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Abstract
We propose two variants of the overlapping additive Schwarz method for the finite
element discretization of scalar elliptic problems in 3D with highly heterogeneous
coefficients. Themethods are efficient and simple to construct using the abstract frame-
work of the additive Schwarz method, and an idea of adaptive coarse spaces. In one
variant, the coarse space consists of finite element functions associated with the wire
basket nodes and functions based on solving some generalized eigenvalue problems
on the faces. In the other variant, it contains functions associated with the vertex nodes
with functions based on solving some generalized eigenvalue problems on subdomain
faces and subdomain edges. The functions that constitute the coarse spaces are chosen
adaptively, and they correspond to the eigenvalues that are smaller than a given thresh-
old. The convergence rate of the preconditioned conjugate gradients method in both
cases is shown to be independent of the variations in the coefficients for the sufficient
number of eigenfunctions in the coarse space. Numerical results are given to support
the theory.
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1 Introduction

Additive Schwarz methods are considered among the most popular domain decom-
position methods for solving partial differential equations because of their simplicity,
and inherently parallel algorithms, cf. [8,25,33,36]. We consider in this paper vari-
ants of the overlapping additive Schwarz method as preconditioners for solving scalar
elliptic equations with highly varying coefficient in the space R3. Based on the idea
of adaptively constructing the coarse space through solving generalized eigenvalue
problems in the lower dimensions, we propose two variants of the algorithm in three
dimensions. The resulting system has a condition number which is inversely propor-
tional to λ∗, where λ∗ is the threshold for coarse basis selection of eigenfunctions
corresponding to eigenvalues below λ∗. The threshold is used as a parameter for the
coarse space in the algorithm. The term “lower dimensions” refers to the fact that the
eigenvalue problems are solved either on subdomain faces or edges. The methods are
effective, inherently parallel, and simple to construct. Additive Schwarz method with
adaptive coarse space was recently considered using a different idea based on solving
generalized eigenvalue problem in the overlap, cf. [8,9,26].

To see the motivation behind such an approach, we take a brief look into the
steps of deriving convergence estimates for two-level overlapping Schwarz methods
in their abstract Schwarz framework (cf. [25,33,36] for the abstract framework). These
methods are analyzed in the abstract Schwarz framework. And the abstract Schwarz
framework is based on the assumption that any function u in the finite element space
can be split into its coarse component u0 and local components associatedwith the sub-
domains, and that this splitting is stable with respect to the energy norm. The condition
number bound of the preconditioned system then depends explicitly on the constant
C2
0 which enters into the stability estimate, cf. [25,33,36]. Consequently, how robust

the method will be with respect to the mesh parameters and the varying coefficients,
depends on how robust C2

0 is concerning those parameters and varying coefficients.
Its already known, cf. e.g., [15], that, even with highly varying coefficients as long
as the variations are strictly inside the subdomains, this constant is not depend on the
variation. The difficulty, however, arises when we have to deal with coefficients which
vary along subdomain boundaries. In which case, the crucial term which needs to be
bounded in the stability estimate is the boundary term

∑
i C/h2‖√α(u − u0)‖2L2(Ωh

i )
.

Here Ωh
i denotes the layer of all elements along the subdomain boundary ∂Ωi , α the

varying coefficient, andC a constant. Because the α is varying, estimating the L2 term
say using the Poincaré or a weighted Poincaré inequality introduces the contrast into
the estimate, i.e., the ratio between the largest and the smallest values of α, unless
strong assumptions on the distribution of the coefficient are made, cf. [31]. A stan-
dard multiscale coarse space alone, cf. [15,29], cannot make the method robust with
respect to the contrast unless some form of enrichment of the coarse space is used
that can capture the strong variations along the subdomain boundary and improves
the approximation. Including selected eigenfunctions of properly defined eigenvalue
problems over the subdomain boundary into coarse spaces, enable us to capture those
variations and provide estimates with constants independent of the contrast, which is
the primary motivation behind the methods presented here.
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Overlapping Schwarz methods with adaptive coarse spaces… 105

The idea of adaptively constructing coarse spaces using eigenfunctions of certain
eigenvalue problems has already attracted much interest in recent years. Some ear-
lier works in this direction are found in [1,2] around the Neumann-Neumann type
substructuring domain decomposition method, and [6] around the algebraic multigrid
method, although they were not addressed to solve multiscale problems. In the con-
text of multiscale problems this idea has only recently started to emerge, with its first
appearance in [12,13], as well as in [26], and later on in [7,9–11,14,35] in the additive
Schwarz framework. This idea of adaptively constructing coarse space, in other words,
the primal constraints, for the FETI-DP and BDDC substructuring domain decompo-
sition methods has also been developed and extensively analyzed, cf. [17,19,20,24,34]
in 2D and [5,16,18,27,30] in 3D.

The methods above are preconditioners to iterative methods, designed to obtain
fine-scale solutions to elliptic equations. In this recent development of coarse space
enrichment, it is important to take note of the parallel development inmethods designed
to solve elliptic equations directly by a coarse approximation, such as the Reduced
Basis method, see, e.g., [4,28], cf. also [32], and the Localized Orthogonal Decompo-
sitionmethod, see, e.g., [21,23]. The constructions of these coarse approximations and
the constructions of the coarse spaces in the iterative methods showmany similarities.

The rest of this paper is organized as follows: In Sect. 2we define our problemand its
discrete formulation. In Sect. 3 we describe the overlapping Schwarz preconditioner,
in Sect. 4 we introduce the two new coarse spaces, and in Sect. 5 we establish the
convergence estimate for the preconditioned system. Finally, in Sect. 6, we present
some numerical results of our method.

2 Differential problem and discrete formulation

Here we present our continuous test problem, the scalar elliptic equation with coef-
ficients piecewise constant on each fine-scale element and its discrete representation.
Find u ∈ H1

0 (Ω) such that

a(u, v) = f (v), v ∈ H1
0 (Ω), (1)

where

a(u, v) := (α(·)∇u,∇v)L2(Ω) and f (v) :=
∫

Ω

f vdx . (2)

We assume that α ∈ L∞(Ω), α(x) ≥ α0 > 0, and f ∈ L2(Ω) with Ω being a
polyhedral region in the space R3.

Let Th(Ω) be a quasi uniform triangulation of Ω into fine tetrahedral elements τ ,
where h = maxτ∈Th(Ω)diam(τ ) is the parameter of Th(Ω), cf. e.g. [3]. Keeping in
mind that a tetrahedral element consists of four triangular faces and six edges, we
denote the fine element face by τt and the finite element edge by τe. Let Vh = V 0

h (Ω)

be the finite element solution space of piecewise linear continuous functions:

V h = V 0
h (Ω) := {

v ∈ C0(Ω) : v|τ ∈ P1(x), v|∂Ω = 0
}
,
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106 E. Eikeland et al.

where v|τ is the function restricted to an element τ ∈ T h(Ω) and P1(x) is the set of
linear polynomials. Note that as the gradient of u ∈ V h is piecewise constant thus
(α∇u∇v)L2(τ ) = ∇u∇v

∫
τ
α dx . Thus without any loss of generality we assume that

α(x) = ατ for x ∈ τ where ατ is a positive constant.
The discrete problem is then defined as: Find uh ∈ V 0

h (Ω) such that

a(uh, v) = f (v), v ∈ V 0
h (Ω). (3)

This problem has a unique solution by the Lax-Milgram theorem. By using standard
nodal basis functions φi with i = 1, . . . , Nη, where Nη are the number of individual
vertex nodes of the tetrahedrons in Ω , the above equation may be stated as a system
of algebraic equations

Auh = fh, (4)

where (A)i, j = a(φ j , φi ), ( fh)i = f (φi ) and (uh) j = uh(x j ). Here x j is the
coordinate value of the node j . The resulting symmetric system is in general very
ill-conditioned; any standard iterative method, like the Conjugate Gradients, e.g. cf
[22], may perform poorly due to the ill-conditioning of the system. The aim is to
introduce an additive Schwarz preconditioner for the original problem (3) to obtain a
well-conditioned system for which the convergence of the conjugate gradient method
is independent of any variations in the coefficient, thereby improving the overall per-
formance.

