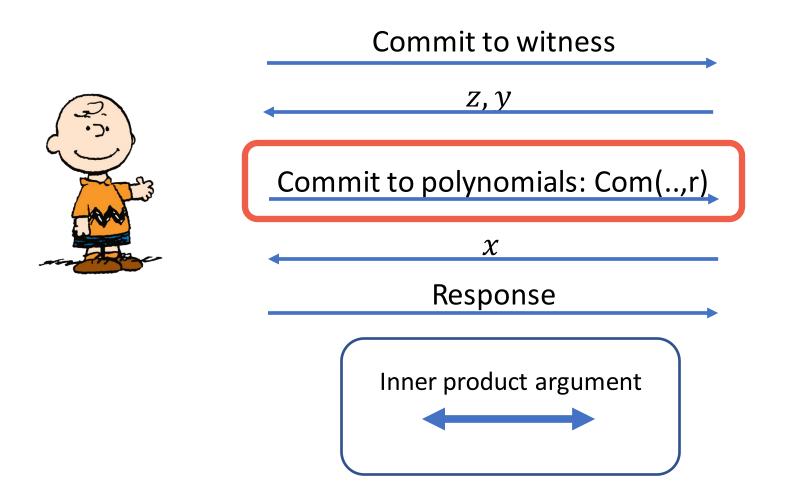
Is Non-interactive Bulletproofs:

- Online Extractable?
- Unique Response?

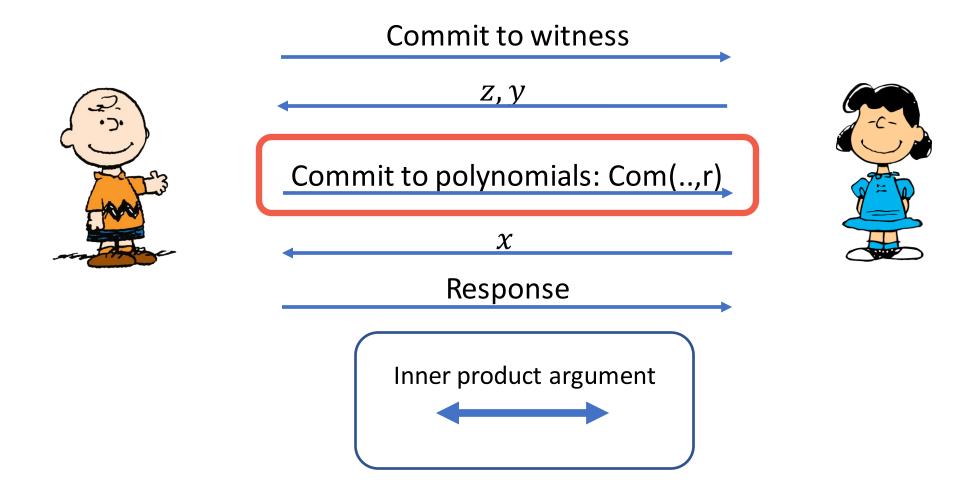
Bulletproofs.RngPf



Bulletproofs.RngPf



Bulletproofs.RngPf



Any protocol with an intermediate randomized round cannot have unique responses.

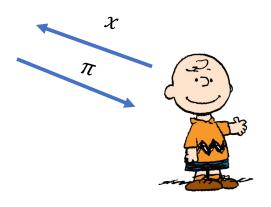
• We want: Adversary should not reuse a simulated transcript.

- We want: Adversary should **not reuse a simulated transcript**.
- Existing UR definitions are too strong.

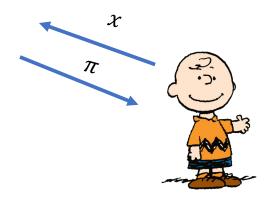
- We want: Adversary should not reuse a simulated transcript.
- Existing UR definitions are too strong.
- One of the transcripts can be fixed!
 - Given honest $\pi=(m_1,c_1,...,m_i,c_i,...)$, it is hard to come up with $\pi'=(m_1,c_1,...,m_i,c_i,...)$.

- We want: Adversary should not reuse a simulated transcript.
- Existing UR definitions are too strong.
- One of the transcripts can be fixed!
 - Given honest $\pi=(m_1,c_1,...,m_i,c_i,...)$, it is hard to come up with $\pi'=(m_1,c_1,...,m_i',c_i',...)$.
- Interactive version is inspired from State restoration soundness definition [BCS16].

