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Abstract
Angiogenesis is amultiscale process bywhich a primary blood vessel issues secondary
vessel sprouts that reach regions lacking oxygen. Angiogenesis can be a natural pro-
cess of organ growth and development or a pathological one induced by a cancerous
tumor. A mean-field approximation for a stochastic model of angiogenesis consists of
a partial differential equation (PDE) for the density of active vessel tips. Addition of
Gaussian and jump noise terms to this equation produces a stochastic PDE that defines
an infinite-dimensional Lévy process and is the basis of a statistical theory of angio-
genesis. The associated functional equation has been solved and the invariant measure
obtained. The results of this theory are compared to direct numerical simulations of the
underlying angiogenesis model. The invariant measure and the moments are functions
of a Korteweg–de Vries-like soliton, which approximates the deterministic density of
active vessel tips.

Keywords Angiogenesis · Stochastic PDEs · Statistical theory of nonlinear PDEs ·
Moments and structure functions · Mathematical biology

Mathematics Subject Classification 60H15 · 35R15 · 35R10 · 92C17 · 92C37

1 Introduction

Angiogenesis is the process of cells organizing themselves into blood vessels that
grow from existing vessels and carry blood to organs and through tissue. It occurs in
normal conditions of organ growth and regeneration, wound healing and tissue repair,
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and also in pathological conditions such as cancer, diabetes, rheumatoid arthritis or
neovascular age-related macular degeneration.

Angiogenesis is driven by the Vessel Endothelial Growth Factor (VEGF) and
other pro-angiogenic proteins that are secreted by cells experiencing lack of oxygen
(hypoxia). VEGF diffuses in the tissue, binds to extracellular matrix (ECM) compo-
nents and forms a spatial concentration gradient in the direction of hypoxia. Once
VEGF molecules reach an existing blood vessel, the latter walls open as a response
and new vessel sprouts grow out of endothelial cells (ECs) off the vessel. Through
the cellular notch signaling process, VEGF activates the tip cell phenotype in ECs,
which then grow filopodia with many VEGF receptors. The tip cells pull the other
ECs (called stalk cells), open a pathway in the ECM, lead the new sprouts and migrate
in the direction of increasing VEGF concentration (Gerhardt et al. 2003). Signaling
and mechanical cues between neighboring ECs cause branching of new sprouts (Hell-
ström et al. 2007; Jolly et al. 2015; Vega et al. 2020). Stalk cells in growing sprouts
alter their shape to form a lumen (wall of the sprout) connected to the initial ves-
sel that is capable of carrying blood (Gebala et al. 2016). Sprouts meet and merge
in a process called anastomosis to improve blood circulation inside the new vessels.
Poorly perfused vessels may become thinner and their ECs, in a process that inverts
angiogenesis, may retract to neighboring vessels leading to a more robust blood circu-
lation (Franco et al. 2015). Thus, the vascular plexus remodels into a highly organized
and hierarchical network of larger vessels ramifying into smaller ones (Szymborska
and Gerhardt 2018). In normal processes of wound healing or organ growth, the cells
inhibit the production of growth factors when the process is finished. In pathological
angiogenesis, e.g., cancer, tumor cells lack oxygen and nutrients and produce VEGF
that induces angiogenesis from a nearby primary blood vessel. The generated new ves-
sel sprouts move and reach the tumor (Folkman 1971, 1974; Carmeliet 2005). Tumor
cells continue secreting growth factors that attract more vessel sprouts and facilitate
their expansion.

Together with experiments, many models spanning from the cellular to macro-
scopic scales try to understand angiogenesis; see the reviews (Anderson and Chaplain
1998; Bonilla et al. 2019; Byrne 2010; Heck et al. 2015; Mantzaris et al. 2004; Plank
and Sleeman 2004; Scianna et al. 2013; Vilanova et al. 2017). Early models con-
sider reaction–diffusion equations for densities of cells and chemicals (growth factors,
fibronectin, etc.) (Liotta et al. 1977; Byrne and Chaplain 1995; Chaplain and Stuart
1993; Chaplain 1995). They cannot treat the growth and evolution of individual blood
vessels. Tip cell stochastic models of tumor-induced angiogenesis are among the sim-
plest ones for this complex multiscale process. Their basic assumptions are that (i) the
cells of a blood sprout tip do not proliferate and move toward the tumor-producing
growth factor, and (ii) proliferating stalk cells build the sprout along the trajectory
of the sprout tip. Thus, tip cell models are based on the motion of single particles
representing the tip cells and their trajectories constitute the advancing blood vessel
network (Stokes and Lauffenburger 1991; Stokes et al. 1991; Anderson and Chaplain
1998; Plank and Sleeman 2004; Mantzaris et al. 2004; Bonilla et al. 2014; Heck et al.
2015; Bonilla et al. 2019; Terragni et al. 2016). Tip cell models describe angiogene-
sis over distances that are large compared with a cell size, thereby not incorporating
descriptions of cellular and subcellular scales. These models are typically random:
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The motion of each tip typically includes directed Brownian motion; branching and
anastomosis are birth and death processes, respectively. The random evolution of the
tip cells may affect and be affected by reaction–diffusion equations for the VEGF and
other quantities (hybrid models). Other models contemplate motion of the tip cells on
a lattice (Anderson and Chaplain 1998; Plank and Sleeman 2004) and are related to
cellular automata models (Pillay et al. 2017; Martinson et al. 2020, 2021). More com-
plex models include tip and stalk cell dynamics, the motion of tip and stalk cells on the
extracellular matrix outside blood vessels, shape and size changes of cells, signaling
pathways and EC phenotype selection, blood circulation in newly formed vessels and
so on (Bauer et al. 2007; Jackson and Zheng 2010; Travasso et al. 2011; Scianna et al.
2013; Bentley et al. 2014; Van Oers et al. 2014; Heck et al. 2015; Jolly et al. 2015;
Perfahl et al. 2017; Vilanova et al. 2017; Bernabeu et al. 2018; Bonilla et al. 2019;
Vega et al. 2020). The evolution of the blood vessels governed by these processes may
be difficult to measure, but various methods, including laboratory experiments, can be
used to measure the statistical properties of an angiogenic network. These measure-
ments of statistical quantities of the network can then be compared to simulations and
experiments.

The authors have analyzed a system of stochastic differential equations plus birth
and death processes (Bonilla et al. 2014; Terragni et al. 2016; Bonilla et al. 2020),
describing vessel growth, and the associated PDE describing the evolution of the
density of active vessel tips. In Bonilla et al. (2016b), they found that the growth of the
tips of the blood vessels is well described by a Korteweg–de Vries-like (KdV) soliton.
This leads to a control theory of angiogenesis that is currently being developed. In
this paper, we will add the noise associated with branching and anastomosis to the
density equation and develop the statistical theory of angiogenesis. Not surprisingly
the soliton is found to play a major role in this theory, and the noise in both branching
and anastomosis is found to be multiplicative and to depend only on the density of
active tip cells.

