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Abstract 

The expansion of the cloud computing market has provided a breakthrough in efficiently storing and managing data 
for individuals and companies. As personal and corporate data move to the cloud, diverse attacks targeting the cloud 
have also increased for heist beneficial information. Therefore, cloud service providers offer protective environ-
ments through diverse security solutions. However, security solutions are limited in preventing advanced attacks 
because it is challenging to reflect the environment of each user. This paper proposes a Cloud Intrusion Detection 
System (C-IDS) that adapts to each user’s cloud environment and performs real-time attack detection using Natural 
Language Processing (NLP). Notably, the C-IDS learns the deployed client environment logs and detects anomalies 
using the Seq2Seq model with BI-LSTM and Bahdanau attention. We used multiple domain datasets, Linux, Win-
dows, Hadoop, OpenStack, Apache, OpenSSH, and CICIDS2018 to verify the performance of the C-IDS. C-IDS consists 
of a ‘recognition’ that identifies logs in the deployed environment and a ‘detection’ that discovers anomalies. The rec-
ognition results showed an average accuracy of 98.2% for multiple domain datasets. Moreover, the detection results 
based on the trained model exhibited an average accuracy of 94.2% for the Hadoop, OpenStack, Apache, and CIC-
IDS2018 datasets.

Keywords Cloud computing, Cyber security, Natural language processing, Intrusion detection system, Anomaly 
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Introduction
Technological development allows people to access data 
efficiently, and diversifying data utilization methods 
increases the data size [1]. As the size of data increases, 
databases require fast retrieval, real-time processing, and 
an understanding of big data. However, the storage and 
management of large-scale data using traditional data 
management structure is complicated [2]. Because tra-
ditional databases are limited in their ability to support 
complex data structures, data administrators require bet-
ter data management solutions.

Therefore, cloud computing has emerged as an efficient 
data management method [3]. Cloud computing, which 

provides computer resources at an acceptable price, 
became an opportunity to transfer locally managed data 
to virtualized servers. With the advent of cloud comput-
ing, users can manage and store data through various 
cloud computing services without having to understand 
complex network and server configurations. Moreover, 
users have moved critical data, such as private customer 
information to the cloud for convenient utilization. As 
critical data move to the cloud, cloud-targeted attacks 
have also increased for stealing critical data [4]. For these 
reasons, Cloud Service Providers (CSP) provides various 
security solutions to users based on convenience to pro-
tect users’ data. Using security solutions, users can con-
figure a security environment that can countermeasure 
most attacks.

However, cloud-targeted attacks have become more 
intelligent and advanced, and it is difficult to construct 
a robust security environment using existing security 
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solutions [5]. Even though the user builds a security 
policy using existing security solutions, adversaries can 
break in and deprive critical information owing to some 
indifference to the components. Internet environment-
based cloud services must consider various components 
of information synchronization, such as processing 
methods according to each user’s request and migration 
between user-requested hardware [6].

For these reasons, cloud service users want environ-
mentally suitable security solutions that consider each 
user’s environmental components [7]. However, con-
structing a user-suitable security environment is com-
plex. Designing a user-suitable security environment 
requires an understanding of each user’s environment. 
That is, a user-suitable security environment should be 
able to identify the components of the user environment 
and analyze various large-scale cloud logs to detect acute 
attacks. Organizing a new security environment requires 
additional time, resources, and techniques to efficiently 
process large-scale cloud logs. These requirements can 
burden users when solving various problems using only 
their security knowledge.

In this study, we propose a C-IDS that automatically 
processes various large-scale cloud log datasets in real 
time and perform attack detection using Natural Lan-
guage Processing (NLP). C-IDS is automatically deployed 
using Infrastructure as Code (IaC), understands the user’s 
environment by itself in the deployed environment, and 
detects anomalies. C-IDS detects anomalies according to 
the user’s environmental components without user inter-
vention; users can check malicious behaviors occurring 
in various layers without technical security knowledge.

We started with a review of related work related to 
Non-NLP based IDS and NLP-based IDS (“Related 
work”  section). Our proposed C-IDS framework is 
detailed in “C-IDS framework”  section, and our detec-
tion model BI-LSTM based Seq2Seq model is explained 
in “BI-LSTM based Seq2Seq model” and “Bahdanau 
attention”  sections. We propose the distribution meth-
ods to deploy the multiple domains in the cloud in “Multi 
domain distribution with IaC”  section. We present the 
log recognition and anomaly detection results for mul-
tiple domain log datasets in “Log recognition result” 
and “Anomaly detection result”  sections respectively. In 
“Discussion”  section we discuss the model’s recognition 
methods. Finally, we make concluding remarks and show 
limitations in “Conclusion and future work” section.

Our study’s main contributions are as follows:

• We proposed a real-time intrusion detection sys-
tem for complex cloud environments based on the 
Seq2Seq model with BI-LSTM and Bahdanau atten-
tion. The Seq2Seq model classifies each cloud envi-

ronment and detects malicious behaviors in cloud 
logs.

• We converted various raw cloud log information into 
a machine-readable data format using label encoding. 
The label encoding comprises a unique word set that 
identifies and counts the occurrence of each word.

• We used IaC to deploy our proposed framework to 
multiple cloud environments automatically. With our 
deployment methods, users can build a user-suitable 
security framework without additional cloud security 
knowledge.

Related work
Non‑NLP based IDS
As large-scale data move to the cloud, diverse problems 
and vulnerabilities occur. Therefore, various studies have 
proposed identifying and classifying problems occurring 
in the clouds.

Li et  al. presented the cloud security vulnerabilities 
in various cloud environments using multiple secu-
rity assessment tools [8]. They argued that security 
accountabilities exist for each service provider and con-
sumer following the service model. To verify the afore-
mentioned results, the authors classified experimental 
cloud environments into laboratory, On-campus, and 
Off-campus, and assessed vulnerabilities using the vul-
nerability assessment tools Nessus, NMAP, and Nikto. 
The experiments showed vulnerable common ports and 
HTTP methods, and it was found that various network 
vulnerabilities exist in the internet environment-based 
cloud environment. Ali et  al. presented cloud security 
challenges through a diverse classification of cloud com-
puting security challenges [9]. They introduced vulner-
abilities not only in internet communication in the cloud 
but also in the communications with cloud infrastructure 
components. Furthermore, they noted security prob-
lems related to the cloud architecture and Service Level 
Agreement (SLA). In conclusion, numerous components 
in various cloud layers must be considered to solve secu-
rity problems. However, many organizations tend to 
ignore the essential practices and techniques that need to 
be implemented when using a cloud system, and attack-
ers steal users’ critical data mainly through data con-
trol, account hijacking, data sanitization, and malicious 
insider attacks [10].

Considering the vulnerabilities in the cloud, complex 
components occurring in various environments must be 
considered to detect vulnerabilities in the cloud. In the 
case of a cloud environment, it is possible to apply vul-
nerability detection methodologies that have already 
been proposed for each environment. However, it is dif-
ficult to apply the existing methodology to various envi-
ronments because it specifies a certain environment. 
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Thus, various methodologies have been proposed to 
detect vulnerabilities in the cloud, supplement the secu-
rity systems that comprise the cloud environment, and 
prevent attacks.