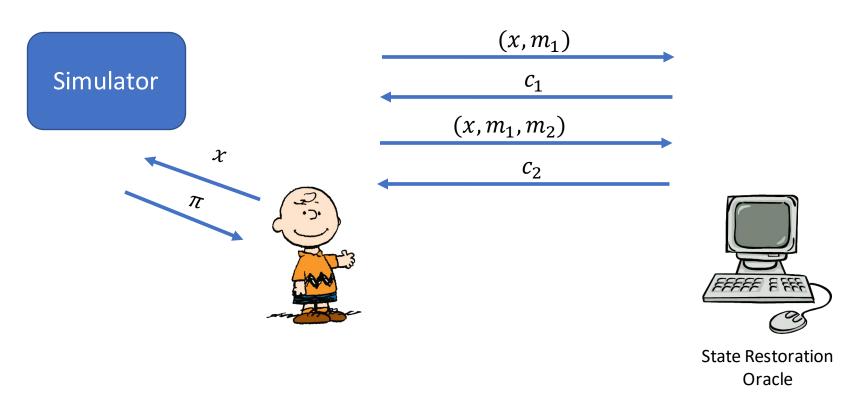
Simulator

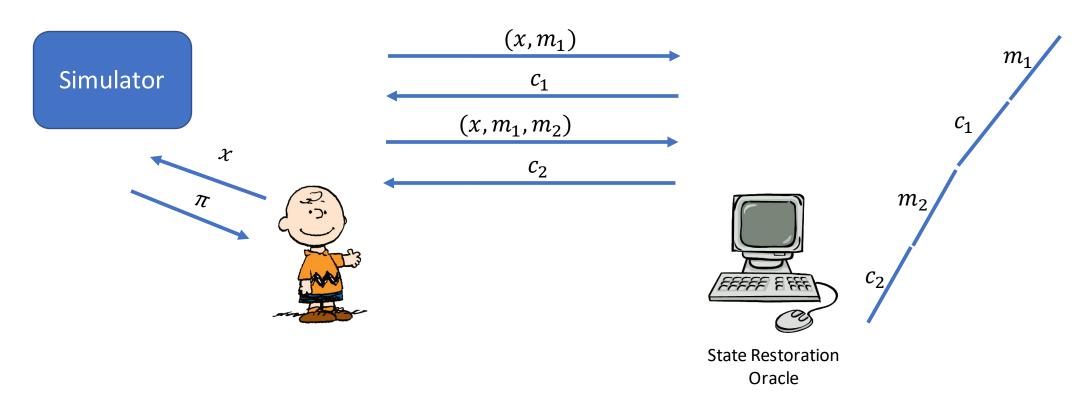


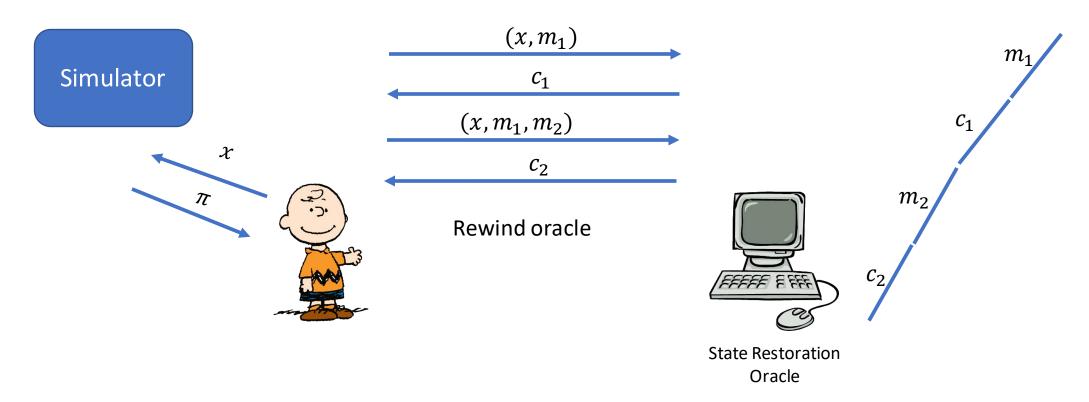
Simulator

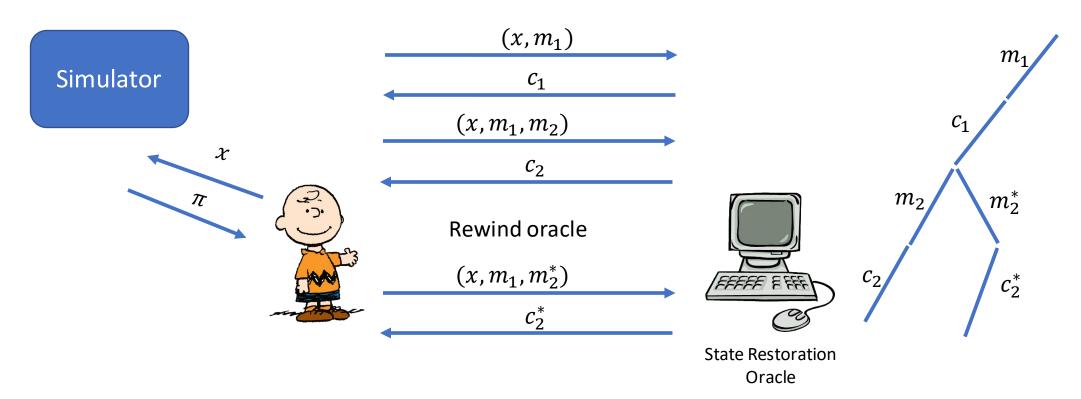