3 Additive Schwarz method

The two-level additive Schwarz method is well known and well understood in the
literature, and we refer to [36, Chapter 3] for an overview of the method.

3.1 Geometric structures

Let Ω be partitioned into a set of N nonoverlapping subdomains (or generalized
subdomains), {Ωi }Ni=1, such that each Ω i (the closure of Ωi ) is a sum of elements
(fine elements) from Th , Ωi ∩ Ω j = ∅ for i �= j , and Ω = ∪i∈IΩ i . The intersection
between two closed subdomains is either an empty set, a closed face (or a closed
generalized face which is a sum of closures of fine element faces), a closed edge (or a
closed generalized edge which is a sum of closures of fine element edges), or a vertex.
Thus, the triangulation T h(Ω) is aligned with the subdomains Ωi . Each subdomain
Ωi inherits its own local triangulation T h(Ωi ) = {τ ∈ T h(Ω) : τ ⊂ Ω i } such that⋃

i T h(Ωi ) = T h(Ω). The corresponding set of overlapping subdomains {Ω ′
i }i∈I is

then defined as follows: extend each subdomain Ωi to Ω ′
i , by adding to Ωi a layer of

elements, i.e. sum of τ k ∈ T h(Ω) such that τ k ∩ ∂Ωi �= ∅.
Since the subdomains inherit their triangulation from the global triangulation

T h(Ω), the nodes, the edges, and the faces of the tetrahedral elements along the
interface Γ = ⋃

i ∂Ωi\∂Ω are matching across. The interface is composed of three
basic structures: open (generalized) faces, open (generalized) edges, and subdomain
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Overlapping Schwarz methods with adaptive coarse spaces… 107

Fig. 1 The unit cube domain,
decomposed into 8 subdomains.
The subdomain in the back at the
top is meshed into a fine mesh.
The faces that the subdomain
Ω1 shares with its neighbours,
Ω2 and Ω3 have been meshed.
On the face, FI13 , only the
internal nodes have been
meshed, while on the face F12
all the nodes have been meshed.
Also, an edge E1 is indicated
where the edge nodes have been
dotted. The center red node is a
vertex node (color figure online)

Ω1

Ω2Ω3 F12FI13

E1

vertices, cf. Fig 1. The set of all open edges and subdomain vertices constitute the
structure which we call the wire basket, and we denote it by W . The set of all faces
is given by F = {Fkl : Fkl = ∂Ωk ∩ ∂Ωl , |Fkl | > 0, k ∈ I , l ∈ I , and k > l},
where | · | is a natural measure of a surface. Note that since the subdomain vertices
are matching across the interface, we have Γ = ⋃

kl Fkl\∂Ω . A closed edge is an
intersection between two closed faces, consisting of closed fine element edges. The
set of all edges are denoted by E . And the set of subdomain vertices are denoted by
V . The wire basket is defined as W = ⋃

k Ek\∂Ω .
In the same way as each subdomain inherits a 3D triangulation, each face Fkl

inherits a 2D triangulation which we denote by Th(Fkl), and each edge Ek inherits a
1D triangulation which we denote by Th(Ek). For each of the structures, Ω , Ω , Ωk ,
Ωk ,F , E , andW , we useΩh ,Ωh ,Ωk,h ,Ωk,h ,Fh , Eh , andWh , respectively, to denote
the corresponding set of nodal points (vertices of the elements of Th) which are on the
structure.

3.2 Space decomposition, subproblems, and preconditioned system

Let the two local subspaces on Ωk , be defined as

Vh(Ωk) := {u|Ωk
: u ∈ Vh},

V 0
h (Ωk) := Vh(Ωk) ∩ H1

0 (Ωk). (5)

Functions of V 0
h (Ωk) are extended by zero to the rest of the domain Ω\Ωk . For the

ease of representation, we denote this extended space by the same symbol, that is using
V 0
h (Ωk). We can repeat these definitions for extended domains Ω ′

i . Let us decompose
the finite element solution space into a coarse space and N local subspaces

V h = V (k)
0 +

N∑

i=1

Vi . (6)
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108 E. Eikeland et al.

Here Vi = V 0
h (Ω ′

i ) are the local function spaces associated with the overlapping
subdomains Ω ′

i for i = 1, . . . , N extended by zero to the rest of Ω , cf. (5). Further,

V (k)
0 , k = 1, 2 is the coarse space. In the next section, we introduce the two coarse

spaces, the wire basket based coarse space V (1)
0 = VW , cf. (14), and the vertex based

coarse space V (2)
0 = VV , cf. (21). In both cases, these are relatively much smaller

subspaces of the finite element space Vh .
We define projection like operators, P(k)

0 for k = 1, 2, and Pi for i = 1, . . . , N , as
follows,

a(P(k)
0 u, v) = a(u, v) ∀v ∈ V (k)

0 , k = 1, 2,

a(Piu, v) = a(u, v) ∀v ∈ Vi , i = 1, . . . , N .

Defining the additive operator P(k) = P(k)
0 + ∑

i Pi , we get the following system
of equation equivalent to the original problem (3) in the operator form,

P(k)uh = g(k), (7)

where g(k) = g(k)
0 + ∑

i gi and g(k)
0 = P(k)

0 uh, gi = Piuh for uh the solution of (3).

The right-hand side functions g(k)
0 , gi can be computed in parallel without knowing

uh , cf. e.g. [33,36].

4 Coarse spaces with enrichment

For our the additive Schwarz method we introduce two alternative coarse spaces. The
first one is based on enriching a wire basket coarse space, and the second one is based
on enriching a vertex based coarse space.

Discrete harmonic extensions are used to extend our functions from subdomain
boundaries into subdomains. We define our discrete harmonic extension operator
below.

Definition 1 Let u|∂Ωk be the u restricted to ∂Ωk . We defineHk : Vh(Ωk) → Vh(Ωk)

as the discrete harmonic extension operator in Ωk as follows,

{
a|Ωk (Hku, v) = 0 ∀v ∈ V 0

h (Ωk),

Hku = u|∂Ωk on ∂Ωk .
(8)

A function u ∈ Vh(Ωk) is locally discrete harmonic in Ωk if Hku = u. If for any
u ∈ Vh , we have that all its restrictions to the subdomains are locally discrete harmonic
then this function is (piecewise) discrete harmonic in Ω .