Modi et  al. presented a cloud intrusion that affected 
cloud resources, service availability, confidentiality, 
and integrity [11]. They described diverse methods of 
integrating and applying IDS or IPS into the cloud and 
argued that it is challenging to solve the cloud security 
problem using only a firewall. Faber et  al. proposed an 
autoencoder-based IDS model for a mobile cloud com-
puting environment [12]. They consider internal network 
traffic and mobile device traffic, creating features based 
on time windows. To verify the proposed model’s perfor-
mance, they trained the model using only normal packets 
generated from the CICIDS2018 data; then evaluated by 
Area Under the Receiver Operating Characteristic Curve 
(ROC-AUC) [13]. The proposed model exhibited good 
capabilities against most network attacks without deep 
packet inspection. Nevertheless, the model exhibited low 
capabilities for attacks that cannot be easily distinguished 
from normal packets, such as brute force attacks and 
cross-site scripting attacks (XSS). Huang et al. proposed 
a ‘Relaxed form of Linear Programming Support Vec-
tor Data Description’ (RLPSVDD) model that uses time 
series concept data to detect abnormal performance met-
rics of cloud services [14]. They argued that Support Vec-
tor Data Description (SVDD) one-class classification has 
weaknesses: an imperfect false alarm rate and computa-
tional complexity in time series abnormality detection. 
The proposed model achieved high accuracy in various 
datasets using RLPSVDD; however, there was little men-
tion of the data processing methods.

Some IDS for cloud environments showed excel-
lent performance; paradoxically, there were limitations 
because of the characteristics of the cloud environment 
[15]. It is challenging to satisfy the security require-
ments of dynamically added and removed instances. In 
addition, the virtualization of cloud computing leads to 
improper access control and requires interaction with 
security administrators. To overcome the limitations of 
existing IDS, CSPs build an intrusion detection system 
by applying a Security Information and Event Manage-
ment (SIEM) structure to the cloud. SIEM is a monitor-
ing system that detects threats in advance by collecting 
and analyzing events that occur in established security 
and IT systems [16]. Through SIEM, the user analyzes 
widespread log data on the cloud and identifies pos-
sible security threats. Lee et  al. developed an AI-based 
SIEM system using a Fully Connected Neural Network 
(FCNN), Convolutional Neural Network (CNN), and 
Long Short-Term Memory (LSTM) [17]. Using the TF-
IDF mechanism, they processed large-scale security 

logs generated in various environments as input values. 
Furthermore, they verified the proposed system’s threat 
detection performance based on public and collected 
network datasets in the real world. The proposed model 
showed an average accuracy of 95% for the entire data-
set but a low F1-score for the actual network dataset, 
owing to a low true positive rate. Consequently, SIEM 
in the cloud helped differentiate between true and false 
security alerts. However, SIEMs also require interac-
tions with security experts to redeem security based on 
detected threats. The system is robust only against the 
attacks adapted, so it has limitations in detecting contin-
uously evolving attacks. Okey et  al. proposed a transfer 
learning IDS based on CNN architecture to detect vari-
ous attacks occurring in the Cloud IoT environment [18]. 
The author proposed an ensemble model using five CNN 
models: VGG16, VGG19, Inception, MobileNet, and 
EfficientNets. They verified the proposed model using 
the CICIDS2017 and CICIDS2018 datasets. Notably, 
the author generated data using the Synthetic Minority 
Over-sampling technique (SMOTE) to resolve the imbal-
ance in each dataset. As a result, the proposed transfer 
learning IDS showed high F1-scores of 1.00 and 0.99 in 
the CICIDS2017 and CICIDS2018 datasets, respectively. 
Bakro et al. proposed a cloud IDS incorporating SMOTE 
technology [19]. The author performed feature selection 
using information Gain (IG), Chi-Square (CS), and Par-
ticle Swarm Optimization (PSO), and SMOTE was used 
to supplement the imbalanced dataset. The training data-
set generated through SMOTE was trained on a Random 
Forest (RF) model, and the proposed methodology was 
verified using the UNSW-NB15 and Kyoto datasets. As a 
result, the proposed methodology achieved 98% and 99% 
accuracy in multi-class classification, respectively.

Although existing detection methods show excel-
lent ability in a specific domain, it is difficult to detect 
anomalies in large numbers of cloud logs; thus, exten-
sive research has been proposed to process large-scale 
cloud logs effectively to detect anomalies [20]. Lu et  al. 
presented a CNN-based model that performs anomaly 
detection in big data system logs [21]. The proposed 
model automatically learns the system log event rela-
tionship and detects anomalies with high accuracy. To 
process the collected logs into the CNN model input, 
the log key in the collected session was vectorized into 
a dimension vector composed of a 29 × 128 two-dimen-
sional codebook. By contrast, a linguistic approach that 
treats and processes each log as a plain text document 
can extract the grammatical structure and context of 
log events information [22]. He et al. evaluated an effec-
tive log parsing method for large-scale logs by using four 
existing tools [23]. Analyzing large-scale log messages 
effectively requires automated log analysis through data 
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mining, in contrast to existing manual inspections. They 
compared the performance of existing tools: Simple Log-
file Clustering Tool (SLCT), Iterative Partitioning Log 
Mining (IPLoM), Log Key Extraction (LKE), and LogSig. 
However, studies analyzing log parsers are limited by the 
lack of publicly available log parsing tools and bench-
mark datasets for analysis [24]. Table 1 is a summary of 
non-NLP based IDS. The previous studies were mainly 
conducted in specific cloud environments. That is, apply-
ing existing detection methods with considering various 
cloud environment components is complicated. There-
fore, an NLP-based IDS has been proposed that can ana-
lyze and utilize logs for each characteristic [25].

NLP based IDS
NLP enables machines to understand and interpret nat-
ural language for tasks such as text classification, sum-
marization, and translation [26]. NLP, which analyzes 
and understands the structure of human language based 
on large amounts of language data, has been applied in 
various fields, such as data mining and emotion identi-
fication. Researchers have used NLP to overcome the 
limitations of the existing passive security monitoring 

process with language-based data, such as code or 
security logs [27]. An NLP-based security process with 
well-defined formats can detect security flaws more rea-
sonably than existing methods. NLP is also used in digi-
tal forensics [28], privacy data preservation [29], and bug 
reports [30].