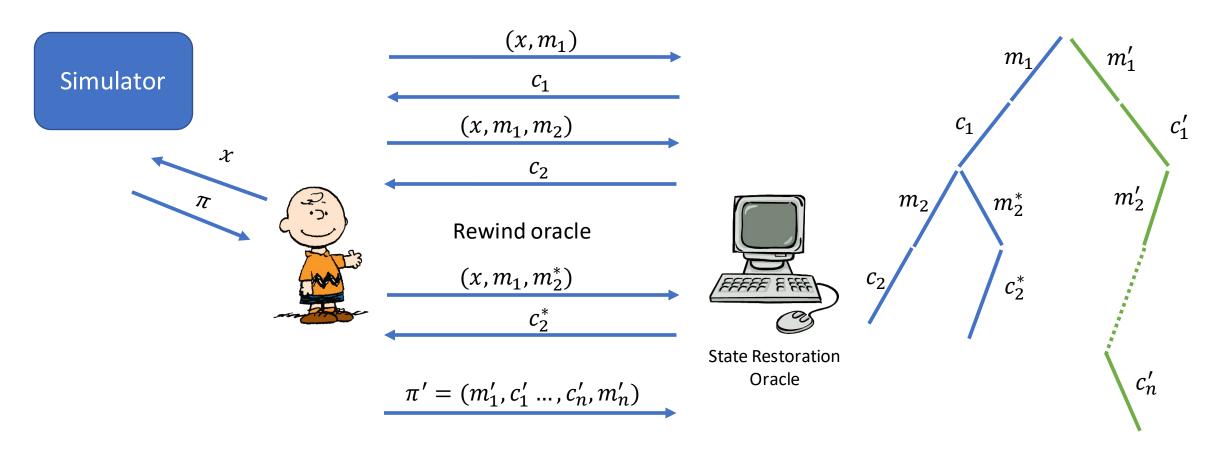
Oracle



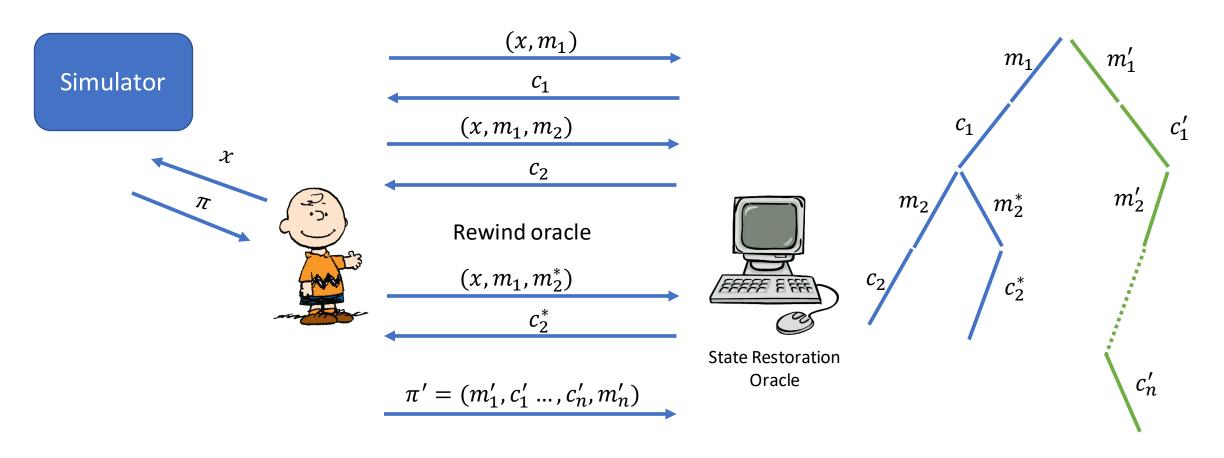








Winning condition: A different (π') such that $(m_1, ..., m_i) = (m'_1, ..., m'_i)$ but $m_{i+1} \neq m'_{i+1}$