The statistical theory is a crucial tool to determine the properties of the angiogenic
network of veins. These cannot be found by simulating or measuring a single vein
and to determine all the properties of the network we need the moments of the density
of active tip cells. It may also be necessary, for the finer structure of the network,
to compute the structure functions that are the moments of the difference between
densities separated by a spatial lag variable. In this paper, we develop the tools to
compute the moments and structure functions of the density.

The paper is organized in the following matter. In Sect. 2, we outline the derivation
of the density equation for the active blood vessel tips, from previous papers, and
formulate the macroscopic noise in them. In Sect. 3, we explain the log-Poisson pro-
cess arising from the noise in anastomosis and derive the geometric Brownian motion
resulting from the noise in branching. These are used in the next section to compute
the moments of the density. In Sect. 4, we explain the statistical theory and derive the
invariant measure of the stochastic angiogenesis equation. The moments of the den-
sity are computed using the invariant measure and the results from Sect. 4. In Sect. 5,
we explain the geometry and the form of the soliton and compute the coefficients
that the moments of the density depend on. Then the computed moments are com-
pared with simulations. In Sect. 6 we compute the structure function of the density.
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Section7 contains a discussion. In each section, the results are frequently compared
to the analogous results for the stochastic Navier–Stokes equation, the only nonlin-
ear stochastic PDE that this statistical theory has been previously developed for, see
Birnir (2013a, b). In “Appendix A,” we include a short summary of jump and Lévy
processes. In “Appendix B,” we indicate how to calculate the moments of the density
from numerical simulations of the angiogenesis stochastic process. In “Appendix C,”
we present a slight extension of the mean-value theorem that is used in Sect. 5.

2 The Density Equation

In this section, we outline the derivation of Eq. (1) describing the evolution of the
density for the active tips of blood vessels, see Bonilla et al. (2014), Terragni et al.
(2016), Bonilla et al. (2020). Then, we formulate the macroscopic noise associated
with tip branching and anastomosis and add it to the density equation. This gives a
nonlinear stochastic PDE, namely Eq. (9) below, for the noisy evolution of the tip
density.

There is noise both in the stochastic equations on the microscopic level and in the
density equation on the macroscopic level. The origin of the noise in both equations is
explained below. It is natural to assume that the noise, with continuous increments, in
the density equations depends on the velocity components, only after the computations
does it become clear that it only depends on the density.

We start with the equation for the density of active tip cells, p(t, x, v) ∈
L2(R+; R

2, R
2), where p is a function of time t , location x and velocity v. In

nondimensional form, it is

∂ p

∂t
= [α(C)δv(v − v0) − �S]p − v · ∇x p − ∇v ·[(F(C) − σv)p]+ σ

2
�v p, (1)

obtained from (Bonilla et al. 2014; Terragni et al. 2016; Bonilla et al. 2020), where

p̃(t, x) =
∫
R2

p(t, x, v)dv, S(t, x) =
∫ t

0
p̃(s, x)ds

are the marginal density of p(t, x, v) and the density of stalk cells, respectively, and
� is a constant. Here, δv(v) is a delta function, regularized with a Gaussian

δv(v) = e−|v|2/σ 2
v

πσ 2
v

, v = (v1, v2), (2)

with zero mean and small standard deviation σv .1 The density equation is derived
from the Langevin equations for the blood vessel extension, see Bonilla et al. (2014),

1 We use boldface when we need to make clear that v and x are vectors, but otherwise indicate them in
roman, with some abuse of notation.
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Terragni et al. (2016), Bonilla et al. (2020):

dXk(t) = vk(t)dt,

dvk(t) = [−σvk(t) + F(C(t, Xk(t)))]dt + √
σdWk(t), (3)

for t > T k , the random timewhen the kth tip, located at Xk(t) andmovingwith velocity
vk(t), appears as a consequence of another tip’s branching. The tip position Xk is slave
to the velocity that is sensitive to (microscopic) noise. This is why the Brownian noise,
with variation σ , appears in the vk equation. When an active tip arrives at a point that
was occupied by another tip at a previous time, it disappears, which corresponds to
anastomosis or loop formation (Bonilla et al. 2014; Terragni et al. 2016; Bonilla et al.
2020). In Eq. (3), Wk(t) denotes independent Brownian motions. The derivation of
(1) uses Ito’s lemma, where the Brownian noise

√
σdWk(t) produces the Laplacian

term σ
2 �v p in the density equation. The chemotactic force is

F(C) = δ1

(1 + �1C)q
∇xC, (4)

where C is the VEGF concentration (called tumor angiogenic factor or TAF in tumor-
induced angiogenesis),while�1, δ1 andq are constants. In the hybrid stochasticmodel,
the equation for the TAF density C(t, x) ∈ C0(R+;C2(R2)) (functions continuous in
t and twice continuously differentiable in x) involves diffusion and consumption by
the advancing tip cells (Bonilla et al. 2020),

∂

∂t
C(t, x)=κ�xC(t, x) − χC(t, x)

N (t)∑
i=1

|vi (t)| δσx (x − Xi (t)), (5)

where N (t) is the number of active tips at time t and δσx is a regularized delta function

δσx(x) = e−x2/σ 2
x e−y2/σ 2

y

πσxσy
, x = (x, y). (6)

The source terms in the right-hand side (RHS) of Eq. (1) arise from branching
and anastomosis of active tips. The probability that a tip branches from one of
the existing ones during an infinitesimal time interval (t, t + dt] is proportional to∑N (t)

i=1 α(C(t, Xi (t)))dt , with

α(C) = AC

1 + C
, (7)

where A is a positive constant. The velocity of the new tip that branches from the i th
tip at time T i is selected out of a normal distribution, δσv (v − v0), with mean v0 and
a narrow variance σ 2

v . The regularized delta function δσv(v) is given by Eq. (6) with
σx = σy = σv .
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When using the deterministic description of Eq. (1), the TAF satisfies the diffusive
mean-field equation

∂

∂t
C(t, x) = κ�xC(t, x) − χC(t, x) j(t, x), (8)

with C(t, x) ∈ C0(R+;C∞(R2)), instead of Eq. (5). Here

j(t, x) =
∫
R2

|v| p(t, x, v)dv

is the current density, see Bonilla et al. (2020). Representative values of all involved
dimensionless parameters can be found in Refs. Bonilla et al. (2014, 2020), Terragni
et al. (2016).