Functions that are locally discrete harmonic have theminimumenergy property locally.
This property is well known, but for completeness we restate it in the following lemma,
cf. [36] for further details on discrete harmonic extensions.
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Lemma 1 Let u ∈ Vh(Ωk) be given such that u = Hku in the sense of Definition 1,
then it follows that

a|Ωk (u, u) = min{v|v=u on ∂Ωk }
a|Ωk (v, v). (9)

4.1 Wire basket based coarse space

The wire basket based coarse space consists of basis functions, one for each node in
the wire basket W , plus eigenfunctions corresponding to the first few eigenvalues of
generalized eigenvalue problems associated with the faces, cf. Definition 3.

For any face Fkl , let Vh(Fkl) be the space of piecewise linear continuous functions
on the face Fkl ∈ F , and V 0

h (Fkl) the corresponding subspace of functions with zero
boundary values, that is

V 0
h (Fkl) := {v ∈ Vh(Fkl) : v(x) = 0, ∀x ∈ ∂Fkl}.

We need the following interpolation operator IW : Vh → Vh .

Definition 2 For any u ∈ Vh , let IWu be discrete harmonic (cf. Definition 1) such
that

(IWu)(x) = u(x) ∀x ∈ Wh,

aFkl ((IWu)|Fkl , v) = 0 ∀v ∈ V 0
h (Fkl) ∀Fkl ⊂ Γ ,

where

aFkl (u, v) :=
∑

τt∈Th(Fkl )

ατt

∫

τt

∇u∇vdx, u, v ∈ Vh(Fkl), (10)

and ατt = max{ατ− , ατ+} for a triangle τt which is an element of the 2D triangulation
of the face Fkl , such that τ t = ∂τ− ∩ ∂τ+ for τ+ ∈ Th(Ωk) and τ− ∈ Th(Ωl).

For each face Fkl , we define the following generalized eigenvalue problem.

Definition 3 For i = 1, . . . , M̂ , where M̂ = dim(V 0
h (Fkl)), find (λiFkl

, ξ iFkl
) ∈

(
R × V 0

h (Fkl)
)
such that λ1Fkl

≤ · · · ≤ λM̂
Fkl

and

aFkl (ξ
i
Fkl

, v) = λiFkl
bFk (ξ

i
Fkl

, v) ∀v ∈ V 0
h (Fkl), (11)

where aFkl (·, ·) is defined in (10), and bFkl (·, ·) as follows,

bFkl (u, v) :=
∑

x∈Fkl,h

αxu(x)v(x), u, v ∈ Vh(Fkl), (12)

where αx = max{ατ : x ∈ ∂τ, τ ∈ Th}. Here V 0
h (Fkl) is the space of piecewise

continuous functions on Th(Fkl) which are equal to zero on ∂Fkl .
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110 E. Eikeland et al.

Note that the bilinear forms aFkl (·, ·) and bFkl (·, ·) in (11) are symmetric and
positive definite on V 0

h (Fkl). We extend ξ iFkl
by zero to the whole interface Γ , and

then as a discrete harmonic function inside each subdomain, denoting the extended
function by the same symbol. Now, let

V en
Fkl

:= span{ξ iFkl
}mkl
i=1 (13)

be the space of eigenfunctions, where mkl is a nonnegative integer smaller than or
equal to M̂ , a number which is either prescribed or decided adaptively.

The wire basket based coarse space is then defined as

VW = IWVh +
∑

Fkl∈F
V en
Fkl

. (14)

The space IWVh is a natural extension of the 2D multiscale coarse space introduced
in [15] to 3D, and the face enrichment spaces V en

Fkl
are natural extensions of the edge

enrichment spaces introduced in [14] to 3D.

4.2 Vertex based coarse space

The vertex based coarse space consists of basis functions, one for each node in V , plus
eigenfunctions corresponding to the first few eigenvalues of generalized eigenvalue
problems associated with the edges, cf. Definition 5, and the faces, cf. Definition 6.

For any edge Ei , let Vh(Ei ) be the space of piecewise linear continuous functions
on the edge Ei ∈ E , and V 0

h (Ei ) the corresponding subspace of functions with zero
boundary values, that is

V 0
h (Ei ) := {v ∈ Vh(Ei ) : v(x) = 0, ∀x ∈ ∂Ei }.

We need the following interpolation operator IV : Vh → Vh .

Definition 4 For any u ∈ Vh , let IVu be discrete harmonic (cf. Definition 1) such that

(IVu)(x) = u(x) ∀x ∈ V,

(IVu)(x) = 0 ∀x ∈ Γh\Wh,

aEi ((IVu)|Ei , v) = 0 ∀v ∈ V 0
h (Ei ) ∀Ei ⊂ E,

where

aEi (u, v) :=
∑

e∈Th(Ei )
αe

∫

e
u′v′dx, u, v ∈ Vh(Ei ), (15)

and αe = max{τ ∈ Th : e ⊂ ∂τ }.
For each edge Ek , we define the following generalized eigenvalue problem.

123



Overlapping Schwarz methods with adaptive coarse spaces… 111

Definition 5 For i = 1, . . . , MEk , where MEk = dim(Vh(Ek)), find (λiEk , ξ
i
Ek ) ∈

(
R × V 0

h (Ek)
)
such that λ1Ek ≤ · · · ≤ λ

MEk
Ek and

aEk (ξ
i
Ek , v) = λiEk bEk (ξ

i
Ek , v) ∀v ∈ V 0

h (Ek), (16)

where aEk (·, ·) is defined in (15), and

bEk (u, v) := h−1
∑

x∈Ek,h
αxu(x)v(x), u, v ∈ Vh(Ek), (17)

with αx from Definition 3.

Note that, by definition, the bilinear forms aEk (·, ·) and bEk (·, ·) in (16) are both
symmetric and positive definite on V 0

h (Ek).
For each face Fkl , let

F B
kl =

⋃

{τt : τ t∩∂Fkl �=∅}
τ t

be the sum of closed fine triangles on the face Fkl that touch the wire basket, and

F I
kl = Fkl\F B

kl the interior of the sum of closed triangles that are lying strictly inside

the face. Obviously, Fkl = F B
kl ∪ F I

kl .
For each face Fkl , we now define the following generalized eigenvalue problem.

Definition 6 For i = 1, . . . , M̂ , where M̂ = dim(V 0
h (Fkl)), find (λiFkl,I

, ξ iFkl,I
) ∈

(
R × V 0

h (Fkl)
)
such that λ1Fkl,I

≤ · · · ≤ λM̂
Fkl,I

and

aFkl,I (ξ
i
Fkl,I

, v) = λiFkl,I
bFkl (ξ

i
Fkl,I

, v) ∀v ∈ V 0
h (Fkl), (18)

where

aFkl,I (u, v) :=
∑

τt∈F I
kl

ατt

∫

τt

∇u∇vdx, u, v ∈ Vh(Fkl), (19)

where ατt is defined in Definition 2.

Note that, by definition, the bilinear form bFkl (·, ·) is symmetric and positive defi-
nite on V 0

h (Fkl), while the bilinear form aFkl,I (·, ·) in (18) is symmetric and positive
semidefinite on this space.We know its kernel, it is the one dimensional space contain-
ing functions that are constant over F I

kl , consequently, we have 0 = λ1Fkl,I
< λ2Fkl,I

≤ · · · ≤ λM̂
Fkl,I

.

