
Kim et al. Journal of Cloud Computing (2024) 13:143
https://doi.org/10.1186/s13677-024-00707-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Domain knowledge free cloud-IDS
with lightweight embedding method
Yongsik Kim1, Gunho Park1 and Huy Kang Kim1*

Abstract

The expansion of the cloud computing market has provided a breakthrough in efficiently storing and managing data
for individuals and companies. As personal and corporate data move to the cloud, diverse attacks targeting the cloud
have also increased for heist beneficial information. Therefore, cloud service providers offer protective environ-
ments through diverse security solutions. However, security solutions are limited in preventing advanced attacks
because it is challenging to reflect the environment of each user. This paper proposes a Cloud Intrusion Detection
System (C-IDS) that adapts to each user’s cloud environment and performs real-time attack detection using Natural
Language Processing (NLP). Notably, the C-IDS learns the deployed client environment logs and detects anomalies
using the Seq2Seq model with BI-LSTM and Bahdanau attention. We used multiple domain datasets, Linux, Win-
dows, Hadoop, OpenStack, Apache, OpenSSH, and CICIDS2018 to verify the performance of the C-IDS. C-IDS consists
of a ‘recognition’ that identifies logs in the deployed environment and a ‘detection’ that discovers anomalies. The rec-
ognition results showed an average accuracy of 98.2% for multiple domain datasets. Moreover, the detection results
based on the trained model exhibited an average accuracy of 94.2% for the Hadoop, OpenStack, Apache, and CIC-
IDS2018 datasets.

Keywords Cloud computing, Cyber security, Natural language processing, Intrusion detection system, Anomaly
detection, CICIDS-2018 dataset, System log analysis

Introduction
Technological development allows people to access data
efficiently, and diversifying data utilization methods
increases the data size [1]. As the size of data increases,
databases require fast retrieval, real-time processing, and
an understanding of big data. However, the storage and
management of large-scale data using traditional data
management structure is complicated [2]. Because tra-
ditional databases are limited in their ability to support
complex data structures, data administrators require bet-
ter data management solutions.

Therefore, cloud computing has emerged as an efficient
data management method [3]. Cloud computing, which

provides computer resources at an acceptable price,
became an opportunity to transfer locally managed data
to virtualized servers. With the advent of cloud comput-
ing, users can manage and store data through various
cloud computing services without having to understand
complex network and server configurations. Moreover,
users have moved critical data, such as private customer
information to the cloud for convenient utilization. As
critical data move to the cloud, cloud-targeted attacks
have also increased for stealing critical data [4]. For these
reasons, Cloud Service Providers (CSP) provides various
security solutions to users based on convenience to pro-
tect users’ data. Using security solutions, users can con-
figure a security environment that can countermeasure
most attacks.

However, cloud-targeted attacks have become more
intelligent and advanced, and it is difficult to construct
a robust security environment using existing security

*Correspondence:
Huy Kang Kim
cenda@korea.ac.kr
1 School of Cybersecurity, Korea University, Anam-ro, Seoul, Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00707-8&domain=pdf

Page 2 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

solutions [5]. Even though the user builds a security
policy using existing security solutions, adversaries can
break in and deprive critical information owing to some
indifference to the components. Internet environment-
based cloud services must consider various components
of information synchronization, such as processing
methods according to each user’s request and migration
between user-requested hardware [6].

For these reasons, cloud service users want environ-
mentally suitable security solutions that consider each
user’s environmental components [7]. However, con-
structing a user-suitable security environment is com-
plex. Designing a user-suitable security environment
requires an understanding of each user’s environment.
That is, a user-suitable security environment should be
able to identify the components of the user environment
and analyze various large-scale cloud logs to detect acute
attacks. Organizing a new security environment requires
additional time, resources, and techniques to efficiently
process large-scale cloud logs. These requirements can
burden users when solving various problems using only
their security knowledge.

In this study, we propose a C-IDS that automatically
processes various large-scale cloud log datasets in real
time and perform attack detection using Natural Lan-
guage Processing (NLP). C-IDS is automatically deployed
using Infrastructure as Code (IaC), understands the user’s
environment by itself in the deployed environment, and
detects anomalies. C-IDS detects anomalies according to
the user’s environmental components without user inter-
vention; users can check malicious behaviors occurring
in various layers without technical security knowledge.

We started with a review of related work related to
Non-NLP based IDS and NLP-based IDS (“Related
work” section). Our proposed C-IDS framework is
detailed in “C-IDS framework” section, and our detec-
tion model BI-LSTM based Seq2Seq model is explained
in “BI-LSTM based Seq2Seq model” and “Bahdanau
attention” sections. We propose the distribution meth-
ods to deploy the multiple domains in the cloud in “Multi
domain distribution with IaC” section. We present the
log recognition and anomaly detection results for mul-
tiple domain log datasets in “Log recognition result”
and “Anomaly detection result” sections respectively. In
“Discussion” section we discuss the model’s recognition
methods. Finally, we make concluding remarks and show
limitations in “Conclusion and future work” section.

Our study’s main contributions are as follows:

• We proposed a real-time intrusion detection sys-
tem for complex cloud environments based on the
Seq2Seq model with BI-LSTM and Bahdanau atten-
tion. The Seq2Seq model classifies each cloud envi-

ronment and detects malicious behaviors in cloud
logs.

• We converted various raw cloud log information into
a machine-readable data format using label encoding.
The label encoding comprises a unique word set that
identifies and counts the occurrence of each word.

• We used IaC to deploy our proposed framework to
multiple cloud environments automatically. With our
deployment methods, users can build a user-suitable
security framework without additional cloud security
knowledge.

Related work
Non‑NLP based IDS
As large-scale data move to the cloud, diverse problems
and vulnerabilities occur. Therefore, various studies have
proposed identifying and classifying problems occurring
in the clouds.

Li et al. presented the cloud security vulnerabilities
in various cloud environments using multiple secu-
rity assessment tools [8]. They argued that security
accountabilities exist for each service provider and con-
sumer following the service model. To verify the afore-
mentioned results, the authors classified experimental
cloud environments into laboratory, On-campus, and
Off-campus, and assessed vulnerabilities using the vul-
nerability assessment tools Nessus, NMAP, and Nikto.
The experiments showed vulnerable common ports and
HTTP methods, and it was found that various network
vulnerabilities exist in the internet environment-based
cloud environment. Ali et al. presented cloud security
challenges through a diverse classification of cloud com-
puting security challenges [9]. They introduced vulner-
abilities not only in internet communication in the cloud
but also in the communications with cloud infrastructure
components. Furthermore, they noted security prob-
lems related to the cloud architecture and Service Level
Agreement (SLA). In conclusion, numerous components
in various cloud layers must be considered to solve secu-
rity problems. However, many organizations tend to
ignore the essential practices and techniques that need to
be implemented when using a cloud system, and attack-
ers steal users’ critical data mainly through data con-
trol, account hijacking, data sanitization, and malicious
insider attacks [10].

Considering the vulnerabilities in the cloud, complex
components occurring in various environments must be
considered to detect vulnerabilities in the cloud. In the
case of a cloud environment, it is possible to apply vul-
nerability detection methodologies that have already
been proposed for each environment. However, it is dif-
ficult to apply the existing methodology to various envi-
ronments because it specifies a certain environment.

Page 3 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

Thus, various methodologies have been proposed to
detect vulnerabilities in the cloud, supplement the secu-
rity systems that comprise the cloud environment, and
prevent attacks.

Modi et al. presented a cloud intrusion that affected
cloud resources, service availability, confidentiality,
and integrity [11]. They described diverse methods of
integrating and applying IDS or IPS into the cloud and
argued that it is challenging to solve the cloud security
problem using only a firewall. Faber et al. proposed an
autoencoder-based IDS model for a mobile cloud com-
puting environment [12]. They consider internal network
traffic and mobile device traffic, creating features based
on time windows. To verify the proposed model’s perfor-
mance, they trained the model using only normal packets
generated from the CICIDS2018 data; then evaluated by
Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) [13]. The proposed model exhibited good
capabilities against most network attacks without deep
packet inspection. Nevertheless, the model exhibited low
capabilities for attacks that cannot be easily distinguished
from normal packets, such as brute force attacks and
cross-site scripting attacks (XSS). Huang et al. proposed
a ‘Relaxed form of Linear Programming Support Vec-
tor Data Description’ (RLPSVDD) model that uses time
series concept data to detect abnormal performance met-
rics of cloud services [14]. They argued that Support Vec-
tor Data Description (SVDD) one-class classification has
weaknesses: an imperfect false alarm rate and computa-
tional complexity in time series abnormality detection.
The proposed model achieved high accuracy in various
datasets using RLPSVDD; however, there was little men-
tion of the data processing methods.