Density, marginal density and current density are the expected values of

N (t)∑
i=1

δσx (x − Xi (t)) δσv (v − vi (t)),

N (t)∑
i=1

δσx (x − Xi (t)),

N (t)∑
i=1

|vi (t)| δσx (x − Xi (t)),

respectively, with respect to the stochastic process, as the regularizations of the delta
functions disappear (Terragni et al. 2016; Bonilla et al. 2020). Equations (1) and (8)
are mean-field approximations for these expected values and for the average TAF
concentration. Moments of the density can be directly calculated from simulations of
the stochastic process, as we shall see later. However, we want to build a theory of
these moments by adding appropriate (macroscopic) noise terms to Eq. (1) and then
analyzing the resulting stochastic PDE. The first term in the RHS of Eq. (1) represents
a (multiplicative) jump term; hence, we add a multiplicative jump noise term

p
∫
R

h(z, v, t)N̄ (dz, dt)

associated with such jumps. The justification for this noise term is that tip branching
and anastomosis are not deterministic processes, although they are represented in the
density equation above as deterministic terms, in the mean-field approximation. Thus
we can expect noise to be associated with these terms, and since both tip branching
and anastomosis create jumps in the density, the correct form of the associated noise
is a multiplicative Poissonian jump noise. Notice that the noise exists on many levels
and the terms that we are adding to Eq. (1) represent macroscopic noise, which is
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distinct from the microscopic noise in Eq. (3). This gives the equation

∂ p

∂t
= [α(C) δv(v − v0) − �S] p − v · ∇x p − ∇v ·[(F(C) − σv)p] (9)

+ε

⎡
⎣∑
k �=0

(
dk + c1/2k

dbkt
dt

)
< eik·v, p >

⎤
⎦ p + σ

2
�v p + εp

∫
R

h(z, v, t)N̄ (dz, 1),

where α(C) is given by Eq. (7) and bkt are i.i.d. Brownian motions. The first noise
term is associatedwith velocity fluctuations, through the (velocity) Fourier coefficients
< eik·v, p >= ∫

R2

∫
R2 eik·v pdvdx , of the spatial mean. Here the cumulative jump

size is h(z, v, t) = hb(z, v, t) + ha(z, t). We expect the noise to be small, ε << 1, in
many cases, but we will allow it to be as large as ε = 1, in the computations below. In
addition,

ha(z, t) = −�S

and

hb(z, v, t) = α(C)δv(v − v0)

denote the sizes of the jumps, associated with anastomosis and branching, respec-
tively, and N̄ is the compensated number (of jumps) process, see Øksendal and Sulem
(2005). The (velocity) Fourier coefficients dk and c1/2k are arbitrary, but they are

summable,
∑

k �=0 |dk | < ∞,
∑

k �=0 |c1/2k | < ∞. The c1/2k are also square summable,∑
k �=0 ck < ∞. Thus, the first and last terms in the second line in Eq. (9) represent

the continuous (Brownian) and the discrete (jump) noise, respectively. The Brownian
terms are accompanied by a deterministic estimate for the large deviation (the dks).
We have made the Brownian terms as generic as possible by modeling noise in every
(velocity) Fourier component of p. This is necessary because the velocity of a tip may
be sensitive to noise in infinitely many directions in the Hilbert space of the velocity.
Stochastic PDE (9) must be accompanied by vanishing boundary conditions on the
plane x ∈ R

2 and vanishing boundary conditions on the velocity plane v ∈ R
2. This

makes the Hilbert space be L2(R+; �, T3), where� ⊂ R
2 is a rectangle with Dirich-

let boundary conditions, see Bonilla et al. (2016b). In the remainder of the paper, we
will analyze (weak or strong) solutions of Eq. (9) on this space, with an appropriate
initial density. For the existence theory in the deterministic case, see Carpio and Duro
(2016) and Carpio et al. (2017), for convergence of positivity preserving numerical
schemes, see Bonilla et al. (2018).

3 The Log-Poisson Process and Geometric BrownianMotion

The noise terms in Eq. (9) give rise to log-Poisson processes and geometric Brownian
motions. In this section we show how to compute their moments. This is then used
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in the subsequent section to solve the (Kolmogorov–Hopf) equation for the invariant
measure and compute the moments of the density p.

An integrating factor can be found to simplify density Eq. (9). It uses the Ito–
Lévy formula and the geometric Lévy process. Let g(Xk, vk) = ln(qP ) and consider
Ito–Lévy’s formula (A.2) in “Appendix A,”

d ln(qP ) =
∫
R

[ln(1 + h(z, t)) − h(z, t)]m(dz)dt +
∫
R

ln(1 + h(z, t))N̄ (dz, dt).

Here, if N (z, t) is the number process of the Lévy process η(t), then m(U ) =∫
U E(N (dz, 1)) is the Lévy measure of η(t), and N̄ (dz, dt) = N (dz, dt) − m(dz)dt
if |z| < R or N̄ (dz, dt) = N (dz, dt) if |z| ≥ R is the compensated jump measure
of η(t); see Birnir (2013b), Section 1.5. Now, suppose that we only take the Poisson
noise into account,

dqP = qP

∫
R

h(z, t)N̄ (dz, dt).

Then, if h = β − 1 and the mean of the Poisson number process Nt = N (z, t) is
E(Nt ) = − γ ln(b)

β−1 , this means that neither h nor Nt depends on z and the integral
above reduces to a product. The two parameters γ and b will be assigned values
shortly. Thus, the previous formula becomes

d ln(qP ) = Nt ln(β) − (β − 1)E(Nt ) = Nt ln(β) + (β − 1)
γ ln(b)

β − 1
= Nt ln(β) + γ ln(b),

see Birnir (2013b). Provided qP (0) = 1, solving for qP gives

qP = bγ βNt .

This log-Poisson process is the integrating factor that we will use below. In Birnir
(2013b), Example 1.5, it is shown how to compute the moments of a log-Poisson
process.

1. Suppose that the Poisson process Nk has the mean λ = − γ ln |k|
β−1 (i.e., b = |k|

above), where k is the wave number. Then it is straightforward to compute the
mean of the log-Poisson process |k|γ βNk :

E(|k|γ βNk ) =
∞∑
j=0

|k|γ β j λ
j

j ! e
−λ = |k|γ

∞∑
j=0

(βλ) j

j ! e−λ = |k|γ e(β−1)λ.

Thus,

ln[E(|k|γ βNk )] = γ ln |k| + (β − 1)λ = γ ln |k| − (β − 1)
γ

β − 1
ln |k| = 0,
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and we get the mean

E(|k|γ βNk ) = 1. (10)

2. Now, we compute the nth moment E([|k|γ βNk ]n) of the log-Poisson process
|k|γ βNk . By a similar computation as above,

E([|k|γ βNk ]n) = |k|nγ e(βn−1)λ,

where λ is the mean from Part 1. Therefore

ln[E([|k|γ βNk ]n)] = nγ ln |k| + (βn − 1)λ =
(
n − βn − 1

β − 1

)
γ ln |k|.

Finally, we get that

E([|k|γ βNk ]n) = |k|γ
(
n− βn−1

β−1

)
. (11)

This computation is similar for the stochastic Navier–Stokes equation, the differ-
ence being that there we get a log-Poisson process for each wave number, see
Birnir (2013a).

