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ABSTRACT: Hadronization is a critical step in the simulation of high-energy particle and
nuclear physics experiments. As there is no first principles understanding of this process,
physically-inspired hadronization models have a large number of parameters that are fit to
data. Deep generative models are a natural replacement for classical techniques, since they
are more flexible and may be able to improve the overall precision. Proof of principle studies
have shown how to use neural networks to emulate specific hadronization when trained
using the inputs and outputs of classical methods. However, these approaches will not work
with data, where we do not have a matching between observed hadrons and partons. In
this paper, we develop a protocol for fitting a deep generative hadronization model in a
realistic setting, where we only have access to a set of hadrons in data. Our approach uses
a variation of a Generative Adversarial Network with a permutation invariant discriminator.
We find that this setup is able to match the hadronization model in HERWIG with multiple
sets of parameters. This work represents a significant step forward in a longer term program
to develop, train, and integrate machine learning-based hadronization models into parton
shower Monte Carlo programs.
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1 Introduction

Hadronization connects theory and experiment by transforming the fundamental degrees of
freedom — quarks and gluons — with observable degrees of freedom — hadrons. However,
we do no have a first-principles understanding of hadronization and so existing approaches
use physically-inspired, highly flexible models fit to data. Our vision is to replace these
hand-crafted models with deep learning, where the additional exprresivity would have the
potential to enhance precision, the models would be readily differentiable, and they would
be naturally compatible with Graphical Processing Unit (GPUs).

There are currently two hadronization models in wide use: the cluster model [1]
and the string model [2, 3]. The former is employed by default in the Herwig [4-7] and
Sherpa [8, 9] Parton Shower Monte Carlo (PSMC) programs and the latter is used by
default in the Pythia [10, 11] PSMC. Previously, refs. [12] and [13] showed that deep
generative models could emulate the string and cluster models, respectively, in a simple
setting where the neural network has access to parton-hadron pairs and only pions are
produced.! Furthermore, these models were integrated into the Pythia and Herwig PSMC
programs. These papers marked an important milestone, but represent only the first steps
along a multiyear program to achieve a complete, integrated, and tuned machine learning
(ML)-based hadronization model.

While previous work has shown that neural networks can emulate the existing hadroniza-
tion models, we want to eventually fit the models to data. A fundamental challenge with
using data directly is that hadronization acts locally on partons while only non-local infor-
mation about hadrons is observable. In other words, events are measured as a permutation-
invariant set of hadrons that have no inherent order or grouping to know which hadrons
‘came from’ the same partons. This means that we need a model that can learn to generate
hadrons from partons based on information from a loss function that acts on the set of
observable hadrons.

'Hadron type was taken from Herwig.



The two-level challenge of fitting to data rules out most standard implementations
of deep generative models. Variational Autoencoders (VAE) [14, 15], Normalizing flows
(NF) [16, 17], and diffusion models [18-20] do not directly apply because we need to know
the probability density of the partons and we need a permutation invariant reconstruction
loss (VAE), probability density (NF), or score function (diffusion). While there has been
some progress on these fronts [21-30], Generative Adversarial Networks (GANs) [31, 32]
can be naturally applied to this setting. For GANs, the latent space does not require a
tractable probability density, the discriminator can be applied on a different level (hadrons)
as the generator (partons), and permutation invariance can be enforced by using a set-based
classifier for the discriminator. GANSs were the first deep generative model applied to
particle physics data [33-35] and have since been extensively studied (see e.g. refs. [36-38]).
GAN-like setups have also been used for two-level fitting in the context of parameter
estimation [39] and unfolding [40]. We propose to use GANs for fitting hadronization
models to data.

We embed the GAN-based hadronization model HadML introduced in ref. [13] in a full
event-level fitting framework. A fully connected neural network takes as input individual
clusters and outputs pairs of hadrons. This network acts in the cluster rest frame. The
resulting hadrons are then boosted to the lab frame and the GAN discriminator is based on
Deep Sets [41], which is a permutation invariant neural network architecture. We restrict
ourselves to the cluster model inputs (clusters created from pre-confined partons) and pion
outputs in order to focus on the two-level fitting challenge. These simplifications will be
relaxed in future work.

