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Abstract The tangential-displacement normal-normal-stress (TDNNS) method is a
finite element method for mixed elasticity. As the name suggests, the tangential com-
ponent of the displacement vector as well as the normal-normal component of the
stress are the degrees of freedom of the finite elements. The TDNNS method was
shown to converge of optimal order, and to be robust with respect to shear and vol-
ume locking. However, the method is slightly nonconforming, and an analysis with
respect to the natural norms of the arising spaces was still missing. We present a sound
mathematical theory of the infinite dimensional problem using the space H(curl) for
the displacement. We define the space H(div div) for the stresses and provide trace
operators for the normal-normal stress. Moreover, the finite element problem is shown
to be stable with respect to the H(curl) and a discrete H(div div) norm. A-priori error
estimates of optimal order with respect to these norms are obtained. Beside provid-
ing a new analysis for the elasticity equation, the numerical techniques developed
in this paper are a foundation for more complex models from structural mechanics
such as Reissner Mindlin plate equations, see Pechstein and Schöberl (Numerische
Mathematik 137(3):713–740, 2017).
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1 Introduction

In [19], we introduced the TDNNSmethod for treating the problem of linear elasticity.
The TDNNS method is a finite element method that uses tangential-continuous ele-
ments for the displacements and symmetric normal-normal continuous finite elements
for the stresses. We showed that the TDNNS method is capable of overcoming shear
locking [20] and volume locking [22].

However, the TDNNS method is slightly nonconforming, as the stress finite ele-
ments are not in the infinite-dimensional distributional space H(div div), which was
introduced in [19]. The analysis of TDNNS finite elements provided in our former
work [19,20] is based on discrete, broken norms rather than the natural norms of the
infinite-dimensional spaces H(curl) and H(div div). In the present paper, we want to
provide an analysis based on the natural norms of the Sobolev spaces. This analysis
takes the fact that the stress space is nonconforming into account, and leads to optimal
order a-priori error estimates.

The necessity of this new framework becomes evident in the analysis of prob-
lems in structural mechanics. In [21], the authors use the new technique to analyze
the Reissner–Mindlin plate problem. There, we present finite elements based on the
TDNNS formulation, which can be seen as an extension of the Hellan–Herrmann–
Johnson formulation [9,10,13] to moderately thick plates. In the Reissner–Mindlin
plate problem, the unknowns are the deflection and the rotation of the cross-section.
As the plate approaches the limit of zero thickness, the rotation tends to the gradient
of the deflection. One speaks of the Kirchhoff constraint, which leads to locking if
the gradient of the deflection is not contained in the rotation space. However, this
inclusion is satisfied (also for the discrete spaces) if one searches for the deflection in
H1 and the cross-section rotation in H(curl). Compared to the TDNNS formulation,
the rotation takes the role of the displacement, while the symmetric stress tensor in
H(div div) is replaced by the tensor of bending and twisting moments.

1.1 Notation

We shortly present the notation used throughout the paper: Vectors shall be denoted as
boldface (e.g. u), while tensors are boldface and underlined (e.g. σ ). On the boundary
of some domain A, we use the outer normal vector n. For a vector field u, un = u ·n is
the normal component, andut = u−unn is the tangential component. For a tensor field
σ , let σ n = σn be the normal component, which is further split into its normal-normal
component σnn = (σn) · n and its normal-tangential component σ nt = σ n − σnnn.

Gradient, curl and divergence operators ∇, curl and div operators are defined in
the usual way. The gradient ∇ of a vector field is a tensor containing in each row the
gradient of the corresponding vector component. The divergence div of a tensor field
is a vector, where each component is the divergence of the corresponding row of the
tensor.

On some domain A, we use the Lebesgue space L2(A) and the standard Sobolev
space H1(A) ofweakly differentiable L2 functionswith gradient in L2(A). To indicate
vector or tensor valued spaces, we use L2(A), H1(A) and L2(A), H1(A), respectively.
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An analysis of the TDNNS method using natural norms 95

The space of tensor-valued symmetric functions with components in L2(A) is denoted
as L2

sym(A). The space of smooth functions on the closure Ā is denoted as C∞( Ā),

and C∞
0,Γ ( Ā) is the subspace where all derivatives vanish on the boundary part Γ of

A. If the domain of interest Ω is concerned, it may be omitted, writing e.g. H1 for
H1(Ω).

On the boundary of a domain we use differential operators and spaces as introduced
in the work of Buffa and Ciarlet [5,6]. For the exact definitions, we refer to their work.
We will mostly need the rather well-known trace space H1/2(∂A) and the spaces
H1/2(Γ ), H1/2

00 (Γ ) on a part Γ of the boundary, where the latter can be extended by
zero to the whole boundary space H1/2(∂A).

1.2 Problem geometry

Throughout the paper, we assume the domain of interest Ω ⊂ R
3 to be a bounded,

connected, polyhedral domain with Lipschitz boundary ∂Ω . Note that all results can
directly be transferred to the two-dimensional case.

The (closed) polygonal faces of the polyhedral domain Ω shall be denoted by
Γi with i ∈ I and I a suitable index set. Different boundary conditions will be
prescribed different parts of the boundary ∂Ω . To this end, the boundary is divided
into two closed parts ΓD and ΓN = ∂Ω\int(ΓD). The boundary part ΓD , where the
displacement will be prescribed (Dirichlet boundary condition), shall be non-trivial,
whereas the boundary part ΓN , where surface tractions are given (Neumann boundary
condition), may vanish.

We assume that both ΓD and ΓN are aligned with the boundary faces Γi , such that
they each are a union of boundary faces,

ΓD =
⋃

i∈ID

Γi , ΓN =
⋃

i∈IN

Γi . (1)

In accordance with [12] we assume that for each connected component of the
Dirichlet boundary ΓD,i we can find an open Lipschitz domain ΩD,i ⊂ R

3 such that

ΩD,i ∩ Ω = ΓD,i , ΩD,i ∩ Ω = ∅. (2)

Moreover, ΩD,i and ΩD, j have positive distance for i �= j , and the interior of Ω ∪⋃
ΩD,i is Lipschitz.

1.3 Linear elasticity

Let u : Ω → R
3 be the displacement vector. In linear elasticity, we use the linearized

strain tensor

ε(u) = 1

2

(
∇u + ∇uT

)
. (3)
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96 A. S. Pechstein, J. Schöberl

We are interested in finding displacement vector u and symmetric stress tensor σ

satisfying

C−1σ = ε(u) in Ω, (4)

−divσ = f in Ω. (5)

Hooke’s law (4) connects strain and stress tensor by the compliance tensorC−1, which
is the inverse of the standard elasticity tensor C depending on Young’s modulus E and
the Poisson ratio ν. We assume that Young’s modulus E is bounded, and the Poisson
ratio ν is bounded away from 1/2, such that both C and C−1 exist and lie in L∞(Ω).
Equation (5) is the equilibrium condition.

We assume that all boundary conditions are prescribed on the boundary parts ΓD

and ΓN introduced above. The displacement shall be given on ΓD , while tractions are
given on ΓN ,

u = uD on ΓD, (6)

σ n = tN on ΓN . (7)

1.4 Motivation of the TDNNS method

Two different variational formulations are widely known for the partial differential
equations (4), (5). Most standard finite element methods rely on a primal formulation,
where the stress tensor σ is eliminated. In this formulation, the displacement boundary
condition onΓD is essential, and usually treated by a homogenization approach. To this
end, it is necessary to have the existence of an extension ũD ∈ H1(Ω) of the boundary
displacement uD to the whole domain Ω . Then one searches for u ∈ ũD + H1

0,ΓD
(Ω)

with the space H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD} satisfying the homogeneous
displacement boundary condition,

∫

Ω

Cε(u) : ε(v) dx =
∫

Ω

f · v dx +
∫

ΓN

tN · v ds ∀v ∈ H1
0,ΓD

(Ω). (8)

To be conforming, the displacement finite element space has to be continuous.
On the other hand, a dual Hellinger-Reissner formulation can be obtained from

system (4), (5). Integration by parts puts all continuity assumptions to the stress tensor.
It has to allow for a weak divergence, while only L2 regularity is required for u. In
this case, the traction boundary conditions are essential. One needs an extension of the
surface tractions tN to the domain, a tensor field σ̃ N ∈ Hsym(div) with σ̃ N ,n = tN
on ΓN . Inhomogeneous displacement boundary conditions can be included in weak
form into the right hand side of equation (9).