Analogously, as in the wire basket based coarse space, we extend ξ iEk and ξ iFkl,I
by

zero to the whole Γ , and then as discrete harmonic functions inside each subdomain,
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denoting the extended function by the same symbols. Now, define the two spaces of
eigenfunctions, one associated with the edges and one associated with the faces, as

V en
Fkl,I

:= span{ξ iFkl,I
}nkli=1 and V en

Ek := span{ξ iEk }
mk
i=1, (20)

respectively. Both nkl andmk are integers such that 1 ≤ nkl ≤ M̂ and 0 ≤ mk ≤ MEk ,
and are either prescribed or decided adaptively.

The vertex based coarse space is then defined as

VV = IVVh +
∑

Fkl∈F
V en
Fkl,I

+
∑

Ek∈E
V en
Ek . (21)

Remark 1 It should be pointed out here that many of the calculations indicated by the
use of piecewise discrete harmonic extensions in the definitions above are redundant
since, in practice, they are often trivial extensions of zero on subdomain boundaries.

5 Convergence estimate for the preconditioned system

In this section, we prove that the condition number of our preconditioned system
can be kept low, and independent of the contrast if our coarse space enrichments are
appropriately chosen. The main result is stated in Theorem 1.

Theorem 1 Let k = 1 and k = 2 in the superscript refer to the two coarse spaces:
the wire basket based coarse space and the vertex based coarse space, respectively.
Then, for P(k), cf. (7), we have

(
C (k)
0

)−2
a(u, u) � a(P(k)u, u) � a(u, u), u ∈ V h, (22)

with

(
C (1)
0

)2 = 1 + max
Fkl∈F

1

λ
mkl+1
Fkl

,

(
C (2)
0

)2 = 1 + max

{

max
Fkl∈F

(
λ
nkl+1
Fkl,I

)−1
,max
Ek∈E

(
λ
mk+1
Ek

)−1
}

.

Here λiFkl
is defined in (11), λiEk is from (16), and λiFkl,I

is from (18), and the integer
parameters mkl , nkl ,mk are defined in (13) or (20), respectively.

The proof is based on the abstract Schwarz framework, cf. e.g. [25,33,36] and is given
at the end of the section. The following lemmas are required for the proof.

Remark 2 In case of constant α and regular mesh the minimal eigenvalue of the prob-
lems are of O(( h

H )2) and the maximal eigenvalue is of O(1).
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Lemma 2 Let u ∈ Vh be discrete harmonic i.e. uk := u|Ωk
= Hku in the a-norm

a|Ωk (·, ·) or be equal to zero at all interior nodes that are in Ωk,h, then it follows that

a|Ωk (u, u) ≤ h
∑

x∈∂Ωk,h

αx |u(x)|2. (23)

In particular if u is zero at Wh, then

a|Ωk (u, u) � h
∑

Fkl⊂∂Ωk

bFkl (u, u), (24)

and if u is zero at all vertices of ∂Ωk then

a|Ωk (u, u) � h2
∑

Ei⊂Ωk

bEi (u, u) + h
∑

Fkl⊂∂Ωk

bFkl (u, u). (25)

Proof The first part of the proof follows from the fact that a discrete harmonic function
has the minimal energy among all functions taking the same values on the boundary.
Hence, a|Ωk (u, u) ≤ a|Ωk (û, û) for any û ∈ Vh(Ωk) which is equal to u on ∂Ωk and
zero at the interior nodes Ωk,h . The other case means that u = û. Consequently,

a|Ωk (u, u) ≤ a|Ωk (û, û) =
∑

τ∈Th(Ωk )

ατ

∫

τ

|∇û|2 dx � h−2
∑

τ∈Th(Ωk )

ατ

∫

τ

|û|2dx

� h
∑

τ∈Ωh
k

ατ

∑

x∈∂τ

|û(x)|2,

where Ωh
k is the h boundary layer that is the sum of elements of Th(Ωk) that touch

(has a vertex on) the boundary ∂Ωk . We used a local inverse inequality and the discrete
equivalence of the L2 norm on each τ . Finally, utilizing the fact that û is zero at the
interior nodal points and taking the maximum over ατ such that x ∈ ∂τ we get

a|Ωk (u, u) � h
∑

x∈∂Ωk,h

αx |u(x)|2.

The last two statements of the lemma follow directly from the first statement of the
lemma plus the definitions of the bilinear forms defined in (12) and (17).

Remark 3 The constant in the estimate of Lemma 2 equals C1 C2 C3, where C1 is the
constant of the inverse inequality |u|2

H1(τ )
≤ C1h−2‖u‖2

L2(τ )
, u ∈ V h, τ ∈ Th , C2 is

the squared constant of the inequality stating local equivalence of the L2 norm to the
discrete local nodal l2 norm, i.e. ‖u‖2

L2(τ )
≤ C2h

∑
xk∈∂τ |u(xk)|2, u ∈ V h, τ ∈ Th ,

and C3 is the maximum over all x ∈ ∂Ωk,h of the number of τ ∈ Th(Ωk) such that x
is a vertex of τ .

We see from the proof that we could define the coefficient αx as equal to the sum
of αx instead of taking the maximum of them.
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We restate [14, Lemma 2.2] which contains important estimates for the eigenfunc-
tions found in (11) and (16).

Lemma 3 Let V be a finite dimensional real space and consider the generalized eigen-
value problem: Find the eigenpair (λk, ξk) ∈ R × V such that b(ξk, ξk) = 1 and

a(ξk, v) = λkb(ξk, v) ∀v ∈ V ,

where the bilinear form b(·, ·) is symmetric positive definite, and the bilinear form
a(·, ·) is symmetric positive semi-definite. Then there exist M = dim(V ) eigenpairs
with real eigenvalues ordered as follows 0 ≤ λ1 ≤ · · · ≤ λM. If λk is the smallest
positive eigenvalue then the operator Πm : V → V , which is defined for k − 1 ≤
m < M as

Πmu =
m∑

k=1

b(u, ξk)ξk,

is the b(·, ·)-orthogonal projection such that

|Πmv|a ≤ |v|a and |v − Πmv|a ≤ |v|a ∀v ∈ V , (26)

and

‖v − Πmv‖2b ≤ 1

λm+1
|v − Πmv|2a ∀v ∈ V , (27)

where |v|2a = a(v, v) and ‖v‖2b = b(v, v).

See [14,35] for the proof.
We introduce the wire basket based coarse space interpolator or the interpolation

operator IW0 : Vh → VW ⊂ Vh as

IW0 u := IWu +
∑

Fkl∈F
ΠFkl

mkl
(u − IWu), (28)

where Π
Fkl
mkl : Vh → V en

Fkl
⊂ Vh is defined as follows,

ΠFkl
mkl

u =
∑

Fkl∈F

mkl∑

i=1

bFkl (u|Fkl , ξ
i
Fkl

)ξ iFkl
,

cf. also (13) and (12).
We have the following lemma estimating the coarse space interpolant.

Lemma 4 Let the wire basket based coarse space interpolator IW0 be defined in (28).
Then for u ∈ Vh

a(u − IW0 u, u − IW0 u) �
(

1 + max
Fkl∈F

1

λ
mkl+1
Fkl

)

a(u, u), (29)
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where λ
mkl+1
Fkl

is the (mkl + 1)th smallest eigenvalue of the generalized eigenvalue
problem in Definition 3.

Proof Note that if we restrict w = u − IW0 u to Ωk then Hkw = Hku − IW0 u as
IW0 u is discrete harmonic, thus by the fact that Hk and I − Hk are a|Ωk orthogonal
projection in Vh(Ωk), cf. Definition 1, we have

a|Ωk (w,w) = a|Ωk (w − Hkw,w − Hkw) + a|Ωk (Hkw,Hkw)

≤ a|Ωk (u, u) + a|Ωk (Hkw,Hkw).

