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Abstract
This work is concerned with linear matrix equations that arise from the space-time
discretization of time-dependent linear partial differential equations (PDEs). Such
matrix equations have been considered, for example, in the context of parallel-in-time
integration leading to a class of algorithms called ParaDiag. We develop and analyze
two novel approaches for the numerical solution of such equations. Our first approach
is based on the observation that the modification of these equations performed by
ParaDiag in order to solve them in parallel has low rank. Building upon previous work
on low-rank updates of matrix equations, this allows us to make use of tensorized
Krylov subspace methods to account for the modification. Our second approach is
based on interpolating the solution of the matrix equation from the solutions of sev-
eral modifications. Both approaches avoid the use of iterative refinement needed by
ParaDiag and related space-time approaches in order to attain good accuracy. In turn,
our new algorithms have the potential to outperform, sometimes significantly, existing
methods. This potential is demonstrated for several different types of PDEs.
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1 Introduction

This paper is concerned with the efficient numerical solution of matrix equations that
arise from implicit time integration of large systems of ordinary differential equations
(ODEs). More specifically, we treat generalized Sylvester equations of the form

AXBT
2 + MXBT

1 = F, (1)

where F ∈ R
n×nt and the columns of the unknown matrix X ∈ R

n×nt contain
the approximate solution of the ODE at nt time steps with constant step size. The
matrices A, M ∈ R

n×n are large and sparse, as they arise, for example, from the
finite difference/element spatial discretization of a time-dependent partial differential
equation (PDE). The matrices B1, B2 ∈ R

nt×nt are banded Toeplitz matrices and
contain the coefficients of the time integrator. We assume throughout this work that
M and B2 are invertible.

Vectorizing (1) and using the Kronecker product⊗, we obtain the equivalent nnt ×
nnt linear system

(B2 ⊗ A + B1 ⊗ M) x = f, (2)

where x = vec(X) and f = vec(F). While the theoretical properties of generalized
Sylvester equations are well understood and various numerical solution strategies
have been developed [6, 46], the structure of the matrix coefficients in (1) comes with
particular challenges that are addressed in this work.

Illustrative example. To illustrate (1) and motivate our developments, we consider
the ODE {

M u̇(t) + Au(t) = f(t), t ∈ (0, T ],
u(0) = x0,

(3)

with u(t) ∈ R
n . When such an ODE arises from the finite element discretization of a

linear time-dependent PDE then A and M correspond to the stiffness matrix and the
mass matrix, respectively, and M is symmetric positive definite. When using a finite
difference discretization, we have M = In . The implicit Euler method with step size
�t = T /nt applied to (3) requires the successive solution of the linear systems

(�t−1M + A)xk = fk + �t−1Mxk−1, k = 1, . . . , nt , (4)

where xk ≈ u(k · �t). Stacking these equations yields an nnt × nnt linear system of
the form
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⎡
⎢⎢⎢⎣

�t−1M + A
−�t−1M �t−1M + A

. . .
. . .

−�t−1M �t−1M + A

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x1
x2
...

xnt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
f1 + �t−1Mx0

f2
...

fnt

⎤
⎥⎥⎥⎦ .

The system matrix can be rewritten in the form B2 ⊗ A+ B1 ⊗ M from (2) by setting

B1 = 1

�t

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦ , B2 = Int . (5)

In turn, the linear system can be rephrased as a matrix equation of the form (1).
Taking a closer look at (2), we identify the factors that have a role in determining

such a peculiar structure. The Kronecker structure of the coefficient matrix is due
to the time-independence of the coefficients of the linear ODE (3). The matrices
B1, B2 are Toeplitz because of the use of a constant step size. Indeed, this property is
maintained when replacing implicit Euler by implicit multistep methods [27] such as
BDF (backward differentiation formula). When using Runge–Kutta integrators [27],
we still get banded Toeplitz matrices B1, B2 but – as we will see in Sect. 4 – we have to
embed A, M into larger matrices in order to arrive at a matrix equation of the form (1).

Existing work. Classical time integration approaches for ODEs proceed by solving
the discretized equations, like (3), sequentially first for k = 1, then for k = 2, and
so on. This limits the potential for parallelizing the implementation of the integrator.
The Parareal algorithm [22, 33] avoids this limitation by combining, iteratively, coarse
(cheap) time steps that are performed sequentially with fine (expensive) time steps that
are performed in parallel. There have been many developments and modifications of
Parareal during the last two decades; we refer to [15, 21] for overviews and a historical
perspective. Our work relates to the so called ParaDiag algorithms [20], which proceed
somewhat differently from Parareal by explicitly exploiting the structure of the matrix
Eq. (1). In passing, we mention that linear ODEs with constant coefficients, like
the model problem (3), can be turned into an independent set of linear systems by
combining an integral transform, like the Laplace transform, with quadrature for the
numerical evaluation of the inverse transform; see [15, Sec. 5.5] and the references
therein.

The basic idea of ParaDiag is simple: If B−1
2 B1 can be diagonalized by a similarity

transformation then (1) decouples into nt linear systems, which can be solved in
parallel. The pitfall of this approach is that the most straightforward choice of time
steps, constant time steps, leads to non-diagonalizable matrices; indeed, the matrix
B−1
2 B1 in (5) is one big Jordan block. When choosing a geometrically increasing

sequence of time steps, such as �t j = �t1τ j−1 for some τ > 1 then B−1
2 B1 has

mutually distinct eigenvalues and thus becomes diagonalizable [35]. However, even
when using a second order method in time, e.g., the Crank-Nicolson method, the
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condition number of the transformation matrix grows rapidly as nt increases, which
severely limits the number of time steps [18, 19].

A second class of ParaDiag algorithms allows for uniform time steps and perturbs
B1, B2 to enforce diagonalizability. More specifically, the perturbed system matrix
takes the form

Pα = C (α)
2 ⊗ A + C (α)

1 ⊗ M, (6)

where C (α)
1 ,C (α)

2 are Strang-type [9, 38, 48] α-circulant matrices1 constructed from
the Toeplitz matrices B1, B2. This matrix can be used within a stationary iteration
Pαx( j) = (Pα − B2 ⊗ A− B1 ⊗ M)x( j−1) + f [34] or as a preconditioner for GMRES
[10, 37] applied to (2). In the solution of linear systems with Pα one takes advantage
of the fact that the matrices C (α)

1 ,C (α)
2 are simultaneously diagonalized by a scaled

Fourier transform:

�∗DαC
(α)
1 D−1

α � = diag(λ1,1, . . . , λ1,nt ),

�∗DαC
(α)
2 D−1

α � = diag(λ2,1, . . . , λ2,nt ),

where� ∈ C
nt×nt is the discrete Fourier transformmatrix and Dα = diag(1, α

1
nt , . . . ,

α
nt−1
nt ). In turn, Pα is block diagonalized:

(�∗Dα ⊗ In)Pα(D−1
α � ⊗ In) =

⎡
⎢⎣

λ1,1M + λ2,1A
. . .

λ1,nt M + λ2,nt A

⎤
⎥⎦ .

Using the fast Fourier transform (FFT), this allows us to compute the solution of a
linear system, with Pα by combining FFT with the (embarrassingly parallel) solution
of nt linear systems with the matrices (λ1, j M + λ2, j A, j = 1, . . . , nt . This proce-
dure, rephrased for the matrix equation corresponding to Pαx = f , is summarized
in Algorithm 1. Note that, even though the original ODE (3) features real matrices,
Algorithm 1 requires the solution of complex linear systems, which is more expensive
(often by a factor 2–4) than solving real linear systems. This disadvantage of having to
pass to complex arithmetic is shared by all diagonalization based methods discussed
in this work.

1 On a continuous-time level this strategy can viewed as turning the initial value problem into a boundary
value problem with periodic boundary conditions and, hence, it is sometimes called waveform relaxation
[23, 51].
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The use of the preconditioner Pα can dramatically accelerate the convergence of an
iterative solver for (2). This has been observed for parabolic problems in [37] when
using Pα with α = ±1 as a preconditioner in GMRES. In [20], wave propagation
problems (integrated in time with a leap-frog finite difference scheme) have been
successfully treated by choosing a relatively small value for 0 < α < 1.Note, however,
thatα cannot be chosen arbitrarily small because otherwise the condition number of the
matrix Dα (given by α(1−nt )/nt ≈ 1/α) explodes and, in turn, roundoff error impedes
convergence. In practice, this means that the choice of α needs to strike a compromise
and there is no choice of α that yields sudden convergence. In turn, several iterations
are needed to attain good accuracy, which adds significant computational overhead
and communication cost because every iteration calls Algorithm 1 once.

New contributions. In this paper, we propose two novel strategies that avoid the
overhead incurred by iterative procedures for solving (2).