One searches for σ ∈ σ̃ N + Hsym,0,ΓN
(div) with the space Hsym

0,ΓN
(div) = {σ ∈

L2
sym(Ω) : divσ ∈ L2(Ω), σ n = 0 on ΓN } satisfying the homogeneous traction

boundary condition and u ∈ L2(Ω) such that
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An analysis of the TDNNS method using natural norms 97

∫

Ω

C−1σ : τ dx +
∫

Ω

divτ · u dx =
∫

ΓD

uD · τn ds ∀τ ∈ Hsym
0,ΓN

(div), (9)

∫

Ω

div(σ ) · v dx = −
∫

Ω

f · v dx ∀v ∈ L2(Ω). (10)

To define a conforming finite element method, one has to provide stress elements
which are symmetric and normal continuous. Such elements have been found [1–3],
but come only at high computational costs, as they involve at least 24 degrees of
freedom per element in two dimensions or 162 in three dimensions.

The TDNNS formulation is in between the primal and the dual concept. We want to
design a formulation, where the tangential component ut of the displacement and the
normal component σnn of the normal stress vector are essential boundary conditions on
the respective boundary parts ΓD and ΓN . In other words, the displacement space has
to allow for the definition of a tangential trace, while the stress space allows a normal-
normal trace. It will turn out that the displacement space is the space H0,ΓD (curl)
satisfying zero tangential boundary conditions on ΓD .

Below, we formally write the variational formulation. It is of the standard mixed
form treated in [4]. We use the stress space � and displacement space V, which will
be rigorously defined in Sect. 2. Currently, we only state that v ∈ V implies vt = 0
on ΓD and τ ∈ � implies τnn = 0 on ΓN . Accordingly, we need two extensions,
one for the tangential component of the displacement and one for the normal-normal
component of the stress: on the Dirichlet boundary ΓD some ũD with ũD,t = uD,t
and on the Neumann boundary ΓN some σ̃ N with σ̃N ,nn = tN ,n . We want to find u in
ũD + V and σ ∈ σ̃ N + � such that

a(σ , τ ) + b(τ , u) =
∫

ΓD

uD,nτnn ds ∀τ ∈ �, (11)

b(σ , v) = −
∫

Ω

f · v dx −
∫

ΓN

tN ,t · vt ds ∀v ∈ V. (12)

For smooth functions, the bilinear forms a(·, ·) and b(·, ·) are given by

a(σ , τ ) =
∫

Ω

C−1σ : τ dx, (13)

b(τ , v) = −
∫

Ω

ε(v) : τ dx +
∫

∂Ω

τnnvn ds. (14)

=
∫

Ω

divτ · vv dx −
∫

∂Ω

τntvt ds. (15)

In Sect. 2 we will define the function spaces and give a precise meaning to the arising
integrals and bilinear forms in a distributional setting.Wewill determine in which way
the boundary terms have to be understood. We will see that the bilinear form b(·, ·)
corresponds to a distributional divergence operator.
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98 A. S. Pechstein, J. Schöberl

2 The variational formulation of the TDNNS method

We shall specify the spaces, in which the variational formulation (11)–(12) is posed.
While the displacement space is well-known, the stress space was introduced in [19]
and shall be analysed in detail in this work.

2.1 The displacement space H(curl)

We use the space

H(curl) =
{

v ∈ L2(Ω) : curlv ∈ L2(Ω)
}

. (16)

This is a Hilbert space equipped with inner product and induced norm

(u, v)H(curl) =
∫

Ω

(u · v + curlu · curlv) dx, ‖u‖2H(curl) = (u, u)H(curl). (17)

It iswell known, that the spaceH(curl) allows for the definition of a tangential trace.
According to [6], we may define the subspace of H(curl) satisfying homogeneous
tangential boundary conditions on ΓD , which is our TDNNS displacement space

V := H0,ΓD (curl) =
{

v ∈ L2(Ω) : curlv ∈ L2(Ω), vt = 0 on ΓD

}
. (18)

The following theorem is taken, with notation adapted to our work, from [6, Theo-
rem 6.6, Remark 6.7]:

Theorem 1 The tangential trace operator v → vt is bounded and surjective as a
mapping

H(curl) → H−1/2
⊥,00 (curl, ΓD) (19)

and

H0,ΓD (curl) → H−1/2
⊥

(
curl0, ΓN

)
. (20)

The first statement of Theorem 1 ensures the existence of an extension ũD of a
given tangential-displacement boundary value. Additionally, Theorem 1 tells that the
surface integral in (12) can be understood as a duality product. We will elaborate on
this matter in Sect. 3.

A conforming finite element space for H(curl) has to be tangential continuous,
such as the Nédélec spaces introduced in [16,17].

An essential tool in the analysis of the TDNNS formulation is the regular decom-
position. Decompositions satisfying homogeneous Dirichlet or Neumann boundary
conditions have been shown by [18] and [11], respectively. The case of mixed bound-
ary conditions can be found in [12].
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An analysis of the TDNNS method using natural norms 99

Theorem 2 (regular decomposition) For u ∈ H0,ΓD (curl) there exists a decomposi-
tion

v = z + ∇φ, (21)

where z ∈ H1
0,ΓD

(Ω) and φ ∈ H1
0,ΓD

(Ω). The respective parts can be bounded by

‖φ‖H1(Ω) ≤ c‖v‖H(curl) and ‖z‖H1(Ω) ≤ c‖v‖H(curl), (22)

with a generic constant c.

2.2 The stress space H(div div)

We still need to specify the stress space. Roughly, it is a subspace of L2 where the
(scalar-valued) divergence of the (vector-valued) divergence of the stress tensor lies
in the dual space of H1

0,ΓD
. In (23), the norm of the desired space is stated for smooth

functions.Wewill proceed as follows: first, we formally define the spaceH(div div) as
the closure of smooth functions, and give an interpretation of the norm which rectifies
the name H(div div). Then, we show that the normal-normal trace can be bounded in
this norm in the appropriate setting. Thus we can define the subspace H0,ΓN

(div div)

satisfying zero normal-normal boundary conditions on ΓN as the closure of smooth
functions vanishing on ΓN . Last, we provide an inverse trace theorem, which allows
to extend normal-normal stress distributions from the boundary to the whole space
H(div div).

The norm ‖ · ‖H(div div) shall be defined for smooth τ ∈ C∞(Ω̄) by

‖τ‖2H(div div) = ‖τ‖2
L2 +

⎛

⎝ sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ) dx − ∫
∂Ω

τnn
∂ϕ
∂n

‖∇ϕ‖L2(Ω)

⎞

⎠
2

. (23)

Note that, due to the symmetry of the Hessian ∇2ϕ, the symmetric expression
ε(∇ϕ) is the same as the conventional notation ∇2ϕ. We use ε(∇ϕ), as it shows the
relation to linear elasticity.