This paper is organized as follows. Section 2 introduces the conceptual and technical
details behind our fitting framework. Numerical examples are presented in section 3,
including two variations on the cluster model. The paper ends with conclusions and outlook
in section 4.

2 Methods

2.1 Statistical approach

Our goal is to learn a conditional generator function G (z,\;wg) which maps cluster
kinematic properties onto the kinematic properites of the two? hadrons from each cluster
decay {h1,hs} € R?Mr with the parameters wg. Here, z € RV= is the input noise variable
sampled from the prior p(z), and A € R™ is the conditional variable, namely the cluster
kinematic properties. Since two hadrons from a cluster decay must be back-to-back in
the rest frame of cluster, the generator G can instead output the polar angles 6§ and ¢ of
the “first hadron” in the cluster rest frame. Note that here ¢ is defined in the range of
(—=m/2, m/2), and the hadron with ¢ in this range is defined to be the first hadron. In the
original setup [13], a discriminator function D (0, ¢;wp), parametrized with wp, is learned
to represent the probability that {0, ¢} came from cluster fragmentation rather than the

2The cluster model can produce more than two hadrons, but most of the time, at the energies we consider,
there are only two. We restrict to two for this study and will explore more complex decays in future work.



generator G. G and D are then trained alternately to maximize and minize the loss function,
respectively:

L=— Y (og(D(r(V)+log(1-D(G (M) . (2.1)

A~HERWIG, z~p(2)

where 7 is the cluster fragmentation.

In the setup above, all hadrons are paired and matched to a cluster. In the actual data,
however, the only observables are the kinematic properties of each individual hadron. In
order to be able to fit the model to actual data, where the hadron matching and cluster
information is not accessible, the discriminator function is modified to be Dg (z), where
Dp, takes a set of hadron kinematic properties = {hq, ha,...,hy,} in the same event as
inputs. Furthermore, we parameterize Dg as a Deep Sets model [41]:

1 n
Dg(z)=F (nZQ(hi,qu)),wF> , (2.2)

i=1
where ® embeds a set of hadrons into a fixed-length latent space and F' acts on the average
of the latent space. Due to the average, Dg can take any length of hadron set and is
invariant under permutations of hadrons. The loss function thus becomes:

L=— Y lgDp@)~ Y lg(l-De({G(EN)).  (23)

z~data {G}~HERWIG, z~p(z)

where {G (z,\)} is generated by a set of clusters that came from the same event. The
generator acts in the cluster rest frame and then the resulting hadrons are boosted into the
lab frame before being passed to the discriminator. A summary of the setup and how it
differs from ref. [13] is presented in figure 1.

In our implementation, G is a neural network. However, this approach could also be
used to fit (without binning) data to a parametric physics model as well. For that case, G
would be e.g. the cluster model and the parameters would not be weights and biases of a
neural network, but instead the parameters of the cluster model. This would require making
the cluster model differentiable so that gradients could be passed through the model. We
leave explorations of this hybrid setup to future work.

2.2 Machine learning implementation

Both the generator and discriminator functions are parametrized as neural networks and
implemented using PyTorch [42]. The generator is a fully connected network which consists
of two hidden layers with 256 nodes per layer. The noise dimension is set to 10. The
discriminator comprises two networks ¢ and F. Both ¢ and F are a fully connected network
with two hidden layers of 256 nodes each. Each intermediate layer in these networks uses
a batch normalization and a LeakyReLU [43] activation function. The last layer of the
generator uses a tanh activation function to restrict the outputs to be in the range of
(=1, 1). The outputs are then scaled and transformed linearly to match the actual range
(—=m/2, w/2) for ¢ and (0, 7) for §. The last layer of F' uses a sigmoid activation function
and no activation is used for the last layer of ®.
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from ref. [13]. Since the clusters are not observable in data, the discriminator in v2 acts on sets of
hadrons and does not have access to cluster-hadron-hadron labels. We first study the performance in
the same Herwig setup as in ref. [13] (‘Closure Test’) and then check that it is also able to fit another
Herwig setup (Cluster Frag’) with variations in the cluster hadronization model (‘Stress Test’).