Our first method, presented in Sect. 2, exploits the trivial observation that C (α)
1 −

B1 and C (α)
2 − B2 have very low rank. Thus, the Sylvester equation addressed by

Algorithm 1 can be viewed as a low-rank modification of the original Eq. (1), which
allows us to apply the low-rank update from [30] for linear matrix equations. This
update corrects the output of Algorithm 1 by solving a Sylvester equation with the
same coefficients as (1) but with a different right-hand side that has low rank. The
main novelty of Sect. 2 is in the analysis of the low-rank structure of the solution to
this equation and the development of efficient algorithms.

Our secondmethod, presented inSect. 3, takes an interpolation point of view:When-
ever we solve the linear system Pαx = f we are actually evaluating a vector-valued
function x(α), depending on the complex parameter α, such that x(0) corresponds
to the solution of (2). More precisely, this function can be efficiently and accurately
evaluated on a scaled unit circle. We suggest to construct an approximation for x(0)
via a linear combination of x(α) evaluated at all dth order roots of a complex number
for some small value of d. This strategy is highly parallelizable as it requires to solve
d completely independent linear systems with coefficient matrices of the form Pα .
Moreover, it applies also to the cases where the matrices δB(α)

j are not low-rank, for
example, when a time fractional differential operator is involved.

Section 4 extends our framework to implicit Runge–Kutta time integrators.
Section 5 is dedicated to a range of numerical experiments that highlight the advan-

tages of our method for a broad range of situations.

2 Low-rank update approach

For a lower triangular banded Toeplitz matrix B, Strang’s α-circulant preconditioner
[38] is obtained from reflecting the lower band to the top right corner and multiplying
it by α:
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⎡
⎢⎢⎢⎢⎢⎢⎣

b0
b1 b0
...

. . .
. . .

bw

...
. . .

. . .

. . .
. . .

. . .
. . .

bw ... b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎢⎢⎢⎣

b0
b1 b0
...

. . .
. . .

bw

...
. . .

. . .

. . .
. . .

. . .
. . .

bw ... b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ α

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bw ... b1
. . .

...
bw

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular, this implies that the rank of this modification is bounded by the width of
the lower bandwidth. Applied to the time stepping matrices B1, B2, we obtain that

C (α)
1 = B1 + δB(α)

1 , C (α)
2 = B2 + δB(α)

2

for certain low-rank matrices δB(α)
1 , δB(α)

2 . For instance, for the implicit Euler method

(see (5)) we have δB(α)
1 = − α

�t e1e
T
nt , where e j denoting the j th unit vector of length

nt , and δB(α)
2 = 0. Inspired by [30] we write the solution of (1) as X = X0 + δX ,

where

AX0(C
(α)
2 )T + MX0(C

(α)
1 )T = F, (7)

AδXBT
2 + MδXBT

1 = AX0(δB
(α)
2 )T + MX0(δB

(α)
1 )T . (8)

After Eq. (7) is solved via Algorithm 1, the correction Eq. (8) becomes a generalized
Sylvester equation in δX that has the same coefficients as (1) but a different right-hand
side of rank at most rank(δB(α)

1 ) + rank(δB(α)
2 ). This remarkable property enables us

to make use of low-rank solvers for linear matrix equations (see [46] for an overview)
in order to approximate δX . Note that, the choice of α �= 0 has no influence on this
strategy; for this reason we always choose α = 1 when using the low-rank update
approach. The resulting procedure is summarized in Algorithm 2.

Remark 1 It is not uncommon that the right-hand sidematrix F of (1) has (numerically)
low rank because, for example, the inhomogeneity f of the ODE (3) is constant or
varies smoothly with respect to t . In such a situation, a low-rank solver can be applied
directly to (1) and the following approach has been suggested by Palitta [39]: A block
Krylov subspace method is used for reducing the spatial dimension combined with an
application of the Shermann–Morrison–Woodbury formula to the resulting reduced
equation. Our low-rank approach has the advantage that it is agnostic to properties of
F , at the expense of having to solve (7). In principle, Palitta’s method can be applied
to solve the correction Eq. (8) but we found it more efficient for large nt to use a
two-sided approach that reduces the temporal dimension as well.
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2.1 Solution of correction equation

In the following, we discuss the application of low-rank solvers to the correction
Eq. (8). In view of the (assumed) invertibility of M and B2 we replace (8) by the
following Sylvester matrix equation:

ÃδX + δX B̃T = C, (9)

where

Ã = M−1A, B̃ = B−1
2 B1, C = M−1(AX0(δB

(1)
2 )T + MX0(δB

(1)
1 )T )B−T

2

and rank(C) ≤ k := rank(δB(1)
1 ) + rank(δB(1)

2 ) 	 min{n, nt }. For given factoriza-

tions δB(1)
1 = U1V ∗

1 and δB(1)
2 = U2V ∗

2 , a low-rank factorization C = UV ∗, with
U ∈ R

n×k and V ∈ R
nt×k , is obtained by setting

U = [M−1AX0V2, X0V1], V = [B−1
2 U2, B−1

2 U1]. (10)

Alternatively, when M is symmetric positive definite and its Cholesky factorization
M = LLT is available, a possible symmetry of A is preserved by considering

qAδ qX + δ qX qBT = qC, (11)

with qA = L−1AL−T , qB = B̃, qC = L−1(AX0(δB
(1)
2 )T + MX0(δB

(1)
1 )T )B−T

2 , and
δ qX = LT δX . In analogy to (10) an explicit rank-k factorization of qC can be derived.
In the rest of this section we focus on analyzing and solving (9) but we remark that
our findings extend to (11) with minor modifications.

Various numerical methods have been developed to treat large-scale Sylvester
equations with low-rank right-hand side, including the Alternating Direction Implicit
method (ADI) [14, 40] and theRational Krylov SubspaceMethod (RKSM) [5, 26, 42].
These methods compute approximate solutions of the form δ̃X = WY Z∗, where W
and Z are bases of (block) rational Krylov subspaces generated with the matrices Ã, B̃
and starting block vectors U and V , respectively. More precisely, given two families
ξ = {ξ1, . . . , ξ	}, ψ = {ψ1, . . . , ψ	} ⊂ C of so-called shift parameters, W and Z are
chosen as bases of the following subspaces:

RK( Ã,U , ξ) = span
(
(ξ1 I − Ã)−1U , . . . , (ξ	 I − Ã)−1U

)
,

RK(B̃, V , ψ) = span
(
(ψ1 I − B̃)−1V , . . . , (ψ	 I − B̃)−1V

)
. (12)

When shifts are repeated, the matrix power is increased. For example, when a single
shift ξ1 is repeated 	 times, one uses span

(
(ξ1 I − Ã)−1U , . . . , (ξ1 I − Ã)−	U

)
. We

refer to the relevant literature [5, 13, 46] for a complete description of the computation
of the factors W ,Y , Z in these methods.

Let us comment on some implementation aspects of RKSM, which will be the
method of choice in our implementation of Algorithm 2, line 4. In RKSM, the middle
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factor Y in the approximation δ̃X = WY Z∗ is obtained by solving a compressed
matrix equation, which does not contribute significantly to the overall computational
time as long as the dimensions of the Krylov subspaces remain modest. ComputingW
and Z requires to solve shifted linear systems with the matrices Ã, B̃; these operations
can be performed without forming M−1A and B−1

2 B1 explicitly, by means of the
relations

(ξ j I − Ã)−1v = (ξ j M − A)−1Mv, (ψ j I − B̃)−1v = (ψ j B2 − B1)
−1B2v.

In particular,we can still leverageproperties like sparsity in A andM , or the bandedness
of B1, B2, when solving shifted linear systems with Ã, B̃. Our implementation of
RKSM relies on the Matlab toolbox rk-toolbox [7] for generating the factors
W , Z . Finally and importantly, the selection of the shift parameters ξ, ψ strongly
affects the convergence of RKSM and we discuss suitable choices in the following
section.

2.2 Low-rank approximability of the correction equation

In this section, we analyze the numerical low-rank structure of the solution δX to the
correction Eq. (9), which also yields suitable choices of shift parameters in RKSM
discussed above.