3. The geometric Brownian motion gives the factor

qB = exp

⎧⎨
⎩

∑
k �=0

[(
dk − 1

2
ck

)
t + c1/2k bkt

]⎫⎬
⎭,

see formula (A.3) for Zt in “Appendix A,” following Øksendal (Øksendal 2003).
Then,

E(qB) = exp

⎧⎨
⎩

∑
k �=0

dk t +
∑
k �=0

c1/2k bk0

⎫⎬
⎭= exp (−d t − d0), (12)

where the initial conditions for the Brownian motions, starting at zero, are bk0
(note that Ito’s formula produces the term (1/2)ck from the Brownian motion
bkt that cancels the term −(1/2)ck in the corresponding large deviation). Thus,
−d = ∑

k �=0 dk is the drift coefficient that we take to be negative. The initial

condition d0 = −∑
k �=0 c

1/2
k bk0 can be either positive or negative.

4 The Invariant Measure

In this section, we give a brief outline of the theory of the Kolmogorov–Hopf equation
determining the invariant measure of stochastic PDEs. We first discuss its derivation
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for the Navier–Stokes equation where it originated. Then, we derive the Kolmogorov–
Hopf equation for stochastic density Eq. (9) and solve it. This determines the invariant
measure in Eq. (16).We end the section by computing themoments 〈pn〉 of the density
(cf Eq. (20)), where the average uses the invariant measure.

Stochastic PDE (9) can be used to define an infinite-dimensional Lévy process.
The statistical properties, such as the mean and moments, of this process are deter-
mined by the invariant measure on the function space associated with this process. We
now review the theory of the Kolmogorov–Hopf equations determining the invariant
measure. The first such equation that is a functional differential equation, where the
derivatives are with respect to a function in a Banach space, was written down by Hopf
(1952),

∂φ(u)

∂t
= 〈Au,∇uφ(u)〉.

Here, φ is a bounded function of u and A is a partial differential operator. The deter-
ministic evolution equation determining u is

∂u

∂t
= Au,

and 〈·, ·〉 is the dual pairing in the Banach space. Hopf actually worked with the
equation for the characteristic function, which is equivalent to the above equation,
and he was looking for the invariant measure of the Navier–Stokes equation. Hopf’s
equation was reportedly solved by Kolmogorov who found that the invariant measure
for the deterministic Navier–Stokes equation is disappointingly μ = δ(u), a delta
function concentrated at the origin. The reason for this is that the Navier–Stokes
equation is dissipative and all solutions eventually decay to the origin.

Da Prato and Zabczyk developed a method (Da Prato and Zabczyk 1996) that can
be used to find the invariant measure for a stochastic PDE of the form

du = Au dt +
∑
j∈Zn

c1/2j db j
t e

2π i j ·x ,

where A is an operator on the Hilbert space on an n-torus L2(Tn). Here, the c1/2j are

n-vectors, their inner products converge,
∑

j∈Zn c j ≤ ∞, with c j = c1/2j · c1/2j , and

the b j
t are independent Brownianmotions accompanying each Fourier coefficient. The

corresponding Kolmogorov–Hopf equation is

∂φ(u)

∂t
= 1

2
Tr[C�uφ(u)] + 〈Au,∇uφ(u)〉,

whereC is the trace class matrix having the c j s along the diagonal. This is a functional
differential equation: φ is a bounded function of the solution u of the PDE, and the gra-
dient∇u and the Laplacian�u arewith respect to the function u. The invariantmeasure
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producing the solution of the Kolmogorov–Hopf equation is an infinite-dimensional
Gaussian,

μ = N(0,Q)(u),

where Q = ∫ ∞
0 et ACet A

∗
dt is the variance, see Da Prato (2006).

We will now find the Kolmogorov–Hopf equation associated with Eq. (9) and solve
it. First we write Eq. (9) as a stochastic PDE, namely

dp =
(σ

2
�v p + [α(C) δv(v − v0) − �S] p − v · ∇x p − ∇v ·[(F(C) − σv)p]

)
dt

+ε

⎡
⎣∑
k �=0

(
dkdt + c1/2k dbkt

)
p̂k

⎤
⎦ p + εp

∫
R

h(z, v, t)N̄ (dz, dt),

(13)

where p̂k = 〈eik·v, p〉 models velocity fluctuations and S is evaluated as the mean
of p, assuming ergodicity, as in Eq. (23) below. This shows that Eq. (13) is different
from the stochastic Navier–Stokes equation, see Birnir (2013a), since it contains two
multiplicative noise terms and no additive noise. We write it in the form

dp = Ap dt +
⎛
⎝∑

k �=0

(
dkdt + c1/2k dbkt

)
p̂k +

∫
R

h(z, v, t)N̄ (dz, dt)

⎞
⎠ p, (14)

where A is a partial differential operator and we have set ε = 1. Now, we find an
integrating factor that is a product of two terms,

qP = |pt |γ βNt ,

a log-Poisson process as in the previous section, with the mean λ = mt = − γ ln(pt )
β−1 ,

and the geometric Brownian motion

qB = exp

⎧⎨
⎩

∑
k �=0

[(
dk − 1

2
ck

)
p̂k t + c1/2k p̂kb

k
t

]⎫⎬
⎭.

By Ito’s formula (cf Eq. (12)) we get

E(qB) = exp

⎧⎨
⎩

∑
k �=0

p̂kdk t +
∑
k �=0

p̂kc
1/2
k bk0

⎫⎬
⎭ = exp (−d t − d0).

Notice that the log-Poissonian is different from the stochastic Navier–Stokes equation,
where the jumps depend on the Fourier coefficients of the solution, see Birnir (2013a),
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whereas for Eq. (13) the jumps depend on the whole solution pt or are the same for
all Fourier coefficients. Then, the integrating factor becomes

Pt = qBqP

and the Kolmogorov–Hopf equation reduces to Hopf’s equation with an integrating
factor,

∂φ(p)

∂t
= 〈Ap Pt ,∇pφ(p)〉. (15)

The invariant measure of Eq. (13) is now a convolution of the Poisson distribution
with an infinite-dimensional Gaussian, namely

μ = N(et ,qt )(p) ∗ PN∞(p), (16)

where the mean of the Gaussian is et = ∑
k �=0(dk − 1

2ck) p̂k and the variance is qt =∑
k �=0 ck p̂

2
k . Indeed, the Gaussian distribution depends on the sum of the (velocity)

Fourier coefficients of p. On the other hand, PN∞(·) is the limit as t → ∞ of the
log-Poisson law.