Das et al. proposed an intrusion detection system using 
NLP and ensemble-based machine learning [31]. The 
proposed model deviates from pattern matching or black-
list-based detection, which depend on attack technology, 
and identifies unconfirmed attacks by analyzing the char-
acteristics of the log. However, they did not demonstrate 
whether the proposed model can be used for various 
logs by testing only HTTP requests. Wang et  al. sug-
gested an offline feature extraction model LogEvent2vec, 
that improves Word to Vector (Word2Vec), a log feature 
extraction technique [32]. The LogEvent2vec model per-
forms only one transformation by using the log event as 
an input value, unlike the word2vec model, which uses 
a list of words in a log. As a result, the LogEvent2vec 
model performed better than word2vec in terms of com-
putational time and accuracy. Ryciak et al. introduced an 
anomaly detection model by improving the LogEvent2vec 

Table 1 Summary of non-NLP based IDS

Year Reference Proposal Limitations

2010 Li et al. Analyzed security vulnerabilities occurring in cloud environ-
ments using various security assessment tools and present 
security responsibilities between service providers and con-
sumers through experiments.

-

2013 Modi et al. Investigated cloud intrusions that impact cloud resources, 
service availability, confidentiality, and integrity and explain 
how to apply IDS/IPS integration.

-

2015 Ali et al. Classified cloud computing security challenges and presents 
vulnerabilities arising from communication with cloud infra-
structure components and Internet communication.

-

2016 He et al. Evaluated the automation of log analysis through data mining, 
moving away from traditional manual inspection for large-scale 
log message analysis, and compare four existing log parser 
tools.

There is a lack of publicly available log parsing tools and bench-
mark datasets for analysis.

2017 Huang et al. Proposed an RLPSVDD model to detect abnormal performance 
indicators of cloud services using time series concept data.

Little mention of the data processing methods

2018 Lu et al. Proposed a CNN-based model that performs anomaly detec-
tion in big data system logs and detects anomalies with high 
accuracy by automatically learning log event relationships.

-

2019 Lee et al. Developed an AI-based SIEM system using FCNN, CNN, 
and LSTM and verified threat detection performance by pro-
cessing large-scale security logs generated in various environ-
ments with the TF-IDF mechanism.

The system is robust only against the attacks adapted

2021 Faber et al. Proposed an auto-encoder-based IDS model considering 
network and mobile device traffic in a mobile cloud computing 
environment.

The proposed model does not detect attacks sufficiently 
that are difficult to distinguish from normal packets, such as XSS 
and brute force attacks.

2023 Okey et al. Proposed a transfer learning IDS based on CNN architecture 
to detect various attacks occurring in the Cloud IoT environ-
ment.

-

2023 Bakro et al. Proposed a cloud IDS incorporating SMOTE technology. -
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model [33]. They applied sequence length shortening and 
fasttext vectorization to the LogEvent2vec model. The 
proposed model was tested on Blue Gene/L datasets with 
Gaussian naive Bayes (GNB), RF, and MultiLayer Per-
ceptron (MLP) classifiers, and the MLP model showed 
the best performance at short sequence lengths. Lv et al. 
designed an effective system call prediction model using 
a Sequence-to-Sequence (Seq2Seq) model [34]. They 
used the Seq2Seq model to solve sequence depend-
ence in short-term system call analysis. Verification of 
the proposed model using the Australian Defense Force 
Academy-Linux Dataset (ADFA-LD) dataset showed 
good performance in CNN, Recurrent Neural Network 
(RNN), Support Vector Machine (SVM), and RF mod-
els. Chaudhari et  al. developed a system-call sequence-
based IDS to detect attacks related to virtual machines 
in a cloud infrastructure environment [35]. The author 
composed the system call sequence as a Bag of N-grams 
and then composed the related features using TF-IDF. 
Afterward, an ensemble model consisting of LSTM and 
RF model was used to detect attacks within the system 
call sequence. The author used the ADFA-LD dataset to 
verify the proposed framework. As a result, the proposed 
framework showed a high accuracy of 97.2% and a false 
positive rate of 2.4%.

However, presenting a practical solution using only 
NLP is challenging [36]. Text elements have different 
relevance to security because the words constituting 
the security log have an incomplete sentence structure, 
and there are cases in which they are not expressed in 
human-readable words. Some studies have emphasized 
specific text elements to focus on their each relevance; 
however, then have shown limitations for long sentences. 
However, there are methodologies to evaluate the rel-
evance between input texts and to consider weights 
using machine learning; it is difficult to find evidence for 
the output. Thus, we consider an attention mechanism 
that partially interprets and explains the neural network 
behavior. The attention mechanism allows the model to 

focus on certain parts of the input during processing [37]. 
In the case of large-scale cloud data, the preprocessing 
task is highly time-consuming, and there is a problem 
in that the result value of the trained model depends on 
the amount of data [38]. The attention mechanism can 
reduce the computation resource by sub-sequence in a 
long sequence and improve the model’s detection accu-
racy according to the relevance of the inputs. Among 
the attention mechanisms, the Bahdanau attention has 
the advantage of identifying unique elements in each 
security log. Based on the Bahdanau attention mecha-
nism, users can visually check risk factors in attack logs. 
Moreover, Bahdanau attention improved the translation 
performance of the model using a variable length vec-
tor, unlike the existing attention mechanism [39]. In this 
study, Bahdanau’s attention was used to process cloud log 
datasets of different lengths. Table 2 is a summary of NLP 
based IDS. A recent study used NLP to analyze the vari-
able and complex characteristics of sentences composed 
in a human-readable format in a cloud environment so 
that machines can also read them. Notably, the security 
log was analyzed using linguistic features containing each 
attack’s characteristics so each attack could be classified 
based on the security log. This paper analyzes and detects 
attacks using security logs containing each anomaly’s 
characteristics.

Although an NLP based model is adequate for anomaly 
detection, it is challenging to deploy the model in each 
environment. Thus, various methods have been pro-
posed to deploy cloud security models effectively. We 
focused on IaC among the various deployment meth-
ods. IaC refers to the management and provisioning of 
infrastructure through code. With IaC, the operator can 
organically manage, develop, and build a threat detection 
infrastructure at an optimal cost. For example, Alonso 
et al. introduced a method for deploying and monitoring 
IaC in a cloud continuum environment [40]. The deploy-
ment method using IaC has the benefit of supporting 
broad and multi-stage infrastructure layers in the cloud 

Table 2 Summary of NLP based IDS

Year Reference Proposal Limitations

2018 Lv et al. Designing an effective system call prediction model to resolve sequence dependencies in short-term system call 
analysis using the Seq2Seq model.

-

2020 Das et al. Proposed an NLP and ensemble-based machine learning model that identifies unidentified attacks by analyzing 
log characteristics.

-

2020 Wang et al. Proposed LogEvent2vec, an offline log feature extraction technique that improved Word2Vec, and performed 
one transformation using log events as input.

-

2022 Ryciak et al. Improved the LogEvent2vec model and proposed an anomaly detection model that shortened the sequence 
length and applied fasttext vectorization.

-

2023 Chaudhari et al. Developed a system-call sequence-based IDS to detect attacks related to virtual machines in a cloud infrastruc-
ture environment.

-
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continuum. Cauli et  al. proposed a model that validates 
cloud deployment and the safety of cloud configuration 
using the proprietary language of Amazon Web Services 
(AWS) CloudFormation [41]. Based on the above study, 
we comprise cloud log data in a machine-readable format 
using NLP and implement an IDS that detects security 
threats in multiple layers.