By the Eckart-Young-Mirsky theorem, δX admits good low-rank approximations if
its singular values σ j (δX) decay rapidly. Several works, including [1, 2, 41, 43], have
established singular value decay bounds for solutions of Sylvester matrix equations.
In particular, the framework presented in [4] applies to (9) and shows that [4, P. 323]

σ1+k j (δX) ≤ min
r(z)∈R j, j

‖r( Ã)‖2‖r(−B̃)−1‖2‖δX‖2, (13)

where R j, j denotes the set of rational functions having numerator and denominator
of degree at most j . Choosing a good candidate for the rational function r is difficult,
especially when Ã and/or B̃ are non-normal. To circumvent this difficulty, we loosen
the bound (13) by considering the numerical rangeW( Ã) = {x∗Ax : ‖x‖2 = 1} ⊂ C.
A result by Crouzeix and Palencia [11] states that

‖r( Ã)‖2 ≤ (1 + √
2) max

z∈W( Ã)
|r(z)| ≤ (1 + √

2)max
z∈E |r(z)|,

where the constant 1 + √
2 can be omitted when A is normal and the set E ⊇ W( Ã)

is chosen to feature a simple geometry, for which the eventual rational approximation
problem admits explicit solutions. Similarly, one has
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‖r(−B̃)−1‖2 ≤ (1 + √
2)max

z∈F |r(z)|−1 = (1 + √
2)
(
min
z∈F |r(z)|)−1

for any set F ⊂ C with F ⊇ W(−B̃). Inserting these inequalities into (13), we arrive
at

σ1+k j (δX)

‖δX‖2 ≤ (1 + √
2)a Z j (E, F), Z j (E, F) := min

r(z)∈R j, j

maxz∈E |r(z)|
minz∈F |r(z)| ,

where the exponent a satisfies a = 0 if both Ã, B̃ are normal, a = 1 if one of the two
matrices is normal, and a = 2 otherwise.

The quantity Z j (E, F) and the related optimization problem are known in the
literature as the Zolotarev number and Zolotarev problem for the sets E and F [4,
52]. Studying the Zolotarev problem is not only important from a theoretical but also
from a computational point of view because identifying an extremal rational function
r∗
j (z) for Z j (E, F) allows for the fast solution of (9). Indeed, running j steps of

ADI or RKSM with shift parameters given by the zeros and poles of r∗
j (z) ensures

a convergence rate not slower than the decay rate of Z j (E, F) [3, 32, 50]. A major
complication of this construction is the need for choosing the sets E, F . On the one
hand, it is desirable to choose E, F such that they enclose the numerical ranges of
Ã, B̃ as tightly as possible. On the other hand, explicit solutions for Z j (E, F) are
known only for a few selected geometries of E and F , including: two disjoint real
intervals [52], the two connected components of the complement of an annulus [25],
two disjoint discs [47]. Therefore, one usually encloses the numerical range by a disc
or an interval (in the case of Hermitian matrices). In Sects. 2.2.1 and 2.2.2 below, we
discuss two geometries in more detail: the case of two discs and the case of a disc
and an interval. These enclosures will be used for generating the shift parameters in
Algorithm 2 for most of our numerical examples.

2.2.1 Solution of the Zolotarev problem for two disjoint discs

Letting B(x, ρ) denote the closed disc with center x ∈ C and radius ρ > 0, we
consider the Zolotarev problem for

E = B(xE , ρE ), F = B(xF , ρF ), |xE − xF | > ρE + ρF .

Starke [47] addressed the case xE , xF ∈ Rbyexplicitly constructing a rational function
r∗
1 (z) = z−q∗

z−p∗ with q∗ ∈ Eo, p∗ ∈ Fo, and |r∗
1 (z)| being constant on ∂E and on ∂F .

In view of the (generalized) near-circularity criterion [47, Theorem 3.1], this implies
the optimality of the rational function [r∗

1 (z)] j for Z j (E, F), j ≥ 1.
The general case of two disjoint discs (with xE , xF ∈ C not necessarily on the

real line) can be derived from Starke’s result by relying on the invariance property of
Zolotarev problems under Moebius transformations; see also [44, Example VIII.4.2].
For completeness and convenience of the reader, we provide the complete transfor-
mation that maps E, F to the complement of an annulus. More precisely, a Moebius
map � is constructed such that �(F) is a closed disc centered at the origin and �(E)

123



184 D. Kressner et al.

Fig. 1 Action of the Moebius map � = �3 ◦ �2 ◦ �1 on the sets E (blue) and F (red)

is the complement of a larger open disc centered at the origin. We compose � from
three simpler Moebius maps � j , j = 1, 2, 3, as follows (see also Fig. 1):

• �1(z) = z−xE
ρE

maps E to the unit disc while F remains a disjoint disc,

• �2(z) = z−1 maps �1(E) to the exterior of the unit disc and �1(F) to a disc
enclosed by the unit circle,

• �3(z) = z−α
z−β

maps �2(�1(F)) to the exterior of a disc with center 0 and
�2(�1(E)) to a disc centered at 0 and enclosed by ∂�3(�2(�1(F))).

The parameters α, β ∈ C are chosen as the so-called common inverse points
for the circles ∂�2(�1(E)) = ∂B(0, 1) and ∂�2(�1(F)) [28, Section 4.2]. Setting
�2(�1(F)) =: B(̃xF , ρ̃F ) the values of α, β from satisfying the two equations

αβ = 1, (α − x̃F )(β − x̃F ) = ρ̃2
F .

Clearly, one solution is given by

β = α−1, α =
[
|̃xF |2 + 1 − ρ̃2

F +
√

(|̃xF |2 + 1 − ρ̃2
F )2 − 4|̃xF |2

]
/(2x̃F ).

(14)

Observe that,�1(F) is a disc with center�1(xF ) �= 0 and radius ρF/ρE . In particular,
�1(F) attains its maximum and minimum modulus at the elements

x1 = �1(xF ) + �1(xF )

|�1(xF )|
ρF

ρE
, x2 = �1(xF ) − �1(xF )

|�1(xF )|
ρF

ρE
.

Now,�2(z) = z−1 maps x1 and x2 into theminimumandmaximummodulus elements
of B(̃xF , ρ̃F ), respectively. This implies that x̃F , ρ̃F take the following values:

x̃F = �2(x1) + �2(x2)

2
, ρ̃F = |�2(x1) − �2(x2)|

2
.

Together with (14), this allows us to compute α, β explicitly and evaluate �. The
complete expressions for � and �−1 read as follows:

�(z) = ρE − α(z − xE )

ρE − α−1(z − xE )
, �−1(z) = (α−1xE + ρE )z − αxE − ρE

α−1z − α
.
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Fig. 2 Action of the Moebius map � = �2 ◦ �1 on the sets E (blue) and F (red)

By the near-circularity criterion [47, Theorem 3.1], an extremal rational function
for the complement of an annulus centered at 0 is z j , having the only pole ∞ and the
only zero at 0. Thus, an optimal rational function for the original problem is given by

r∗
j (z) =

(
z−�−1(0)
z−�−1(∞)

) j
. The pole p∗ and zero q∗ are given by

p∗ = �−1(∞) = xE + ρE

α−1 , q∗ = �−1(0) = xE + ρE

α
. (15)

Since � maps the boundaries of E and F to the boundaries of the annulus, it follows
that the Zolotarev numbers are given by

Z j (E, F) = η j ,

η= |�(xE + ρE )|
|�(xF + ρF )| =

∣∣∣∣ (1 − α)(ρE−α−1(xF+ρF − xE ))

(1 − α−1)(ρE−α(xF + ρF − xE ))

∣∣∣∣ < 1. (16)

2.2.2 Quasi-optimal solution of the Zolotarev problem for a disc and an interval

Let us now consider the situation of a disc and a disjoint interval:

E = B(xE , ρE ), F = [a, b], xE ∈ R, xE + ρE < a or xE − ρE > b.

Similarly to the previous section, we build a Moebius transformation that recasts
Z j (E, F) as a Zolotarev problem for which a (quasi-optimal) solution is known.
More specifically, we let � = �2 ◦ �1 where (see also Fig. 2):

• �1(z) = �1(z) maps E to the unit disc while F remains a real disjoint interval,
• �2(z) = z+1

z−1 maps �1(E) to the closed left half of the complex plane and �1(F)

to an interval [ã, b̃] of positive real numbers.

A straightforward calculation yields explicit expressions for � and its inverse:

�(z) = z − xE + ρE

z − xE − ρE
, �−1(z) = (xE + ρE )z − xE + ρE

z − 1
.

123



186 D. Kressner et al.

By the maximum modulus principle, it suffices to consider the boundary of �(E)

and thus the transformed Zolotarev problem takes the form

Z j (∂�(E),�(F)) = Z j (iR, [ã, b̃]) = min
r(z)∈R j, j

maxz∈iR |r(z)|
minz∈[ã,b̃] |r(z)|

. (17)

Let r̃ j denote the extremal rational function for the Zolotarev problem Z j ([−b̃,−ã],
[ã, b̃]), that is, the imaginary axis is replaced by [−b̃,−ã]. This function has been
extensively studied in the literature; see [4, Sec. 3.1] and the references therein. In
particular, it holds that

r̃ j (z) =
j∏

i=1

z + ψ̃ j,i

z − ψ̃ j,i
,

where the poles ψ̃ j,i ∈ [ã, b̃], i = 1, . . . , j , can be expressed in closed form via
elliptic integrals. Note that r̃ j (−z) = 1/r̃ j (z) and the maximum absolute value of
r̃ j is 1, which is assumed throughout the imaginary axis. By [4, Corollary 3.2], it

holds that Z j ([−b̃,−ã], [ã, b̃]) ≤ 4η−2 j with η = exp

(
π2

2 log(4b̃/ã)

)
. Inserting r̃ j

into (17) gives the following upper bound for Z j (iR, [ã, b̃]):

δ j := maxz∈iR |r̃ j (z)|
minz∈[ã,b̃] |r̃ j (z)|

= 1

minz∈[ã,b̃] |r̃ j (z)|
=

√
Z j ([−b̃,−ã], [ã, b̃]) ≤ 2η− j .