Some IDS for cloud environments showed excel-
lent performance; paradoxically, there were limitations
because of the characteristics of the cloud environment
[15]. It is challenging to satisfy the security require-
ments of dynamically added and removed instances. In
addition, the virtualization of cloud computing leads to
improper access control and requires interaction with
security administrators. To overcome the limitations of
existing IDS, CSPs build an intrusion detection system
by applying a Security Information and Event Manage-
ment (SIEM) structure to the cloud. SIEM is a monitor-
ing system that detects threats in advance by collecting
and analyzing events that occur in established security
and IT systems [16]. Through SIEM, the user analyzes
widespread log data on the cloud and identifies pos-
sible security threats. Lee et al. developed an AI-based
SIEM system using a Fully Connected Neural Network
(FCNN), Convolutional Neural Network (CNN), and
Long Short-Term Memory (LSTM) [17]. Using the TF-
IDF mechanism, they processed large-scale security

logs generated in various environments as input values.
Furthermore, they verified the proposed system’s threat
detection performance based on public and collected
network datasets in the real world. The proposed model
showed an average accuracy of 95% for the entire data-
set but a low F1-score for the actual network dataset,
owing to a low true positive rate. Consequently, SIEM
in the cloud helped differentiate between true and false
security alerts. However, SIEMs also require interac-
tions with security experts to redeem security based on
detected threats. The system is robust only against the
attacks adapted, so it has limitations in detecting contin-
uously evolving attacks. Okey et al. proposed a transfer
learning IDS based on CNN architecture to detect vari-
ous attacks occurring in the Cloud IoT environment [18].
The author proposed an ensemble model using five CNN
models: VGG16, VGG19, Inception, MobileNet, and
EfficientNets. They verified the proposed model using
the CICIDS2017 and CICIDS2018 datasets. Notably,
the author generated data using the Synthetic Minority
Over-sampling technique (SMOTE) to resolve the imbal-
ance in each dataset. As a result, the proposed transfer
learning IDS showed high F1-scores of 1.00 and 0.99 in
the CICIDS2017 and CICIDS2018 datasets, respectively.
Bakro et al. proposed a cloud IDS incorporating SMOTE
technology [19]. The author performed feature selection
using information Gain (IG), Chi-Square (CS), and Par-
ticle Swarm Optimization (PSO), and SMOTE was used
to supplement the imbalanced dataset. The training data-
set generated through SMOTE was trained on a Random
Forest (RF) model, and the proposed methodology was
verified using the UNSW-NB15 and Kyoto datasets. As a
result, the proposed methodology achieved 98% and 99%
accuracy in multi-class classification, respectively.

Although existing detection methods show excel-
lent ability in a specific domain, it is difficult to detect
anomalies in large numbers of cloud logs; thus, exten-
sive research has been proposed to process large-scale
cloud logs effectively to detect anomalies [20]. Lu et al.
presented a CNN-based model that performs anomaly
detection in big data system logs [21]. The proposed
model automatically learns the system log event rela-
tionship and detects anomalies with high accuracy. To
process the collected logs into the CNN model input,
the log key in the collected session was vectorized into
a dimension vector composed of a 29 × 128 two-dimen-
sional codebook. By contrast, a linguistic approach that
treats and processes each log as a plain text document
can extract the grammatical structure and context of
log events information [22]. He et al. evaluated an effec-
tive log parsing method for large-scale logs by using four
existing tools [23]. Analyzing large-scale log messages
effectively requires automated log analysis through data

Page 4 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

mining, in contrast to existing manual inspections. They
compared the performance of existing tools: Simple Log-
file Clustering Tool (SLCT), Iterative Partitioning Log
Mining (IPLoM), Log Key Extraction (LKE), and LogSig.
However, studies analyzing log parsers are limited by the
lack of publicly available log parsing tools and bench-
mark datasets for analysis [24]. Table 1 is a summary of
non-NLP based IDS. The previous studies were mainly
conducted in specific cloud environments. That is, apply-
ing existing detection methods with considering various
cloud environment components is complicated. There-
fore, an NLP-based IDS has been proposed that can ana-
lyze and utilize logs for each characteristic [25].

NLP based IDS
NLP enables machines to understand and interpret nat-
ural language for tasks such as text classification, sum-
marization, and translation [26]. NLP, which analyzes
and understands the structure of human language based
on large amounts of language data, has been applied in
various fields, such as data mining and emotion identi-
fication. Researchers have used NLP to overcome the
limitations of the existing passive security monitoring

process with language-based data, such as code or
security logs [27]. An NLP-based security process with
well-defined formats can detect security flaws more rea-
sonably than existing methods. NLP is also used in digi-
tal forensics [28], privacy data preservation [29], and bug
reports [30].

Das et al. proposed an intrusion detection system using
NLP and ensemble-based machine learning [31]. The
proposed model deviates from pattern matching or black-
list-based detection, which depend on attack technology,
and identifies unconfirmed attacks by analyzing the char-
acteristics of the log. However, they did not demonstrate
whether the proposed model can be used for various
logs by testing only HTTP requests. Wang et al. sug-
gested an offline feature extraction model LogEvent2vec,
that improves Word to Vector (Word2Vec), a log feature
extraction technique [32]. The LogEvent2vec model per-
forms only one transformation by using the log event as
an input value, unlike the word2vec model, which uses
a list of words in a log. As a result, the LogEvent2vec
model performed better than word2vec in terms of com-
putational time and accuracy. Ryciak et al. introduced an
anomaly detection model by improving the LogEvent2vec

Table 1 Summary of non-NLP based IDS

Year Reference Proposal Limitations

2010 Li et al. Analyzed security vulnerabilities occurring in cloud environ-
ments using various security assessment tools and present
security responsibilities between service providers and con-
sumers through experiments.

-

2013 Modi et al. Investigated cloud intrusions that impact cloud resources,
service availability, confidentiality, and integrity and explain
how to apply IDS/IPS integration.

-

2015 Ali et al. Classified cloud computing security challenges and presents
vulnerabilities arising from communication with cloud infra-
structure components and Internet communication.

-

2016 He et al. Evaluated the automation of log analysis through data mining,
moving away from traditional manual inspection for large-scale
log message analysis, and compare four existing log parser
tools.

There is a lack of publicly available log parsing tools and bench-
mark datasets for analysis.

2017 Huang et al. Proposed an RLPSVDD model to detect abnormal performance
indicators of cloud services using time series concept data.

Little mention of the data processing methods

2018 Lu et al. Proposed a CNN-based model that performs anomaly detec-
tion in big data system logs and detects anomalies with high
accuracy by automatically learning log event relationships.

-

2019 Lee et al. Developed an AI-based SIEM system using FCNN, CNN,
and LSTM and verified threat detection performance by pro-
cessing large-scale security logs generated in various environ-
ments with the TF-IDF mechanism.

The system is robust only against the attacks adapted

2021 Faber et al. Proposed an auto-encoder-based IDS model considering
network and mobile device traffic in a mobile cloud computing
environment.

The proposed model does not detect attacks sufficiently
that are difficult to distinguish from normal packets, such as XSS
and brute force attacks.

2023 Okey et al. Proposed a transfer learning IDS based on CNN architecture
to detect various attacks occurring in the Cloud IoT environ-
ment.

-

2023 Bakro et al. Proposed a cloud IDS incorporating SMOTE technology. -

Page 5 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

model [33]. They applied sequence length shortening and
fasttext vectorization to the LogEvent2vec model. The
proposed model was tested on Blue Gene/L datasets with
Gaussian naive Bayes (GNB), RF, and MultiLayer Per-
ceptron (MLP) classifiers, and the MLP model showed
the best performance at short sequence lengths. Lv et al.
designed an effective system call prediction model using
a Sequence-to-Sequence (Seq2Seq) model [34]. They
used the Seq2Seq model to solve sequence depend-
ence in short-term system call analysis. Verification of
the proposed model using the Australian Defense Force
Academy-Linux Dataset (ADFA-LD) dataset showed
good performance in CNN, Recurrent Neural Network
(RNN), Support Vector Machine (SVM), and RF mod-
els. Chaudhari et al. developed a system-call sequence-
based IDS to detect attacks related to virtual machines
in a cloud infrastructure environment [35]. The author
composed the system call sequence as a Bag of N-grams
and then composed the related features using TF-IDF.
Afterward, an ensemble model consisting of LSTM and
RF model was used to detect attacks within the system
call sequence. The author used the ADFA-LD dataset to
verify the proposed framework. As a result, the proposed
framework showed a high accuracy of 97.2% and a false
positive rate of 2.4%.