Methodology
C‑IDS framework
This study uses the C-IDS framework to process cloud 
log data and detect attacks in real-time. The proposed 
C-IDS framework focuses on the ability of Neural 
Machine Translation (NMT) among natural language 
processing methods. NMT can directly learn mapping 
from the input text to the related output text in an end-
to-end method, breaking away from the limitations of 
phrase-based machine translation, which translates sen-
tences in word and phrase units [42]. Considering the 
advantages of NMT, we monitored the extent to which 
the currently trained model attention feature words were 
extracted from the incoming logs in real-time, which can 
use various structures. Moreover, we identified the anon-
ymous log information as heat map images to check for 
unrecognized words.

In previous log recognition studies, the meaning of 
words required to analyze and understand security logs 
was lost [43]. For example, unknown error codes can be 
treated as abnormal or replaced with words that humans 
can distinguish [44]. They analyzed the security logs 
using an existing language model by deleting abnormal 
error codes. Meaningful words that distinguished normal 
from abnormal words were also excluded. In this study, 
we trained the model with all sentences, including ‘error 
codes,’ based on the words extracted from the actual 
operating environment without prior classification and 
processing. Moreover, we preprocessed log data accord-
ing to the main characteristics of each environment, 
making it possible to learn unique error codes in each 
environment and log sentences that humans cannot read. 
The advantage of this method is that it can be applied to 
attack techniques using new patterns or vulnerabilities.

Figure  1 presents an overview of the C-IDS Frame-
work. The C-IDS framework consists of a ‘first learning 
mechanism’ that performs initial training on the Seq2Seq 
model based on log data generated in each environment; 
a ‘detection mechanism’ performs actual detection based 
on the trained Seq2Seq model.

The First learning mechanism trains the model based 
on existing norm log data in each environment when the 
model is deployed. Norm log data are normal logs that 
can occur in each environment, including error codes. 
The First learning mechanism consists of sentence 

preprocessing that refines the log data into input values 
and a training process that trains a Seq2Seq model with 
Bi-directional Long Short-Term Memory (BI-LSTM) 
and attention methods. In sentence preprocessing, the 
log data collected from each environment are converted 
into a numeric array through label encoding for use as 
input values for the model. The label encoding technique 
assigns unique integer values to each word. Label encod-
ing is an effective way to convert a security log with many 
unique words into numeric form [45]. Figure 2 shows an 
example of the label encoding used to convert a raw cloud 
log into a numerical array. Label encoding requires a rule 
that assigns unique integers to words. Thus, we organized 
a unique word set extracted from the log datasets col-
lected from each environment. We then used the index 
numbers of the words included in the unique word set 
as integer values. To obtain unique words in each log, we 
tokenize the input log sentences based on the spaces and 
extracted words. Notably, we used all the words present 
in the log data, including error codes, to reduce the loss 
of meaning. The unique word set consists of words that 
can appear in all domains within a cloud environment. 
Creating a unique word set for a user’s multi-domain 
cloud environment can be utilized across all composed 
environments. Subsequently, we trained the Seq2Seq 
model using the input values generated during the train-
ing process.

In the detection mechanism, the trained Seq2Seq 
model performed real-time log recognition and anom-
aly detection in the deployed environment. Through 
the Seq2Seq model, we checked whether the log is in a 
suitable format for spawning in each environment and a 
common log that usually occurs. The detection mecha-
nism consists of a ‘sentence preprocess’ that preproc-
esses logs as input values in real time and a ‘recognition 
and detection process’ that recognizes and detects new 
logs based on input values. First, the new log sentence is 
converted into a numeric array by performing the same 
sentence preprocessing as in the first learning process. At 
this time, it is checked whether a new word exists in each 
log sentence, and if a new unique word exists, it is added 
to the unique word set for label encoding.

The recognition and detection process recognizes and 
detects input values in real-time using a pre-trained 
Seq2Seq model. First, the trained Seq2Seq model in the 
first learning mechanism outputs the feature words of 
the log sentence based on the input values. The trained 
Seq2Seq model uses words representing each environ-
ment’s characteristics and finds and outputs feature 
words with each environment’s characteristics. If a fea-
ture word does not exist in the log sentences, it is rec-
ognized as another log because it contains words that 
cannot occur in the learning environment. We expressed 
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the results visually to confirm that the model recognized 
them precisely. Based on this methodology, new attacks 
can be detected without any model modification using 
only normal data generated in the existing environment. 
In this experiment, the trained Seq2Seq model uses nor-
mal log printed out feature word for new log sentences. 
The process then checks whether the output feature 
words are composed of common words that are mainly 
used in each environment. If a feature word is uncom-
mon, it is classified as an anomaly.

BI‑LSTM based Seq2Seq model
This study predicts and outputs feature words with 
environmental characteristics from log sentences to 
determine whether log data occur appropriately in each 
environment. However, these methodologies must verify 
that the trained model can understand all log sentences 
and extract words. Therefore, we created a sequence 
model that represents each sentence thoroughly. How-
ever, the simple RNN model has limitations in that the 
lengths of the input and output vectors must be the same, 

Fig. 1 The overall structure of the C-IDS framework. With cloud system’s log data, the first learning mechanism performs initial training 
on the Seq2Seq model. With the trained Seq2Seq model, the detection mechanism performs anomaly detection
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which is a long-term dependency problem. We imple-
mented a Seq2Seq model using the LSTM structure to 
overcome the limitations of the RNN.

The Seq2Seq model generated output sentences for 
each sentence [46]. The Seq2Seq model is an encoder-
decoder model composed of an encoder and a decoder. 
The encoder compresses the sequential input data and 
expresses them as a fixed context vector, whereas the 
decoder creates a new sequence from the context vec-
tor. The Seq2Seq model has the benefit of understanding 
input sentences, but information loss may occur in log 
sentences because they do not have the intact form of a 
sentence. To use log sentences composed of a series of 
intentional words without losing information, all words 
must be trained uniformly. Therefore, we construct the 
encoder as bi-directional structure to understand log 
words in a balanced manner. The bi-directional structure 
can consider past and future information of the input 
value [47].

Figure 3 shows the implemented BI-LSTM structure. A 
backward LSTM layer is added to the encoder composed 
of forward LSTM and concatenate the hidden state value 
output from forward and backward LSTMs. The concat-
enated hidden state computes a context vector, and the 
decoder predicts and outputs a feature word for each log 
sentence based on the context vector.

Bahdanau attention
The BI-LSTM Seq2Seq model is suitable for standing log 
sentences composed of diverse words however, problems 
arise when the log sentence length is long and the layers 
are deep. Significantly, there is a bottleneck problem in 
that the encoder has too much information to compress, 
and the decoder uses only part of the information com-
pressed by the encoder for prediction. Consequently, the 
quality of the output value is degraded owing to informa-
tion loss when the input sentence is long.