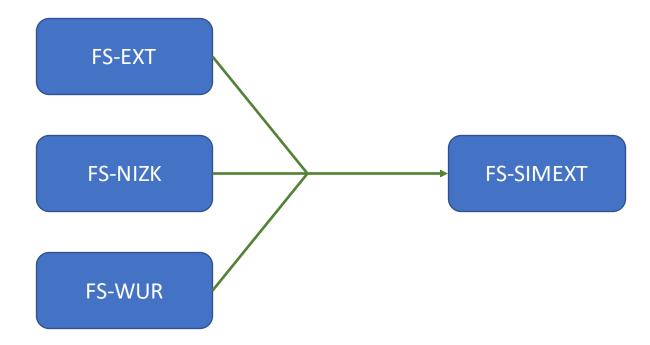


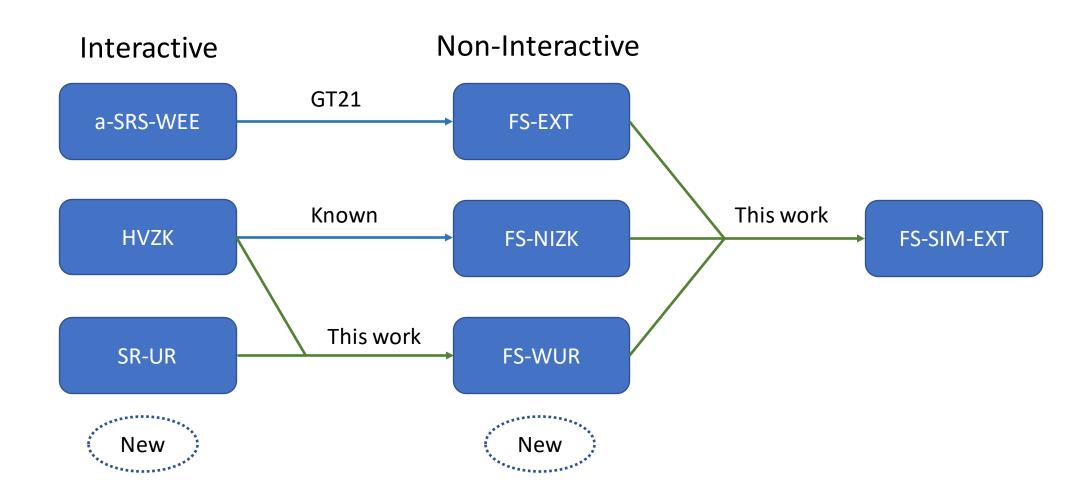
Winning condition: A different (π') such that $(m_1,\ldots,m_i$) = $(m'_1,\ldots,m'_i$) but $m_{i+1}\neq m'_{i+1}$