However, presenting a practical solution using only
NLP is challenging [36]. Text elements have different
relevance to security because the words constituting
the security log have an incomplete sentence structure,
and there are cases in which they are not expressed in
human-readable words. Some studies have emphasized
specific text elements to focus on their each relevance;
however, then have shown limitations for long sentences.
However, there are methodologies to evaluate the rel-
evance between input texts and to consider weights
using machine learning; it is difficult to find evidence for
the output. Thus, we consider an attention mechanism
that partially interprets and explains the neural network
behavior. The attention mechanism allows the model to

focus on certain parts of the input during processing [37].
In the case of large-scale cloud data, the preprocessing
task is highly time-consuming, and there is a problem
in that the result value of the trained model depends on
the amount of data [38]. The attention mechanism can
reduce the computation resource by sub-sequence in a
long sequence and improve the model’s detection accu-
racy according to the relevance of the inputs. Among
the attention mechanisms, the Bahdanau attention has
the advantage of identifying unique elements in each
security log. Based on the Bahdanau attention mecha-
nism, users can visually check risk factors in attack logs.
Moreover, Bahdanau attention improved the translation
performance of the model using a variable length vec-
tor, unlike the existing attention mechanism [39]. In this
study, Bahdanau’s attention was used to process cloud log
datasets of different lengths. Table 2 is a summary of NLP
based IDS. A recent study used NLP to analyze the vari-
able and complex characteristics of sentences composed
in a human-readable format in a cloud environment so
that machines can also read them. Notably, the security
log was analyzed using linguistic features containing each
attack’s characteristics so each attack could be classified
based on the security log. This paper analyzes and detects
attacks using security logs containing each anomaly’s
characteristics.

Although an NLP based model is adequate for anomaly
detection, it is challenging to deploy the model in each
environment. Thus, various methods have been pro-
posed to deploy cloud security models effectively. We
focused on IaC among the various deployment meth-
ods. IaC refers to the management and provisioning of
infrastructure through code. With IaC, the operator can
organically manage, develop, and build a threat detection
infrastructure at an optimal cost. For example, Alonso
et al. introduced a method for deploying and monitoring
IaC in a cloud continuum environment [40]. The deploy-
ment method using IaC has the benefit of supporting
broad and multi-stage infrastructure layers in the cloud

Table 2 Summary of NLP based IDS

Year Reference Proposal Limitations

2018 Lv et al. Designing an effective system call prediction model to resolve sequence dependencies in short-term system call
analysis using the Seq2Seq model.

-

2020 Das et al. Proposed an NLP and ensemble-based machine learning model that identifies unidentified attacks by analyzing
log characteristics.

-

2020 Wang et al. Proposed LogEvent2vec, an offline log feature extraction technique that improved Word2Vec, and performed
one transformation using log events as input.

-

2022 Ryciak et al. Improved the LogEvent2vec model and proposed an anomaly detection model that shortened the sequence
length and applied fasttext vectorization.

-

2023 Chaudhari et al. Developed a system-call sequence-based IDS to detect attacks related to virtual machines in a cloud infrastruc-
ture environment.

-

Page 6 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

continuum. Cauli et al. proposed a model that validates
cloud deployment and the safety of cloud configuration
using the proprietary language of Amazon Web Services
(AWS) CloudFormation [41]. Based on the above study,
we comprise cloud log data in a machine-readable format
using NLP and implement an IDS that detects security
threats in multiple layers.

Methodology
C‑IDS framework
This study uses the C-IDS framework to process cloud
log data and detect attacks in real-time. The proposed
C-IDS framework focuses on the ability of Neural
Machine Translation (NMT) among natural language
processing methods. NMT can directly learn mapping
from the input text to the related output text in an end-
to-end method, breaking away from the limitations of
phrase-based machine translation, which translates sen-
tences in word and phrase units [42]. Considering the
advantages of NMT, we monitored the extent to which
the currently trained model attention feature words were
extracted from the incoming logs in real-time, which can
use various structures. Moreover, we identified the anon-
ymous log information as heat map images to check for
unrecognized words.

In previous log recognition studies, the meaning of
words required to analyze and understand security logs
was lost [43]. For example, unknown error codes can be
treated as abnormal or replaced with words that humans
can distinguish [44]. They analyzed the security logs
using an existing language model by deleting abnormal
error codes. Meaningful words that distinguished normal
from abnormal words were also excluded. In this study,
we trained the model with all sentences, including ‘error
codes,’ based on the words extracted from the actual
operating environment without prior classification and
processing. Moreover, we preprocessed log data accord-
ing to the main characteristics of each environment,
making it possible to learn unique error codes in each
environment and log sentences that humans cannot read.
The advantage of this method is that it can be applied to
attack techniques using new patterns or vulnerabilities.

Figure 1 presents an overview of the C-IDS Frame-
work. The C-IDS framework consists of a ‘first learning
mechanism’ that performs initial training on the Seq2Seq
model based on log data generated in each environment;
a ‘detection mechanism’ performs actual detection based
on the trained Seq2Seq model.

The First learning mechanism trains the model based
on existing norm log data in each environment when the
model is deployed. Norm log data are normal logs that
can occur in each environment, including error codes.
The First learning mechanism consists of sentence

preprocessing that refines the log data into input values
and a training process that trains a Seq2Seq model with
Bi-directional Long Short-Term Memory (BI-LSTM)
and attention methods. In sentence preprocessing, the
log data collected from each environment are converted
into a numeric array through label encoding for use as
input values for the model. The label encoding technique
assigns unique integer values to each word. Label encod-
ing is an effective way to convert a security log with many
unique words into numeric form [45]. Figure 2 shows an
example of the label encoding used to convert a raw cloud
log into a numerical array. Label encoding requires a rule
that assigns unique integers to words. Thus, we organized
a unique word set extracted from the log datasets col-
lected from each environment. We then used the index
numbers of the words included in the unique word set
as integer values. To obtain unique words in each log, we
tokenize the input log sentences based on the spaces and
extracted words. Notably, we used all the words present
in the log data, including error codes, to reduce the loss
of meaning. The unique word set consists of words that
can appear in all domains within a cloud environment.
Creating a unique word set for a user’s multi-domain
cloud environment can be utilized across all composed
environments. Subsequently, we trained the Seq2Seq
model using the input values generated during the train-
ing process.

In the detection mechanism, the trained Seq2Seq
model performed real-time log recognition and anom-
aly detection in the deployed environment. Through
the Seq2Seq model, we checked whether the log is in a
suitable format for spawning in each environment and a
common log that usually occurs. The detection mecha-
nism consists of a ‘sentence preprocess’ that preproc-
esses logs as input values in real time and a ‘recognition
and detection process’ that recognizes and detects new
logs based on input values. First, the new log sentence is
converted into a numeric array by performing the same
sentence preprocessing as in the first learning process. At
this time, it is checked whether a new word exists in each
log sentence, and if a new unique word exists, it is added
to the unique word set for label encoding.

The recognition and detection process recognizes and
detects input values in real-time using a pre-trained
Seq2Seq model. First, the trained Seq2Seq model in the
first learning mechanism outputs the feature words of
the log sentence based on the input values. The trained
Seq2Seq model uses words representing each environ-
ment’s characteristics and finds and outputs feature
words with each environment’s characteristics. If a fea-
ture word does not exist in the log sentences, it is rec-
ognized as another log because it contains words that
cannot occur in the learning environment. We expressed

Page 7 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

the results visually to confirm that the model recognized
them precisely. Based on this methodology, new attacks
can be detected without any model modification using
only normal data generated in the existing environment.
In this experiment, the trained Seq2Seq model uses nor-
mal log printed out feature word for new log sentences.
The process then checks whether the output feature
words are composed of common words that are mainly
used in each environment. If a feature word is uncom-
mon, it is classified as an anomaly.