All neural network inputs are normalized to the range of (—1, 1), whereas the noise
prior p is a Gaussian distribution with a mean of 0 and width of 1. The generator and
discriminator are optimized alternately (1 discriminator step and 5 generator steps) with
Adam [44] with a learning rate of 5 x 10~7 and 10~ for the generator and discriminator,
respectively. The training uses a batch size of 10,000 and is performed for 6,000 epochs.
The hyperparameters were optimized with Weights and Biases [45].

3 Results

3.1 Datasets

Crucial data for fitting hadronisation models are LEP events collected in eTe™ collisions
at the center-of-mass energy /s = 91.2 GeV. Therefore, we used such events generated
with version 7.2.1 of the Herwig Monte Carlo generator for a training dataset for our
Generative Hadronization Model. As mentioned earlier, the cluster model [1] is used for
hadronisation in the Herwig generator. Based on the color preconfinement [46], the cluster
model groups a partonic final state into a set of colour-singlet clusters (pre-hadrons) with
an invariant mass distribution that is independent of the specific hard scattering process
or its centre-of-mass energy and that peaks at low masses. Therefore, most clusters decay
into two hadrons. However, a small fraction of clusters are too heavy for this approach
to be justified. Therefore, these heavy clusters are first split into lighter clusters before
decaying. The decay of such massive clusters is not discussed in this publication but will



be considered in future work. Each entry in our training data set includes information
about the four-momentum of all the light clusters in an event and the four-momenta of
their parents (partons) and children (hadrons), along with their flavours. An example of
an entry from our data sets is available on Zenodo at ref. [47]. To simplify the training
data further, only decays into 7 mesons were considered.? To check whether the model
can adapt to different variants of the kinematics of hadron decays, we also prepared two
datasets with different, minimal (0) and maximal (2) settings of the ClSmr parameter.
The ClSmr parameter is the main parameter governing the kinematics of cluster hadron
decay. Hadrons that contain a parton produced in the perturbative stage of the event retain
the direction of the parton in the cluster rest frame with possible Gaussian smearing of
the direction. The smearing is controlled by the CISmr parameter through an angle Ogpear
where

€08 Osmear = 1 + ClSmrlog R, (3.1)

where R is a uniform random number chosen from [0,1]. For more details about the
parameters of the cluster model implemented in Herwig, see chapter 7 of the generator’s
manual [5].

In section 3.2 we use the minimal ClSmr as our alternative sample and refer to this
setup as Herwig Cluster kin™". As would be the case with actual data, we use clusters
from the nominal setting when fitting the alternative sample, although changing ClSmr
does not change the cluster kinematic properties and thus the inputs to the GAN model
are statistically correct. When we fit the nominal sample, the cluster inputs to the fit are

distinct but statistically identical to those in the dataset we are fitting.

3.2 Fitted models

The training history of the fit is presented in figure 2. As expected, the discriminator loss
increases and the generator loss decreases, with a final value near log(2) (classifier outputs
0.5 for all examples). As an independent evaluation of the model performance, we also
compute the Wasserstein distance between the true and generated four-momenta in the
lab frame that are used by the discriminator to update the generator. The Wasserstein
distance is computed as the average over the first Wasserstein distance for each four-vector
component with Scipy [48]. Interestingly, the best Wasserstein distance decreases for the
first 1000 epochs, then plateaus for the next 3000 epochs, before dropping to the final value
around 5500 epochs. There are many possible variations on the GAN training setup that
are possible to further improve the performance and we plan to explore these in the future.

The direct inputs and outputs of the model are shown in figure 3. The generator
produces two outputs per cluster, corresponding to the angle of one of the pions in the
cluster rest frame in spherical coordinates. Histograms corresponding to this model are
shown in the top row of figure 3. The marginal distributions looks similar to isotropic

3In Herwig, this is achieved by adding the following line: set HadronSelector:Trial 1 into the default
LEP.in input card. The only other modification to the default hadronisation settings was the change that
the hadrons produced from cluster decays were on the mass shell. This can be achieved by adding the
command: set ClusterDecayer:OnShell Yes in the input file.
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Figure 2. Generator loss, discriminator loss and running best Wasserstein distance as a function of
the training epoch. The running best Wasserstein distance is quantified by the y axis on the right
side of the plot.

decays. For illustration, we also show what an initialized, untrained GAN looks like in both
coordinates. The fact that the initial GAN is so far from the final GAN is a non-trivial
demonstration of the learning. Both GAN models match their respective truth Herwig
spectra well. The marginal ¢ distribution is uniform, which is difficult for generative
models to reproduce exactly. In the future, it may be possible to make this more precise by
constructing the model to give a uniform marginal.