(18)
It has been shown in [12, 31] that r̃ j satisfies the necessary optimality conditions for
(17) and that it is within a factor 2 of the optimal solution: δ j ≤ 2Z j (iR, [ã, b̃]). To
the best of our knowledge, it is still an open question whether r̃ j is, in fact, an extremal
rational function for (17). In summary, we have

Z j (E, F) ≤ 2 exp

( − jπ2

2 log(4b̃/ã)

)
(19)

with a quasi-optimal solution for Z j (E, F) given by

r̂ j (z) =
j∏

i=1

z − �−1(−ψ̃ j,i )

z − �−1(ψ̃ j,i )
. (20)

The poles of the rational function (19) are not nested, that is, the poles of r̂ j (z) are
different from the ones of r̂ j+1(z). This is a disadvantage when using the poles of r̂ j (z)
in an iterative method (such as ADI or RKSM) where usually the number of steps (the
parameter j) is not known a priori. Choosing j adaptively would require to restart
the method from scratch whenever j is changed. In such a situation it is preferable to
use a sequence of rational functions with nested poles. The method of equidistributed
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sequences (EDS) [12, Section 4] allows the generation of a nested sequence of poles ξi ,
i = 1, 2, . . . , such that the rational functions

∏ j
i=1

z+ξi
z−ξi

have asymptotically optimal

convergence rates for Z j ([−b̃,−ã], [ã, b̃]) as j increases, see also [36, Section 3.5].
In analogy with (20), the nested asymptotically optimal zeros and poles for Z j (E, F)

are given by �−1(−ξi ) and �−1(ξi ), respectively. In the following example and more
generally in Sect. 5, we demonstrate that the shift parameters computed by means of
EDS yield convergence rates very close to the ones obtained with the optimal solution
of Z j ([−b̃,−ã], [ã, b̃]).
Example 1 Let us consider the following 1D heat equation from [16, Section 7.1]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = uxx + f (x, t), x ∈ � := [0, 1], t ∈ [0, 1]
u ≡ 0, on ∂�,

u(x, 0) = 4x(1 − x), at t = 0,

f (x, t) = hmax{1 − |c(t) − x |/w, 0}, c(t) = 1
2 + ( 12 − w) sin(2π t),

(21)

with w = 0.05 and h = 100. Discretizing in space with second order central differ-
ences and in time with the implicit Euler method on a uniform n × nt grid yields a
matrix equation of the form AX + XBT

1 = F with A ∈ R
n×n and B1 ∈ R

nt×nt are the
matrices of centered and backward differences with respect to the x and t variables.
For this example we set n = nt = 1000 and rescale the equation by multiplying both
sides with �t . We focus on solving the correction equation

AδX + δXBT
1 = −X0eneT1 , (22)

where X0 satisfies AX0 + X0(C
(1)
1 )T = F . For this purpose, we use RKSM based on

one of the rational functions constructed above. The poles and zeros of the rational
function determine the shifts in the rational Krylov subspaces for A and B1, respec-
tively, see (12). We consider the following choices:

2DISCS single shifts p∗ and q∗ resulting from the Zolotarev problems with 2 discs,
see (15);

ZOL-DI optimal shifts resulting from the Zolotarev problem with a disc and an
interval, see (20);

EDS nested, asymptotically optimal shifts resulting from the Zolotarev problem
with a disc and an interval; the computation of equidistributed shifts is
described in [36, Section 3.5].

EK alternating shifts 0 and ∞, corresponding to the extended Krylov method
[45].

The numerical ranges of thematrices A, B1, which determine the sets E, F , are known
analytically: W(B1) = {z : |z + 1| ≤ cos(π/(nt + 1))} and W(A) = [λmin, λmax]
with λmin = (2−2 cos(π/(n+1))) (n+1)2

nt
and λmax = (2−2 cos(nπ/(n+1))) (n+1)2

nt
.

We can directly use these sets for generating the shift parameters in EDS and ZOL-DI,
while 2DISCS uses the (suboptimal) inclusionW(A) ⊂ {z : |z−(λmax+λmin)/2| ≤
(λmax − λmin)/2}.
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Fig. 3 Relative error convergence histories of RKSM for (9), in the case of the 1D heat equation (Eq. (22)),
for various choices of the shift parameters

Letting δ̃X denote the approximate solution produced by one of the choices above,
Fig. 3 reports the relative error history ‖δ̃X − δX‖2/‖δX‖2, where δX is a benchmark
solution computed via the lyap command of Matlab, as the dimension of the rational
Krylov subspaces increases. Finally, we report the relative error associated with the
truncated singular values decomposition of δX to show the best error attainable. The
results are shown in Fig. 3 togetherwith the decay bounds (16) (Decay 2DISCS) and
(19) (Decay ZOL-DI). The observed convergence of the residuals clearly highlights
the advantage of choosing shifts via the Zolotarev problem with a disc and an interval,
either optimally (ZOL-DI) or asymptotically optimally (EDS).

2.3 Cost analysis of Algorithm 2

In order to compare with our second approach in the next section, we briefly discuss
the cost of Algorithm 2 as well as the potential for carrying out (embarrassingly)
parallel computations. Let Csys denote the maximum cost of solving a lineaear system
involving a linear combinationr system with a linear combination of the matrices A
and M , for a constant number of right-hand sides, respectively; note that, Csys is also
an upper bound for the cost of solving with A or M , individually. The cost of a matrix–
vector operation with the banded matrices B1, B2 is O(nt ), which is negligible. We
may assume k = O(1), which holds for all time discretization schemes discussed in
this work. We assume that RKSM converges after 	 iterations to fixed accuracy and
that the shift parameters are all different, as it happens, for instance, in EDS. If A is
symmetric positive definite and its condition number grows polynomially with n (as,
e.g., for finite difference or finite element discretizations of elliptic operators) then the
bound (19) predicts 	 = O(log n). RKSM needs to solve O(	) linear systems at cost
Csys each for generating the left factor W of the approximate solution δX ≈ WY Z∗.
The (re)orthogonalization of the bases W , Z accounts for another O((n + nt )	2)
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operations. As we expect 	 to be small, the cost for computing Y as the solution
of the compressed equation is negligible. When M �= In , computing the low-rank
factorization at line 3 requires an additional constant number of linear systems solves.
By adding the cost of Algorithm 1 called in line 2 of Algorithm 2 we obtain the overall
complexity

O
(
(nt + 	)Csys + (n + nt )	

2 + nnt log(nt )
)

.

In terms of parallelization, note that the linear systems solves of Algorithm 1 are
embarrassingly parallel on up tont cores. In this situation, the cost reduces toO(	Csys+
(n+nt )	2 +nnt log(nt )) for each of the nt cores. A further reduction can be obtained
by making use of parallel implementations of RKSM [8] and FFT.

3 An evaluation interpolation approach

As pointed out in the introduction, existing ParaDiag algorithms replace (1) with

AX(C (α)
2 )T + MX(C (α)

1 )T = F (23)

for fixed α, where C (α)
1 ,C (α)

2 are α-cyclic matrices. Solving Eq. (23) can be carried
out efficiently with Algorithm 1 and serves as a preconditioner in a Krylov method or
a stationary iteration.

In this section we propose a new method that approximates the solution of (1) by
combining solutions of the matrix Eq. (23) for different values of α. Given ρ > 0, we
let Xρ denote the matrix-valued function that maps z ∈ C to the solution X = Xρ(z)
of (23) for α = ρz. In particular Xρ(0) is the desired solution of (1). In the following,
we assume that Xρ(z) is analytic in the disc {z : |z| < ρ̂} for some ρ̂ > 1; see
Example 2 below for an illustration of this assumption.

Our approach proceeds by interpolating Xρ(z) at the dth roots of unity for some
integer d, ω j = exp(2π i j/d) for j = 0, . . . , d − 1, with the interpolation data
Xρ(ω j ) computed byAlgorithm 1. It is well known (see, e.g., [49]) that the coefficients

of the interpolating polynomial X̃ (d)(z) = ∑d−1
j=0 X̃

(d)
j z j can be obtained from the

interpolation data by applying the inverse Fourier transform. In particular, we obtain

Xρ(0) ≈ X̃ (d)(0) = X̃ (d)
0 = (Xρ(ω0) + · · · + Xρ(ωd−1)

)
/d.