BI‑LSTM based Seq2Seq model
This study predicts and outputs feature words with
environmental characteristics from log sentences to
determine whether log data occur appropriately in each
environment. However, these methodologies must verify
that the trained model can understand all log sentences
and extract words. Therefore, we created a sequence
model that represents each sentence thoroughly. How-
ever, the simple RNN model has limitations in that the
lengths of the input and output vectors must be the same,

Fig. 1 The overall structure of the C-IDS framework. With cloud system’s log data, the first learning mechanism performs initial training
on the Seq2Seq model. With the trained Seq2Seq model, the detection mechanism performs anomaly detection

Page 8 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

which is a long-term dependency problem. We imple-
mented a Seq2Seq model using the LSTM structure to
overcome the limitations of the RNN.

The Seq2Seq model generated output sentences for
each sentence [46]. The Seq2Seq model is an encoder-
decoder model composed of an encoder and a decoder.
The encoder compresses the sequential input data and
expresses them as a fixed context vector, whereas the
decoder creates a new sequence from the context vec-
tor. The Seq2Seq model has the benefit of understanding
input sentences, but information loss may occur in log
sentences because they do not have the intact form of a
sentence. To use log sentences composed of a series of
intentional words without losing information, all words
must be trained uniformly. Therefore, we construct the
encoder as bi-directional structure to understand log
words in a balanced manner. The bi-directional structure
can consider past and future information of the input
value [47].

Figure 3 shows the implemented BI-LSTM structure. A
backward LSTM layer is added to the encoder composed
of forward LSTM and concatenate the hidden state value
output from forward and backward LSTMs. The concat-
enated hidden state computes a context vector, and the
decoder predicts and outputs a feature word for each log
sentence based on the context vector.

Bahdanau attention
The BI-LSTM Seq2Seq model is suitable for standing log
sentences composed of diverse words however, problems
arise when the log sentence length is long and the layers
are deep. Significantly, there is a bottleneck problem in
that the encoder has too much information to compress,
and the decoder uses only part of the information com-
pressed by the encoder for prediction. Consequently, the
quality of the output value is degraded owing to informa-
tion loss when the input sentence is long.

Fig. 2 The structure of label encoding. We tokenized log sentences based on white-space to convert words to a numeric array. In label encoding,
we used all words presented in the log data (e.g., error codes) to reduce the loss of meaning of words

Fig. 3 The structure of BI-LSTM. The odd level of nodes represents forward LSTM, even level of nodes represents backward LSTM

Page 9 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

In this study, we used the ‘Bahdanau attention’ among
the attention methods to focus on feature words that
reflect each environment simultaneously. The Bahdanau
attention mechanism is more accurate in detecting logs
of various types of attacks than the simple model struc-
ture [48]. We applied an attention mechanism that keeps
a hidden state vector so that the decoder can refer to the
context vector when predicting a word.

Figure 4 shows the structure of the Bahdanau attention
mechanism applied to the Seq2Seq model. Bahdanau
attention ‘pay attention’ to certain parts of the log input

while processing it rather than using the entire input
equally. Bahdanau attention is helpful when the input has
a variable length, and the model needs to focus on certain
parts of the input.

Figure 5 shows the Bahdanau’s attention obtained by
applying a security log. We used security logs. The length
of each log is variable and requires attention to a spe-
cific word to train the model accurately. During train-
ing, the Bahdanau attention mechanism is implemented
using an additional set of parameters called ‘attention
weights’. These attention weights are used to compute the

Fig. 4 The structure of the Seq2Seq model with Bahdanau attention mechanism. Bahdanau attention stores the encoder’s hidden states
so the decoder can refer to a specific part of the input sentence. The Seq2Seq model’s decoder refers to the previous predicted word, the previous
hidden states, and the encoder’s hidden states when predicting the next word

Fig. 5 Illustration of applying Bahdanau attention mechanism to security log. In this experiment, we use attention weight to focus on the extracted
keywords from security log

Page 10 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

weighted sum of the input, which is then used as part of
the model’s prediction. The attention weights are com-
puted using a set of equations that involve the input and
hidden states of the model at each time step.

The Bahdanau attention mechanism is implemented
using the following equations. First, the attention weights
are computed using the current hidden state of the
model, ht , and the input, X. The attention weights are
computed using the dot product between ht and each ele-
ment in X, followed by a softmax function:

The attention context vector ct is then computed as a
weighted sum of the inputs, using the attention weights
as weights:

The final hidden state of the model, h′t , is then com-
puted using the previous hidden state, ht−1 , the attention
context vector, ct , and the input at the current time step,
xt . The hidden state is expressed as an equation through
the LSTM.

Algorithm 1 Mechanism of managing server

Multi domain distribution with IaC

This framework performs recognition and detec-
tion based on logs generated in various environments

(1)at = softmax(hTt X)

(2)ct =

Tx

i=1

at,ixi

(3)h′t = LSTM(ht−1, ct , xt)

however, it is challenging to deploy the framework sep-
arately. Therefore, we propose a managing server that
automatically identifies the cloud environment and then
applies and manages the framework to each environ-
ment. However, applying framework automation is dif-
ficult even when using a managing server, because each
user’s environment configuration method can differ.
Therefore, we use IaC to deploy a managing server in the
user environment. IaC can provide infrastructure using
high-level codes and standardize the application devel-
opment environment. We deployed a managing server
using Terraform among the IaC tools and distributed
the framework to each environment using the manag-
ing server. Terraform can be applied to various cloud
services, such as AWS, Google Cloud Platform, and
Microsoft Azure without being limited to specific cloud
services. Moreover, Terraform can declare and manage
resources in the cloud using code.

We used the managing server to automate the entire
analysis, learning, and deployment processes. Figure 6
shows the distribution of the proposed framework in
each environment using the IaC and managing server.
First, the distributed management server scans the user’s
cloud environment before deploying the framework in
each environment. Subsequently, the managing server
deploys the framework in each identified environment.
The deployed framework performed training based on
the normal log that existed in each environment. Finally,
the framework performs log recognition and anomaly

detection in each environment based on the trained
model. Significantly, the managing server checks the

Page 11 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

real-time status and controls such that the framework
can perform training and detection correctly.

An Algorithm 1 presented a pseudo-code that uti-
lizes a managing server and IaC to automatically deploy
the framework for every environment. The log event L
occurring in the deployed environment is a log sentence
describing the state of the system and network operation.
The trained framework can quickly identify and respond
to threats or issues by continuously analyzing L. The
environment E in which the trained framework operates
represents a specific component or service within the
deployed cloud.

Experiments
We verified whether the proposed framework recog-
nizes and detects logs correctly; experiments were con-
ducted in two aspects. First, we verified the performance
of the log recognition capability using operating system
environment logs, distributed system environment logs
generated in the cloud environment, server system logs,
and network system logs from the AWS environment.
Specifically, the deployed model must check whether it
precisely recognizes the logs generated in each environ-
ment. To verify that each deployed model recognized
logs that occurred only in its environment, we created a
test dataset mixed with other environment logs. When
constructing the test dataset, we incorporated the logs of

all datasets in equal proportions, including the deployed
environment. For example, when testing the model
deployed in a Windows environment, we extracted an
equal number of logs from all datasets, including the
Windows dataset. The trained model deployed in the
Windows environment recognizes Windows environ-
ment logs among the various environment logs: oper-
ating system, distributed system, server system, and
network system. Significantly, we use random selection
to prevent data bias when extracting the logs from each
dataset. We configured the ratio of the training dataset
and test dataset as 80:20.

In addition, we validated the performance of the mod-
el’s anomaly detection capability using the labeled log
datasets of Hadoop, OpenStack, Apache, and network
logs. In the detection experiment, we tested whether
the model trained with the normal log dataset correctly
performed anomaly detection without model modifica-
tions. Consequently, we demonstrated that the proposed
framework can efficiently handle various cloud environ-
ment logs.