We define the space H(div div) as

H(div div) := C∞
sym

‖·‖H(div div)
. (24)

The second term in the definition of the norm (23) is a seminorm and can be
interpreted as the norm of div div τ in the dual space of H1

0,ΓD
. Integration by parts of

the denominator gives for smooth τ , using that ϕ and ∂ϕ/∂t vanish on ΓD ,
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100 A. S. Pechstein, J. Schöberl

∫

Ω

τ : ε(∇ϕ) dx −
∫

∂Ω

τnn
∂ϕ

∂n
ds (25)

= −
∫

Ω

divτ · ∇ϕ dx +
∫

ΓN

τnt · ∂ϕ

∂t
ds (26)

=
∫

Ω

div divτ ϕ dx −
∫

ΓN

(divτ )nϕ ds +
∫

ΓN

τnt · ∂ϕ

∂t
ds (27)

The supremum in (23) can be interpreted as a dual norm: in the interior, div divτ

is in the dual space of H1
0,ΓD

. On ΓN we have (divτ )n in the dual of the trace space

H1/2
00 (ΓN ). In the last term, the tangential derivative ∂ϕ/∂t appears. Since the gradient

of H1 lies inH(curl), this tangential derivative is in H−1/2
⊥ (curl0, ΓN ), seeTheorem1.

The normal-tangential stress τnt is thus in the dual of this space, which means [6]

τnt ∈ [H−1/2
⊥ (curl0, ΓN )]∗ = H−1/2

‖,00 (div, ΓN ). (28)

We will comment on this restriction in Sect. 4, as it our finite element space is not
conforming in this term.

We will now define a space for the normal-normal trace, and show that the normal-
normal trace is bounded in the H(div div) norm. To this end, we need the space of
traces of the normal derivative of H2 ∩ H1

0,ΓD
,

H1/2
n (∂Ω) :=

{
w = ∂w̃

∂n
: w̃ ∈ H2 ∩ H1

0,ΓD

}
. (29)

For a polyhedral domain and ΓD = ∅, H1/2
n (∂Ω) consists of piecewise H1/2(Γi )

without continuity assumptions on the polyhedron edges or vertices, see e.g. [7]. For
ΓD = ∂Ω , H1/2

n (∂Ω) is the subspace of the piecewise H1/2
00 (Γi ) spaces without

continuity assumptions on the polyhedron edges or vertices, see e.g. [8]. To the best
knowledge of the authors, this space has not been analyzed so far for general, non-
trivial ΓD . In this work, we only use that the space can be defined piecewise on each
polyhedral face.

The normal-normal trace space of H(div div) is then given by

H−1/2
n (∂Ω) := [H1/2

n (∂Ω)]∗. (30)

An appropriate norm on H−1/2
n (∂Ω) is given by

‖g‖
H−1/2
n (∂Ω)

= sup
w̃∈H2∩H1

0,ΓD

〈
g, ∂w̃

∂n

〉

‖∇w̃‖H1
. (31)

Note that due to the piecewise nature of H1/2
n (∂Ω), the trace space can be restricted

to each polyhedral face Γi , and extended from each face to the whole boundary by
zero.
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An analysis of the TDNNS method using natural norms 101

Theorem 3 The normal-normal trace operator is bounded from H(div div) to
H−1/2
n (Γi ) for each boundary face Γi ⊂ ∂Ω . Thus, it is well defined on H(div div)

as the extension from C∞
sym. For τ ∈ H(div div) there holds the bound

‖τnn‖H−1/2
n (Γi )

≤ c‖τ‖H(div div) (32)

with the constant c independent of τ .

Proof Let τ ∈ C∞
sym be fixed. We first show that the normal-normal trace on a bound-

ary face Γi can be bounded by the normal-normal trace on the whole boundary. Since
H1/2
n (∂Ω) is a piecewise defined space without continuity assumptions between poly-

hedron faces, any ϕ ∈ H1/2
n (Γi ) can be extended by zero to φ ∈ H1/2

n (∂Ω). By
definition of the dual norm we see

‖τnn‖H−1/2
n (Γi )

= sup
ϕ∈H1/2

n (Γi )

∫
Γi

τnnϕ ds

‖ϕ‖
H1/2
n (Γi )

(33)

= sup
ϕ∈H1/2

n (∂Ω)
ϕ=0 on ∂Ω\Γi

∫
∂Ω

τnnϕ ds

‖ϕ‖
H1/2
n (∂Ω)

(34)

≤ sup
ϕ∈H1/2

n (∂Ω)

∫
∂Ω

τnnϕ ds

‖ϕ‖
H1/2
n (∂Ω)

= ‖τnn‖H−1/2
n (∂Ω)

. (35)

Weproceed showing the actual trace inequality,whereweuse that H1/2
n (∂Ω) is defined

as the trace space of H2 ∩ H1
0,ΓD

,

‖τnn‖H−1/2
n (∂Ω)

(36)

= sup
ϕ∈H2∩H1

0,ΓD

∫
∂Ω

τnn
∂ϕ
∂n dx

‖∇ϕ‖H1
(37)

≤ sup
ϕ∈H2∩H1

0,ΓD

− ∫
Ω

τ : ε(∇ϕ)dx + ∫
∂Ω

τnn
∂ϕ
∂n dx

‖∇ϕ‖L2
(38)

+ sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ) dx

‖∇ϕ‖H1
(39)

We see that the supremum from Eq. (38) is already contained in the H(div div)-norm.
For the supremum from Eq. (39), we use that

sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ) dx

‖∇ϕ‖H1
≤ sup

ϕ∈H2∩H1
0,ΓD

∫
Ω

τ : ε(∇ϕ) dx

‖ε(∇ϕ)‖L2
≤ ‖τ‖L2 . (40)
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102 A. S. Pechstein, J. Schöberl

Therefore, we arrive at the desired result

‖τnn‖H−1/2
n (∂Ω)

(41)

≤ sup
ϕ∈H2∩H1

0,ΓD

− ∫
Ω

τ : ε(∇ϕ)dx + ∫
∂Ω

τnn
∂ϕ
∂n dx

‖∇ϕ‖L2
+ ‖τ‖L2 (42)

≤ √
2‖τ‖H(div div). (43)

��
The trace theorem above allows to define the space

H0,ΓN
(div div) := C∞

sym,0,ΓN

‖·‖H(div div)
. (44)

Any τ ∈ H0,ΓN
(div div) has a well-defined normal-normal trace in H−1/2

n (∂Ω), and

it holds that τnn = 0 in H−1/2
n (ΓN ).

Finally, we provide an inverse trace theorem for the space H(div div), before we
proceed to the analysis of the TDNNS elasticity problem. The inverse trace theorem
allows to find an extension of a given (scalar) normal-normal stress on the boundary
to a (tensor-valued) stress field on the domain.

Theorem 4 For any boundary face Γi , and g ∈ H−1/2
n (Γi ), there exists a tensor field

τ ∈ H(div div) with g = τnn in the sense of H
−1/2
n (Γi ) and

‖τ‖H(div div) ≤ c‖g‖
H−1/2
n (Γi )

, (45)

with constant c independent of g.