The solution of Eq. (15) can be written see Birnir (2013b)) as a Markov semigroup
Rt acting on a bounded function φ, on the Hilbert space H [for example a Sobolev
space based on L2 as in Birnir (2013b)] containing p,

Rtφ = 1√
πqt

∫
H

∫ ∞

0
φ(p) PNt e

− (p−et )
2

qt dxdp

= 1√
πqt

∫
H

∞∑
j=0

∫ ∞

0
φ(p(Nt = x))

m j
t e

−mt

j ! δ(x − j)e− (p−et )
2

qt dxdp

= 1√
πqt

∫
H

∞∑
j=0

φ(p(Nt = j))
m j

t e
−mt

j ! e− (p−et )
2

qt dp, (17)

where mt = − γ ln(pt )
β−1 is the mean of the log-Poisson process, P j = m j

t e
−mt

j ! is the

probability of having exactly j jumps, N j∞ = N j . Note that Rt leaves the invariant
measure in Eq. (19) below invariant. For φ = pn , we get

1√
πqt

∫
H

∞∑
j=0

φ(eAt p0Pt (Nt = j))
m j

t e
−mt

j ! e− (p−et )
2

qt dp = p̄nt E(qnPq
n
B)

= e−ndt−nd0 p̄
n(1−γ )+γ

(
βn−1
β−1

)
t , (18)

by the computation of E(qB) and E(qP ) in Eq. (12) and (11), where eAt denotes the
solution operator generated by the partial differential operator A and p̄t is the averaged
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solution of Eq. (14). We would like to take the limit as t → ∞, to obtain the invariant
measure

PN∞(·) ∗ N(e,q)(·) =
∫
H

∞∑
j=0

(·)m
j∞e−m∞

j !
1√

πq∞
e− (p−e∞)2

q∞ dp, (19)

wherem∞ = − γ ln(p∞)
β−1 and e = e∞, q = q∞ are the limits as t → ∞. However, this

would give us the trivial limit zero, because of the decay e−ndt due to themultiplicative
Brownian noise. In Bonilla et al. (2016b), it was shown that the density evolves toward
a soliton-like solution as t becomes large. Thus, we take the limit p∞ = p(ξ), with
ξ = x −ct , to be the soliton in its traveling frame and consider the long-time statistics
to be determined by

e−ndt−nd0 p
n(1−γ )+γ

(
βn−1
β−1

)
∞ . (20)

This can be thought of as the moments of an invariant measure multiplied by an
exponentially decaying factor. It gives an excellent approximation to the real statistics
for large times. In other words, the infinite time limit of pt is trivial as explained
above, but instead p∞ refers the soliton p(ξ) in its traveling frame of reference. It is
the correct long-time average.

5 Comparison between Simulations and Theory

In this section, we will compare the moments of the density computed as in Eq. (20)
with the moments simulated from the stochastic model of angiogenesis. But first we
discuss the form of the soliton that approximates the density of the active vessel tips
and then we explain how the parameters in Eq. (20) are computed.

In Bonilla et al. (2016b), the authors showed that the density p in Eq. (1) evolves
toward a 1D (Korteweg–de Vries-like) soliton profile for a slab geometry in which a
primary vessel is located at x = 0 and a tumor is centered at x = L , y = 0, see Fig. 1.
A one-dimensional slab is the x-axis from 0 to L . A two-dimensional slab in the x − y
plane is the rectangle with length L and width 3L , see Fig. 1. A general 2D geometry
is discussed in Bonilla et al. (2020). For the 2D slab geometry, p is a product of a
Maxwellian distribution in velocity, centered at v0, a transversal Gaussian function
that approaches δ(y) and the soliton from Bonilla et al. (2016b), namely

p(t, x, v) = e−|v−v0|2

π
δ(y) p̃(t, x), where x = (x, y), (21)

p̃(t, x) = (2K� + M2)c

2�(c − Fx )
sech2

(√
2K� + M2

2(c − Fx )
(x − ct + x0)

)
, (22)
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Fig. 1 Upper panels illustrate density plots of the marginal tip density p̃(t, x, y) at different times, showing
how tips are created at the primary blood vessel at x = 0 and march toward the tumor at x = L . Lower
panels show the marginal tip density at y = 0 for the same times as in upper panels. The tip density has
been calculated as an ensemble average over 400 replicas of the stochastic model, see “Appendix B.” Note
that the x-axis, from 0 to L , is the 1D slab in the text and the 2D slab is the rectangle on top. The shape of
the density is a soliton in the x direction and a Gaussian distribution, approximating δ(y), in the y direction.
The figure is borrowed from Bonilla et al. (2016b)

See Bonilla et al. (2020). The soliton given by Eq. (22) is a 1D traveling wave solu-
tion of Eq. (1) in which only dominant terms (time derivative of the density, constant
convection and source terms) are kept (Bonilla et al. 2016b, 2020), see Fig. 1. Here
K and c are slowly varying functions of t that fix the size and velocity of the soliton.
They are called collective coordinates, depend on all nondominant terms in Eq. (1)
and satisfy ordinary differential equations (Bonilla et al. 2016a). All other parameters
in Eq. (22) are related to the underlying angiogenesis model. The justification of the
Maxwellian distribution is that the source term in Eq. (13) selects velocities in a small
neighborhood of v0, because they are the only velocities for which the birth term in
the equation can compensate the anastomosis death term. Then, a Chapman-Enskog
expansion reduces Eq. (13) to the equation in Bonilla et al. (2016b) that has the soliton
solution, see Bonilla et al. (2016a). This reduction is a side issue for our discussion
and is not repeated here. It is explained in great detail in Bonilla et al. (2016a). The
factor δ(y) follows from a multiple scales method explained in Bonilla et al. (2020).

It is reasonable to expect the averaged density and its moments in Eq. (18) to be
functions of the soliton in Eq. (22), since it is the only structure that survives in the
numerical simulations for large times. This is in fact the case, but we now spell out
the assumption that we need to establish this relation. The jump associated with the
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Poisson process is

h = hb + ha =
(
1bα(C) δv(v − v0) − 1a�

e−|v−v0|2

π

∫ t

0
p̃(s, x)ds

)
,

where 1b and 1a are one during branching and anastomosis, respectively, and zero
otherwise. Now, substituting for the soliton p̃ = a sech2(b(x − ct + x0)), we get that

S(t, x) =
∫ t

0
p̃(s, x)ds = −(a/bc) tanh(b(x − ct + x0)) + (a/bc) tanh(b(x + x0)).

The range of this expression is (0, 2(a/bc)) for positive values of t , and we have
chosen the average S(∞) = a/bc. Another way of determining this value is to let
x + x0 = ct and take the limit as x → ∞ and t → ∞. The mean of the jump is the
integral of h over the velocity,

hvaverage =
∫
R2

h(x, v, t)dv = hvaverageb + hvaveragea = 1bα − 1a�
a

bc
. (23)

This gives the averaged rate

m = − γ

1bα − 1a�S(∞)
ln( p̃),

where α is an equilibrium concentration, see the derivation below. Now, the average
denoted by a bar indicates the average over the invariant measure from last section.
This will be equal to the ensemble average discussed in “Appendix B.”