Thus it remains to estimate a|Ωk (Hkw,Hkw). By Lemma 2 and the fact that Hkw = w

on ∂Ωk we get

a|Ωk (Hkw,Hkw) � h
∑

Fkl⊂∂Ωk

bFkl (w,w).

Let us now consider one such faceFkl ⊂ ∂Ωk . We havew = u− IWu−Π
Fkl
mkl (u−

IWu) on the face, cf. (28). Using Lemma 3 it follows that

bFkl (w,w) = ‖(I − ΠFkl
mkl

)(u − IWu)‖2bFkl
� 1

λ
mkl+1
Fkl

|(I − ΠFkl
mkl

)(u − IWu)|2aFkl

� 1

λ
mkl+1
Fkl

|u − IWu|2aFkl
.

Here ‖u‖2bFkl
:= bFkl (u, u) and |u|2aFkl

:= aFkl (u, u). Since byDefinition 2 (IWu)|Fkl

is orthogonal to (u − IWu)|Fkl ∈ V 0
h (Fkl) with respect to the bilinear form aFkl (·, ·),

we have

|u − IWu|2aFkl
≤ |u|2aFkl

.

From the last two estimates, it follows that

hbFkl (w,w) � h

λ
mkl+1
Fkl

|u|2aFkl
� h

λ
mkl+1
Fkl

∑

τt∈Th(Fkl )

∑

x,y∈∂τt

αt |u(x) − u(y)|2. (30)

Here the last sum is over all pairs of vertices of a 2D face element τt . Using the
definition of αt and the fact that |u|2

H1(τ )
� diam(τ )

∑
x,y∈∂τ |u(x) − u(y)|2 (here

x, y are vertices of 3D element τ ) we get

hbFkl (w,w) � 1

λ
mkl+1
Fkl

(
a|Ωk (u, u) + a|Ωl (u, u)

)
. (31)
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Finally, summing over the faces yields that

a|Ωk (u − IW0 u, u − IW0 u) �
∑

Fkl⊂∂Ωk

1

λ
mkl+1
Fkl

(
a|Ωk (u, u) + a|Ωl (u, u)

)
, (32)

and then summing the subdomains ends the proof. ��
For the next lemma we need a partition of unity. We need a discrete version of a

partition of unity, i.e we define θi is a continuous function which is piecewise linear
on Th such that:

θi (x) =
⎧
⎨

⎩

1 ∀x ∈ Ωi,h,
1
Nx

∀x ∈ ∂Ωi,h\∂Ωh,

0 otherwise,
(33)

where Nx is the number of subdomains Ω j such that x ∈ Ω j,h . As an example,
Nx = 2 for any nodal point x on a subdomain face.

Lemma 5 Let the wire basket based coarse space interpolator IW0 be defined in (28)
and let vk = Ih(θk(u − IW0 u)) for any u ∈ Vh and Ih : C(Ω) → V h—the standard
nodal piecewise linear interpolant. Then

a(vk, vk) �
(

1 + max
Fkl⊂∂Ωk

1

λ
mkl+1
Fkl

)
∑

∂Ωl∩∂Ωk=Fkl

a|Ωl (u, u). (34)

The last sum is taken over all subdomains which have a common face to Ωk .

Proof Let w = u − IW0 u. Note that

vk(x) = Ihθkw(x) =

⎧
⎪⎪⎨

⎪⎪⎩

w(x) x ∈ Ωk,h,
1
2w(x) x ∈ Fkl,h, Fkl ⊂ ∂Ωk,

0 x ∈ Wh ∩ ∂Ωk,

0 otherwise.

(35)

Thus
a(vk, vk) = a|Ωk (vk, vk) +

∑

Fkl⊂∂Ωk

a|Ωl (vk, vk). (36)

We first estimate the second term, that is the sum of the face terms. Note that vk|Ωl is
zero at the interior nodesΩl,h and the boundary nodes ∂Ωl,h\Fkl,h . Thus by Lemma 2
and (35) we have

∑

Fkl⊂∂Ωk

a|Ωl (vk, vk) � h
∑

Fkl⊂∂Ωk

bFkl (vk, vk) = h

4

∑

Fkl⊂∂Ωk

bFkl (w,w).

This term has already been estimated in the proof of Lemma 4, cf. (31), that is

hbFkl (w,w) � 1

λFmkl+1
kl

(
a|Ωk (u, u) + a|Ωl (u, u)

)
.
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We now estimate the first term in (36), that is the restriction of the bilinear form to
the Ωk . By a triangle inequality, we can write

a|Ωk (vk, vk) � a|Ωk (w,w) + a|Ωk (w − vk, w − vk).

The first term has already been estimated in the proof of Lemma 4, cf. (32). Also, note
that (w−vk)(x) equals either 1

2w(x)when x is a face node, or zerowhen x ∈ ∂Ωk∩Wh

and x ∈ Ωk,h . By Lemma 2 and (35) we thus get

a|Ωk (w − vk, w − vk) � h
∑

Fkl⊂Ωl

bFkl (w − vk, w − vk) = h

4

∑

Fkl⊂Ωl

bFkl (w,w).

Again, this term has been estimated in the proof of Lemma 4, cf. (31). Summing all
those estimates ends the proof. ��

Analogous to the wire basket case, we now define the vertex based coarse space
interpolator IV0 : Vh → VV ⊂ Vh as

IV0 u := IVu +
∑

Fkl∈F
Π

Fkl,I
nkl u +

∑

Ek∈E
ΠEk

mk
(u − IVu), (37)

where Π
Fkl,I
nkl : Vh → V en

Fkl ,I
⊂ Vh and Π

Ek
mk : Vh → V en

Ek ⊂ Vh , are defined as
follows,

Π
Fkl,I
nkl (u) :=

∑

Fkl∈F

nkl∑

i=1

bFkl (u|Fkl , ξ
i
Fkl,I

)ξ iFkl,I
,

ΠEk
mk

(u) :=
∑

Ek∈E

mk∑

i=1

bEk (u|Ek , ξ iEk )ξ iEk ,

cf. also (20), (12) and (17).
We have the following lemma.

Lemma 6 Let the vertex based coarse space interpolator IV0 be defined in (37), then
for any u ∈ Vh

a(u − IV0 u, u − IV0 u) �
⎛

⎝1 + max

⎧
⎨

⎩
max
Fkl∈F

1

λ
nkl+1
Fkl,I

,max
Ek∈E

1

λ
mk+1
Ek

⎫
⎬

⎭

⎞

⎠ a(u, u), (38)

where λ
nkl+1
Fkl

and λ
mk+1
Ek are respectively the (nkl + 1)th and the (mk + 1)th smallest

eigenvalues of the generalized eigenvalue problems in Definitions 5 and 6.

Proof Let w = u − IV0 u. In the same way as in the proof of Lemma 4, we get

a|Ωk (w,w) ≤ a|Ωk (u, u) + a|Ωk (Hkw,Hkw).
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Next we bound a|Ωk (Hkw,Hkw). By Lemma 2, cf. (23), and (12) and (17). we get

a|Ωk (Hkw,Hkw) � h2
∑

E j⊂Ωk

bE j (w,w) + h
∑

Fkl⊂Ωk

bFkl (w,w).