Dataset
We used a public dataset comprising seven environ-
mental logs to confirm that the proposed model can
be applied to various domains in the cloud [49]. In this
experiment, we used Linux and Windows logs to verify

Fig. 6 Operation process of the deployed a managing server. The deployed managing server deploys the proposed framework to each identified
environment. The model in the deployed framework trains the normal log that exists in each environment. The trained model performs log
recognition and anomaly detection in each environment, and the framework transfers status information to the managing server in real time.
Managing server controls each deployed framework based on received status information

Page 12 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

the operating system environment, Hadoop and Open-
Stack logs to verify the distributed environment in the
cloud, Apache and OpenSSH to verify the server system
environment, and CICIDS2018 logs to verify the network
environment. Notably, Hadoop, OpenStack, and Apache
data were labeled in the public dataset. Table 3 shows
information on the overall datasets.

The Linux dataset consists of 25,567 Linux internal
system log messages. The Linux log dataset was col-
lected from /var/log/message in the Linux server. The
Windows dataset consists of 114,608,388 Windows event
logs messages. However, neither the Linux nor Windows
log datasets were labeled. The Hadoop log dataset con-
sists of 11,175,629 distributed file system log messages.
Hadoop log data are organized into log sequences with
Block IDs, and abnormal labels are assigned according
to specific Block IDs. The OpenStack dataset comprises
207,820 randomly performed task logs that include cre-
ating, pausing, and deleting virtual machines. The Open-
Stack dataset was classified as abnormal by injecting an
error at a specific time point. The Apache dataset, com-
posed of Apache web server logs, consists of 56,481 log
messages. The original dataset was unlabeled; however,
we labeled 16,803 error logs in the Apache dataset for
anomaly detection. The OpenSSH dataset composed of
OpenSSH server logs, consists of 655,146 server logs.
The CICIDS2018 dataset consists of 63,175 dhclient log
data that perform Distribution Denial of Service (DDoS),
Denial of Service (DoS), bot attacks, brute force, infiltra-
tion, and web attacks.

In this experiment, it was necessary to balance the data-
set with an imbalanced number of messages to ensure
that each model recognizes and detects them appropri-
ately. Thus, we newly created an anomaly message using
the SMOTE method. The used datasets used contained
more normal messages than anomalies, and a simple ran-
dom generation method could cause overfitting problems.
The K-Nearest Neighbor (KNN) algorithm-based SMOTE
can redeem a small number of attack messages and is par-
ticularly effective for network datasets. We adjusted the

training and test datasets based on the SMOTE technique
to maintain an 80:20 ratio because it balances the need for
a substantial training dataset with the requirement for a
robust test set.

Log recognition metrics
A previous NMT experiment used the Bilingual Evalua-
tion Understudy (BLEU) score to evaluate the accuracy of
predicted sentences against actual sentences [50]. How-
ever, we focused on how competently the model recog-
nizes the logs occurring in each environment. Thus, we
verified the recognition results based on the feature word
outcomes of the model and evaluated the model’s perfor-
mance in terms of accuracy, precision, recall, and F1-score.
This experiment was conducted based on the two feature
words that yielded optimal recognition results in each envi-
ronment. We compared the feature words with the original
log to check whether the log data were created in the same
environment.

In this case, True Positive (TP) classifies existing logs as
identical environment logs, and True Negative (TN) clas-
sifies different environment logs as different environments.
False Positive (FP) classifies different environment logs as
the existing environment, and False Negative (FN) classifies
existing environment logs as different environments. These
metrics are expressed as follows:

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1- Score = 2×
Precision× Recall

Precision+ Recall

Table 3 Description of multiple domain log datasets in cloud

System Dataset Messages Anomalies sequences Data size Description Labeled

Operating system Linux 25567 - 2.25MB Linux system logs No

Windows 114608388 - 26.09GB Windows event logs No

Distributed system Hadoop 11175629 16838 1.47GB Hadoop distributed file system logs Yes

OpenStack 207820 18434 58.61MB OpenStack infrastructure logs Yes

Server system Apache 56481 16803 (error logs) 4.90MB Apache web server error log Yes

OpenSSH 655146 - 70.02MB OpenSSH server log No

Network system CICIDS2018 63175 12635 6.43MB Network logs from the AWS environment Yes

Page 13 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

In addition, we demonstrated the proposed methodol-
ogy by showing the recognition results of different envi-
ronment logs as a heat map.

Experiment results
Log recognition result
Table 4 shows the results of log recognition based on the
proposed model. The proposed recognition model exhib-
its a high average accuracy of 98.2% in diverse environ-
ments. Remarkably, the operating and network system
results exhibited a high F1-score. In the case of distrib-
uted systems, the OpenStack dataset showed high recog-
nition results but relatively poor results for the Hadoop
dataset. Consequently, we confirmed that the proposed
model could recognize each log in various environments.
Moreover, we used heatmaps to ensure that the model
correctly recognized the logs.

Figures 7, 8, 9, 10 show the model’s recognition results
as a heatmap for on each system log dataset. Considering
the heatmap, the proposed model trains the character-
istics of the deployed environment and satisfies the logs
according to these characteristics. Most importantly, the
proposed model can extract trained environmental fea-
tures, even in a dataset with a mixture of various environ-
mental logs.

Figure 7 shows the heatmap result from the operating
system. The proposed model prints a heatmap based on
logs generated in the Linux and Windows systems among
the operating systems. Consequently, the proposed
model utilizes feature words generated by the operat-
ing system when recognizing logs. Figure 8 shows the
heatmap results for the distributed system. The model
mostly utilizes special feature words composed of num-
bers and English letters in the distributed system. In the
cases of Hadoop and OpenStack, the model recognizes
the logs generated in the environment based on various
unique words. Figure 9 shows the heatmap results from
the Server system. This model utilizes special feature
words composed of numbers and characters in the server
system. For example, in the case of Apache, the internal
environment log was recognized using the IP address.
Figure 10 shows the heatmap result for the network sys-
tem. The proposed model uses diverse words that can
occur in a network environment. In summary, the pro-
posed model shows the capability that it can recognize
the log of the same environment in various environments
without modification.

Table 4 Log recognition results on multiple domain log datasets

System Dataset Accuracy Precision Recall F1‑score

Operating
system

Linux 0.987 1.000 0.935 0.966

Windows 0.998 0.995 0.996 0.995

Distributed
system

Hadoop 0.917 0.883 0.999 0.938

OpenStack 0.982 0.993 0.988 0.988

Server system Apache 0.999 1.000 0.998 0.999

OpenSSH 0.999 1.000 0.996 0.998

Network system CICIDS2018 0.996 0.995 0.995 0.995

Fig. 7 Operating system heatmap between the log sentence and the feature words predicted by the model. If feature words are output
from the original log sentence, the results are expressed through high values in the heatmap-the proposed model utilized words generated
by the operating system. a Example of heatmap on Linux log dataset. b Example of heatmap on Windows log dataset

Page 14 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

Anomaly detection result
We used the labeled dataset to verify that the model
trained only on normal data performed anomaly detec-
tion. In this experiment, we used the distributed system
datasets Hadoop and OpenStack log, the server system

dataset Apache, and the network system dataset: CIC-
IDS2018. The metric calculation method for anomaly
detection is the same as that used in the recognition
experiment. However, TP classifies normal logs as nor-
mal logs, and TN classifies anomaly logs as anomaly log.

Fig. 8 Distributed system heatmap between log sentence and the feature words printed by the proposed model. The model uses special feature
words composed of numbers and English letters that occurred in the distributed system. a Example of heatmap on Hadoop log dataset. b Example
of heatmap on OpenStack log dataset

Fig. 9 Server system heatmap between the log sentence and the feature words predicted by the model. The proposed model utilized words
composed of numbers and special characters. For instance, the model recognized the internal Apache environment log using the IP address. a
Example of heatmap on Apache log dataset. b Example of heatmap on OpenSSH log dataset

Page 15 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

An FP classifies a normal log as an anomaly log, and an
FN classifies an anomaly log as a normal log.

Table 5 shows the results of log recognition based
on the proposed model. The proposed model exhib-
its an average accuracy of 94.2% for anomaly detection.
The Hadoop and Apache datasets exhibit accuracies of
99.6% and 98.8%, respectively. The CICIDS2018 data-
set, showed an accuracy of 97.6%, whereas the Open-
Stack dataset showed a relatively low accuracy of 80.1%
because the unique ID of each log could not be deter-
mined from the context. As a result, the proposed model
is effective for logs that maintain sentence structure and
partially effective for logs that do not maintain and prop-
erly detect attacks sentence structure.