The described procedure is summarized in Algorithm 3. The analysis of the approxi-
mation error for such a trigonometric interpolation has a well established theory. The
following result, retrieved by applying Theorem 12.1 from [49] to each entry, shows
that X̃ (d)

0 converges exponentially fast to the solution of (1) as d increases with the
convergence rate depending on the radius of analyticity ρ̂.

Theorem 1 Let Xρ(z) be analytic on {z : |z| < ρ̂} with ρ̂ > 1 and choose R ∈
(1, ρ̂). Then the following holds for the entries of the approximation X̃ (d)

0 returned by
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Algorithm 3:

|(Xρ(0))i j − (X̃ (d)
0 )i j | ≤ max|z|=R |(Xρ(z))i j |

Rd − 1
, i = 1, . . . n, j = 1, . . . , nt .

We remark that it is possible to implement an adaptive doubling strategy for the
choice of the parameter d. Whenever the accuracy of X̃ (d)

0 is unsatisfactory, we can

consider the computation of X̃ (2d)
0 . Since a dth root of the unity is also a 2dth root

of the unity, this has the advantage that half of the evaluations of Xρ(z) that we need
in Algorithm 3 have already been computed at the previous iteration. As stopping
criterion, one can verify that the norm of the difference between two consecutive
approximations is smaller than a certain threshold. However, in all numerical experi-
ments considered in this work we observe that the choices d = 2, 3 already provide
sufficient accuracy and there is little need for an adaptive choice for d.

Example 2 Let us consider the matrix equation AX + XBT
1 = F arising from the 1D

heat equation of Example 1 with n = nt . Then C
(ρz)
1 = B1 − ρze1eTn with the matrix

B1 from (5) multiplied with �t . The eigendecomposition of C (ρz)
1 is given by

C (ρz)
1 =

⎡
⎢⎣

1

(ρz)− 1
n

. . .

(ρz)
1−n
n

⎤
⎥⎦�

⎡
⎢⎢⎣

1−(ρz)
1
n

1−(ρz)
1
n ζ

.. .

1−(ρz)
1
n ζ n−1

⎤
⎥⎥⎦

×�∗

⎡
⎢⎣

1

(ρz)
1
n

. . .

(ρz)
n−1
n

⎤
⎥⎦ ,

where ζ = exp(2iπ/n)) and � is the discrete Fourier transform. In particular, the
eigenvalues of C (ρz)

1 are contained in a disc with center 1 and radius |ρz|1/n . Since
A is symmetric positive definite, the spectra of A and −C (ρz)

1 stay separated as long

as |z| < ρ− 1
n + λmin(A). This implies that Xρ(z) is well-defined and, as a rational

function, also analytic on the open disc with radius ρ− 1
n + λmin(A) and hence the

assumptions of Theorem 1 can be satisfied as long as ρ ≤ 1. Assuming |ρz| ≤ 1, the
2-norm condition number of the eigenvector matrix for C (ρz)

1 is bounded by 1/|ρz|
and, in turn, ‖Xρ(z)‖F ≤ |ρzλmin|−1‖F‖F . Choosing R = 1/ρ in Theorem 1, we
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thus obtain

‖X0 − X̃ (d)
0 ‖F ≤ 1

λmin(ρ−d − 1)
‖F‖F .

Hence, we expect to obtain very fast convergence with decreasing ρ and/or increasing
d. Note that ρ cannot be chosen too small because otherwise roundoff error, due to the
ill-conditioned eigenvector matrix of X(ρω j ), starts interfering with the interpolation
error. Both statements are confirmed by numerical experiments. Table 1 shows relative
residual Res := ‖AX̃0 + X̃0BT

1 − F‖F/‖F‖F for the matrix X̃0 computed by Algo-
rithm 3 obtained with different values of n, ρ, d. The results indicate that excellent
accuracy can already achieved for d = 2 when choosing ρ properly.

3.1 Cost analysis of Algorithm 3

In this section wemaintain the assumptions and notation of Sect. 2.3. In particular, Csys
denotes the cost of solving linear systems with a linear combination of the matrices
A and M . The asymptotic complexity of Algorithm 3 is dominated by the d calls to
Algorithm 1, that is,

O(dntCsys + dnnt log(nt )).

As the calls toAlgorithm1 are embarrassingly parallel, the cost ofAlgorithm3 reduces
to

O(Csys + nnt log(nt )).

for each core if dnt cores are available. Compared with the discussion in Sect. 2.3, this
indicates that Algorithm 1 is better suited than Algorithm 2 in a massively parallel
environment.

4 All-at-once Runge–Kutta formulation

In this section, we explain how the approaches presented in this work extend when the
time discretization is performed by implicit Runge–Kutta methods. For this purpose,
let us consider the differential problem (3) and assume, without loss of generality, that
M = I . The discretization by an Runge–Kutta method with s stages yields

{
x j+1 = x j + �t

∑s
i=1 bik

( j)
i , j = 0, . . . nt − 1,

k( j)
i = Ax j + �t

∑s
h=1 gih Ak

( j)
h + f(t j + ci�t), i = 1, . . . , s,
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Table 1 Relative residual of the approximate solution computed by Algorithm 3 with different choices of
the parameters ρ, d and for increasing size n of the problem

n ρ d = 1 d = 2 d = 3 d = 4

500 1e + 00 5.81e − 02 2.94e − 06 1.67e − 10 8.80e − 13

1e − 02 5.81e − 04 2.94e − 10 3.97e − 12 3.49e − 12

1e − 04 5.81e − 06 1.96e − 10 1.59e − 10 1.38e − 10

1e − 06 6.05e − 08 1.18e − 08 9.77e − 09 8.19e − 09

1e − 08 1.20e − 06 8.59e − 07 7.01e − 07 6.07e − 07

1e − 10 9.20e − 05 6.63e − 05 5.36e − 05 4.58e − 05

1e − 12 7.12e − 03 5.08e − 03 4.11e − 03 3.59e − 03

1000 1e + 00 1.59e − 01 6.47e − 06 3.51e − 10 1.61e − 12

1e − 02 1.59e − 03 6.48e − 10 1.82e − 11 1.59e − 11

1e − 04 1.59e − 05 1.17e − 09 9.69e − 10 8.31e − 10

1e − 06 1.93e − 07 7.84e − 08 6.23e − 08 5.53e − 08

1e − 08 7.74e − 06 5.44e − 06 4.45e − 06 3.83e − 06

1e − 10 5.78e − 04 4.11e − 04 3.27e − 04 2.84e − 04

1e − 12 4.50e − 02 3.16e − 02 2.63e − 02 2.19e − 02

2000 1e + 00 1.70e − 01 6.70e − 06 3.55e − 10 7.06e − 12

1e − 02 1.70e − 03 6.75e − 10 6.66e − 11 5.73e − 11

1e − 04 1.70e − 05 3.79e − 09 3.07e − 09 2.60e − 09

1e − 06 3.62e − 07 2.25e − 07 1.86e − 07 1.58e − 07

1e − 08 2.15e − 05 1.52e − 05 1.25e − 05 1.08e − 05

1e − 10 1.58e − 03 1.12e − 03 9.11e − 04 7.96e − 04

1e − 12 1.25e − 01 9.00e − 02 7.09e − 02 6.38e − 02

4000 1e + 00 2.14e − 01 9.97e − 06 5.23e − 10 3.96e − 11

1e − 02 2.14e − 03 1.04e − 09 2.43e − 10 2.12e − 10

1e − 04 2.14e − 05 1.46e − 08 1.18e − 08 1.03e − 08

1e − 06 1.34e − 06 9.35e − 07 7.65e − 07 6.63e − 07

1e − 08 9.56e − 05 6.73e − 05 5.51e − 05 4.78e − 05

1e − 10 7.32e − 03 5.15e − 03 4.21e − 03 3.66e − 03

1e − 12 5.98e − 01 4.23e − 01 3.39e − 01 2.98e − 01

where the coefficients bi and ci are the nodes and the weights of the Butcher
tableau. By considering the Runge–Kutta matrix G = (gih) ∈ R

s×s and setting
K ( j) := [k( j)

1 | . . . |k( j)
s ] ∈ R

n×s , we can rewrite the second equation as

k( j)
i = Ax j + �t AK ( j)(Gei )T + f(t j + ci�t)

⇒ K ( j) = Ax jeT + �t AK ( j)GT + F ( j), (24)

where e ∈ R
s is the vector of all ones, ei ∈ R

s is the i th unit vector, and F ( j) :=
[ f (t j + c1�t)| . . . | f (t j + cs�t)] ∈ R

n×s . Vectorizing (24) leads to
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(I − �tG ⊗ A)︸ ︷︷ ︸
H

vec(K ( j)) − (e ⊗ A)x j = vec(F ( j)).

Therefore, we get an all-at-once linear system Ax = f of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
−b ⊗ I I

−e ⊗ A H
−I −b ⊗ I I

. . .
. . .