The averaged branching ratemb and the averaged anastomosis ratema are reported
in Table 1. Similarly, ha and hb denote the averaged jumps in anastomosis and branch-
ing, respectively, measured in simulations (see Table 1). However, the rates in Eq. (18)
depend on x (and t once we switch on the time evolution), so we must average them
to get the averaged rates. We perform this averaging. Strictly speaking we do not have
a trivial invariant measure to apply the ergodic theory, as discussed in the last section.
However, we can ignore the decaying part e−dt−d0 of the solution and use the p∞
part of Eq. (20) for the purpose of computing the averaged branching and anastomosis
rates. Recalling that the mean of the log-Poisson process in Eq. (17) is

mt = −γ ln(pt )

β − 1
,

where h = β − 1 is the jump, we use the averaged jumps for both the branching
and anastomosis processes. Then, if we can evaluate the average of the mean with
respect to the invariant measure, we get an equation for the parameter γ in both cases.
This is done by averaging the mean with respect to the infinite-dimensional Gaussian
measure. Indeed, it is already the mean with respect to the law of the log-Poisson
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process, so the Poissonian part of the invariant measure can be omitted. This gives

−m
h

γ
= 1√

πq

∫
H
ln(p∞)e− (p−e)2

q dp = ln(p∗),

by the slight extension of the mean value theorem in “Appendix C,” where p∗ is a
finite positive value. We do not know what the value p∗ is, but a reasonable guess is
to approximate p∗ by the spatial mean of the soliton p̃ in Eq. (22), namely

ln(p∗) ≈ ln

(∫ ∞

−∞
p̃(ξ)dξ

)
= ln( p̃).

A substitution of the soliton in Eq. (22) into the integral gives

m = −γ

h
ln B,

where B = 2(
√
2K�+M2)c

�
. This allows to compute the exponents

γb = − α

ln B
mb and γa = �S(∞)

ln B
ma,

in Eq. (18).
The values of the parameters mb, ma , hb and ha are given in Table 1 for the second

and third moments, and the considered time instants. Note that the values of mb and
ma can be estimated directly from the stochastic simulations, those of ha come from
ha = −�S(∞) = −�a/bc = −√

2K� + M2, while the values of hb = α [and d,
also reported in Table 1, cf Eq. (18)] are selected as to fit the theoretical moments in
Eq. (26) to the numerical simulations of the angiogenesis model (see “Appendix B”).
On the other hand, values of the collective coordinates are computed, for each time
instant, as detailed in Bonilla et al. (2016a). Finally, the other parameter values are
set to � = 0.09, M = 7.78 and Fx = 0.08 (see Bonilla et al. 2016a). It is important
to remark that, while the numerical values of ha are negative since the anastomosis
is a death process, a correct fitting is obtained by considering the actual size of the
anastomosis jumps, namely |ha |.

Equation (18) now gives that

endt+nd0 1√
πqt

∫
H

∞∑
j=0

φ(eAt p0Pt (Nt = j))
m j

t e
−mt

j ! e− (p−et )
2

qt dp

= p∞(ξ)
n(1−γa−γb)+γa

(
βna−1
βa−1

)
+γb

(
βnb−1
βb−1

)
, (24)

for t sufficiently large, assuming that the anastomosis and branching processes are
independent, where p∞(ξ) is simply the soliton in Eq. (22). Here

βb = hb + 1 = α + 1
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Table 1 Parameter values to fit
the second (n = 2) and third
(n = 3) moments given in
Eq. (26) to those computed from
the stochastic simulations (see
“Appendix B”), for some
representative time instants
(expressed in hours). Note that
ha = −�S(∞) and d0 = 0

mb hb ma ha d

Moment n = 2

t = 16 h 22.25 7.86 −20.33 −8.29 35.54

t = 20 h 24.88 8.19 −23.03 −8.60 41.13

t = 24 h 26.98 8.44 −24.12 −9.00 34.40

Moment n = 3

t = 16 h 22.25 8.01 −20.33 −8.29 29.19

t = 20 h 24.88 8.35 −23.03 −8.60 33.44

t = 24 h 26.98 8.63 −24.12 −9.00 30.35

and

βa = ha + 1 = −�S(∞) + 1.

The upshot of this is that, unless we are in the traveling frame of the soliton, all the
moments are exceedingly small. The reason is that the soliton decays exponentially in
space, so all quantities are going to be small away from the center of the soliton. Thus
the soliton decays exponentially as ξ → ±∞ and has significant values only around
ξ = 0. However, in the traveling frame of the soliton, ξ = x − ct + x0, the average is
just the soliton itself,

p̃ = (2K� + M2)c

2�(c − Fx )
sech2

(√
2K� + M2

2(c − Fx )
ξ

)
, (25)

and the nth moment is

p̃ζn =
(

(2K� + M2)c

2�(c − Fx )

)ζn

sech2ζn

(√
2K� + M2

2(c − Fx )
ξ

)
.

Here

ζn = n(1 − γa − γb) + γa

(
βn
a − 1

βa − 1

)
+ γb

(
βn
b − 1

βb − 1

)
.

Now, by the argument in the previous section, we get the moments

〈 p̃n〉 ≈ e(−ndt−nd0) p̃ζn , (26)

where the angle bracket denotes the average with respect to the invariant measure in
Eq. (19). In particular, for the mean we get a one parameter (d) family,

〈 p̃〉 ≈ e(−dt−d0) (2K� + M2)c

2�(c − Fx )
sech2

(√
2K� + M2

2(c − Fx )
ξ

)
.
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Fig. 2 A comparison between theory and simulations for the second 〈 p̃2(t, x)〉 (left column) and the third
〈 p̃3(t, x)〉 (right column) moments of stochastic angiogenesis Eq. (13). Time instants are 16h (first row),
20h (second row) and 24h (third row), from top to bottom, for each column of three figures

Comparison between theory and simulations, discussed in “Appendix B,” is shown
in Fig. 2, for the second and third moments. Results are given in the spatial domain
0 ≤ x ≤ 1 at increasing time instants.

It is reasonable to keep the exponentially decaying factor above instead of taking
the limit as t → ∞. Indeed, we are interested in times until a blood vessel (artery or
vein) encounters another one or joins with a tumor. The decay coefficient is small (see
Table 1), so these vessels shrink slowly as they are elongated. The coefficient d0 = 0
is set for all simulations.
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There is a small discrepancy between the theoretical moments and the simulated
ones at 24h (see Fig. 2). The reason for this is well-known. The soliton is not stable,
but there is a one-dimensional subspace of translated solitons that is stable. This is
called orbital stability, see Weinstein (1987). The moments are also orbitally stable,
so the theoretical moments are a small translation of the simulated ones, at 24h. The
translation distance increases with time.

6 The Structure Functions

The moments in Eq. (20) are called the 1-point statistics of the statistical theory (of
angiogeneses). The 2-point statistics, given by the structure function below, sometimes
allow one to probe a finer structure. This is the case for example in turbulence (Birnir
2013a). We will compute the structures functions below to see if this also works for
angiogenesis.

We compute the moments of the density difference p1 − p2 = p(ξ1) − p(ξ2) to
probe the fine structure in angiogenesis, with ξi = x − ct + x0i , i = 1, 2. These
moments are called the structure functions. This means that we are looking at the
difference of two solitons that differ only in their initial position.

The density difference δ p = p1 − p2 is

δ p = (2K� + M2)c

2�(c − Fx )

[
sech2

(√
2K� + M2

2(c − Fx )
ξ1

)
− sech2

(√
2K� + M2

2(c − Fx )
ξ2

)]
.