Note that by (21) and Definition 4 we have w|E j = u − IVu − Π
E j
m j (u − IVu) for any

edge E j ⊂ W ∩ ∂Ωk , and w|Fkl = u − Π
Fkl,I
mkl (u) for any face Fkl ⊂ ∂Ωk .

Now, consider the term bE j (w,w) related to an edge E j . By Lemma 3 we get

bE j (w,w) = ‖(I − Π
E j
m j )(u − IVu)‖2bE j

� 1

λ
m j+1
E j

|(I − Π
E j
m j )(u − IVu)|2aE j

� 1

λ
m j+1
E j

|u − IVu|2aE j
� 1

λ
m j+1
E j

|u|2aE j
.

Here ‖u‖2bE j
:= bE j (u, u) and |u|2aE j

:= aE j (u, u). We also used the fact that (IVu)E j

is orthogonal to (u − IVu)|E j ∈ V 0
h (E0

j ) with respect to the bilinear form aE j (·, ·), cf.
Definition 4.

Further, using the fact that, for u linear, |u|2
H1(τe)

is equivalent to h−1|u(x)−u(y)|2
(x, y are the ends of the 1D element τe), we get

h2bE j (w,w) � h2

λ
m j+1
E j

|u|2aE j
� h

λ
m j+1
E j

∑

τe∈Th(E j )

∑

x,y∈∂τe

αe|u(x) − u(y)|2.

Here the last sum is over the ends x, y of an 1D edge element τe. Note that h|u(x) −
u(y)|2 � ∫

τ
|∇u|2 dx if x, y are vertices of τ ∈ Th . Thus we get

h2bE j (w,w) �
∑

∂τ∩E j=τ e⊂E j

∫

τ

α|∇u|2 dx,

where the sum is over all 3D fine elements such that one of its edges is contained in
E j .

Now, consider the term bFkl (w,w) related to a face Fkl . Note that u|∂Fkl does not
have to be equal to zero in general but if we define a function û such that û(x) = u(x)
x ∈ Fkl,h and û(x) = 0 for x ∈ ∂Fkl,h , then we have

bFkl (u, u) = bFkl (û, û), aFkl,I (u, u) = aFkl,I (û, û), (39)
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cf. (12) and (19). Thus we see that Π
Fkl,I
nkl u = Π

Fkl,I
nkl û and we can apply Lemma 3

replacing u with û and get

bFkl (w,w) = ‖(I − Π
Fkl,I
nkl )u‖2bFkl

= ‖(I − Π
Fkl,I
nkl )û‖2bFkl

� 1

λ
nkl+1
Fkl

|(I − ΠFkl
nkl )û|2aFkl,I

� 1

λ
nkl+1
Fkl,I

|û|2aFkl,I
= 1

λ
nkl+1
Fkl,I

|u|2aFkl,I
≤ 1

λ
nkl+1
Fkl,I

|u|2aFkl
.

Here |u|2aFkl,I
:= aFkl,I (u, u). The last inequality follows from the fact that

aFkl,I (v, v) ≤ aFkl, (v, v) ∀v ∈ V 0
h (Fkl),

cf. (10) and (19). Further, analogously as in the proof of Lemma 4, cf. (30) and (31),
we get

hbFkl (w,w) � 1

λFnkl+1
kl,I

(
a|Ωk (u, u) + a|Ωl (u, u)

)
.

Finally, by summing over the edges and faces, and then over the subdomains we end
the proof. ��
Lemma 7 Let the vertex based coarse space interpolator IV0 be defined in (37), and
vk = Ih(θk(u − IV0 u)) for any u ∈ Vh. Then

a(vk, vk) �(

1 + max

{

maxFkl⊂∂Ωk
1

λ
nkl+1
Fkl,I

,maxEk⊂∂Ωk
1

λ
mk+1
Ek

})
∑

El⊂∂Ωk
a|Ωl (u, u).

The last sum is taken over all subdomains which share an edge with Ωk .

Proof Let w = u− IV0 u, then we have Ihθkw equal to w at interior nodes Ωk,h , 12w at
the nodesFkl,h on each faceFkl ofΩk , 1

n(Ei )w at the nodes Ei,h on each edge Ei ofΩk ,
and zero at all remaining nodal points of Ωh . Here n(Ei ) is the number of subdomains
that share the edge Ei . As in the proof of Lemma 5, we can write

a(vk, vk) = a|Ωk (vk, vk) +
∑

Ei⊂∂Ωk

a|Ωi (vk, vk) +
∑

Fkl⊂∂Ωk

a|Ωl (vk, vk)

� a|Ωk (vk, vk) + h2
∑

Ei⊂∂Ωk

bEi (w,w) + h
∑

Fkl⊂∂Ωk

bFkl (w,w)).

The face and the edge terms can be estimated following the lines in the proof of
Lemma 6.
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The first term, on the other hand, can be estimated following the lines in the proof
of Lemma 5, that is using Lemma 2, as follows:

a|Ωk (vk, vk) � a|Ωk (w,w) + a|Ωk (w − vk, w − vk)

� a|Ωk (w,w)

+h2
∑

Ei⊂∂Ωk

bEi (vk − w, vk − w) + h
∑

Fkl⊂∂Ωk

bFkl (vk − w, vk − w)

� a|Ωk (w,w) + h2
∑

Ei⊂∂Ωk

bEi (w,w) + h
∑

Fkl⊂∂Ωk

bFkl (w,w).

Again, these terms can be estimated in the same way as in the proof of Lemma 6.
Combining those estimates, we get the proof. ��
The next and final lemma provides estimates for the stability of decomposition for

the two preconditioners presented in this paper, which are required in the proof of
Theorem 1.

Lemma 8 (Stable Decomposition) Let k = 1 and k = 2 in the superscript refer
to the two coarse spaces: the wire basket based coarse space and the vertex based
coarse space, respectively. Then, for all u ∈ Vh there exists a representation u =
u(k)
0 + ∑N

i=1 u
(k)
i such that u(k)

0 ∈ V (k)
0 , and u(k)

i ∈ Vi , i = 1, . . . , N, and

a(u(k)
0 , u(k)

0 ) +
N∑

i=1

a(u(k)
i , u(k)

i ) �
(
C (k)
0

)2
a(u, u), (40)

for k = 1, 2, with

(
C (1)
0

)2 = 1 + max
Fkl∈F

(
λ
mkl+1
Fkl

)−1
,

(
C (2)
0

)2 = 1 + max

{

max
Fkl∈F

(
λ
nkl+1
Fkl,I

)−1
, min
Ek∈E

(
λ
mk+1
Ek

)−1
}

.

Proof For the wire basket based coarse space, let u(1)
0 = IW0 u and u(1)

i = Ih(θi (u −
IW0 u)). The corresponding statement of the lemma then follows immediately from
the Lemmas 4 and 5.

For the vertex based coarse space, let u(2)
0 = IV0 u and u(2)

i = Ih(θi (u − IV0 u)). It’s
statement of the lemma then follows immediately from the Lemmas 6 and 7. ��
Proof of Theorem 1 The convergence theory of the abstract Schwarz framework indi-
cates that, under three assumptions, the condition number of our method can be
bounded as the following.

κ(P(k)) ≤ (C (k)
0 )2ω(ρ + 1). (41)
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The three assumptions are concerned with estimating the three constants ω, ρ and C2
0 .