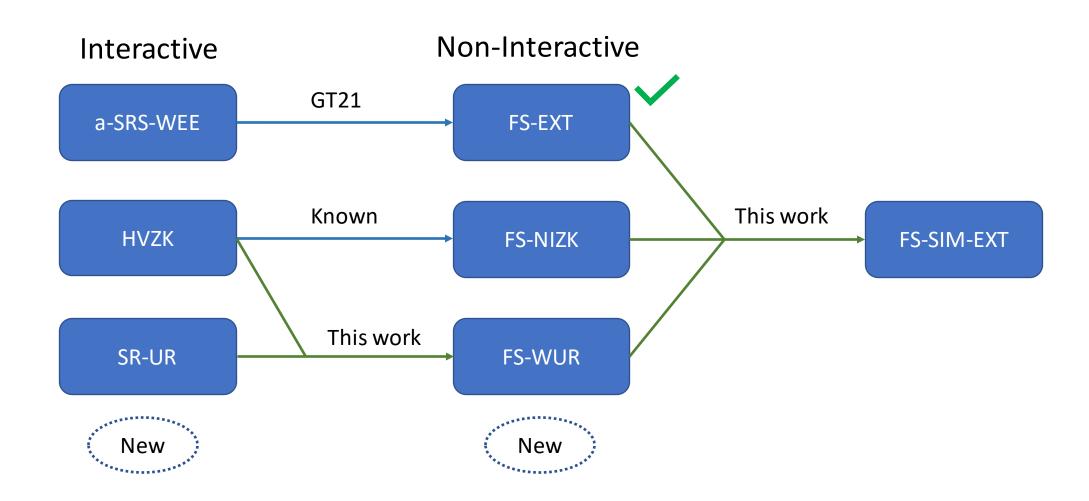
If Π has weak UR

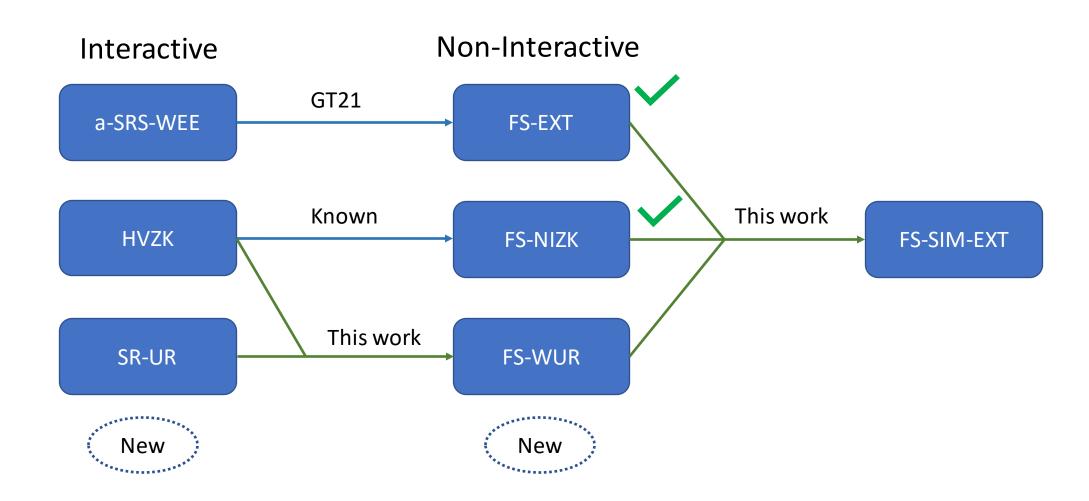
 $FS(\Pi)$ has weak UR

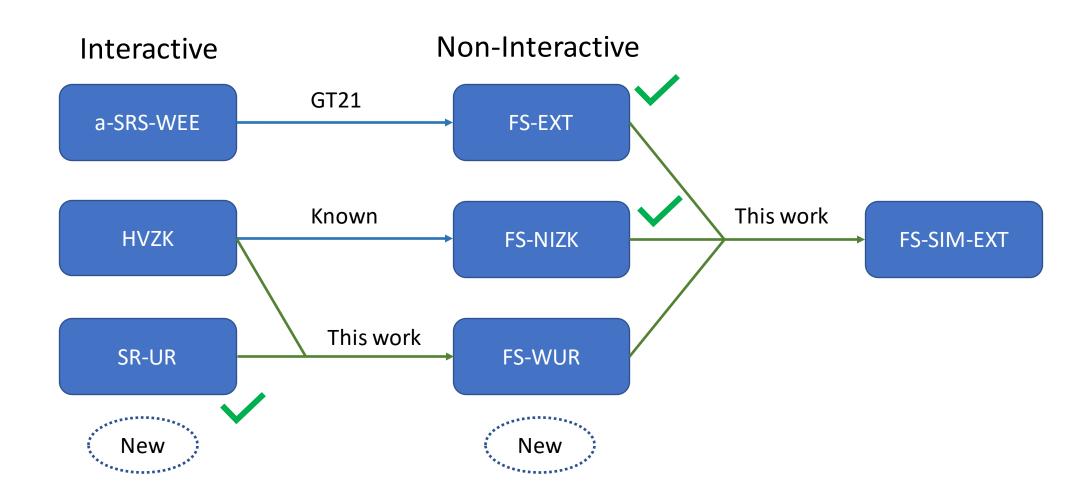
Non-Interactive

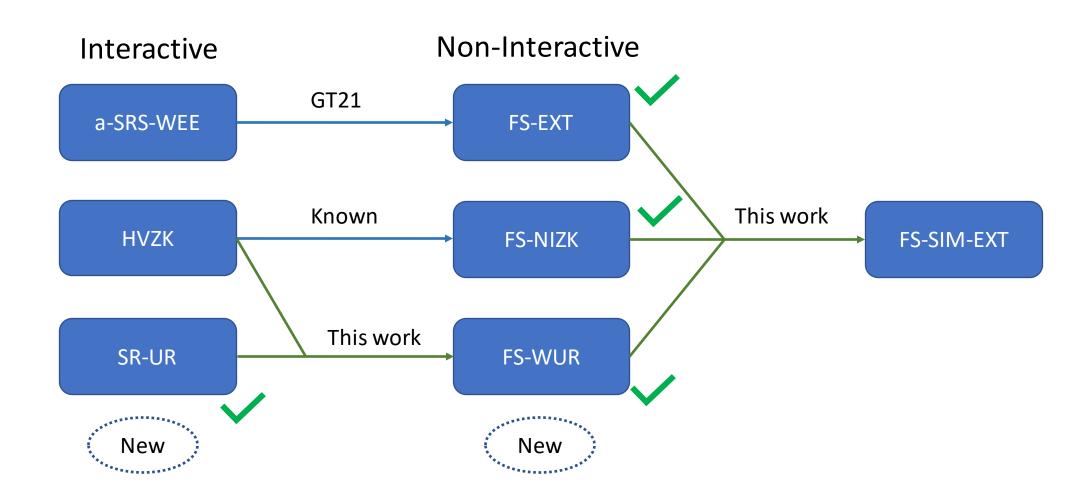


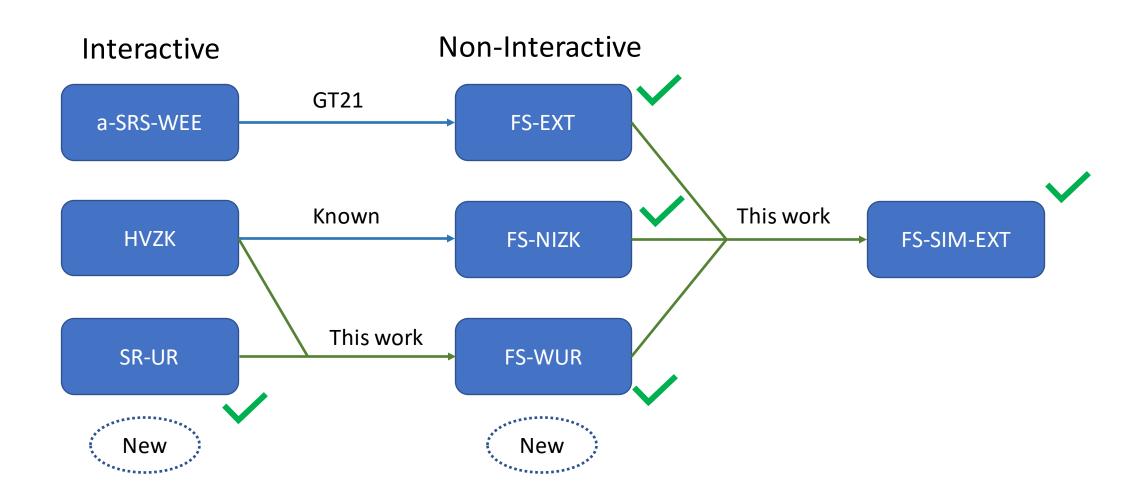












• Simulated: $x, \pi = (m_1, c_1, ..., m_i, ..., m_r) \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i ...).$

- Simulated: $x, \pi = (m_1, c_1, ..., m_i, ..., m_r) \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i ...).$
- Adversarial: $x', \pi' = (m_1, c_1, \dots, m_i', \dots, m_n') \Rightarrow (g^{a_1}h^{b_1}, c_1, \dots, g^{x_i}h^{y_i}, c_i', \dots).$