We let ξ1 = ξ0 + l and ξ2 = ξ0, where l is a lag variable. Then δ p becomes

δ p ≈ (2K� + M2)3/2c

4�2(c − Fx )2

[
2sech2

(√
2K� + M2

2(c − Fx )
ξ0

)
tanh

(√
2K� + M2

2(c − Fx )
ξ0

)]
l.

By the same arguments as above, the nth moment is

(δ p)ζn ≈
(

(2K� + M2)3/2c

2�2(c − Fx )2

)ζn
[
sech2

(√
2K� + M2

2(c − Fx )
ξ0

)
tanh

(√
2K� + M2

2(c − Fx )
ξ0

)]ζn

lζn ,

for l small, where

ζn = n(1 − γa − γb) + γa

(
βn
a − 1

βa − 1

)
+ γb

(
βn
b − 1

βb − 1

)
.

These formulas then give the structure functions

〈(δ p)n〉 ≈ e(−ndt−nd0)(δ p)ζn , (27)

as in the previous section, where the angle bracket denotes the average with respect
to the invariant measure in Eq. (19). It equals the ensemble average discussed in
“Appendix B.”
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7 Discussions

We have developed a statistical theory for stochastic angiogenesis equation (9) and
compared the moments of the density, solving (9), to simulations of the moments. The
moments of the density turn out to be functions of the soliton, that approximates the
deterministic density (Bonilla et al. 2016a, b), that is a solution of deterministic Eq.
(1). Themean of the stochastic density is computed to be the soliton itself, see Eq. (25).
However, for the higher ≥ 2 moments, the jumps in branching and anastomosis also
come into play. These jumps, that are computed from simulations in Sect. 5, determine
the scaling γb and γa and intermittency βb and βa parameters.

All of these moments and the structure functions are functions of the soliton but
multiplied by a slowly decaying factor. This reflects the numerical observations: The
density approaches a slowly decaying soliton for large times. It turns out to be possible
to separate the slow decay from an invariant motion and compute the invariant measure
determining this motion.

Considering the scaling exponents of the moments

ζn = n(1 − γa − γb) + γa

(
βn
a − 1

βa − 1

)
+ γb

(
βn
b − 1

βb − 1

)
,

We see that the nth moment has a scaling n(1−γa −γb), with intermittency correction

γa(
βn
a−1

βa−1 )+γb(
βn
b−1

βb−1 ). This is different from the three-dimensional stochastic Navier–
Stokes equation (Birnir 2013a), where the moments are skewed Gaussians, but the
structure functions have a scaling with intermittency corrections [we are making this
comparison because this is the only other theory for a nonlinear stochastic PDE, with
jumps, that has been worked out in similar details, see Birnir (2013a, b).] The struc-
ture functions of Eq. (13) have the same scaling as the moments, however moments of
Eq. (13) are even functions of ξ and reach their maximum at ξ = 0, whereas the struc-
ture functions are odd functions of ξ0 and have two maxima at ξ0 = ±sech−1(

√
3/2).

We thus see that the statistical theory of Eq. (13) is very different from that of the
stochastic Navier–Stokes equation. If we are in the traveling frame of the soliton, we
see decaying soliton-like terms, given by the formulas above. Apart from these, the
statistical quantities consist of small and rapidly decaying radiation terms.

We also see that a much simpler perturbation term, with continuous increments, of
the density gives the same results, namely

dp =
(σ

2
�v p + [α(C) δv(v − v0) − �S] p − v · ∇x p − ∇v ·[(F(C) − σv)p]

)
dt

+ε

(
−

(
d − d0

2

)
dt − √

d0dBt

)
p + εp

∫
R

h(z, v, t)N̄ (dz, dt),

(28)

with B0 = 1. Thus, the (Brownian) noise in vessel branching only depends on the
density (not all of its Fourier components) and is, in this aspect, similar to the noise in
anastomosis, which also depends only on the jumps in the density. There is no reason
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to assume this at the beginning, so we assume that the noise is different for different
(velocity) Fourier coefficients and obtain this rather surprising result.

Finally, the statistical theory of angiogenesis only applies to finite times, until a
network of blood arteries or veins is beneficially established in organs and recovering
tissue, or malignantly connected to a cancerous tumor.

Summarizing, we have proposed a statistical theory of angiogenesis by adding
appropriate noise terms to the equation for the density of active tip cells. The shape
of the noise terms mimics the birth and death processes of tip branching and anasto-
mosis, respectively, plus some other terms coming from the Brownian motion. Thus,
our starting point is a stochastic PDE with Gaussian and Poisson noises that defines
an infinite-dimensional Lévy process. We have solved the associated functional dif-
ferential Kolmogorov–Hopf equation by finding appropriate integrating factors and
therefore obtained the invariant measure. The result is an invariant measure multiplied
by an exponentially decaying factor. By comparing theory and numerical simulations
of the underlying angiogenesis model, we have obtained, in Sect. 5, the appropriate
values of the parameters involved in the stochastic PDE.
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Appendix A: Jumps and Lévy Processes

In this appendix, we digress to explain the Ito–Lévy’s formula, a generalization of Ito’s
formula that is necessary to solve Eq. (9). First we define stochastic processes with
jumps, followingØksendal andSulem (2005),wheremore information canbe found.A
Lévy process is a stochastic process on a filtered probability space (�,F , {Ft }t≥0,P),
which takes its values inR, is continuous in probability and has stationary independent
increments. The {Ft }t≥0 is an increasing sequence of sigma-algebras indexed by t .
They are called a filtration on the probability space (�,F ,P).

Let bt be a one-dimensional Brownian motion on the probability space (�,F ,P)

and suppose that N (t, z) is the number process of a Lévy process ηt . An Ito–Lévy
process is a stochastic process xt on (�,F ,P) of the form

dxt = u(t, ω)dt + w(t, ω)dbt +
∫
R

γ (t, z, ω)N̄ (dz, dt). (A.1)
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Here N̄ is called the compensated jump measure of ηt , defined as

N̄ (dz, dt) = N (dz, dt) − m(dz)dt, if |z| < R,

or

N̄ (dz, dt) = N (dz, dt), if |z| ≥ R,

where m(U ) = ∫
U E(N (dz, 1)) is the so-called Lévy measure of ηt , see Birnir

(2013b), Section 1.5.
The main computational tool in the Ito’s calculus for Ito–Lévy processes is the

Ito–Lévy formula, see Øksendal and Sulem (2005). It is a generalization of the Ito’s
formula, so that the jumps are included. Let xt be the Ito–Lévy process

dxt = udt + √
σdbt +

∫
R

γ (t, z)N̄ (dz, dt).

Let g(t, x) ∈ C2([0,∞) × R) be twice continuously differentiable. Then

yt = g(t, xt )

is also an Ito–Lévy process and

dyt = ∂g

∂t
(t, xt )dt + ∂g

∂x
(t, xt )(udt + √

σdbt ) + σ

2

∂2g

∂x2
(t, xt )dt

+
∫
z<R

(
g(t, xt + γ (t, z)) − g(t, xt ) − ∂g

∂x
(t, xt )γ (t, x)

)
m(dz)dt

+
∫
R

(g(t, xt + γ (t, z)) − g(t, xt )) N̄ (dz, dt). (A.2)

Here (udt + √
σdbt )2 has been computed by the rules

(dt)2 = dt · dbt = dbt · dt = 0, (dbt )
2 = dt .