Fig. 2 The structure of label encoding. We tokenized log sentences based on white-space to convert words to a numeric array. In label encoding, 
we used all words presented in the log data (e.g., error codes) to reduce the loss of meaning of words

Fig. 3 The structure of BI-LSTM. The odd level of nodes represents forward LSTM, even level of nodes represents backward LSTM
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In this study, we used the ‘Bahdanau attention’ among 
the attention methods to focus on feature words that 
reflect each environment simultaneously. The Bahdanau 
attention mechanism is more accurate in detecting logs 
of various types of attacks than the simple model struc-
ture [48]. We applied an attention mechanism that keeps 
a hidden state vector so that the decoder can refer to the 
context vector when predicting a word.

Figure 4 shows the structure of the Bahdanau attention 
mechanism applied to the Seq2Seq model. Bahdanau 
attention ‘pay attention’ to certain parts of the log input 

while processing it rather than using the entire input 
equally. Bahdanau attention is helpful when the input has 
a variable length, and the model needs to focus on certain 
parts of the input.

Figure  5 shows the Bahdanau’s attention obtained by 
applying a security log. We used security logs. The length 
of each log is variable and requires attention to a spe-
cific word to train the model accurately. During train-
ing, the Bahdanau attention mechanism is implemented 
using an additional set of parameters called ‘attention 
weights’. These attention weights are used to compute the 

Fig. 4 The structure of the Seq2Seq model with Bahdanau attention mechanism. Bahdanau attention stores the encoder’s hidden states 
so the decoder can refer to a specific part of the input sentence. The Seq2Seq model’s decoder refers to the previous predicted word, the previous 
hidden states, and the encoder’s hidden states when predicting the next word

Fig. 5 Illustration of applying Bahdanau attention mechanism to security log. In this experiment, we use attention weight to focus on the extracted 
keywords from security log
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weighted sum of the input, which is then used as part of 
the model’s prediction. The attention weights are com-
puted using a set of equations that involve the input and 
hidden states of the model at each time step.

The Bahdanau attention mechanism is implemented 
using the following equations. First, the attention weights 
are computed using the current hidden state of the 
model, ht , and the input, X. The attention weights are 
computed using the dot product between ht and each ele-
ment in X, followed by a softmax function:

The attention context vector ct is then computed as a 
weighted sum of the inputs, using the attention weights 
as weights:

The final hidden state of the model, h′t , is then com-
puted using the previous hidden state, ht−1 , the attention 
context vector, ct , and the input at the current time step, 
xt . The hidden state is expressed as an equation through 
the LSTM.

Algorithm 1 Mechanism of managing server

Multi domain distribution with IaC

This framework performs recognition and detec-
tion based on logs generated in various environments 

(1)at = softmax(hTt X)

(2)ct =

Tx

i=1

at,ixi

(3)h′t = LSTM(ht−1, ct , xt)

however, it is challenging to deploy the framework sep-
arately. Therefore, we propose a managing server that 
automatically identifies the cloud environment and then 
applies and manages the framework to each environ-
ment. However, applying framework automation is dif-
ficult even when using a managing server, because each 
user’s environment configuration method can differ. 
Therefore, we use IaC to deploy a managing server in the 
user environment. IaC can provide infrastructure using 
high-level codes and standardize the application devel-
opment environment. We deployed a managing server 
using Terraform among the IaC tools and distributed 
the framework to each environment using the manag-
ing server. Terraform can be applied to various cloud 
services, such as AWS, Google Cloud Platform, and 
Microsoft Azure without being limited to specific cloud 
services. Moreover, Terraform can declare and manage 
resources in the cloud using code.

We used the managing server to automate the entire 
analysis, learning, and deployment processes. Figure  6 
shows the distribution of the proposed framework in 
each environment using the IaC and managing server. 
First, the distributed management server scans the user’s 
cloud environment before deploying the framework in 
each environment. Subsequently, the managing server 
deploys the framework in each identified environment. 
The deployed framework performed training based on 
the normal log that existed in each environment. Finally, 
the framework performs log recognition and anomaly 

detection in each environment based on the trained 
model. Significantly, the managing server checks the 
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real-time status and controls such that the framework 
can perform training and detection correctly.

An Algorithm  1 presented a pseudo-code that uti-
lizes a managing server and IaC to automatically deploy 
the framework for every environment. The log event L 
occurring in the deployed environment is a log sentence 
describing the state of the system and network operation. 
The trained framework can quickly identify and respond 
to threats or issues by continuously analyzing L. The 
environment E in which the trained framework operates 
represents a specific component or service within the 
deployed cloud.

Experiments
We verified whether the proposed framework recog-
nizes and detects logs correctly; experiments were con-
ducted in two aspects. First, we verified the performance 
of the log recognition capability using operating system 
environment logs, distributed system environment logs 
generated in the cloud environment, server system logs, 
and network system logs from the AWS environment. 
Specifically, the deployed model must check whether it 
precisely recognizes the logs generated in each environ-
ment. To verify that each deployed model recognized 
logs that occurred only in its environment, we created a 
test dataset mixed with other environment logs. When 
constructing the test dataset, we incorporated the logs of 

all datasets in equal proportions, including the deployed 
environment. For example, when testing the model 
deployed in a Windows environment, we extracted an 
equal number of logs from all datasets, including the 
Windows dataset. The trained model deployed in the 
Windows environment recognizes Windows environ-
ment logs among the various environment logs: oper-
ating system, distributed system, server system, and 
network system. Significantly, we use random selection 
to prevent data bias when extracting the logs from each 
dataset. We configured the ratio of the training dataset 
and test dataset as 80:20.

In addition, we validated the performance of the mod-
el’s anomaly detection capability using the labeled log 
datasets of Hadoop, OpenStack, Apache, and network 
logs. In the detection experiment, we tested whether 
the model trained with the normal log dataset correctly 
performed anomaly detection without model modifica-
tions. Consequently, we demonstrated that the proposed 
framework can efficiently handle various cloud environ-
ment logs.

Dataset
We used a public dataset comprising seven environ-
mental logs to confirm that the proposed model can 
be applied to various domains in the cloud [49]. In this 
experiment, we used Linux and Windows logs to verify 

Fig. 6 Operation process of the deployed a managing server. The deployed managing server deploys the proposed framework to each identified 
environment. The model in the deployed framework trains the normal log that exists in each environment. The trained model performs log 
recognition and anomaly detection in each environment, and the framework transfers status information to the managing server in real time. 
Managing server controls each deployed framework based on received status information
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the operating system environment, Hadoop and Open-
Stack logs to verify the distributed environment in the 
cloud, Apache and OpenSSH to verify the server system 
environment, and CICIDS2018 logs to verify the network 
environment. Notably, Hadoop, OpenStack, and Apache 
data were labeled in the public dataset. Table  3 shows 
information on the overall datasets.