Proof For boundary face Γi , let g ∈ H−1/2
n (Γi ) be given. The extension of g by zero

lies in H−1/2
n (∂Ω), which is the dual of the trace space of H2 ∩ H1

0,ΓD
. This allows

to pose the following problem in H2 ∩ H1
0,ΓD

with well-defined right hand side: find

w ∈ H2 ∩ H1
0,ΓD

such that

∫
ε(∇w) : ε(∇v) dx +

∫

Ω

∇w∇v dx =
〈
g,

∂v

∂n

〉
v ∈ H2 ∩ H1

0,ΓD
. (46)

Solvability of (46) is clear, as we note that ε(∇w) = ∇2w due to the symmetry of the
Hessian. By the standard theory of Lax and Milgram we obtain the stability estimate

‖ε(∇w)‖2
L2 + ‖∇w‖2L2 ≤ c‖g‖2

H−1/2
n (Γi )

. (47)

We choose τ = ε(∇w), which is clearly symmetric and bounded in L2:

‖τ‖2
L2 ≤ c‖g‖2

H−1/2
n (Γi )

. (48)
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An analysis of the TDNNS method using natural norms 103

Additionally, it satisfies the natural boundary condition τnn = g in H−1/2
n (Γi ). It

remains to show that our choice of τ lies actually in H(div div), and satisfies the
estimate (45). To this end, we still need to bound the supremum term in the definition
of the norm. Any ϕ ∈ C∞ ∩ H1

0,ΓD
is a valid test function for the variational equation

(46). This implies

sup
ϕ∈C∞∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ)dx −
〈
τnn,

∂ϕ
∂n

〉

‖∇ϕ‖L2
(49)

= sup
ϕ∈C∞∩H1

0,ΓD

∫
Ω

ε(∇w) : ε(∇ϕ)dx −
〈
g, ∂ϕ

∂n

〉

‖∇ϕ‖L2
(50)

= sup
ϕ∈C∞∩H1

0,ΓD

∫
Ω

∇w · ∇ϕ dx

‖∇ϕ‖L2
(51)

≤ ‖∇w‖L2 ≤ c‖g‖
H−1/2
n (Γi )

. (52)

Adding up (48) and (49)–(52) leads to the desired bound (45). ��
With tools concerning H(div div) now at hand, we can proceed to the analysis of

the variational problem (11)–(12).

3 Analysis of the TDNNS problem

In the current section, we show existence and uniqueness of a solution to the TDNNS
elasticity problem (11)–(12).We specify the variational spaces� andV foreshadowed
in Sect. 2,

� := H0,ΓN
(div div), (53)

V := H0,ΓD (curl). (54)

We shall use the theory on mixed problem treated in detail in [4]. First, we concentrate
on boundary conditions, then we show stability estimates for the bilinear forms a(·, ·)
and b(·, ·). These results allow us to derive existence, uniqueness and stability of a
solution to the TDNNS elasticity problem.

3.1 Boundary conditions

We assumed boundary conditions uD on ΓD and tN on ΓN to be given. We shall
comment on the regularity necessary for these boundary conditions, such that the
variational problem is well-defined. We treat the essential boundary conditions on
tangential displacement and normal-normal stress first, and proceed to the natural
boundary conditions on the normal displacement and normal-tangential stress after-
wards.
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In the variational formulation (11)–(12), we used extensions ũD and σ̃ N of the
given boundary data. The trace theorems forH(curl) andH(div div) ensure that, given
uD,t ∈ H−1/2

⊥,00 (curl, ΓD) and tN ,n ∈ H−1/2
n (ΓN ), extensions can be found satisfying

ũD,t = uD,t, ‖ũD‖H(curl) ≤ c‖uD,t‖H−1/2
⊥,00 (curl,ΓD)

, (55)

σ̃N ,nn = tN ,n, ‖σ̃ N‖H(div div) ≤ c‖tN ,n‖H−1/2
n (ΓN )

. (56)

Natural boundary conditions on normal displacement and tangential component of
normal stress are included into the right hand side of the variational problem (11)–(12).
For smooth functions, they are included as surface integrals

∫

ΓD

uD,n τnn ds and
∫

ΓN

tN ,t · vt ds (57)

We will see that both boundary integrals can be understood in the sense of duality
products in the respective trace spaces, which makes them well-defined on the whole
variational spaces.

The trace theorem on H(div div), Theorem 3, ensures that
〈
uD,n, τnn

〉
H1/2
n (ΓD)×H−1/2

n (ΓD)
≤ c‖un‖H1/2

n (ΓD)
‖τ‖H(div div). (58)

Thus, it is necessary to have the normal displacement uD,n ∈ H1/2
n (ΓD).

The second statement from Theorem 1, (20) ensures that for v ∈ V the tangential
trace vt allows for a surface curl, vt ∈ H−1/2

⊥ (curl0, ΓN ). Therefore, the normal-
tangential trace of the given surface tractions has to lie in its dual space, which is
by [6] [H−1/2

⊥ (curl0, ΓN )]∗ = H−1/2
‖,00 (div, ΓN ). The trace theorem in H0,ΓD (curl)

ensures the bound
〈
tN ,t, vt

〉
H−1/2

‖,00 (div,ΓN )×H−1/2
⊥ (curl0,ΓN )

≤ c‖tN ,t‖H−1/2
‖,00 (div,ΓN )

‖v‖H(curl). (59)

Let us shortly comment on the condition τnt = tN ,t ∈ H−1/2
‖,00 (div, ΓN ). This means

that the given normal-tangential (shear) stress has to allow for a distributional surface
divergence of some kind, which includes a continuity assumption on the in-plane
normal across boundary edges. As the normal-tangential (shear) component of the
proposed stress finite elements does not satisfy this condition, thefinite elementmethod
is nonconforming, see Sect. 4. Similarly, also the given shear stress tN ,t does not need
to satisfy any continuity assumptions in the finite element setting.

3.2 Stability of bilinear forms

To apply the theory on mixed systems by [4], we have to show

– boundedness of a(·, ·) and b(·, ·),
– coercivity of a(·, ·) on the kernel space Ker(B), and
– inf-sup stability of b(·, ·).
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There, the kernel space Ker(B) is defined by

Ker(B) := {τ ∈ � : b(τ , v) = 0 ∀v ∈ V}. (60)

The conditions on a(·, ·) will follow rather quickly, assuming the elasticity matrix
C−1 to be regular, which is true for compressible materials with ν < ν0 < 1/2. In the
case of nearly incompressible materials with ν → 1/2, a refined analysis comparable
to [22, Chapter 5] has to be carried out, which is not done in the scope of the present
work. The estimates on b(·, ·) are more involved.

Lemma 1 The bilinear form a(·, ·) is bounded on� = H0,ΓN
(div div). Moreover, it is

coercive on the kernel space Ker(B) from (60), there exists a constant ca independent
of τ such that

a(τ , τ ) ≥ ca‖τ‖2H(div div) ∀τ ∈ Ker(B). (61)

Proof Boundedness of a(·, ·) in H(div div) is clear, since a(·, ·) is a (C−1-scaled)
inner product on L2 and H(div div) is a subspace of L2. Obviously, a(·, ·) is also
coercive with respect to the L2 norm,

a(τ , τ ) ≥ ca‖τ‖2
L2 ∀τ ∈ Ker(B). (62)

To get coercivity with respect to the H(div div) norm, we need to show that the
additional supremum term in (23) vanishes for τ ∈ Ker(B). Since for ϕ ∈ H1

0,ΓD
we

have ∇ϕ ∈ V = H0,ΓD (curl), we directly see from the definition of the kernel space
(60),

sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ)dx −
〈
τnn,

∂ϕ
∂n

〉

‖∇ϕ‖L2
= sup

ϕ∈H2∩H1
0,ΓD

b(τ ,∇ϕ)

‖∇ϕ‖L2
= 0. (63)

This concludes the proof. ��
Next, we treat boundedness of the bilinear form b(·, ·).

Lemma 2 The bilinear form b : H0,ΓN
(div div) × H0,ΓD (curl) is bounded.

Proof Let τ ∈ � = H0,ΓN
(div div) and v ∈ V = H0,ΓD (curl) be smooth, such

that the integrals in (14) are well defined. We use the regular decomposition (22)
v = z + ∇ p with z ∈ H1

0,ΓD
and p ∈ H1

0,ΓD
, then

b(τ , v) = −
∫

Ω

τ : ε(z) dx +
∫

ΓD

τnn zn︸︷︷︸
=0

ds (64)

∫

Ω

div τ · ∇ p dx −
∫

ΓN

τnt
∂p

∂t
ds. (65)
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Cauchy’s inequality in L2 and density ensure

b(τ , v) ≤ ‖τ‖L2‖ε(z)‖L2 (66)

+ sup
ϕ∈H2∩H1

0,ΓD

∫
Ω
div τ · ∇ϕ dx − ∫

ΓN
τnt

∂ϕ
∂t ds

‖∇ϕ‖L2
‖∇ p‖L2 (67)

= ‖τ‖L2‖ε(z)‖L2 (68)

+ sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

τ : ε(∇ϕ) dx − ∫
ΓD

τnn
∂ϕ
∂n ds

‖∇ϕ‖L2
‖∇ p‖L2 . (69)

We use the bound ‖z‖H1 + ‖∇ p‖L2 ≤ c‖v‖H(curl), and arrive at

b(τ , v) ≤ c‖τ‖H(div div)‖v‖H(curl). (70)

��
This continuity result allows us to extend the bilinear form from smooth functions to

the whole of H0,ΓN
(div div)× H0,ΓD (curl) in the sense of a distributional divergence

operator.