It is illustrative to use Eq. (A.2) to solve a differential equation. We now do so
creating the geometric Lévy process. We solve the differential equation

dZt = Zt

[
rdt + αdbt +

∫
R

h(t, z)N̄ (dz, dt)

]
.

Dividing by Zt

dZt

Zt
= rdt + αdbt +

∫
R

h(t, z)N̄ (dz, dt),
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we see that a reasonable guess for the function g above is

yt = ln(Zt ).

Applying Ito–Lévy formula (A.2), we get that

dyt = ∂ ln(Zt (t, xt ))

∂x
Zt (rdt + αdbt ) + 1

2

∂2 ln(Zt (t, xt ))

∂x2
(Zt )

2(rdt + αdbt )
2

+
∫
R

ln(1 + h(t, z))N̄ (dz, dt) +
∫
R

(ln(1 + h(t, z)) − h(t, z))m(dz)dt

= Zt

Zt
(rdt + αdbt ) − 1

2

(Zt )
2

(Zt )2
(rdt + αdbt )

2 +
∫
R

ln(1 + h(t, z))N̄ (dz, dt)

+
∫
R

(ln(1 + h(t, z)) − h(t, z))m(dz)dt

=
(
r − α2

2

)
dt + αdbt +

∫
R

ln(1 + h(t, z))N̄ (dz, dt)

+
∫
R

(ln(1 + h(t, z)) − h(t, z))m(dz)dt,

because ∂g
∂t = ∂ ln(Zt )

∂t = 0. Integrating

dyt = d ln(Zt ) =
(
r − α2

2

)
dt + αdbt +

∫
R

ln(1 + h(s, z))N̄ (dz, ds)

+
∫
R

(ln(1 + h(s, z)) − h(s, z))m(dz) ds

with respect to t and exponentiating, we get that

Zt = Z0 e
{(r− α2

2 )t+αbt+
∫ t
0

∫
R
ln(1+h(s,z))N̄ (dz,ds)+∫ t

0

∫
R
(ln(1+h(s,z))−h(s,z))m(dz)ds}.

(A.3)
This process is called the geometric Lévy process. The first two terms in the exponent
correspond to the Ito process, and the last two terms (integrals) are contributed by the
jump (Lévy) process.

Appendix B: Moments from the Stochastic Model of Angiogenesis

In this appendix, we indicate how averages and moments are directly computed
by numerical simulation of the stochastic angiogenesis model of Eq. (3) plus ran-
dom branching and anastomosis processes. As in Terragni et al. (2016), we run N
realizations of the underlying stochastic process and label each one by ω. Thus,
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ω = 1, . . . ,N . The ‘microscopic marginal density’ is now

p̃N (t, x;ω) =
N (t,ω)∑
k=1

δσx (x − Xk(t, ω)), (B.1)

for realization ω, whereas the marginal density p̃(t, x) is the average of Eq. (B.1)
over all realizations as N → ∞ and σx → 0. In practice, we select N so large that
adding more realizations does not change the results of the simulations. Typically
N = 400 suffices. Numerical values of all other parameters can be found in Terragni
et al. (2016).

To calculate the nth moment of the marginal density, we use a similar formula

〈 p̃nN 〉 = 1

N
N∑

ω=1

⎡
⎣N (t,ω)∑

k=1

δσx (x − Xk(t, ω))

⎤
⎦
n

, n = 1, 2, 3, . . . , (B.2)

in which the ensemble average over realizations is explicitly written. Analogous cal-
culations produce the structure function.

The numerical simulations of this paper consider the simple slab geometry of Ter-
ragni et al. (2016), Bonilla et al. (2016a), explained in Sect. 5. The soliton is calculated
using data at a time when its development is completed to solve the collective coordi-
nate equations for K and c in Eq. (22); see Bonilla et al. (2016a) for details.

Appendix C: Extension of theMean-Value Theorem

We show that the integral

1√
πq

∫
H
ln(p∞)e− (p−e)2

q dp,

where p lies in the Hilbert space H, evaluates to ln(p∗), the natural logarithm of a
positive constant p∗, by a slight extension of the mean-value theorem for integrals.

First, we recall from the end of Sect. 4 that p∞ = p∞(ξ) is a traveling wave given
by the soliton. Thus, all the directions except that given by the soliton integrate to one
in the above integral and we get that

1√
πq

∫
H
ln(p∞)e− (p−e)2

q dp = 1√
πqs

∫ ∞

−∞
ln(p∞(ξ))e− (p(ξ)−es )2

qs
dp

dξ
dξ,

where es and qs are the mean and variance associated with the direction of the soliton
in the function space. However, as ξ ranges from −∞ to ∞, p ranges from 0 to its
maximum, and from its maximum to 0. By the chain rule, this amounts to integrating
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the maximum, p = max p(ξ) = max p∞(ξ), twice from 0 to ∞, namely

1√
πqs

∫ ∞

−∞
ln(p∞(ξ))e− (p(ξ)−es )2

qs
dp

dξ
dξ = 2

1√
πqs

∫ ∞

0
ln(p)e− (p−es )2

qs dp.

If the interval was finite, i.e., [0,C], we immediately get that

2√
πqs

∫ C

0
ln(p)e− (p−es )2

qs dp = ln(p∗(C))
2√
πqs

∫ C

0
e− (p−es )2

qs dp,

where p∗ is a positive constant, by the mean-value theorem for integrals. We use the
following argument to reach the same conclusion for C = ∞. First, the integral in the
left-hand side is clearly increasing as a function of C , for C large. Then, since

2√
πqs

∫ C

0
ln(p∞)e− (p−es )2

qs dp ≤ ln(p∗(C))
2√
πqs

∫ ∞

0
e− (p−es )2

qs dp = ln(p∗(C)),

ln(p∗(C)) is increasing as well. However, ln(p∗(C)) is also bounded as

ln(p∗(C))
2√
πqs

∫ C

0
e− (p−es )2

qs dp ≤ 2√
πqs

∫ ∞

0
ln(p)e− (p−es )2

qs dp < ∞,

and

ln(p∗(C))

(
2√
πqs

∫ ∞

0
e− (p−es )2

qs dp − ε

)
≤ ln(p∗(C))

2√
πqs

∫ C

0
e− (p−es )2

qs dp

for C large enough and some ε > 0, so

ln(p∗(C)) ≤
2√
πqs

∫ ∞
0 ln(p)e− (p−es )2

qs dp

1 − ε
< ∞.

Now, a bounded increasing sequence of numbers must converge and we set

ln(p∗) = lim
C→∞ ln(p∗(C)).

Then

ln(p∗) = 2√
πqs

∫ ∞

0
ln(p)e− (p−es )2

qs dp.
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