Discussion
We mentioned that the deployed anomaly detection
model should adapt to each environment to detect
attacks in each cloud environment. In summary, the dis-
tributed attack detection model should recognize logs for
each environment and detect attacks based on the clas-
sified logs. Through experiments, we verified that the
deployed model could distinguish only the logs gener-
ated in each environment well among the classified logs.
Notably, the model recognizes that each cloud environ-
ment based on the logs is comparable; however, there are
some variations.

Table 6 shows examples of what the model generally
recognized and did not recognize as logs of each envi-
ronment. The proposed model preferentially outputs
feature words that reflect environmental characteristics
among the words in the log generated in each environ-
ment. The model prints feature words in the Linux log
dataset specific to the Linux environment, such as log-
name and rhost; similarly, in the Windows log dataset,
the model prints feature words specific to the Windows
environment, such as windowsupdateagent. In addition,
the model can recognize numbers related to each envi-
ronment, including memory addresses composed of
hexadecimal numbers and port numbers. In the case of
OpenStack, the model recognizes the log of the Open-
Stack environment using hexadecimal numbers.

Although the model reflected the characteristics of
the deployed environment log, some misrecognitions
still occurred during the recognition process. First,
the model prints similar words, rather than the origi-
nal words, as feature words because of mis-decoding.
For instance, in the Apache false negatives example, the
original log sentence mentioned “323 children”, but the
model printed “32391 children” with a high frequency of
appearance. Our experiments revealed that words with
higher weights are more likely to be printed during the
feature word prediction process. Moreover, there was a
case of a model outputting a longer sentence by combin-
ing the same words. In the case of the OpenStack false
negatives example, another word, “ae3c556f73e”, was
printed instead of “ae3c” included in the original sen-
tence. From these examples, we verified that the model
uses word aggregation to print feature words that reflect
each environment.

Previous research was conducted on the importance
of words in system call sequences or security logs and
the relationships between words. Previous research
has proven that good results can be obtained when the

Fig. 10 Network system heatmap between the log sentence and feature words outputted by the proposed model. The model uses diverse words
that can occur in the network system. a Example of heatmap on CICIDS2018 log dataset

Table 5 Anomaly detection results on multiple domain log
datasets

System Dataset Accuracy Precision Recall F1‑score

Distributed
system

Hadoop 0.996 0.949 0.996 0.971

OpenStack 0.801 0.872 0.994 0.929

Server system Apache 0.995 0.999 0.998 0.999

Network system CICIDS2018 0.976 0.999 0.909 0.952

Page 16 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

Table 6 Examples of log recognition on multiple domain log datasets

Dataset Type Example of log sentence (After preprocessing) Printed feature words

Linux Examples of true positives sshd pam unix 31201 authentication failure logname uid 0 euid 0 tty
nodevssh ruser rhost adsl 70.242.75.179 dsl ksc2mo swbell net

logname, tty

sshd pam unix 17129 authentication failure logname uid 0 euid 0 tty
nodevssh ruser rhost ip 216.69.169.168 ip secureserver net

rhost, net

Examples of false negatives gpm 2094 imps2 auto detected intellimouse ps 2 mtrring, mtrr

gdm binary 2803 couldn’t authenticate user lof, core

Windows Examples of true positives info cbs sqm failed to start upload with file pattern c windows servicing
sqm std sqm flags 0x2 hresult 0x80004005 e fail

sqm, servicing

info cbs session 30546173 4281313522 initialized by client windowsup-
dateagent

cbs, windowsupdateagent

Examples of false negatives info csi 00000001 2016 9 27 20 30 31 455 wcpinitialize wcp dll version 0 0
0 6 called stack 0x7fed806eb5d 0x7fef9fb9b6d 0x7fef9f8358f 0xff83e97c
0xff83d799 0xff83db2f

0x7fef9d987866, 0x7fef9d987866

info cbs sqm cleaning up report files older than 10 days cbs, for

Hadoop Examples of true positives info main org apache hadoop yarn webapp webapps web app mapre-
duce started at 6226

hadoop, msra

info rmcommunicator allocator org apache hadoop mapreduce v2 app
rm rmcontainerallocator before scheduling pendingreds 1 scheduled-
maps 10 scheduledreds 0 assignedmaps 0 assignedreds 0 completedreds
0 contalloc 0 contrel 0 hostlocal 0 racklocal

apache, mapreduce

Examples of false negatives info asyncdispatcher event handler org apache hadoop yarn util rackre-
solver resolved msra sa 41 fareast corp microsoft com to default rac

recalculating, rmcommunicator

info rmcommunicator allocator org apache hadoop ipc client retrying
connect to server msra sa 41 8030 already tried 0 time s retry policy
is retryuptomaximumcountwithfixedsleep sleeptime 1 millisecond

rmcommunicator, milliseconds

OpenStack Examples of true positives info nova osapi compute wsgi server req 9bc36dd9 91c5 4314 898a
47625eb93b09 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

server, 9bc36dd9

info nova osapi compute wsgi server req 1d647fe1 d879 4988 889e
d860ef5b8338 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

d879, d860ef5b8338

Examples of false negatives info nova osapi compute wsgi server req 405a1c42 ae3c 45ec abaf
eac55b56f73e 113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c-
4e40cdbaed9335e4c35a9e 10 11 10 1 get v2 54fadb412c4e40cdbae-
d9335e4c35a9e servers detail http 1 1 status 200 len 1893 time 0

ae3c556f73e, eac55b56f73e

info nova compute claims req beb938db df6e 4611 8113 1a148a0224bc
113d3a99c3da401fbd62cc2caa5b96d2 54fadb412c4e40cdbaed9335e-
4c35a9e instance d6b7bd36 2943 4363 9235 fffdd89ea40e total disk 15
gb used 0 00 gb

complete, driver

Apache Examples of true positives notice jk2 init found child 1984 in scoreboard slot 1 init, child

notice workerenv init ok etc httpd conf workers2 propertie httpd, workers2

Examples of false negatives notice jk2 init found child 32657 in scoreboard slot 2 init, 32650

notice jk2 init found child 323 in scoreboard slot 1 notice, 32391

OpenSSH Examples of true positives pam unix sshd auth check pass user unknow unix, sshd

failed password for root from 183.62.140.253 port 46880 ssh failed, ssh

Examples of false negatives pam service sshd ignoring max retries 6 from, invalid

message repeated 5 times failed password for root from 5.36.59.76 port
42393 ssh

getaddrinfo, preauth

CICIDS2018 Examples of true positives kernel 0 000000 tsc detected 2400 054 mhz processo kernel, pci

dhclient 981 dhcpack of 172.31.69.21 from 172.31.69.1 dhclient, dhcpack

Examples of false negatives kernel 0 204005 smpboot total of 1 processors activated 4800 15
bogomip

sooters, socket

sh 873 internet systems consortium dhcp client 4 3 cloud, cless

Page 17 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

model is judged to predict the words that make up each
sentence appropriately. However, we showed that the
predicted words expected by the researcher and the pre-
dicted words judged by the model are partially different
through experiments. Through experiments, we showed
that the words predicted by the researcher and those pre-
dicted by the model are partially different. Our research
can prove that a model using natural language may show
high accuracy even though it does not perform well when
classified based on logs in a specific environment. Also,
we verified whether the characteristics observed in the
recognition experiment were also evident in the anomaly
detection phase.