It is easy to that ω = 1 here, as we have nested subspaces and are using exact solvers
for the subproblems, and ρ ≤ Nc, where Nc is the maximum number of subspaces that
cover any x ∈ Ω . We refer to [33, Sect. 5.2] or [36, Sect. 2.3] for details. An estimate
of the last parameter (C (k)

0 )2, for k = 1 or k = 2, is given in Lemma 8. The proof of
the theorem now follows. ��

6 Numerical results

In this section, we present four numerical tests. The test problems are defined on a
unit cube domain, with a Dirichlet boundary condition and a constant right-hand side
f (x) = 100. For all the test problems, we use coefficient distributions with inclusions
across subdomain boundaries (faces and edges), as is illustrated in the Figs. 2 and 3,
and channels illustrated in Fig. 4. The coefficient either has a background-value of
1, or a significant value of 106. For any given distribution the region with high-value
coefficient is independent of mesh parameters. We use the PCG method as a solver,
with a stopping condition when the residual norm is reduced by a factor 10−6.

The algorithms have been implemented in MATLAB, using the functions
meshgrid and delaunayTriangulation for discretization, and routines from
PDEToolbox for assembling the stiffness and mass matrices. For the iterative
solver, we used pcgeig, an extension of MATLAB’s pcg routine, available at
m2matlabdb.ma.tum.de. Thepcgeig solver returns an estimate of the condition num-
ber for the preconditioned system. We use the built-in function eigs for solving the
eigenvalue problems.

The spectral components of our coarse spaces consist of local eigenvectors with
corresponding eigenvalues below a given threshold λ∗ (cf. Theorem 1). This threshold-
parameter makes the coarse spaces adaptive, determining the size of the coarse spaces
and the performance of the methods. In our experiments, we choose the thresholds
as c h

H , for some constant c. Another reasonable choice of threshold is the smallest
non zero eigenvalue of the eigenvalue problems with the uniform background-value
distribution. We refer to [18] for other threshold choices.

In Test 1 the coefficient distributions are inclusions on faces, as shown in Fig. 2. The
figure indicates five variants where the high conductivity regions (cells) are shown in
red. The distributions vary both in geometrical shape and in the number of separate
inclusions. The condition number estimate and the number of iterations are presented
in Table 1. Each row corresponds to a particular distribution. The first column lists
the condition number estimates when the coarse spaces have no enrichment, while the
next three columns have estimates corresponding to solutions with adaptive coarse
spaces for varying h. We observe in the first column that the jump in coefficient is
reflected in the condition numbers. From the last three columns, we observe that both
our suggested preconditioners improve the performance of the PCG method.

To have an idea of the number of eigenfunctions added to the coarse spaces in
Test 1, we have listed the lowest eigenvalues of the generalized eigenvalue problems
for the case H

h = 32, in Table 2. Each distribution in the first row of Fig. 2 represents
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Fig. 2 The distributions of Test 1. Regions with coefficient value α = 1e6 are shown in red. The inclusions
are in the faces in the xz−plane. From left to right in the first row, the distributions are called Face 1, Face
2, Face 3, and Face 4. The distribution called Face 1–4 is shown from two different angles in the second
row (color figure online)

Table 1 Condition number estimates and iteration counts (inside brackets) for Test 1

α distribution No enrichment Face enrichment with λFI
< λ∗

λ∗ = 0.0375 λ∗ = 0.0187 λ∗ = 0.0094
H/h = 8 H/h = 8 H/h = 16 H/h = 32

Vertex based coarse space

Face 1 3.53e5 (41) 20.87 (23) 39.27 (29) 75.41 (41)

Face 2 1.90e5 (40) 19.72 (22) 37.08 (29) 70.75 (42)

Face 3 2.22e5 (42) 18.48 (28) 32.60 (30) 62.00 (41)

Face 4 2.13e5 (114) 21.46 (23) 38.62 (30) 72.00 (39)

Face 1–4 3.42e5 (170) 18.49 (29) 24.52 (30) 45.29 (39)

α distribution No enrichment Face enrichment with λF < λ∗

λ∗ = 0.075 λ∗ = 0.035 λ∗ = 0.0187
H/h = 8 H/h = 8 H/h = 16 H/h = 32

Wirebasket based coarse space

Face 1 1.14e4 (34) 12.56 (19) 19.55 (24) 34.92 (32)

Face 2 9.23e1 (32) 12.84 (21) 20.36 (30) 35.18 (33)

Face 3 2.50e5 (42) 12.93 (22) 20.37 (27) 35.55 (33)

Face 4 1.21e5 (79) 12.90 (20) 19.54 (25) 34.75 (33)

Face 1–4 2.50e5 (152) 12.41 (24) 19.52 (32) 30.65 (34)

The rows correspond to the different α distributions as shown in Fig. 2, and the columns correspond to
either no enrichment or to an adaptive enrichment with a threshold denoted by λ∗
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Table 2 Showing the smallest eigenvalues (column wise) for the eigenvalue problems on the four different
faces, with inclusions, for H/h = 32

Face 1 Face 2 Face 3 Face 4

λFI
λF λFI

λF λFI
λF λFI

λF

0.0 6.1e−8 0.0 5.3e−8 0.0 5.0e−8 0.0 6.5e−8

6.1e−8 1.1e−7 5.6e−8 1.2e−7 1.6e−7 1.7e−7 7.9e−8 1.6e−7

7.5e−8 1.2e−7 1.7e−7 2.0e−7 5.4e−3 5.4e−3 7.9e−8 1.6e−7

2.5e−2 1.1e−1 1.3e−2 1.3e−2 5.4e−3 5.4e−3 1.6e−7 2.4e−7

1.3e−2 1.9e−2 1.9e−2 2.3e−7 2.6e−7

1.3e−2 2.3e−7 2.6e−7

5.0e−2 2.8e−7 3.2e−7

2.9e−7 3.2e−7

3.7e−7 3.8e−7

2.8e−2 1.4e−1

All the eigenvalues above the one in bold face are smaller than the threshold used in Test 1, cf. Table 1. The
eigenvalue in boldface is the first eigenvalue above the threshold. Here λFI

and λF denote the eigenvalues
of the vertex based and the wire basket based face eigenvalue problem, respectively

inclusions on one face. The eigenvalues in each column of Table 2 are from eigenvalue
problems on each of these faces respectively. Any eigenvalue printed in boldface is an
eigenvalue above the threshold. The first few eigenvalues in each column are several
magnitudes lower than the threshold. In all observed cases, the number of eigenvalues
that are several magnitudes lower than the threshold is equal to the number of separate
inclusions on that particular face. The number of eigenfunctions included into the
coarse space in each case is low.

In Test 2 the distributions in Fig. 2 are slightly modified. The distribution Face 1
is modified by changing the value of the coefficient in the region 1/16 < x < 7/16,
4/16 < y < 5/16 and 1/16 < z < 7/16 from 1 to 106. This new distribution
Face 1∗ connects the separate inclusions of Face 1 inside a subdomain. Similarly, the
distributions Face 2, Face 3 and Face 4 aremodified such that the separate inclusions in
each distribution are connected inside a subdomain. Thesemodifications do not change
the local eigenvalue problems and the eigenvalues in Table 2 also apply to Test 2. In
Test 2 the mesh parameters are fixed H = 1/2 and H/h = 32. The threshold is the
same as in Test 1. Additionally, we place a capping restriction on the number of basis
functions selected from each local eigenvalue problem.