After the clusters are decayed, the resulting hadron kinematic properties are Lorentz
boosted to the lab frame and then aggregated over all clusters in the event. The second row
of figure 3 shows histograms of the resulting hadron four-vectors, which are the inputs to
the discriminator. We only show the energy E and the  momentum p,, but similar trends
hold for p, and p.. Since hadronization is a small correction for such inclusive observables,
the kinematic properties are mostly set by the Herwig parton shower, which is the same
for the Herwig and GAN lines in the plots (since the GAN takes the clusters from the
parton shower as input). This is the reason why the initial GAN starts so close to Herwig
truth. However, the alternative Herwig sample differs significantly from the nominal Herwig
sample, in particular in how hadrons split energy, which is most clearly seen in the tails
of the energy and momentum distributions. The GAN model is an excellent match to the
Herwig events across the full spectra.

Figure 4 goes beyond the direct inputs and outputs by studying derived, but measureable,
quantities. The first plot in figure 4 is the number of hadrons. Since we restrict our attention
to 1 — 2 decays only, the number of hadrons is an even number, with a mode of 12. It is
not possible to uniquely pair observed hadrons with their partner from the same cluster
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Figure 3. Top: the generative model in the true cluster rest frame. Bottom: two of the four-vector
components that are used by the discriminator to update the generator.

decay, but we can approximate the combination using nearest neighbor information. In
particular, since the hadron masses are small compared to the typical cluster energy in the
lab frame, the two hadrons tend to be close together in phase space. For all hadrons, we
assign a hadron neighbor as the particle that minimizes* AR? = A¢? + An?. A histogram
of the resulting AR distribution is shown in the middle left plot of figure 4. The peak
is at about 0.1, with most hadrons having a neighbor less than 0.1. While there is some
difference between models in the AR distribution, a most distinguishing observable is the
energy sharing between hadrons in the reconstructed cluster (middle right of figure 4). The
nominal Herwig has more equal sharing of energy, while the alternative Herwig sample is
much more asymmetric. The GAN models are able to match these trends, which both differ
significantly from the initialized and untrained GAN model. Future GAN models could be
improved by adding in these features to the discriminator directly.

Additionally, we consider properties of the hadrons in the reconstructed cluster frame
(bottom row of figure 4). Since the reconstructed clusters are not exactly the true clusters,
the ¢ and 6 distributions do not exactly match the top row of figure 3, although they are

4This metric is most relevant for hadron colliders, but we use it here for simplicity. Similar results hold
for A6 instead of An.
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qualitatively similar. The distribution of ¢ is more discriminating between models, where

the GAN models perform well, except near the edge of phase space where both GAN model

match the nominal Herwig events.

A key advantage of this fitting protocol over other methods is that it can accommodate

unbinned and high-dimensional inputs. It would be possible to replace our neural network

discriminator (and cross-entropy loss) with a x? fit to binned histograms, like the ones in
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figure 3 (bottom) and 4, which are all observable in the lab frame. However, this would
be a highly non-trivial modification to our setup and would necessarily be less effective.
Comparing with standard tools that process low-dimensional and binned inputs would likely
be inconclusive because we will not know if the difference in performance is from the tool
or from the less information contained in the data.