Table 7 presents an example of anomaly detection
based on a model that was trained only on the nor-
mal logs of each environment. The model detected
anomalies using words that reflected the environmen-
tal characteristics of the words in the log sentence. The
Hadoop example shows an anomaly detection based on
feature words that could occur in the Hadoop environ-
ment, such as “taskattemptlistenerimp”. In addition, we
demonstrate that the detection model performs attack
detection by utilizing specific words, including num-
bers. In the OpenStack true positives example, attacks
were identified using hexadecimal numbers that are not
comprehensible to humans. The Apache true positives

Table 7 Examples of anomaly detections on multiple domain log datasets

Dataset Type Example of log sentence (After preprocessing) Predicted feature words

Hadoop Examples of true positives info containerlauncher 6 org apache hadoop yarn client api
impl containermanagementprotocolproxy opening proxy
msra sa 41 fareast corp microsoft com 30535

apache, containermanagementprotocolproxy

info ipc server handler 22 on 22927 org apache hadoop
mapred taskattemptlistenerimpl progress of taskattempt
attempt 1445087491445 0001 r 000000 0 is 0 30769232

taskattemptlistenerimpl, ipc

Examples of false negatives info main org apache hadoop mapred maptask kvstart
14562216 58248864 kvend 12516336 50065344 length
2045881 6553600

app, rmcontainerallocator

info main org apache hadoop mapred maptask spilling map
output

apache, msra

OpenStack Examples of true positives info nova osapi compute wsgi server req 5a2050e7 b381
4ae9 92d2 8b08e9f9f4c0 113d3a99c3da401fbd62cc-
2caa5b96d2 54fadb412c4e40cdbaed9335e4c35a9e 10 11
10 1 get v2 54fadb412c4e40cdbaed9335e4c35a9e servers
detail http 1 1 status 200 len 1583 time 0 1919448

nova, 54fadb412c4e40cdbaed9335e4c35a9e

info nova virt libvirt imagecache req addc1839 2ed5 4778
b57e 5854eb7b8b09 active base files var lib nova instances
base a489c868f0c37da93b76227c91bb03908ac0e742

imagecache, 5854eb7b8b09

Examples of false negatives info nova osapi compute wsgi server req 551d57c1 f0bb
4ebe 9845 018f0742b197 113d3a99c3da401fbd62cc-
2caa5b96d2 54fadb412c4e40cdbaed9335e4c35a9e 10 11
10 1 get v2 54fadb412c4e40cdbaed9335e4c35a9e servers
detail http 1 1 status 200 len 1893 time 0 2654262

server, 551d57c1197

info nova osapi compute wsgi server req 346d44ff f4e7 4477
8efe 3a5c36ce8a63 113d3a99c3da401fbd62cc2caa5b96d2
54fadb412c4e40cdbaed9335e4c35a9e 10 11 10 1 get v2
54fadb412c4e40cdbaed9335e4c35a9e servers detail http 1
1 status 200 len 1893 time 0 4282429

346d4fff, http

Apache Examples of true positives notice jk2 init found child 32528 in scoreboard slot 1 init, 32528

error client 65.68.235.27 directory index forbidden by rule
var www htm

65.68.235.27, htm

Examples of false negatives error client 65.68.235.27 directory index forbidden by rule
var www htm

65.68.235.1, htm

error client 4.245.93.87 directory index forbidden by rule var
www htm

client, html

CICIDS2018 Examples of true positives systemd 1 mysql service service hold off time over schedul-
ing restart

systemd, scheduling

kernel 0 854727 allocating ima mok and blacklist keyring allocating, blacklist

Examples of false negatives kernel 0 410462 libata version 3 00 load kernel, loaded

kernel 0 000000 hpet clockevent register host, hot

Page 18 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

example demonstrates that the model identifies anoma-
lies based on a specific IP address. Through this experi-
ment, we verified that words composed of numbers and
special characters are important factors for distinguish-
ing anomalies. However, some misdetections occurred
during the detection experiment. First, false positives
occurred owing to erroneous decoding for reasons simi-
lar to those in the recognition experiments. In particu-
lar, the model did not distinguish between normal logs
and anomalies when detection was performed using only
human-readable words.

Because some existing detection methods treat num-
bers and special characters as stopwords, the detection
results were improved. However, as a result of experi-
ments based on actual logs generated in each environ-
ment, the numbers and special characters significantly
impacted the accuracy of the recognition and detection
experiments. Moreover, it was possible to utilize words
that humans cannot read when applying the NLP method
to a security log. In summary, various factors must be
reflected to perform accurate anomaly detection of logs
generated in each environment.

Conclusion and future work
This paper proposed a C-IDS framework that recognizes
the logs of each environment and performs anomaly
detection by applying logs generated in multiple-domains
in the cloud without modification. The C-IDS frame-
work can be applied to various environments through
the IaC tool terraform and deployed in each environ-
ment without any individual configuration. The deployed
framework trains logs in the environment and performs
recognition and anomaly detection. As a result of the
experiment, the average recognition result was 98.2%,
and the average anomaly detection results were 98.2%
and 94.2%, respectively.

In summary, the proposed model can be used as gen-
eral purpose and multi-role IDPS for cloud environ-
ments. It can also be easily applied to any cloud platform
because the proposed system is light-weight. The tradi-
tional IDPS mainly analyzes network traffic or local sys-
tem logs, and frequently increases the overall CPU or
disk I/O usage. However, when the IDPS performs sta-
tistical analysis based on the long term dataset, a large
amount of log storage to handle cumulative log events.
However, our proposed system supports stream-lined
(or in-line) log analytics, as shown in Fig. 7. These two
aspects (applicability to most applications or OSes, and
light-weight implementation) benefit most service pro-
viders based on cloud systems.

However, the proposed framework has several limita-
tions. First, as the operating system dataset used in this
study is not labeled, it is unknown whether the system
accurately detects anomalies. Furthermore, only nor-
mal log data must be available in the deployed environ-
ment. We visualized the recognition results through a
heatmap but could not determine which features in the
log sentence had an impact. In future studies, we will
determine how each word affects a log sentence based
on the expressions of each word.

Abbreviations
C-IDS Cloud intrusion detection system
IDS Intrusion detection system
NLP Natural language processing
CSP Cloud service providers
IaC Infrastructure as code
IG Information gain
CS Chi-square
PSO Particle swarm optimization
SLA Service level agreements
ROC-AUC Area under the receiver operating characteristic curve
XSS Cross-site scripting attacks
RLPSVDD Relaxed form of linear programming support vector data

description
SVDD Support vector data description
SIEM Security information and event management
FCNN Fully connected neural network
CNN Convolutional neural network
LSTM Long short-term memory
SLCT Simple logfile clustering tool
IPLoM Iterative partitioning log mining
LKE Log key extraction
Word2Vec Word to vector
GNB Gaussian naive Bayes
RF Random forest
MLP MultiLayer perceptrons
Seq2Seq Sequence-to-sequence
RNN Recurrent neural networks
SVM Support vector machine
AWS Amazon web services
NMT Neural machine translation
BI-LSTM Bi-directional long short-term memory
DDoS Distribution denial of service
DoS Denial of service
SMOTE Synthetic minority over-sampling technique
KNN K-nearest neighbor
BLEU Bilingual evaluation understudy
TP True positive
TN True negative
FP False positive
FN False negative
HTTP HyperText transfer protocol

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (RS-2024-00359621).

Authors’ contributions
Each author made a significant contribution to the research and preparation
of the manuscript. Yongsik Kim mainly conducted manuscript experiments,
and Gunho Park and Huy Kang Kim prepared and conducted experiments. All
authors read and approved the final version of the manuscript.

Availability of data and materials
Some or all of the data, models, or codes used in this study to support this
work are available from the authors upon reasonable request.

Page 19 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interests
The authors declare no competing interests.

Received: 13 November 2023 Accepted: 10 September 2024

References
 1. Nazareth DL, Choi J (2021) Market share strategies for cloud computing

providers. J Comput Inf Syst 61(2):182–192
 2. Siddiqa A, Karim A, Gani A (2017) Big data storage technologies: a survey.

Front Inform Technol Electron Eng 18(8):1040–1070
 3. Yang HL, Lin SL (2015) User continuance intention to use cloud storage

service. Comput Hum Behav 52:219–232
 4. Singh S, Jeong YS, Park JH (2016) A survey on cloud computing security:

Issues, threats, and solutions. J Netw Comput Appl 75:200–222
 5. Ren K, Wang C, Wang Q (2012) Security challenges for the public cloud.