Lemma 3 The bilinear form b : H0,ΓN
(div div) × H0,ΓD (curl) is inf-sup stable, for

any v ∈ V = H0,ΓD (curl) there exists some σ ∈ � = H0,ΓN
(div div) such that

b(σ , v) ≥ cb‖σ‖H(div div)‖v‖H(curl). (71)

The constant cb > 0 is independent of v.

Proof Let v ∈ H0,ΓD (curl) be fixed. Find u ∈ H1 ∩ H0,ΓD (curl) as a solution to the
primal elasticity problem that for all ṽ ∈ H1 ∩ H0,ΓD (curl)

∫

Ω

ε(u) : ε(ṽ) dx +
∫

ΓD

un ṽn dx =
∫

Ω

curlv · curlṽ + v · ṽ dx . (72)

This solution satisfies the following “classical” boundary conditions: On ΓN , we have
a free boundary, with (ε(u))n = 0, on ΓD , the tangential displacement ut = 0 is fixed,
while the normal displacement satisfies un = −(ε(u))nn . In the variational setting,
we have the combined boundary condition

∫

ΓD

un ṽn ds = −
∫

∂Ω

(Cε(u))nn ṽn ds ∀ṽ ∈ H1 ∩ H0,ΓD (curl), (73)

where the surface integral is to be understood as a duality product.
We choose σ := Cε(u). We have to show that σ lies in H0,ΓN

(div div). To this end,
we first prove that it satisfies the H(div div)-essential boundary condition σnn = 0 in
H−1/2
n (ΓN ), then we proceed to bound σ in the H(div div) norm.
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The tensor field σ satisfies σnn = 0 in H−1/2
n (ΓN ) if and only if for each ϕ ∈

H1/2
n (ΓN ) there holds

〈σnn, ϕ〉
H−1/2
n (ΓN )×H1/2

n (ΓN )
= 0. (74)

Due to our assumptions on Ω and ΓN , ϕ can be extended to H1/2
n (∂Ω) by zero. By

definition of H1/2
n (∂Ω), there exists a ϕ̃ ∈ H2 ∩ H1

0,ΓD
with ϕ = ∂ϕ̃/∂n. Since

∇H1
0,ΓD

⊂ H0,ΓD (curl), its gradient ∇ϕ̃ is a valid test function in (73), which ensures
(74).

We now want to bound ‖σ‖H(div div). Standard theory for the primal problem (72)
ensures

‖σ‖2
L2 ≤ c‖v‖2H(curl). (75)

We bound the supremum term in the H(div div) norm to show that σ ∈ H(div div):
Again, ∇ϕ is a valid test function for the variational problem (72),

sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

σ : ε(∇ϕ)dx − ∫
∂Ω

σnn
∂ϕ
∂n ds

‖∇ϕ‖L2
(76)

= sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

Cε(u) : ε(∇ϕ)dx − ∫
ΓD

(Cε(u))nn
∂ϕ
∂n ds

‖∇ϕ‖L2
(77)

= sup
ϕ∈H2∩H1

0,ΓD

∫
Ω

curlv ·
=0︷ ︸︸ ︷

curl∇ϕ +v · ∇ϕdx

‖∇ϕ‖L2
(78)

≤ ‖v‖L2 . (79)

Together with (75) this leads to the bound

‖σ‖� ≤ c‖v‖H(curl). (80)

The bilinear form b(σ , v) evaluates to

b(σ , v) =
∫

Ω

σ : ε(v) dx −
∫

ΓD

σnnvn ds (81)

≥ ‖curlv‖2L2 + ‖v‖2L2 (82)

≥ ‖σ‖H(div div)‖v‖H(curl). (83)

��
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4 Finite element spaces and their norms

Let T = {T } be a simplicial, (shape-)regular triangulation of Ω as defined in [15,
Def. 5.11]. We denote the set of element faces F = {F}. Any piecewise smooth
vector field v ∈ H(curl) has to be tangential continuous on element interfaces, i.e. vt
is uniquely defined on each element interface. In [19,22], it was shown that a piecewise
smooth tensor τ ∈ H(div div) is normal-normal continuous across element faces, i.e.
the normal-normal component τnn is continuous.

So far, the bilinear form b(·, ·) is defined only for smooth vector and tensor fields
in (14), (15). This definition can be extended to piecewise smooth fields: Let v ∈
H0,ΓD (curl) and τ ∈ H0,ΓN

(div div) be piecewise smooth and tangential and normal-
normal continuous on the triangularization T , respectively, then

b(τ , v) =
∑

T∈T

(∫

T
divτ · v dx −

∫

∂T
τnt · vt ds

)
(84)

= −
∑

T∈T

(∫

T
τ : ε(v) dx −

∫

∂T
τnnvn ds

)
. (85)

In [19,22], normal-normal continuous symmetric stress finite elements were con-
structed, which were used together with Nédélec elements for the displacement. A
stable finite element method was obtained. However, the method is slightly noncon-
forming: to be inH(div div), a piecewise continuous function has to be normal-normal
continuous, and the normal-tangential component τnt has to lie in the dual space
of the trace space of H(curl, T ), which means τnt ∈ H−1/2

|| (div∂T ). Then the sur-
face integral in (84) can be understood as duality product and evaluated for arbitrary
v ∈ H0,ΓD (curl). However, this is a continuity restriction on τnt at element edges,
which does not hold for general τ piecewise smooth. In general, the surface vector
field τnt is discontinuous across element edges.

We choose the following finite element spaces for integer k ≥ 1

�h :=
{
τ h ∈ L2(Ω) : τ h |T ∈ Pk(T ), τh,nn cont., τh,nn|ΓN = 0

}
; (86)

Vh :=
{

vh ∈ L2(Ω) : vh |T ∈ Pk(T ), vh,t cont., vh,t|ΓD = 0
}

. (87)

Additionally, we need an H1-conforming scalar finite element spaceWh of order k+1
satisfying zero boundary conditions,

Wh :=
{
wh ∈ L2(Ω) : wh |T ∈ Pk+1(T ), wh cont., wh |ΓD = 0

}
. (88)

For this choice we have that ∇Wh ⊂ Vh .
Utilizing the finite element spaces above, we may pose the finite element problem

(restricting ourselves to the case of trivial essential boundary conditions ut = 0 on
ΓD and σnn = 0 on ΓN ): find σ h ∈ �h and uh ∈ Vh such that
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a(σ h, τ h) + b(τ h, uh) =
∫

ΓD

τnnuD,n ds ∀τ h ∈ �h, (89)

b(σ h, vh) =
∫

Ω

f · vh dx +
∫

ΓN

tN ,t · vt ds ∀vh ∈ Vh . (90)

4.1 Discrete stress norm

While the Nédélec space Vh and the continuous space Wh are endowed with H(curl)
and H1 norms, respectively, we provide a discrete norm for the stress space �h ,

‖τ h‖2�h
:= ‖τ h‖2L2 +

∑

F∈F
hF‖τh,nn‖2L2(F)

+
(

sup
wh∈Wh

b(τ h,∇wh)

‖∇wh‖L2

)2

. (91)

Note that, for finite element functions τ h , the face terms in (91) can be bounded by the
L2 term (see [19]). Thus, the face terms may be omitted for finite element functions,
which is often done in this work. However, this is not possible for general piecewise
smooth normal-normal continuous tensor fields τ .