−e ⊗ A H
−I −b ⊗ I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(0)
1

...
k(0)
s
x1
k(1)
1

...
k(1)
s
x2
...
xnt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (t0+c1�t)+Ax0
...

f (t0+cs�t)+Ax0
x0

f (t1+c1�t)
...

f (t1+cs�t)
0

f (t2+c1�t)
...

f (tnt−1+cs�t)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

where b := �t[b1, . . . , bs] is a row vector. Note that we can rewrite the 2 × 2 block
matrix on the main diagonal as

[
H

−b ⊗ I I

]
=

[−�tG
]

⊗ A +
[

I
−b 1

]
⊗ I ∈ R

n(s+1)×n(s+1).

Finally, by letting M̂ = [
e⊗A
I

] ∈ R
n(s+1)×n(s+1), we can write the coefficient matrix

of the linear system (25) as A = I ⊗ Â + B1 ⊗ M̂ where

B1 =

⎡
⎢⎢⎢⎢⎣

1

−1
. . .

. . .
. . .

−1 1

⎤
⎥⎥⎥⎥⎦ , Â =

[−�tG −e
]

⊗ A +
[

I
−b

]
⊗ I . (26)

This implies that (25) is equivalent to a generalized Sylvester equation. In view of
ParaDiag techniques, it is natural to consider the matrix A(α), obtained by replacing
B1 in (26) with an α-cyclic matrix C (α)

1 . This leads to the following three extensions
of the ParaDiag framework to Runge–Kutta methods.

Preconditioned Krylov method. Employ A(α) as a preconditioner for GMRES.

Evaluation interpolation approach.Employ a solver for linear systemswithmatrices
A(ρω j ) as building block for Algorithm 3.

Low-rank updates. Solve the linear system A(1)x = f and compute the solution of
the corresponding update equation, that has right-hand side of rank 1, with RKSM.
In the next sections we describe the details of the solver for linear systems with the
matrix A(α) and of the update equation that has to be addressed with RKSM.
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4.1 Solving linear systems withA(˛)

After the diagonalization of the α-cyclic matrix C (α)
1 , solving linear systems with

the matrix A(α) requires to solve — possibly in parallel — nt linear systems with a
coefficient matrix of the form

λ j M̂ + Â =
[−�tG (λ j − 1)e

]
⊗ A +

[
I

−b λ j

]
⊗ I .

Each of this linear systems corresponds to solving a (generalized) Sylvester equation
of the form

AXN1 + XN2 = F, (27)

with Ni ∈ C
(s+1)×(s+1), i = 1, 2. Because s, the number of Runge–Kutta stages, is

usually small we can solve (27) efficiently by computing generalized Schur decom-
position [24] of (N1, N2) via the QZ algorithm [29]. This yields unitary matrices
Q, Z ∈ C

(s+1)×(s+1) such that

N1 = QT1Z
∗, N2 = QT2Z

∗,

where T1, T2 ∈ C
(s+1)×(s+1) are upper triangular. The correspondingly transformed

Eq. (27) takes the form

AYT1 + YT2 = F̃, F̃ = FZ , Y = XQ,

which can be solved by forward substitution by rewriting the Eq. in block-wise form:

A
[
Y1 Y2

] [T (11)
1 T (12)

1

T (22)
1

]
+ [

Y1 Y2
] [T (11)

2 T (12)
2

T (22)
2

]
= [

F̃1 F̃2
]

�⇒
{
AY1T

(11)
1 + Y1T

(11)
2 = F̃1

AY2T
(22)
1 + Y2T

(22)
2 = F̃2 − AY1T

(12)
1 − Y1T

(12)
2

.

Assuming that T (11)
1 , T (11)

2 are scalar quantities we can first retrieve Y1 ∈ C
n by

solving a linear system with (A + T (11
2 )I ) and continuing to compute Y2 ∈ C

n×s via
recursion. The solution X of (27) is obtained as Y Q∗.

4.2 Solving the update equation

In the case of Runge–Kutta methods, the low-rank update approach from Sect. 2
requires us to solve the generalized matrix equation

ÂδX + M̂δXBT
1 = M̂ X0ent e

T
1 , (28)
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where X0 ∈ C
n(s+1)×nt is the (reshaped) solution of the linear system A(1)x = f

described in the previous section. Equation (28) has a right-hand side of rank 1 but
it is not immediate to recast it as a Sylvester equation of the form (9) because the
coefficient M̂ is not invertible. Given a shift parameter σ ∈ C, we add and subtract
the quantity σ ÂδXBT

1 to (28), obtaining

ÂδX(I − σ BT
1 ) + (M̂ + σ Â)δXBT

1 = M̂ X0ent e
T
1 .

Hence, if σ is chosen such that both M̂ + σ Â and I − σ BT
1 are invertible, we can

write an equation of the form ÃδX + δX B̃T = UV ∗ equivalent to (28) by setting:

Ã = (M̂ + σ Â)−1 Â, B̃ = (I − σ B1)
−1B1,

u = (M̂ + σ Â)−1M̂ X0ent , v = (I − σ B1)
−1e1.

This suggests to use the matrices Ã, B̃ and the vectors u, v to generate Krylov sub-
spaces for the Eq. (28). Once again, there is no need to form explicitly Ã, B̃ for
performing matrix–vector products and solving shifted linear systems; for these oper-
ations we rely on the relations:

[
(M̂ + σ Â)−1 Â − z I

]−1
w = [

(1 − zσ) Â − zM̂
]−1

(M̂ + σ Â)w,[
(I − σ B1)

−1B1 − z I
]−1

w = [(1 + zσ)B1 − z I ]−1 (I − σ B1)w,

that only need to manipulate the matrices Â, M̂, B1, I − σ B1, which are sparse when
A is sparse.

In order to study the low-rank property of the solution to (28) and to provide suitable
a priori choices for the shift parameters in RKSM, one would need to study the spectral
properties of Ã, B̃. The matrix B̃ is Toeplitz triangular and we can explicitly compute
its entries:

B̃ = (1 − σ)−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
σ−1

. . .

σ
(σ−1)2

. . .
. . .

...
. . .

. . .
. . .

σ nt−2

(σ−1)nt−1 . . . σ
(σ−1)2

1
σ−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In particular, it has the only eigenvalue (1 − σ)−1 with multiplicity nt . However, the
matrix Ã appears hard to analyze in general, even assuming strong properties such
as A symmetric positive definite. For this reason, we postpone the analysis of (28) to
future work and we propose the use of the extended Krylov method (see Example 2)
or adaptive choices of the shift parameters [13] when solving the update equation with
RKSM.
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5 Numerical results

In this section, we compare the performances of Algorithm 2 and Algorithm 3 with
those of the preconditionedGMRESmethod considered in [20, 37], on different exam-
ples. More specifically, we consider the following list of methods:

• PGMRES: GMRES preconditioned by the solver of the matrix equation with a α-
circulant coefficient. If not stated otherwise, α = 1 and the threshold for stopping
GMRES is set to 10−8,

• Ev-Int: Algorithm 3. If not stated otherwise, we choose d = 2 and ρ = 5 ·10−4.
• 2DISCS, ZOL-DI(4), EDS, EK: Algorithm 2 with different choices of poles;
see Example 1 for details. Note that, the method ZOL-DI is not competitive, in
terms of computational time, as it requires to recompute the bases of the Krylov
subspaces from scratch at every iteration. For this reason we consider its variant
ZOL-DI(4), that consists in cyclically repeating the 4 shifts corresponding to
the Zolotarev problem with rational functions of degree (4, 4). We have chosen
4 shifts because preliminary experiments indicated that this choice offers good
performance across a broader range of examples.

RKSMcalled at line 4 ofAlgorithm2 is stoppedwhen the relative residual of the update
Eq. (9) is below the threshold 10−8. The methods EK, 2DISCS, and ZOL-DI(4)
rely on precomputed factorizations of the, possibly shifted, matrices Ã and B̃ when
generating the bases of the rational Krylov subspaces. If the matrices A and M in (1)
are sparse, a sparse direct solver is exploited whenever the solution of a linear system
involving a linear combination of A and M is required; e.g., at line 4 of Algorithm 3.

For each method we report the computational time required and the relative error
Res := ‖AX̂ BT

2 + MX̂ BT
1 − F‖F/‖F‖F in order to assess the accuracy of the corre-

spondent approximate solution X̂ . The best timings of each case study are highlighted
in bold and reported in Tables 2, 3, 4, 5, 6, 7, 8. For the various implementations of
Algorithm 2 we also report the percentage of the CPU time that is spent for solving
(9), labeled with Tsylv, the dimension (Dim) of the rational Krylov subspace generated
and the rank (rk) of the approximate solution to (9), after recompression.