Algebraic Simulator

- Simulated: $x, \pi = (m_1, c_1, \dots, m_i, \dots, m_r) \Rightarrow (g^{a_1}h^{b_1}, c_1, \dots, g^{a_i}h^{b_i}, c_i \dots).$
- Adversarial: $x', \pi' = (m_1, c_1, ..., m'_i, ..., m'_n) \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{x_i}h^{y_i}, c'_i, ...).$

Algebraic Simulator

- Simulated: $x, \pi = (m_1, c_1, ..., m_i, ..., m_r) \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i ...).$
- Adversarial: x', $\pi' = (m_1, c_1, ..., m_i', ..., m_n') \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{x_i}h^{y_i}, c_i', ...)$.

Algebraic Adversary

Algebraic Simulator

- Simulated: $x, \pi = (m_1, c_1, ..., m_i, ..., m_r) \Rightarrow (g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i ...).$
- Adversarial: $x', \pi' = (m_1, c_1, \dots, m_i', \dots, m_n') \Rightarrow (g^{a_1}h^{b_1}, c_1, \dots, g^{x_i}h^{y_i}, c_i', \dots).$
- Break Dlog using Schwartz-Zippel lemma.

Algebraic Adversary

```
Simulated: (x, g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i, ...)
```

Adversarial: $(x, g^{a_1}h^{b_1}, c_1, \dots, g^{x_i}h^{y_i}, c'_i \dots)$

Simulated:
$$(x, g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i, ...)$$

Adversarial: $(x, g^{a_1}h^{b_1}, c_1, ..., g^{x_i}h^{y_i}, c'_i ...)$

 π verifies

$$m_1 \times g^{a_i}h^{b_i} = R$$

$$m_1 \times g^{x_i}h^{y_i} = R$$

 π' verifies

Simulated:
$$(x, g^{a_1}h^{b_1}, c_1, ..., g^{a_i}h^{b_i}, c_i, ...)$$

Adversarial:
$$(x, g^{a_1}h^{b_1}, c_1, \dots, g^{x_i}h^{y_i}, c'_i \dots)$$

 π verifies

$$m_1 \times g^{a_i}h^{b_i} = R$$

$$m_1 \times g^{x_i}h^{y_i} = R$$

 π' verifies

(Using Schwartz-Zippel)

$$a_1\widetilde{c_i}c_i + a_1c_i^2 = 0$$

$$a_1\widetilde{c_i}X + a_1X^2 = 0$$

$$a_1 = 0$$

 π' verifies

Result

- Fiat-Shamir BP is simulation extractable in the AGM and RO model.
- Concretely,

Let \mathcal{E} be an FS-EXT extractor for Π_{FS} . $\exists \mathcal{E}^*$ for Π_{FS} : $\forall (\mathcal{P}^*, \mathcal{D}^*)$ against Π_{FS} that makes q_1 RO queries and q_2 simulation queries, $\exists (\mathcal{P}, \mathcal{D})$ against FS-EXT, and $\exists \mathcal{A}$ against FS-WUR:

$$\mathbf{Adv}_{\Pi_{\mathsf{FS}},\mathcal{R}}^{\mathsf{FS-SIM-EXT}}(\mathcal{S}_{\mathsf{FS}},\mathcal{E}^*,\mathcal{P}^*,\mathcal{D}^*) \leq \mathbf{Adv}_{\Pi_{\mathsf{FS}},\mathcal{R}}^{\mathsf{FS-EXT}}(\mathsf{H},\mathcal{E},\mathcal{P},\mathcal{D}) + \underline{q_2} \cdot \mathbf{Adv}_{\Pi_{\mathsf{FS}},\mathcal{R}}^{\mathsf{FS-WUR}}(\mathcal{A},\mathcal{S}_{\mathsf{FS}})$$

Conclusion

- New approach to the FS simulation-extractability.
- Concrete analysis for BP/RngPf in the AGM.
- May apply to other FS-NIZK/signatures constructed from multi-round protocols.

Thank You! ePrint: 2021/1393

Conclusion

- New approach to the FS simulation-extractability.
- Concrete analysis for BP/RngPf in the AGM.
- May apply to other FS-NIZK/signatures constructed from multi-round protocols.

Attema, Fehr and Klooß [ATK21]: Only O(q) multiplicative loss in the

knowledge error incurred by multi-round FS without the AGM!

Improved result without AGM (WIP)

Thank You! ePrint: 2021/1393