In [19], we showed stability of the problem not using the H(curl) and discrete
H(div div) norm (91), but using the L2 norm for the stresses and a broken H1 norm
for the displacements,

‖vh‖2H1,h =
∑

T∈T
‖ε(vh)‖2L2(T )

+ h−1
∑

F∈F
‖[vh,n]‖2L2(F)

. (92)

4.2 The reference element and transformations to the mesh element

We introduce the reference tetrahedron T̂ = {x̂ = (x̂1, x̂2, x̂3) : x̂i > 0, x̂1+ x̂2+ x̂3 <

1}. Barycentric coordinates on T̂ are given by

λ̂1 = x̂1, λ̂2 = x̂2, λ̂3 = x̂3, λ̂4 = 1 − (x̂1 + x̂2 + x̂3). (93)

For any element T ∈ T , let

ΦT : T̂ → T, x̂ �→ x (94)

be a smooth one-to-one mapping of the reference tetrahedron to tetrahedron T . The
Jacobian of this transformation shall be denoted byFT = ∇ΦT , the Jacobi determinant
by JT = det (FT ). The local mesh size is defined as the spectral norm of FT , hT =
|FT |s . For a face F and an edge E , let JF , JE denote the transformation of measures
of the mappings F̂ → F , Ê → E . For the normal nF to face F and the tangential
vector tE to some edge E we have

nF = JT /JFF−T
T n̂F̂ , tE = 1/JEFT t̂Ê . (95)
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The finite element basis functions are defined on the reference tetrahedron, and
mapped to an element T by a conforming transformation. A conforming transforma-
tion has to preserve the degrees of freedom of the finite element.While H1 conforming
elements can be transformed directly, we need the tangential-trace preserving covari-
ant transformation for H(curl) conforming elements, and a transformation which
preserves the normal-normal trace for the stress elements,

wh(x) = ŵ(x̂), (96)

vh(x) = F−T
T v̂h(x̂), (97)

τ h(x) = 1/J 2T FT τ̂ h(x̂)FT
T . (98)

By application of basic calculus one can see that gradient and strain operators transform
as

∇wh = F−T
T ∇̂ŵh, (99)

ε(vh) = F−T
T ε̂(v̂h)F

−1
T . (100)

5 Interpolation operators

The a-priori error analysis of the proposed finite elementmethod relies on interpolation
operators for the finite element spaces. Subsequently, we recall the nodal interpolation
operators for the spaces Wh and Vh , as well as the Clément quasi-interpolation oper-
ator for the piecewise linear, continuous finite element space. Their definitions and
according estimates can be found in [15, Sect. 5.5 and 5.6]. Additionally, we present
an error estimate for the H(curl)-interpolant in the broken H1 norm. In Sect. 5.2 we
define an interpolation operator for the stress space and give error estimates in the
discrete stress norm ‖ · ‖�h

.

5.1 Commuting interpolation operators for H1 and H(curl) and the Clément
quasi-interpolation operator

Let IW , IV be the nodal interpolation operators defined on the finite element spaces
Wh, Vh . These interpolation operators are based on the degrees of freedom of the finite
element spaces. They are defined in such a way that they commute with the gradient
operator,

IV∇w = ∇IWw. (101)

Note that the interpolation operators are not well-defined for general functions in H1

and H(curl), respectively, but only for smoother functions allowing for point values
or mean values of the tangential component along element edges. The Clément quasi-
interpolation operator C is defined for general functions in H1, as it uses mean values
instead of nodal values. It is continuous in H1.
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The following interpolation error estimates are well known:

Theorem 5 Forw ∈ Hs+1 and v ∈ Hs, curlv ∈ Hs the following interpolation error
estimates for 1 ≤ s ≤ k hold

‖w − IWw‖H1(Ω) ≤ c

(
∑

T∈T
h2sT ‖w‖2Hs+1(T )

)1/2

, (102)

‖v − IVv‖H(curl) ≤ c

(
∑

T∈T
h2sT (‖v‖2Hs (T ) + ‖curlv‖2Hs (T ))

)1/2

, (103)

‖w − Cw‖L2(Ω) ≤ c

(
∑

T∈T
h2T ‖w‖2H1(DT )

)1/2

. (104)

Here, DT denotes the neighbourhood of element T , i.e. the union of all elements
sharing at least a vertex with T . The constants c are independent of the mesh size h.

In [22], we showed that theNédélec interpolator IV also approximates in the broken
H1 norm,

Theorem 6 Let v ∈ Hs, curlv ∈ Hs satisfy v ∈ Hs+1(T ) for all elements T ∈ T .
Then the interpolation error is bounded in the broken H1 norm (92) for 1 ≤ s ≤ k

‖v − IVv‖H1,h ≤ c

(
∑

T∈T
h2sT ‖ε(v)‖2Hs (T )

)1/2

. (105)

5.2 An interpolation operator for the stress space

We characterize the stress interpolation operator I� and we show that it approximates
not only in the L2 norm, but also in the discrete H(div div) norm ‖ · ‖�h

defined in
(91).

We define six constant tensor fields on the reference tetrahedron, which are linearly
independent and span the space of constant symmetric tensor fields. Four of these

tensors are associated to a face of the tetrahedron, each. They are denoted by Ŝ
F̂m

,m =
1 . . . 4. The normal-normal component of a tensor field Ŝ

F̂m is constant on face F̂m ,
while it vanishes on all other faces,

Ŝ F̂mn̂n̂ |Fi = cδi,m for i,m = 1 . . . 4. (106)

The remaining two tensor fields Ŝ
T̂ ,n

, n = 1, 2 have a vanishing normal-normal com-
ponent on all element faces.

ŜT̂ ,n
n̂n̂ |Fi = 0 for i = 1 . . . 4, n = 1, 2. (107)
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Moreover, the face tensors Ŝ
F̂m

are orthogonal to the interior tensors Ŝ
T̂ ,n

in the sense
that

Ŝ
F̂m : Ŝ

T̂ ,n = 0 for m = 1 . . . 4, n = 1, 2. (108)

The tensor fields are given by

Ŝ
F̂1 =

⎛

⎝
−6 1 1
1 0 1
1 1 0

⎞

⎠ , Ŝ
F̂2 =

⎛

⎝
0 1 1
1 −6 1
1 1 0

⎞

⎠ , Ŝ
F̂3 =

⎛

⎝
0 1 1
1 0 1
1 1 −6

⎞

⎠ , (109)

Ŝ
F̂4 =

⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ , Ŝ
T̂ ,1 =

⎛

⎝
0 0 −1
0 0 1

−1 1 0

⎞

⎠ , Ŝ
T̂ ,2 =

⎛

⎝
0 −1 0

−1 0 1
0 1 0

⎞

⎠ .

(110)

The interpolation operator I� mapping any sufficiently smooth, normal-normal-
continuous tensor field τ toI�τ ∈ �h , is uniquely definedby the following conditions,

– on each face F ∈ F ,

∫

F
JF (τ − I�τ )nnq ds = 0 for all q ∈ Pk(F). (111)

– on each element T ∈ T
∫

T
JT (τ − I�τ ) :

(
qF−T

T Ŝ
F̂mF−1

T

)
dx = 0 for all q ∈ Pk−1(T ),m = 1 . . . 4,

(112)
∫

T
JT (τ − I�τ ) :

(
qF−T

T Ŝ
T̂ ,n

F−1
T

)
dx = 0 for all q ∈ Pk(T ), n = 1, 2.

(113)

Lemma 4 The interpolation operator I� is well-defined and preserves piecewise
polynomials, i.e. I�τ h = τ h for τ h ∈ �h.