Apart from Sect. 5.7, all experiments have been performed on a laptop with a dual-
core Intel Core i7-7500U 2.70GHzCPU, 256KB of level 2 cache, and 16GB of RAM.
The algorithms are implemented in MATLAB and tested under MATLAB2020a, with
MKL BLAS version 2019.0.3 utilizing both cores.

5.1 1D heat equation

We start by testing all the algorithms detailed at the beginning of this section on
the matrix equation AX + XBT

1 = F from Example 1 for n = 1089, 4225 and
nt = 28, . . . , 211.

The results are reported in Table 2. As expected ZOL-DI(4) and EDS generate
significantly lower dimensional Krylov subspaces with respect to those generated by
EK and 2DISCS, while achieving comparable accuracies. Looking at the computa-
tional times, we see that, for all methods, we have an almost linear dependence on
the size n and on the number of time steps nt . The methods with the most favorable
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timings are Ev-Int and ZOL-DI(4). The former is preferable when Tsylv > 50%,
which happens for the smaller instances of the equation. For all four implementations
of Algorithm 2, the fraction of the time spent for solving the low-rank Sylvester
equation decreases as the size of the problem increases. Since the advantage of
using ZOL-DI(4) is inversely proportional to Tsylv we get the best scenario for
ZOL-DI(4) when n = 4225 and nt = 2048 where we get about a 2× speedup over
Ev-Int and a 5× speedup over PGMRES.

5.2 Convection diffusion

This example is concerned with the convection diffusion equation from [37, Section
6.2], which models the temperature distribution in a cavity having an external wall
maintained at a constant (hot) temperature and a wind that determines a recirculating
flow. The problem reads as follows:

⎧⎪⎨
⎪⎩
ut − ε�u + w · ∇u = 0, S × (0, 1), S = (−1, 1)2,

u(x, y, 0) = χ{x=1},
u(x, y, t) = χ{x=1}, ∂S × (0, 1),

where ε = 0.005, χ{x=1} is the indicator function of the set {x = 1}, and w =
(2y(1 − x2),−2x(1 − y2)). The discretization is done via Q1 finite elements over
the domain S and backward Euler time-stepping, together with streamline-upwind
Petrov–Galerkin (SUPG) stabilization. The matrix equation corresponding to the all-
at-once linear system takes the form AX + MXBT

1 = F , where both A and M
are sparse. To estimate the numerical range of M−1A, we compute the largest and
smallest real parts, rmax, rmin, of its eigenvalues, by means of the Matlab command
eigs. We remark that, rmax, rmin > 0 and we denote c := (rmax + rmin)/2. Then,
2DISCS employs {z : |z − c| ≤ (rmax − rmin)/2} as estimate for W(M−1A) while
ZOL-DI(4) and EDSmakes use of the real interval [rmin, rmax]. The performances of
the numerical methods are reported in Table 3. Although we used the slightly higher
tolerance 10−6 to stop PGMRES, the latter needs 17 iterations to converge and this
makes the other approaches significantly faster. Among the methods based on low-
rank updates, ZOL-DI(4) and EDS are those that generate the Krylov subspaces
of smallest dimensions, while maintaining a good accuracy. This feature makes EDS
faster than EK although the latter has a cheaper iteration cost. Similar comments to the
ones made in the previous example apply to the comparison between ZOL-DI(4)
and Ev-Int.
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5.3 Fractional space diffusion

We consider the fractional diffusion example from [51, Section 5]:

⎧⎪⎨
⎪⎩
ut = a1

∂γ1u+
∂xγ1 + b1

∂γ1u−
∂xγ1 + a2

∂γ2u+
∂ yγ2 + b2

∂γ2u−
∂ yγ2 + f (x, y, t), S × (0, 5), S = (0, 1)2,

u(x, y, 0) = 0, (x, y) ∈ S,

u(x, y, t) = 0, (x, y, t) ∈ ∂S × (0, 5),

where ∂
γ j u±
∂x indicates the Riemann-Liouville right- and left- looking derivatives; the

diffusion coefficients are set as a1 = 1, a2 = 0.5, b1 = 0.2, b2 = 1, the differential
orders are γ1 = 1.75 and γ2 = 1.5, and the source term is f (x, y, t) = 10 sin(3xyt).
For space discretization, the second-order weighted and shifted Grünwald difference
formula is employed; uniform backward Euler time stepping is applied. The all-at-
once linear system matrix takes the form I ⊗ A + B1 ⊗ I where the matrix A has the
structure

A = I ⊗ T1 + T2 ⊗ I

with T1, T2 non sparse Toeplitz matrices; see [51] for a detailed description. In partic-
ular, matrix–vector operations with the matrix A are efficiently performed by relying
on FFT and matrix equation techniques. Moreover, the minimum and maximum real
part of the eigenvalues of A are easily obtained once estimates of the same quantities
for the matrices T1, T2 are computed. When running 2DISCS,ZOL-DI(4),EDS,
we approximate W(A) as we did in the previous example.

The results reported in Table 4 show that the methods based on low-rank updates
struggle on this example because they have to generate somewhat large subspaces in
order to achieve the desired accuracy. This is caused by the fact that the solution of
the update Eq. (8) has a slightly higher rank with respect to the previous examples,
and the approximations ofW(A) are not tight, see Fig. 4. Nevertheless, ZOL-DI(4)
achieves the best timings for n = 4225. Ev-Int maintains the usual behavior and
turns out to be the preferable method for n = 1089.

5.4 Fractional time diffusion

We now consider an example where Algorithm 2 is not applicable due to the non
locality of the time differential operator. We modify Example 2 by replacing the first-
order time derivative with the Caputo time derivative of order γ ∈ (0, 1):
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Fig. 4 Fractional diffusion example with n = 1089; eigenvalues of the matrix A (cyan crosses), numerical
range of the matrix A (disc enclosed by the green line) and its approximations used for 2DISCS (disc
enclosed by the blue line), and for ZOL-DI(4) (red line segment)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂γ u
∂tγ = uxx + f (x, t), S := [0, 1] × [0, 1],
u ≡ 0, on ∂S,

u(x, 0) = 4x(1 − x), at t = 0,

f (x, t) = hmax{1 − |c(t) − x |/w, 0}, c(t) = 1
2 + ( 12 − w) sin(2π t),

and we keep the same parameters w, h of the integer derivative case. Discretizing
the Caputo time derivative with the unshifted Grünwald-Letnikov formula, we get a
matrix equation AX + XBT

1 = F where B1 is Toeplitz lower triangular and takes the
form:

B1 =

⎡
⎢⎢⎢⎣

gγ,0
gγ,1 gγ,0

...
. . .

. . .

gγ,nt−1 . . . gγ,1 gγ,0

⎤
⎥⎥⎥⎦ ,

{
gγ,0 = 1,

gγ, j =
(
1 − γ+1

j

)
gγ, j−1.

In particular, the usual way to construct a circulant matrix from B1 requires to apply
a matrix δB(α)

1 of rank nt − 1. For this reason we restrict to PGMRES and Ev-Int
for solving the all-at-once problem. The results reported in Table 5 refer to the case
γ = 0.3 and show that Ev-Int significantly outperform PGMRES, despite the low
number of iterations needed by the latter to converge.
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Table 5 Fractional time
differentiation; performances of
PGMRES and Ev-Int

n nt PGMRES Ev-Int

Time Res It Time Res

1089 256 0.46 1.0e − 06 5 0.12 1.6e − 09

512 0.74 7.8e − 05 4 0.22 1.3e − 09

1024 1.55 2.7e − 05 4 0.45 1.2e − 09

2048 3.68 8.0e − 06 4 0.87 9.9e − 10

4225 256 1.56 1.6e − 05 5 0.39 2.3e − 08

512 2.77 1.2e − 03 4 0.87 2.0e − 08

1024 6.45 4.1e − 04 4 1.66 1.9e − 08

2048 14.41 1.2e − 04 4 3.71 1.5e − 08

5.5 Wave equation

We consider the linear wave equation

⎧⎪⎨
⎪⎩
utt − �u = (1 + 2π2)et sin(πx) sin(π y), on S × (0, T ),

u(x, y, t) = 0, on ∂S × (0, T ),

u(·, ·, 0) = u0(x, y), ut (·, ·, 0) = u1(x, y), in S,

with S = (0, 1), T = 1, u0(x, y) = u1(x, y) = sin(πx) sin(π y). As described in
[20, Section 3], by discretizing with finite differences in space and with the implicit
leap-frog scheme in time we get the all-at-once linear system (B1 ⊗ I + B2 ⊗ A)x = f
where A = trid(−1, 2,−1) · (n + 1)2 and

B1 = 1

�t2

⎡
⎢⎢⎢⎢⎢⎣

1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

nt×nt , B2 = 1

2

⎡
⎢⎢⎢⎢⎢⎣

1
0 1
1 0 1

. . .
. . .

. . .

1 0 1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

nt×nt .