The Linux dataset consists of 25,567 Linux internal 
system log messages. The Linux log dataset was col-
lected from /var/log/message in the Linux server. The 
Windows dataset consists of 114,608,388 Windows event 
logs messages. However, neither the Linux nor Windows 
log datasets were labeled. The Hadoop log dataset con-
sists of 11,175,629 distributed file system log messages. 
Hadoop log data are organized into log sequences with 
Block IDs, and abnormal labels are assigned according 
to specific Block IDs. The OpenStack dataset comprises 
207,820 randomly performed task logs that include cre-
ating, pausing, and deleting virtual machines. The Open-
Stack dataset was classified as abnormal by injecting an 
error at a specific time point. The Apache dataset, com-
posed of Apache web server logs, consists of 56,481 log 
messages. The original dataset was unlabeled; however, 
we labeled 16,803 error logs in the Apache dataset for 
anomaly detection. The OpenSSH dataset composed of 
OpenSSH server logs, consists of 655,146 server logs. 
The CICIDS2018 dataset consists of 63,175 dhclient log 
data that perform Distribution Denial of Service (DDoS), 
Denial of Service (DoS), bot attacks, brute force, infiltra-
tion, and web attacks.

In this experiment, it was necessary to balance the data-
set with an imbalanced number of messages to ensure 
that each model recognizes and detects them appropri-
ately. Thus, we newly created an anomaly message using 
the SMOTE method. The used datasets used contained 
more normal messages than anomalies, and a simple ran-
dom generation method could cause overfitting problems. 
The K-Nearest Neighbor (KNN) algorithm-based SMOTE 
can redeem a small number of attack messages and is par-
ticularly effective for network datasets. We adjusted the 

training and test datasets based on the SMOTE technique 
to maintain an 80:20 ratio because it balances the need for 
a substantial training dataset with the requirement for a 
robust test set.

Log recognition metrics
A previous NMT experiment used the Bilingual Evalua-
tion Understudy (BLEU) score to evaluate the accuracy of 
predicted sentences against actual sentences [50]. How-
ever, we focused on how competently the model recog-
nizes the logs occurring in each environment. Thus, we 
verified the recognition results based on the feature word 
outcomes of the model and evaluated the model’s perfor-
mance in terms of accuracy, precision, recall, and F1-score. 
This experiment was conducted based on the two feature 
words that yielded optimal recognition results in each envi-
ronment. We compared the feature words with the original 
log to check whether the log data were created in the same 
environment.

In this case, True Positive (TP) classifies existing logs as 
identical environment logs, and True Negative (TN) clas-
sifies different environment logs as different environments. 
False Positive (FP) classifies different environment logs as 
the existing environment, and False Negative (FN) classifies 
existing environment logs as different environments. These 
metrics are expressed as follows:

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1- Score = 2×
Precision× Recall

Precision+ Recall

Table 3 Description of multiple domain log datasets in cloud

System Dataset Messages Anomalies sequences Data size Description Labeled

Operating system Linux 25567 - 2.25MB Linux system logs No

Windows 114608388 - 26.09GB Windows event logs No

Distributed system Hadoop 11175629 16838 1.47GB Hadoop distributed file system logs Yes

OpenStack 207820 18434 58.61MB OpenStack infrastructure logs Yes

Server system Apache 56481 16803 (error logs) 4.90MB Apache web server error log Yes

OpenSSH 655146 - 70.02MB OpenSSH server log No

Network system CICIDS2018 63175 12635 6.43MB Network logs from the AWS environment Yes
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In addition, we demonstrated the proposed methodol-
ogy by showing the recognition results of different envi-
ronment logs as a heat map.

Experiment results
Log recognition result
Table 4 shows the results of log recognition based on the 
proposed model. The proposed recognition model exhib-
its a high average accuracy of 98.2% in diverse environ-
ments. Remarkably, the operating and network system 
results exhibited a high F1-score. In the case of distrib-
uted systems, the OpenStack dataset showed high recog-
nition results but relatively poor results for the Hadoop 
dataset. Consequently, we confirmed that the proposed 
model could recognize each log in various environments. 
Moreover, we used heatmaps to ensure that the model 
correctly recognized the logs.

Figures 7, 8, 9, 10 show the model’s recognition results 
as a heatmap for on each system log dataset. Considering 
the heatmap, the proposed model trains the character-
istics of the deployed environment and satisfies the logs 
according to these characteristics. Most importantly, the 
proposed model can extract trained environmental fea-
tures, even in a dataset with a mixture of various environ-
mental logs.

Figure 7 shows the heatmap result from the operating 
system. The proposed model prints a heatmap based on 
logs generated in the Linux and Windows systems among 
the operating systems. Consequently, the proposed 
model utilizes feature words generated by the operat-
ing system when recognizing logs. Figure  8 shows the 
heatmap results for the distributed system. The model 
mostly utilizes special feature words composed of num-
bers and English letters in the distributed system. In the 
cases of Hadoop and OpenStack, the model recognizes 
the logs generated in the environment based on various 
unique words. Figure 9 shows the heatmap results from 
the Server system. This model utilizes special feature 
words composed of numbers and characters in the server 
system. For example, in the case of Apache, the internal 
environment log was recognized using the IP address. 
Figure 10 shows the heatmap result for the network sys-
tem. The proposed model uses diverse words that can 
occur in a network environment. In summary, the pro-
posed model shows the capability that it can recognize 
the log of the same environment in various environments 
without modification.

Table 4 Log recognition results on multiple domain log datasets

System Dataset Accuracy Precision Recall F1‑score

Operating 
system

Linux 0.987 1.000 0.935 0.966

Windows 0.998 0.995 0.996 0.995

Distributed 
system

Hadoop 0.917 0.883 0.999 0.938

OpenStack 0.982 0.993 0.988 0.988

Server system Apache 0.999 1.000 0.998 0.999

OpenSSH 0.999 1.000 0.996 0.998

Network system CICIDS2018 0.996 0.995 0.995 0.995

Fig. 7 Operating system heatmap between the log sentence and the feature words predicted by the model. If feature words are output 
from the original log sentence, the results are expressed through high values in the heatmap-the proposed model utilized words generated 
by the operating system. a Example of heatmap on Linux log dataset. b Example of heatmap on Windows log dataset
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Anomaly detection result
We used the labeled dataset to verify that the model 
trained only on normal data performed anomaly detec-
tion. In this experiment, we used the distributed system 
datasets Hadoop and OpenStack log, the server system 

dataset Apache, and the network system dataset: CIC-
IDS2018. The metric calculation method for anomaly 
detection is the same as that used in the recognition 
experiment. However, TP classifies normal logs as nor-
mal logs, and TN classifies anomaly logs as anomaly log. 

Fig. 8 Distributed system heatmap between log sentence and the feature words printed by the proposed model. The model uses special feature 
words composed of numbers and English letters that occurred in the distributed system. a Example of heatmap on Hadoop log dataset. b Example 
of heatmap on OpenStack log dataset

Fig. 9 Server system heatmap between the log sentence and the feature words predicted by the model. The proposed model utilized words 
composed of numbers and special characters. For instance, the model recognized the internal Apache environment log using the IP address. a 
Example of heatmap on Apache log dataset. b Example of heatmap on OpenSSH log dataset
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An FP classifies a normal log as an anomaly log, and an 
FN classifies an anomaly log as a normal log.