Proof We show that the conditions (111), (112), (113) are unisolvent for the finite
element space �h . It is sufficient to show that (111), (112), (113) applied to τ h ∈ �h
implies τ h = 0.

We start with the face-bound conditions. On each face F ∈ F , we have

∫

F
JFτh,nnq ds = 0 for all q ∈ Pk(F). (114)

Since τh,nn is polynomial of order k on each face, this implies that τh,nn = 0 on each
face.
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Since the normal-normal component of τ h vanishes on all element interfaces, on
each element T ∈ T , τ h is a linear combination of element-local interior shape
functions. According to [19], there are two types of interior shape functions on the
reference element,

p̂i λ̂m Ŝ
F̂m

, p̂i basis for P
k−1(T̂ ),m = 1 . . . 4 (115)

p̂i Ŝ
T̂ ,n

, p̂i basis for P
k(T̂ ), n = 1, 2. (116)

Transforming the integrals (112), (113) to the reference element using the H(div div)

conforming transformation (98) leads to

∫

T̂
τ̂ h :

(
p̂i Ŝ

F̂m
)

dx̂ = 0 p̂i basis for P
k−1(T̂ ),m = 1 . . . 4, (117)

∫

T̂
τ̂ h :

(
p̂i Ŝ

T̂ ,n
)

dx̂ = 0 p̂i basis for P
k(T̂ ), n = 1, 2. (118)

To show that τ h = 0, conditions (117), (118) are evaluated for all shape functions
(115), (116), the results stored in a square but non-symmetric matrix. Since the tensor
fields are orthogonal (108), the two groups decouple, leaving two matrices of block
structure,

[
Ŝ
F̂m : Ŝ

F̂m̄
∫

T̂
λ̂m p̂i p̂ī dx̂

]

m,i
m̄,ī

,

[
Ŝ
T̂ ,n : Ŝ

T̂ ,n̄
∫

T̂
p̂i p̂ī dx̂

]

n,i
n̄,ī

(119)

The regularity of these matrices can easily be shown using the linear independence of

the tensor fields Ŝ
F̂m

, Ŝ
T̂ ,n

, the positivity of the barycentric coordinates λ̂m , and the
linear independence of the basis { p̂i }. ��
Theorem 7 For τ ∈ Hs and 1 ≤ s ≤ k + 1 the interpolation error is bounded by

‖τ − I�τ‖�h
≤ c

(
∑

T∈T
h2sT ‖τ‖2Hs (T )

)1/2

. (120)

Proof In [22], it was shown that a very similar interpolation operator approximates
in the L2/L2(F) norm. The same estimates holds for I� , which is expected, since
the local space is the full polynomial space of order k and I� preserves piecewise
polynomial finite element functions. The proof relies on a scaling argument and the
Bramble-Hilbert lemma applied on the reference element, and is not provided in detail
here,

‖τ − I�τ‖2
L2(Ω)

+
∑

F∈F
hF‖(τ − I�τ )nn‖2L2(F)

≤ c
∑

T∈T
h2sT ‖τ‖2Hs (T ). (121)
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To estimate the full norm ‖τ − I�τ‖�h
, we show that the supremum term vanishes,

sup
wh∈Wh

b(τ − I�τ ,∇wh)

‖∇wh‖L2(Ω)

!= 0. (122)

We observe, due to the definition of the interpolation operator I� ,

b(τ − I�τ ,∇wh) (123)

=
∑

T∈T

⎛

⎜⎜⎝

∫

T
(τ − I�τ ) : ε(∇wh)︸ ︷︷ ︸

∈Pk−1

dx −
∫

∂T
(τ − I�τ )nn

∂wn

∂n︸︷︷︸
∈Pk

ds

⎞

⎟⎟⎠ (124)

= 0 (125)

The stress interpolation operator I� is defined in such a way that b(τ − I�τ ,∇wh)

vanishes for any wh ∈ Wh . Thus, the interpolation error estimate in the natural norm
coincides with the estimate in L2 norm. ��

6 Analysis of the finite element problem

A crucial tool for the analysis of the finite element problem is a discrete version of the
regular decomposition from Theorem 2. The following discrete decomposition can be
deduced directly from the regular decomposition, see [14] for the case of Γ = ΓD .

Lemma 5 For a finite element vector field vh ∈ Vh, there exists a decomposition

vh = IVz + ∇ ph, (126)

with z ∈ H1
0,ΓD

, curlz = curlvh and ph ∈ Wh. The respective parts can be bounded
by

‖ph‖H1 ≤ c‖vh‖L2 and ‖z‖H1 ≤ c‖vh‖H(curl), (127)

with a generic constant c.

6.1 Continuity of the finite element problem

We are concerned with continuity of the bilinear forms with respect to the discrete
norm ‖ · ‖�h

and the H(curl) norm ‖ · ‖H(curl). Obviously, a(·, ·) is continuous, as it
is continuous in L2. For b(·, ·), showing continuity is more challenging.

Lemma 6 The bilinear form b(·, ·) defined in (84), (85) is continuous on �h × Vh

with respect to the norms ‖ · ‖H(curl) and ‖ · ‖�h
. For τ h ∈ �h and vh ∈ Vh there

exists a constant c independent of mesh size h
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b(τ h, vh) ≤ c‖τ h‖�h
‖vh‖H(curl). (128)

Estimate (128) canbegeneralized to anypiecewise smooth, normal-normal continuous
tensor field τ , τ |T ∈ H1

sym(T ) for all T ∈ T , τnn|F ∈ L2(F).

Proof Let τ , τ |T ∈ H1
sym(T ) for all T ∈ T , τnn|F ∈ L2(F) be a normal-normal

continuous piecewise smooth tensor field. Note that this includes all finite element
tensor fields τ h . For vh ∈ Vh , let vh = IVz + ∇ ph be the decomposition from
Lemma 5. We have

b(τ , vh) = b(τ , IVz) + b(τ ,∇ ph). (129)

We estimate the two parts separately. For the estimate concerning z, we first use that
b(·, ·) is continuous in the L2/broken H1 setting.

b(τ , IVz) ≤
⎛

⎝‖τ‖L2(Ω) +
(
∑

F∈F
hF‖τnn‖2L2(F)

)1/2
⎞

⎠ ‖IVz‖H1,h (130)

≤ ‖τ‖�h
‖IVz‖H1,h (131)

Next, we utilize the Clément interpolation operator C, which is continuous in H1,

b(τ , IVz) ≤ ‖τ‖�h

(‖IVz − Cz‖H1,h + ‖Cz‖H1(Ω)

)
(132)

≤ c‖τ‖�h

(‖IVz − Cz‖H1,h + ‖z‖H1
)
. (133)

By an inverse inequality for the finite element function IVz − Cz we see

b(τ , IVz) ≤ c‖τ‖�h

(
h−1‖IVz − Cz‖L2 + ‖z‖H1

)
. (134)

Using interpolation error estimates for IV and C,

‖IVz − Cz‖L2 ≤ ‖IVz − z‖L2 + ‖Cz − z‖L2 ≤ ch‖z‖H1 , (135)

we arrive at

b(τ , IVz) ≤ c‖τ‖�h
‖z‖H1 (136)

≤ c‖τ‖�h
‖vh‖H(curl). (137)

The estimate concerning ∇ ph follows directly,

b(τ ,∇ ph) ≤ sup
wh∈Wh

b(τ ,∇wh)

‖∇wh‖L2
‖∇ ph‖L2 (138)

≤ c‖τ‖�h
‖vh‖L2(Ω). (139)

Together, (137) and (139) lead to the desired continuity result. ��
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6.2 Stability of the finite element problem

According to [4], we need to provide stability of the bilinear forms with respect to the
discrete norms, i.e. we need to show discrete kernel-coercivity of a(·, ·) and an inf-sup
condition for b(·, ·).
Lemma 7 The bilinear form a(·, ·) is coercive on the discrete kernel Ker(Bh) :=
{τ h ∈ �h, b(τ h, vh) = 0 ∀vh ∈ Vh},

a(τ h, τ h) ≥ c‖τ h‖2�h
∀τ h ∈ Ker(Bh). (140)

with generic constant c independent of the mesh size.