As a compromise in order to quantify the information gained from using our discrimi-
nator setup, we use a set of auxiliary classifiers. Our nominal setup is represented by our
discriminator trained on the same inputs as our GAN model and to distinguish the two
Herwig cluster model variations. The information content is represented by the area under
the Receiver Operating Characteristic (ROC) curve or AUC, which is a standard metric for
information content. An AUC of 0.5 means there is no useful information and an AUC of
1 means that the models can be exactly distinguished. For comparison, we compute the
AUC also of the single observables in figure 3 (bottom) and figure 4. We do not bin these
observables to avoid arbitrary binning choices and assume (which is conservative) that the
bins of any actual measurement would be chosen to be maximally effective for this task.
Technically, the AUC for single observables is computed by scanning over the observable to
determine the true positive rate versus the false positive rate.

Since a threshold cut may not be optimal for all observables, we have also checked how
the results change if we train a simple Boosted Decision Tree (BDT) using sklearn [49]. We
find that the BDT-based AUCs (including for the neural network as an observable) are
consistent with the non-BDT ones. Numerically, the AUCs are as follows: neural network:
0.77, energy ratio (figure 4 upper right): 0.55, AR (figure 4 upper left): 0.53, rest frame 6
(figure 4 lower right): 0.51, rest frame ¢ (figure 4 lower left): 0.51, p, (figure 3 lower right):
0.54, E (figure 3 lower left): 0.57. The information content accessible to the neural network
far exceeds the information in any of the individual observables.

4 Conclusions and outlook

We have presented a setup for fitting deep generative hadronization models to data. The
main challenge we have addressed is the lack of truth labels connecting partons and hadrons,
which were used by previous deep generative hadronization models [12, 13]. In order
to address this challenge, we used a two-level Generative Adversarial Network (GAN)
setup, where the generator acts at parton level and the discriminator acts on hadron level.
Since there is no natural order to the hadrons, the discriminator is a classifier based on
the Deep Sets architecture that can process variable-length and permutation-invariant
inputs. We have shown that we can fit this model to two variations of the Herwig cluster
hadronization model. The GAN is able to reproduce Herwig well, with additional refinement
and optimization required in the future to improve the prevision further.

While this represents a significant step towards realizing a deep generative hadronization
model, there are still other aspects to address. We have restricted our attention to pions,
but a complete model will need to generate the full spectrum of hadrons in addition to
kinematic information. Additionally, we have started from clusters decaying to two hadrons,
while in reality, more complex arrangements are possible. In fact, we ran a test to fit



the string model in Pythia using our setup,® but the cluster model is not flexible enough.
Modifications that allow for more general parton to hadron mappings, including variable-
length generation [24-30, 50], will be required in the future. In particular, we would not
take pre-confinement as a starting point and instead also model the combination of partons
with a neural network (so partons to hadrons instead of clusters to hadrons). Such a model
would have the capacity to mimic the cluster or string models as well as go beyond either
model. Such an architecture could be swapped out for our generator and use our same
GAN setup to do the final fit.

Once we have a full model, there is a question of which data to use for the fit.
Traditionally, hadronization models have been fit to histograms (binned differential cross
section measurements) from e*e™ data using tools like Professor [51] and other automated
tuning protocols [52-54]. However, these approaches may need to be modified since the
parameter space of the models is much bigger. One possibilitiy is to use a variation of
Unbinned Profiled Unfolding (UPU) [55], which uses histograms to steer neural networks
with a two-level fit for unfolding. The reweighting function in UPU could be replaced with
the hadronization model. Another possibility is to start with unbinned data, as is now
possible with machine learning-based unfolding methods [21, 56-65]. There are also now
first unbinned cross section measurements [66-70], although none are currently published
without binning [56]. There are not yet any unbinned measurements from ee™, but results
from deep inelastic scattering may be effective, since they share many of the features of
eTe™ that makes them particularly clean with respect to hadron colliders.

While there are still multiple components needed to arrive at a complete ML-based
hadronization model, the program ahead is well-motivated. Current models are excellent,
but the additional flexibility of neural networks will allow us to improve the precision on
hadronization modeling so for precise measurements that are affected by these uncertainties.
With improvements in machine learning models, it may also be possible to use these tools to
learn more about hadronization itself, which remains a key research topic in nuclear physics.

Software and datasets. The code for this paper can be found at https://github.com/hep-
Ibdl/hadml/releases/tag/1.0.0 [71]. The data sets are hosted on Zenodo at ref. [47].
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