The numerical results of Test 2 are presented in Table 3. Each row corresponds
to a specific distribution. The first column lists the results for the methods with no
enrichment. The second and third column lists the results for the methods with capped
adaptive coarse spaces. The last column lists the results for the methods with adaptive
coarse spaces without a cap beyond the threshold. The condition numbers of the first
column in Table 3 are notably lower then the condition numbers in the first column
of Table 1. From the last column of Table 3 we see that our method improves the
performance of PCG.
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Table 3 Condition number estimates and iteration counts (inside brackets) for Test 2

α distribution No enrichment Face enrichment with λFI
< 0.0094

Cap=1 Cap=2 Cap=3 No cap
H/h = 32 H/h = 32 H/h = 32 H/h = 32

Vertex based coarse space

Face 1 * 1.51e2 (54) 1.45e2 (46) 72.44 (41) 72.44 (41)

Face 2 * 1.60e2 (55) 1.21e2 (48) 68.38 (42) 68.38 (42)

Face 3 * 1.23e2 (52) 61.99 (48) 61.99 (45) 61.99 (40)

Face 4 * 1.37e2 (63) 1.21e2 (61) 1.21e2 (61) 63.75 (40)

α distribution No enrichment Face enrichment with λF < 0.0187

Cap= 0 Cap=1 Cap=2 No cap
H/h = 32 H/h = 32 H/h = 32 H/h = 32

Wirebasket based coarse space

Face 1 * 7.32e3 (53) 52.07 (41) 41.94 (35) 35.42 (33)

Face 2 * 80.59 (49) 45.07 (45) 38.41 (44) 35.45 (33)

Face 3 * 1.38e2 (49) 62.60 (44) 62.60 (39) 35.56 (33)

Face 4 * 4.05e4 (70) 1.90e4 (64) 1.58e2 (51) 35.34 (33)

The rows correspond to the different α distributions as shown in Fig. 2 with the modification that, for each
distribution, the inclusions have been connected inside a subdomains. In the columns results for different
levels of enrichment are listed. Here cap indicates an upper limit to the number of enrichments allowed
from any eigenvalue problem

In Test 3 the distribution has inclusions on edges. The inclusions are two rect-
angular slabs horizontally placed, as is illustrated by in Fig. 3. The slabs trigger the
solution of generalized eigenvalue problems both on edges and faces. The correspond-
ing eigenvalues from the generalized eigenvalue problems with H

h = 32 are presented
in Table 4. Due to the symmetry of the distribution, the eigenvalue problems on the
edges are identical. Moreover, there are only two unique eigenvalue problems on the
faces.

The results of Test 3 are given in Table 5. The first row lists results for the edge
distribution shown inFig. 3. The second row lists results for the distributionwhereEdge
and Face 1–4 are combined. The first column in the table lists the condition number
estimates for the coarse space with no enrichment, while the next three columns list
the results from solving the test problems with an adaptive coarse space for different
mesh sizes. From the results in the last three columns, we see that our preconditioner
improves the performance of PCG.

Up to now, we have seen that our method can handle various challenging distri-
butions on a small number of subdomains. In Test 4, we divide the unit cube into 64
subdomains. This decomposition leads to 27 vertex nodes, 108 edges, and 144 faces,
excluding all vertices, edges, and faces that are entirely part of the boundary of the
domain. The distribution in this test, see Fig. 4, are channels that are parallel to the y
axis and run through the entire domain touching the boundary at both sides. A third
of all the faces have 4 inclusions each. For this test problem, we use a heterogeneous

right-hand side f (x, y, z) = 105e−5
√

(x−0.25)2+(y−0.25)2+(z−0.25)2 .
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Fig. 3 In Test 3 the distributions are the rectangular slabs with large coefficients, α = 106, shown in red.
The slabs are inclusions on the vertical edges. Here they are illustrated by their projections on to the xz
plane (left figure) and the yz plane (right figure) (color figure online)

Table 4 Showing the smallest eigenvalues (column wise) for the eigenvalue problems on the edge and the
two face types, with inclusions, for H/h = 32

Each vertical edge Each face on the xz plane Each face on the yz plane

λE λFI
λF λFI

λF

3.3e−8 0.0 7.2e−3 0.0 2.7e−2

7.5e−8 4.5e−8 4.0e−2 5.8e−7

6.8e−2 8.2e−3 3.8e−3

1.8e−2 1.4e−2

3.1e−2 3.2e−2

3.1e−2 3.9e−2

4.3e−2

Again all the eigenvalues above the one in bold face are below the threshold used in Test 3, cf. Table5. The
eigenvalue in boldface is the first eigenvalue above the threshold. Here λE denotes the eigenvalues of the
edge eigenvalue problem, and λFI

and λF denotes the eigenvalues of the face eigenvalue problems for the
vertex based and the wire basket based coarse space, respectively

The results of Test 4 are provided in Table 6. The two rows present results for
H
h = 8 and H

h = 16. The columns list the thresholds, the number of coarse functions
in the non-spectral part, the number of coarse functions in the spectral part, and the
condition number estimates for the adaptive coarse spaces. The first 4 columns are
for the wire basket based preconditioner, and the 4 last columns are for the vertex
based preconditioner. Both methods show condition numbers that are independent of
the coefficient value in the test problem.
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Table 5 Condition number estimates and iteration counts (inside brackets) for the two preconditioners
applied in Test 3

α distribution No enrichment Edge-, Face enrichment: λE < λ∗, λFI
< λ∗

λ∗ = 0.0375 λ∗ = 0.0187 λ∗ = 0.0094
H/h = 8 H/h = 8 H/h = 16 H/h = 32

Vertex based coarse space

Edge 8.29e5 (69) 33.84 (27) 37.53 (35) 44.98 (46)

Face 1–4 and Edge 3.90e5 (167) 25.72 (31) 34.96 (39) 46.95 (49)

α distribution No enrichment Face enrichment: λF < λ∗

λ∗ = 0.075 λ∗ = 0.035 λ∗ = 0.0187
H/h = 8 H/h = 8 H/h = 16 H/h = 32

Wirebasket based coarse space

Edge 21.07 (26) 12.49 (26) 18.28 (27) 31.42 (33)

Face 1–4 and Edge 1.26e5 (99) 15.63 (25) 21.09 (31) 29.26 (32)

The rows correspond to different α distributions as shown in Figs. 2 and 3, and the columns correspond to
either no enrichment or to an adaptive enrichment with a threshold denoted by λ∗

Table 6 Condition number estimates and iteration counts (inside brackets) for Test 4

H/h Adaptive wire coarse space Adaptive vertex coarse space

λ∗. #IW #IF Cond. λ∗. #IV #IF Cond.

8 0.075 783 192 11.09 (20) 0.0375 27 288 11.14 (22)

16 0.035 1647 192 16.10 (25) 0.0187 27 288 22.04 (33)

Here λ∗ denotes the threshold of the local eigenvalue problems. Moreover, #IW denotes the number of
basis functions connected to wire nodes, while #IV denotes the number of basis functions connected to
vertex nodes. Finally, #IF denotes the number of from the adaptive enrichments

Fig. 4 The distribution in Test 4 shown from two angles. The domain is divided into 64 subdomains.
Through all the subdomains there are long channels along the y-axis touching the boundary on both sides.
The elements indicated in red have a coefficient of 106 in the rest of the domain the coefficient is 1 (color
figure online)
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