Proof Let τ h ∈ Ker(Bh) be fixed. Since τ h is a finite element function, the facet term
in the discrete norm (91) can be omitted,

‖τ h‖2�h
≤ c

⎛

⎝‖τ h‖2L2(Ω)
+
(

sup
wh∈Wh

b(τ h,∇wh)

‖∇wh‖L2(Ω)

)2
⎞

⎠ . (141)

By definition of Ker(Bh), we have

b(τ h, vh) = 0. (142)

Since ∇Wh ⊂ Vh , the supremum term in (141) vanishes,

‖τ h‖2�h
≤ c‖τ h‖2L2(Ω)

. (143)

Hence, coercivity is implied by coercivity of the compliance tensor,

a(τ h, τ h) ≥ λmin(C−1)‖τ h‖2L2(Ω)
≥ cλmin(C−1)‖τ h‖2�h

. (144)

��
Lemma 8 The bilinear form b(·, ·) is inf-sup stable on �h × Vh, for vh ∈ Vh there
exists some σ h ∈ �h such that

b(σ h, uh) ≥ c‖σ h‖�h
‖uh‖H(curl). (145)

Proof The proof is very similar to the one of Lemma 3 in the infinite dimensional
setting. Nevertheless, we provide it in detail here.

Let vh ∈ Vh be fixed. According to the finite element theory using L2 and broken
H1 norms, there exists a unique pair (τ h, uh) ∈ �h × Vh satisfying

a(σ h, τ h) + b(τ h, uh) = 0 ∀τ h ∈ �h, (146)

b(σ h, ṽh) =
∫

Ω

(vh · ṽh + curlvh · curlṽh) dx ∀ṽh ∈ Vh . (147)

123



An analysis of the TDNNS method using natural norms 117

Moreover, we have the stability estimate

‖σ h‖L2(Ω) ≤ c sup
ṽh∈Vh

∫
Ω (vh · ṽh + curlvh · curlṽh) dx

‖ṽh‖H1,h
. (148)

Since ‖ṽh‖H1,h ≥ c‖ṽh‖H(curl), we deduce

‖σ h‖L2(Ω) ≤ c‖vh‖H(curl). (149)

Testing the second Eq. (147) with a gradient function ∇wh , we see using that
curl∇wh = 0,

b(σ h,∇wh) =
∫

Ω

vh · ∇wh dx. (150)

Hence, we deduce

sup
wh∈Wh

b(σ h,∇wh)

‖∇wh‖L2
= sup

wh∈Wh

∫
Ω

vh · ∇wh dx

‖∇wh‖L2
≤ ‖vh‖L2 . (151)

Adding up squared (149) and (151), we can bound ‖σ h‖�h
by ‖vh‖H(curl),

‖σ h‖�h
≤ c‖vh‖H(curl). (152)

Finally using ṽh = vh as a test function in (147), we arrive at the desired result

b(σ h, vh) = ‖vh‖2H(curl) ≥ c‖σ h‖�h
‖vh‖H(curl). (153)

��

6.3 Error estimates

Since the finite element method is slightly nonconforming, �h �⊂ �, the error can-
not be bounded directly using the theory from [4]. Instead, we rely on techniques
from Strang’s second lemma, where consistency and interpolation error bound the
approximation error.

Theorem 8 Let (σ , u) ∈ � × V be the solution to the elasticity problem (11), (12).
Let (σ h, uh) ∈ �h × Vh be the finite element solution from (89), (90). Suppose σ , u
be sufficiently smooth, then we have the error bound for 1 ≤ s ≤ k

‖σ − σ h‖�h
+ ‖u − uh‖H(curl) (154)

≤ c

(
∑

T∈T
h2sT

(
‖u‖2Hs+1(T )

+ ‖σ‖2Hs (T )

))1/2

. (155)

123



118 A. S. Pechstein, J. Schöberl

Proof We divide the approximation error into two parts, the interpolation error and a
consistency term. To this end, we add and subtract the interpolants I�σ , IVu and use
the triangle inequality,

‖σ − σ h‖�h
+ ‖u − uh‖H(curl) (156)

≤ (‖σ − I�σ‖�h
+ ‖u − IVu‖H(curl)) (157)

+ (‖I�σ − σ h‖�h
+ ‖IVu − uh‖H(curl)) (158)

We refer to the terms in (157) as interpolation error, while the terms in (158) are
referred to as consistency error. We first elaborate on the consistency error, which can
itself be bounded by the interpolation error:

Due to the discrete stability, we have

c(‖I�σ − σ h‖�h
+ ‖IVu − uh‖H(curl)) (159)

≤ sup
τ h∈�h

a(I�σ − σ h, τ h) + b(τ h, IVu − uh)

‖τ h‖�h

+ sup
vh∈Vh

b(I�σ − σ h, vh)

‖vh‖H(curl)
(160)

= sup
τ h∈�h

a(I�σ , τ h) + b(τ h, IVu)

‖τ h‖�h

+ sup
vh∈Vh

b(I�σ − σ h, vh)

‖vh‖H(curl)
(161)

We proceed for the first term, adding and subtracting
∫
Ω

C−1σ : τ h dx and using
that the solution u is sufficiently smooth to have ε(u) = C−1σ in L2,

a(I�σ , τ h) + b(τ h, IVu) (162)

=
∫

Ω

C−1(I�σ − σ ) : τ h dx (163)

+
∑

T∈T

(∫

T
(C−1σ − ε(IVu)) : τ h dx +

∫

∂T
(IVu)nτh,nn ds

)
(164)

=
∫

Ω

C−1(I�σ − σ ) : τ h dx (165)

+
∑

T∈T

(∫

T
(ε(u) − ε(IVu)) : τ h dx −

∫

∂T
(un − (IVu)n)τh,nn ds

)
(166)

≤ c
(
‖I�σ − σ‖L2(Ω)‖τ h‖L2(Ω) + ‖u − IVu‖H1(Ω),h‖τ h‖L2(Ω)

)
. (167)

In line (166), we used that the solution u is continuous, and thus un can be added to
the surface integrals as a vanishing jump term. Thus, we have reduced the first term
of the consistency error (161) to the interpolation error,

sup
τ h∈�h

a(I�σ , τ h) + b(τ h, IVu)

‖τ h‖�h

(168)

≤ c
(
‖I�σ − σ‖L2(Ω) + ‖u − IVu‖H1,h

)
(169)
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≤ c

(
∑

T∈T
h2sT

(
‖u‖2Hs+1(T )

+ ‖σ‖2Hs (T )

))1/2

. (170)

We proceed to the second term in (161). We know that both σ and σ h satisfy the
equilibrium condition (12) with test function vh ∈ Vh ⊂ V, and thus b(σ , vh) =
b(σ h, vh). We deduce

b(I�σ − σ h, vh) = b(I�σ − σ , vh) = 〈
div(I�σ − σ ), vh

〉
. (171)

We use Lemma 6 to show that
〈
div(I�σ − σ ), vh

〉
is bounded with respect to the

discrete norms, as we assume σ to be piecewise smooth normal-normal continuous,

〈
div(I�σ − σ ), vh

〉 ≤ c‖I�σ − σ‖�h
‖vh‖H(curl). (172)

Thus, the second term of the consistency error (161) can be bounded by

sup
vh∈Vh

b(I�σ − σ h, vh)

‖vh‖H(curl)
≤ c‖I�σ − σ‖�h

(173)

≤ c

(
∑

T∈T
h2sT ‖σ‖2Hs (Ω)

)1/2

. (174)

Together with the interpolation error estimates we arrive at the desired results. ��
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