Table  5 shows the results of log recognition based 
on the proposed model. The proposed model exhib-
its an average accuracy of 94.2% for anomaly detection. 
The Hadoop and Apache datasets exhibit accuracies of 
99.6% and 98.8%, respectively. The CICIDS2018 data-
set, showed an accuracy of 97.6%, whereas the Open-
Stack dataset showed a relatively low accuracy of 80.1% 
because the unique ID of each log could not be deter-
mined from the context. As a result, the proposed model 
is effective for logs that maintain sentence structure and 
partially effective for logs that do not maintain and prop-
erly detect attacks sentence structure.

Discussion
We mentioned that the deployed anomaly detection 
model should adapt to each environment to detect 
attacks in each cloud environment. In summary, the dis-
tributed attack detection model should recognize logs for 
each environment and detect attacks based on the clas-
sified logs. Through experiments, we verified that the 
deployed model could distinguish only the logs gener-
ated in each environment well among the classified logs. 
Notably, the model recognizes that each cloud environ-
ment based on the logs is comparable; however, there are 
some variations.

Table  6 shows examples of what the model generally 
recognized and did not recognize as logs of each envi-
ronment. The proposed model preferentially outputs 
feature words that reflect environmental characteristics 
among the words in the log generated in each environ-
ment. The model prints feature words in the Linux log 
dataset specific to the Linux environment, such as log-
name and rhost; similarly, in the Windows log dataset, 
the model prints feature words specific to the Windows 
environment, such as windowsupdateagent. In addition, 
the model can recognize numbers related to each envi-
ronment, including memory addresses composed of 
hexadecimal numbers and port numbers. In the case of 
OpenStack, the model recognizes the log of the Open-
Stack environment using hexadecimal numbers.

Although the model reflected the characteristics of 
the deployed environment log, some misrecognitions 
still occurred during the recognition process. First, 
the model prints similar words, rather than the origi-
nal words, as feature words because of mis-decoding. 
For instance, in the Apache false negatives example, the 
original log sentence mentioned “323 children”, but the 
model printed “32391 children” with a high frequency of 
appearance. Our experiments revealed that words with 
higher weights are more likely to be printed during the 
feature word prediction process. Moreover, there was a 
case of a model outputting a longer sentence by combin-
ing the same words. In the case of the OpenStack false 
negatives example, another word, “ae3c556f73e”, was 
printed instead of “ae3c” included in the original sen-
tence. From these examples, we verified that the model 
uses word aggregation to print feature words that reflect 
each environment.

Previous research was conducted on the importance 
of words in system call sequences or security logs and 
the relationships between words. Previous research 
has proven that good results can be obtained when the 

Fig. 10 Network system heatmap between the log sentence and feature words outputted by the proposed model. The model uses diverse words 
that can occur in the network system. a Example of heatmap on CICIDS2018 log dataset

Table 5 Anomaly detection results on multiple domain log 
datasets

System Dataset Accuracy Precision Recall F1‑score

Distributed 
system

Hadoop 0.996 0.949 0.996 0.971

OpenStack 0.801 0.872 0.994 0.929

Server system Apache 0.995 0.999 0.998 0.999

Network system CICIDS2018 0.976 0.999 0.909 0.952
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Table 6 Examples of log recognition on multiple domain log datasets

Dataset Type Example of log sentence (After preprocessing) Printed feature words

Linux Examples of true positives sshd pam unix 31201 authentication failure logname uid 0 euid 0 tty 
nodevssh ruser rhost adsl 70.242.75.179 dsl ksc2mo swbell net

logname, tty

sshd pam unix 17129 authentication failure logname uid 0 euid 0 tty 
nodevssh ruser rhost ip 216.69.169.168 ip secureserver net

rhost, net

Examples of false negatives gpm 2094 imps2 auto detected intellimouse ps 2 mtrring, mtrr

gdm binary 2803 couldn’t authenticate user lof, core

Windows Examples of true positives info cbs sqm failed to start upload with file pattern c windows servicing 
sqm std sqm flags 0x2 hresult 0x80004005 e fail

sqm, servicing

info cbs session 30546173 4281313522 initialized by client windowsup-
dateagent

cbs, windowsupdateagent

Examples of false negatives info csi 00000001 2016 9 27 20 30 31 455 wcpinitialize wcp dll version 0 0 
0 6 called stack 0x7fed806eb5d 0x7fef9fb9b6d 0x7fef9f8358f 0xff83e97c 
0xff83d799 0xff83db2f

0x7fef9d987866, 0x7fef9d987866

info cbs sqm cleaning up report files older than 10 days cbs, for

Hadoop Examples of true positives info main org apache hadoop yarn webapp webapps web app mapre-
duce started at 6226

hadoop, msra

info rmcommunicator allocator org apache hadoop mapreduce v2 app 
rm rmcontainerallocator before scheduling pendingreds 1 scheduled-
maps 10 scheduledreds 0 assignedmaps 0 assignedreds 0 completedreds 
0 contalloc 0 contrel 0 hostlocal 0 racklocal

apache, mapreduce

Examples of false negatives info asyncdispatcher event handler org apache hadoop yarn util rackre-
solver resolved msra sa 41 fareast corp microsoft com to default rac

recalculating, rmcommunicator

info rmcommunicator allocator org apache hadoop ipc client retrying 
connect to server msra sa 41 8030 already tried 0 time s retry policy 
is retryuptomaximumcountwithfixedsleep sleeptime 1 millisecond

rmcommunicator, milliseconds

OpenStack Examples of true positives info nova osapi compute wsgi server req 9bc36dd9 91c5 4314 898a 
47625eb93b09 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

server, 9bc36dd9

info nova osapi compute wsgi server req 1d647fe1 d879 4988 889e 
d860ef5b8338 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

d879, d860ef5b8338

Examples of false negatives info nova osapi compute wsgi server req 405a1c42 ae3c 45ec abaf 
eac55b56f73e 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

ae3c556f73e, eac55b56f73e

info nova compute claims req beb938db df6e 4611 8113 1a148a0224bc 
113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c4e40cdbaed9335e-
4c35a9e instance d6b7bd36 2943 4363 9235 fffdd89ea40e total disk 15 
gb used 0 00 gb

complete, driver

Apache Examples of true positives notice jk2 init found child 1984 in scoreboard slot 1 init, child

notice workerenv init ok etc httpd conf workers2 propertie httpd, workers2

Examples of false negatives notice jk2 init found child 32657 in scoreboard slot 2 init, 32650

notice jk2 init found child 323 in scoreboard slot 1 notice, 32391

OpenSSH Examples of true positives pam unix sshd auth check pass user unknow unix, sshd

failed password for root from 183.62.140.253 port 46880 ssh failed, ssh

Examples of false negatives pam service sshd ignoring max retries 6 from, invalid

message repeated 5 times failed password for root from 5.36.59.76 port 
42393 ssh

getaddrinfo, preauth

CICIDS2018 Examples of true positives kernel 0 000000 tsc detected 2400 054 mhz processo kernel, pci

dhclient 981 dhcpack of 172.31.69.21 from 172.31.69.1 dhclient, dhcpack

Examples of false negatives kernel 0 204005 smpboot total of 1 processors activated 4800 15 
bogomip

sooters, socket

sh 873 internet systems consortium dhcp client 4 3 cloud, cless
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model is judged to predict the words that make up each 
sentence appropriately. However, we showed that the 
predicted words expected by the researcher and the pre-
dicted words judged by the model are partially different 
through experiments. Through experiments, we showed 
that the words predicted by the researcher and those pre-
dicted by the model are partially different. Our research 
can prove that a model using natural language may show 
high accuracy even though it does not perform well when 
classified based on logs in a specific environment. Also, 
we verified whether the characteristics observed in the 
recognition experiment were also evident in the anomaly 
detection phase.