We note that, for this example, all methods based on low-rank updates generate quite
small Krylov subspaces, and their dimensions do not grow as the parameters n and
nt vary. As a consequence, EK is the one that achieves the cheapest consumption of
computational time and we only report its performances. We remark that, in order to
get comparable accuracy we have considered d = 3 roots of the unit when running
Ev-Int. The preconditioner employed in PGMRES uses the parameter α = 0.1 as
suggested in [20] and the tolerance for stopping the GMRES iteration has been set to
10−7. The results are shown in Table 6. Comparing PGMRES,Ev-Int, and EK, leads
to similar conclusions as in the example of the 1D heat equation.
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Table 6 Wave equation; performances of the various methods

n nt PGMRES Ev-Int EK

Time Res It Time Res Time Res rk Tsylv (%) Dim

1089 257 0.49 1.2e − 12 3 0.20 2.7e − 10 0.50 2.9e − 10 26 86.4 27

513 0.72 3.1e − 13 3 0.34 2.6e − 10 0.53 1.3e − 10 26 77.5 27

1025 1.42 3.9e − 12 3 0.71 2.5e − 10 0.71 5.3e − 11 27 67.1 27

2049 3.34 1.7e − 12 3 1.50 2.5e − 10 1.25 3.7e − 11 27 61.7 27

4225 257 1.33 3.7e − 12 3 0.64 2.8e − 10 0.57 2.9e − 10 26 55.5 27

513 2.65 7.3e − 12 3 1.27 2.7e − 10 0.76 1.3e − 10 26 54.0 27

1025 5.96 4.6e − 11 3 2.96 2.6e − 10 1.25 5.4e − 11 26 34.5 27

2049 12.00 3.2e − 11 3 5.38 2.5e − 10 2.65 3.5e − 11 27 34.1 27

5.6 Runge–Kutta example

We present a numerical test on the all-at-once Runge–Kutta formulation introduced
in Sect. 4. Let us start from the finite difference semidiscretization of the following
differential problem:

{
ut = uxx , (x, t) ∈ (0, 1)2,

u(x, 0) = sin(πx),

⇒
{
U̇ (t) = AU (t), A = trid(1,−2, 1) · (n + 1)2,

U (0) = x0, (x0) j = sin( jπ/(n + 1)).
(29)

We consider solving the all-at-once formulation (25) corresponding to the following
four-stage (s = 4), 3rd order, Diagonally Implicit Runge-Kutta method (DIRK):

1/2 1/2
2/3 1/6 1/2
1/2 −1/2 1/2 1/2
1 3/2 −3/2 1/2 1/2

3/2 −3/2 1/2 1/2

.

More specifically, we solve (25) by applying the methods PGMRES, Ev-Int and EK
adapted as described in Sect. 4. For this experiment, the parameter ρ used by Ev-Int
is set to the value 0.05. As shift parameter for the update Eq. (28) solved by EK, it has
been chosen σ = −2. The performances of the 3 methods are reported in Table 7; as
observed in previous tests, the approaches based on low-rank update and evaluation
interpolation outperforms PGMRES for both speed and accuracy. As the number of
time steps increases, the cost of the update equation becomes relatively cheap, making
EK faster than Ev-Int. The relative residuals obtained with EK and Ev-Int are
comparable.
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Table 7 Performances of the Runge–Kutta schemes for different values of n = 250, 500 and nt =
250, 500, 1000, 2000

n(s + 1) nt PGMRES Ev-Int EK

Time Res It Time Res Time Res rk Tsylv (%) Dim

1250 250 0.78 7.2e − 08 3 0.24 1.4e − 11 0.36 2.1e − 11 1 69.0 27

500 1.34 3.2e − 09 3 0.47 1.0e − 11 0.49 1.1e − 11 1 52.7 31

1000 3.16 1.5e − 07 3 0.90 1.7e − 11 0.72 2.7e − 12 2 41.1 33

2000 6.64 2.8e − 07 3 2.05 5.9e − 11 1.24 4.0e − 12 2 25.9 33

2500 250 1.50 1.8e − 07 3 0.41 1.2e − 10 0.63 3.3e − 12 2 68.9 27

500 3.21 1.6e − 07 3 0.83 6.6e − 11 0.88 4.9e − 12 2 53.5 31

1000 6.49 3.4e − 06 3 1.80 6.2e − 11 1.39 7.2e − 12 2 39.7 33

2000 13.35 7.9e − 05 3 3.73 2.2e − 10 2.41 1.1e − 11 2 24.3 33

Fig. 5 Relative error norm of EK for n = 500 and nt = 250, 500, 1000, 2000; the error decreases with
order 3 with respect to the time step size

Problem (29) admits the explicit solution U (t) = exp(t A)x0 so that we can
compare approximate solutions with respect to a benchmark solution computed
by means of the expm Matlab function. Figure5 reports the relative error ‖̂xt −
exp(t A)x0‖2/‖exp(t A)x0‖2 of the approximants x̂t returned by EK, for n = 500 and
different time step sizes; the plot is in agreement with the order 3 of the Runge–Kutta
scheme.

5.7 Preliminary experiments on parallelism

We conclude by testing the parallel scaling features of the proposed algorithms in
a multi-core computational environment. The experiment in this section has been
run on a server with two Intel(R) Xeon(R) E5-2650v4 CPU with 12 cores and 24
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Table 8 Fractional space diffusion with n = 4225 and nt = 8192; parallel efficiency of the procedures as
the number of cores p increases

p PGMRES Ev-Int ZOL-DI

Time SE Time SE Time Tsylv (%) SE

1 393.23 100.0 128.18 100.0 118.27 46.3 100.0

2 206.50 95.2 66.91 95.8 87.30 62.5 67.7

4 135.94 72.3 38.13 84.0 71.45 74.5 41.4

8 74.44 66.0 20.66 77.5 63.02 84.9 23.5

12 53.64 61.1 14.91 71.6 60.18 89.2 16.4

threads each, running at 2.20 GHz, using MATLAB R2022b with the Intel(R) Math
Kernel Library Version 11.3.1. The test has been run using the SLURM scheduler,
allocating 12 cores and 250 GB of RAM. Our implementation exploits parallelism for
the solution of the block diagonal linear system generated by fast_diag_solve (lines
4-6 of Algorithm 1). This parallel routine is used as a preconditioner in PGMRES, it is
called at line 2 of Algorithm 2, and it is called at line 4 of Ev-Int. Finally, we also
parallelize the for loop in Ev-Int (lines 2-5 of Algorithm 3).

As case study, we consider the fractional diffusion example of Sect. 5.3 with n =
4225 and nt = 8192, and we measure the execution time of the procedures PGMRES,
Ev-Int, and ZOL-DI, as the number of cores p ranges in the set {1, 2, 4, 8, 12}. The
tolerance to stop GMRES has been set to 10−6 in order to get comparable residual
norms with the other two methods. To evaluate the efficiency of the implementation,
we also compute the strong scaling efficiency (SE) with p cores defined as

SE(p) := 100 · Time(1 core)

p · Time(p cores)
.

The results reported in Table 8 clearly show that Ev-Int is the method that gains the
most from parallelism, maintaining more than 70% of strong scaling efficiency, up to
12 cores. Also PGMRES leverages the use of multiple cores to the extent of becoming
faster than ZOL-DI, when p = 12. On the contrary, our current implementation of
ZOL-DI does not exploit more than one core for solving the update equation and,
consequently, parallel efficiency drops as soon as the cost of (8) becomes dominant.
An adaptation of the parallel implementation of RKSM [8] is nontrival and beyond
the scope of this work, but it potentially addresses the scaling issue of ZOL-DI.

6 Conclusions

We have proposed a tensorized Krylov subspace method and an interpolation method
for replacing the iterative refinement phase that is required by ParaDiag algorithms
with uniform time steps. In the case of multistep methods, a theoretical analysis of
the approximation property of the Krylov subspace method has been provided. We
have shown several numerical tests demonstrating that our approaches can significantly
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outperform block-circulant preconditioned GMRES iterations for solving linear initial
value problems. Let us emphasize that the focus of this work was on theoretical
and algorithmic aspects; we have not carried out an extensive study of the parallel
implementation of our algorithms, which will be subject to future work. From the
analysis in Sects. 2.3 and 3.1 we expect that the interpolation method (Algorithm 3)
will perform significantly better in a massively parallel environment.

We remark that Algorithm 2 and Algorithm 3 can directly be put in place instead
of the existing ParaDiag algorithms for solving certain non-linear ODEs of the form
MU̇ + f (U ) = 0 [17] and for computing the so-called Coarse Grid Correction of the
Parareal algorithm [22, 33].

In Sect. 4, we have discussed how to extend the methodology to the case of implicit
Runge–Kutta time integration, but some questions remain for further work. In partic-
ular, a careful analysis of the low-rank approximability of Eq. (28) and of the choice
of the shift parameter σ , would be desirable.
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