IEEE Internet Comput 16(1):69–73
 6. Jangjou M, Sohrabi MK (2022) A comprehensive survey on security

challenges in different network layers in cloud computing. Arch Comput
Methods Eng 29(6):3587–3608

 7. Kumar R, Goyal R (2019) On cloud security requirements, threats, vulner-
abilities and countermeasures: A survey. Comput Sci Rev 33:1–48

 8. Li HC, Liang PH, Yang JM, Chen SJ (2010) Analysis on cloud-based security
vulnerability assessment. In: 2010 IEEE 7th International Conference on
E-Business Engineering. IEEE, Shanghai, p 490–494

 9. Ali M, Khan SU, Vasilakos AV (2015) Security in cloud computing: Oppor-
tunities and challenges. Inform Sci 305:357–383

 10. Al Nafea R, Almaiah MA (2021) Cyber security threats in cloud: Literature
review. In: 2021 International Conference on Information Technology
(ICIT). IEEE, Amman, p 779–786

 11. Modi C, Patel D, Borisaniya B, Patel H, Patel A, Rajarajan M (2013) A
survey of intrusion detection techniques in cloud. J Netw Comput Appl
36(1):42–57

 12. Faber K, Faber L, Sniezynski B (2021) Autoencoder-based ids for cloud
and mobile devices. In: 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid). IEEE, Melbourne, p
728–736

 13. Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new
intrusion detection dataset and intrusion traffic characterization. ICISSp
1:108–116

 14. Huang C, Min G, Wu Y, Ying Y, Pei K, Xiang Z (2017) Time series anomaly
detection for trustworthy services in cloud computing systems. IEEE Trans
Big Data 8(1):60–72

 15. Patel A, Taghavi M, Bakhtiyari K, Júnior JC (2013) An intrusion detection
and prevention system in cloud computing: A systematic review. J Netw
Comput Appl 36(1):25–41

 16. Lee JH, Kim YS, Kim JH, Kim IK (2017) Toward the siem architecture for
cloud-based security services. In: 2017 IEEE Conference on Communica-
tions and Network Security (CNS). IEEE, Las Vegas, p 398–399

 17. Lee J, Kim J, Kim I, Han K (2019) Cyber threat detection based on artificial
neural networks using event profiles. IEEE Access 7:165607–165626

 18. Okey OD, Melgarejo DC, Saadi M, Rosa RL, Kleinschmidt JH, Rodríguez
DZ (2023) Transfer learning approach to ids on cloud iot devices using
optimized cnn. IEEE Access 11:1023–1038

 19. Bakro M, Kumar RR, Alabrah A, Ashraf Z, Ahmed MN, Shameem M,
Abdelsalam A (2023) An improved design for a cloud intrusion detection
system using hybrid features selection approach with ml classifier. IEEE
Access 11:64228–64247

 20. Habeeb RAA, Nasaruddin F, Gani A, Hashem IAT, Ahmed E, Imran M (2019)
Real-time big data processing for anomaly detection: A survey. Int J Inf
Manag 45:289–307

 21. Lu S, Wei X, Li Y, Wang L (2018) Detecting anomaly in big data system
logs using convolutional neural network. In: 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Per-
vasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/
PiCom/DataCom/CyberSciTech). IEEE, Athens, p 151–158

 22. Bertero C, Roy M, Sauvanaud C, Trédan G (2017) Experience report: Log
mining using natural language processing and application to anomaly
detection. In: 2017 IEEE 28th International Symposium on Software Reli-
ability Engineering (ISSRE). IEEE, Toulouse, p 351–360

 23. He P, Zhu J, He S, Li J, Lyu MR (2016) An evaluation study on log parsing
and its use in log mining. In: 2016 46th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). IEEE, Toulouse,
p 654–661

 24. Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2019) Tools and bench-
marks for automated log parsing. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, pp 121–130

 25. Sworna ZT, Mousavi Z, Babar MA (2023) Nlp methods in host-based intru-
sion detection systems: A systematic review and future directions. J Netw
Comput Appl 220:103761

 26. Hirschberg J, Manning CD (2015) Advances in natural language process-
ing. Science 349(6245):261–266

 27. Singh K, Grover SS, Kumar RK (2022) Cyber security vulnerability detection
using natural language processing. In: 2022 IEEE World AI IoT Congress
(AIIoT). IEEE, Seattle, p 174–178

 28. Ukwen DO, Karabatak M (2021) Review of nlp-based systems in digital
forensics and cybersecurity. In: 2021 9th International Symposium on
Digital Forensics and Security (ISDFS). IEEE, Elazig, p 1–9

 29. Mahendran D, Luo C, Mcinnes BT (2021) Privacy-preservation in the
context of natural language processing. IEEE Access 9:147600–147612

 30. Peters F, Tun TT, Yu Y, Nuseibeh B (2017) Text filtering and ranking for
security bug report prediction. IEEE Trans Softw Eng 45(6):615–631

 31. Das S, Ashrafuzzaman M, Sheldon FT, Shiva S (2020) Network intrusion
detection using natural language processing and ensemble machine
learning. In: 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, Canberra, p 829–835

 32. Wang J, Tang Y, He S, Zhao C, Sharma PK, Alfarraj O, Tolba A (2020)
Logevent2vec: Logevent-to-vector based anomaly detection for large-
scale logs in internet of things. Sensors 20(9):2451

 33. Ryciak P, Wasielewska K, Janicki A (2022) Anomaly detection in log
files using selected natural language processing methods. Appl Sci
12(10):5089

 34. Lv S, Wang J, Yang Y, Liu J (2018) Intrusion prediction with system-call
sequence-to-sequence model. IEEE Access 6:71413–71421

 35. Chaudhari A, Gohil B, Rao UP (2024) A novel hybrid framework for cloud
intrusion detection system using system call sequence analysis. Clust
Comput 27(3):3753–3769

 36. Galassi A, Lippi M, Torroni P (2020) Attention in natural language process-
ing. IEEE Trans Neural Netw Learn Syst 32(10):4291–4308

 37. Varol Arısoy M (2022) Lzw-cie: a high-capacity linguistic steganog-
raphy based on lzw char index encoding. Neural Comput Appl
34(21):19117–19145

 38. Khan S, Alam M (2023) Preprocessing framework for scholarly big data
management. Multimed Tools Appl 82(25):39719–39743

 39. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly
learning to align and translate. In: Bengio Y, LeCun Y (eds) 3rd Interna-
tional conference on learning representations. ICLR 2015, San Diego, 7–9
May 2015. Conference Track Proceedings

 40. Alonso J, Orue-Echevarria L, Osaba E, López Lobo J, Martinez I, Diaz de
Arcaya J, Etxaniz I (2021) Optimization and prediction techniques for self-
healing and self-learning applications in a trustworthy cloud continuum.
Information 12(8):308

 41. Cauli C, Li M, Piterman N, Tkachuk O (2021) Pre-deployment security
assessment for cloud services through semantic reasoning. In: Interna-
tional Conference on Computer Aided Verification. Springer, Cham, p
767–780

 42. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y,
Gao Q, Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser L, Gouws
S, Kato Y, Kudo T, Kazawa H, Stevens K, Kurian G, Patil N, Wang W, Young C,
Smith J, Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes M, Dean J (2016)

Page 20 of 20Kim et al. Journal of Cloud Computing (2024) 13:143

Google’s neural machine translation system: Bridging the gap between
human and machine translation. CoRR abs/1609.08144

 43. Studiawan H, Sohel F, Payne C (2020) Anomaly detection in operating
system logs with deep learning-based sentiment analysis. IEEE Trans
Dependable Secure Comput 18(5):2136–2148

 44. Nedelkoski S, Bogatinovski J, Acker A, Cardoso J, Kao O (2020) Self-atten-
tive classification-based anomaly detection in unstructured logs. In: 2020
IEEE International Conference on Data Mining (ICDM). IEEE, Sorrento, p
1196–1201

 45. Jackson E, Agrawal R (2019) Performance evaluation of different feature
encoding schemes on cybersecurity logs. In: 2019 SoutheastCon. IEEE,
Huntsville, p 1–9

 46. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with
neural networks. Adv Neural Inform Process Syst 27:3104–3112

 47. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE
Trans Signal Process 45(11):2673–2681

 48. Dey A (2020) Deep ids: A deep learning approach for intrusion detection
based on ids 2018. In: 2020 2nd International Conference on Sustainable
Technologies for Industry 4.0 (STI). IEEE, Dhaka, p 1–5

 49. He S, Zhu J, He P, Lyu MR (2020) Loghub: a large collection of system log
datasets towards automated log analytics. arXiv preprint arXiv:200806448

 50. Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual
meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Philadelphia, p 311–318

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Domain knowledge free cloud-IDS with lightweight embedding method
	Abstract
	Introduction
	Related work
	Non-NLP based IDS
	NLP based IDS

	Methodology
	C-IDS framework
	BI-LSTM based Seq2Seq model
	Bahdanau attention
	Multi domain distribution with IaC

	Experiments
	Dataset
	Log recognition metrics
	Experiment results
	Log recognition result
	Anomaly detection result

	Discussion
	Conclusion and future work
	Acknowledgements
	References