Table  7 presents an example of anomaly detection 
based on a model that was trained only on the nor-
mal logs of each environment. The model detected 
anomalies using words that reflected the environmen-
tal characteristics of the words in the log sentence. The 
Hadoop example shows an anomaly detection based on 
feature words that could occur in the Hadoop environ-
ment, such as “taskattemptlistenerimp”. In addition, we 
demonstrate that the detection model performs attack 
detection by utilizing specific words, including num-
bers. In the OpenStack true positives example, attacks 
were identified using hexadecimal numbers that are not 
comprehensible to humans. The Apache true positives 

Table 7 Examples of anomaly detections on multiple domain log datasets

Dataset Type Example of log sentence (After preprocessing) Predicted feature words

Hadoop Examples of true positives info containerlauncher 6 org apache hadoop yarn client api 
impl containermanagementprotocolproxy opening proxy 
msra sa 41 fareast corp microsoft com 30535

apache, containermanagementprotocolproxy

info ipc server handler 22 on 22927 org apache hadoop 
mapred taskattemptlistenerimpl progress of taskattempt 
attempt 1445087491445 0001 r 000000 0 is 0 30769232

taskattemptlistenerimpl, ipc

Examples of false negatives info main org apache hadoop mapred maptask kvstart 
14562216 58248864 kvend 12516336 50065344 length 
2045881 6553600

app, rmcontainerallocator

info main org apache hadoop mapred maptask spilling map 
output

apache, msra

OpenStack Examples of true positives info nova osapi compute wsgi server req 5a2050e7 b381 
4ae9 92d2 8b08e9f9f4c0 113d3a99c3da401fbd62cc-
2caa5b96d2 54fadb412c4e40cdbaed9335e4c35a9e 10 11 
10 1 get v2 54fadb412c4e40cdbaed9335e4c35a9e servers 
detail http 1 1 status 200 len 1583 time 0 1919448

nova, 54fadb412c4e40cdbaed9335e4c35a9e

info nova virt libvirt imagecache req addc1839 2ed5 4778 
b57e 5854eb7b8b09 active base files var lib nova instances 
base a489c868f0c37da93b76227c91bb03908ac0e742

imagecache, 5854eb7b8b09

Examples of false negatives info nova osapi compute wsgi server req 551d57c1 f0bb 
4ebe 9845 018f0742b197 113d3a99c3da401fbd62cc-
2caa5b96d2 54fadb412c4e40cdbaed9335e4c35a9e 10 11 
10 1 get v2 54fadb412c4e40cdbaed9335e4c35a9e servers 
detail http 1 1 status 200 len 1893 time 0 2654262

server, 551d57c1197

info nova osapi compute wsgi server req 346d44ff f4e7 4477 
8efe 3a5c36ce8a63 113d3a99c3da401fbd62cc2caa5b96d2 
54fadb412c4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 
54fadb412c4e40cdbaed9335e4c35a9e servers detail http 1 
1 status 200 len 1893 time 0 4282429

346d4fff, http

Apache Examples of true positives notice jk2 init found child 32528 in scoreboard slot 1 init, 32528

error client 65.68.235.27 directory index forbidden by rule 
var www htm

65.68.235.27, htm

Examples of false negatives error client 65.68.235.27 directory index forbidden by rule 
var www htm

65.68.235.1, htm

error client 4.245.93.87 directory index forbidden by rule var 
www htm

client, html

CICIDS2018 Examples of true positives systemd 1 mysql service service hold off time over schedul-
ing restart

systemd, scheduling

kernel 0 854727 allocating ima mok and blacklist keyring allocating, blacklist

Examples of false negatives kernel 0 410462 libata version 3 00 load kernel, loaded

kernel 0 000000 hpet clockevent register host, hot
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example demonstrates that the model identifies anoma-
lies based on a specific IP address. Through this experi-
ment, we verified that words composed of numbers and 
special characters are important factors for distinguish-
ing anomalies. However, some misdetections occurred 
during the detection experiment. First, false positives 
occurred owing to erroneous decoding for reasons simi-
lar to those in the recognition experiments. In particu-
lar, the model did not distinguish between normal logs 
and anomalies when detection was performed using only 
human-readable words.

Because some existing detection methods treat num-
bers and special characters as stopwords, the detection 
results were improved. However, as a result of experi-
ments based on actual logs generated in each environ-
ment, the numbers and special characters significantly 
impacted the accuracy of the recognition and detection 
experiments. Moreover, it was possible to utilize words 
that humans cannot read when applying the NLP method 
to a security log. In summary, various factors must be 
reflected to perform accurate anomaly detection of logs 
generated in each environment.

Conclusion and future work
This paper proposed a C-IDS framework that recognizes 
the logs of each environment and performs anomaly 
detection by applying logs generated in multiple-domains 
in the cloud without modification. The C-IDS frame-
work can be applied to various environments through 
the IaC tool terraform and deployed in each environ-
ment without any individual configuration. The deployed 
framework trains logs in the environment and performs 
recognition and anomaly detection. As a result of the 
experiment, the average recognition result was 98.2%, 
and the average anomaly detection results were 98.2% 
and 94.2%, respectively.

In summary, the proposed model can be used as gen-
eral purpose and multi-role IDPS for cloud environ-
ments. It can also be easily applied to any cloud platform 
because the proposed system is light-weight. The tradi-
tional IDPS mainly analyzes network traffic or local sys-
tem logs, and frequently increases the overall CPU or 
disk I/O usage. However, when the IDPS performs sta-
tistical analysis based on the long term dataset, a large 
amount of log storage to handle cumulative log events. 
However, our proposed system supports stream-lined 
(or in-line) log analytics, as shown in Fig.  7. These two 
aspects (applicability to most applications or OSes, and 
light-weight implementation) benefit most service pro-
viders based on cloud systems.

However, the proposed framework has several limita-
tions. First, as the operating system dataset used in this 
study is not labeled, it is unknown whether the system 
accurately detects anomalies. Furthermore, only nor-
mal log data must be available in the deployed environ-
ment. We visualized the recognition results through a 
heatmap but could not determine which features in the 
log sentence had an impact. In future studies, we will 
determine how each word affects a log sentence based 
on the expressions of each word.
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