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Abstract
In this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. 
In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To 
address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field 
fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and 
mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into 
the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework 
serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new 
model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new 
model. In total, six models are computationally analyzed and compared.

Keywords  Phase-field fracture · Mixed-mode fracture · Uniaxial compression test · Finite elements · Predictor–corrector 
mesh refinement

1  Introduction

In classical fracture mechanics, three fundamental modes of 
fractures are defined. They are termed as tensile (mode-I), 
in-plane shear (mode-II) and anti-plane shear (mode-III), 
respectively [7]. But the fractures we deal with in reality are 
mostly mixed-mode. For example, mixed mode-I and mode-
II fracture propagation is very common in rocks under com-
pression [13, 31]. Because of the complex formation mecha-
nisms and propagation behaviors of mixed-mode fractures, 

their simulations require mixed-mode fracture propagation 
criteria and robust numerical methods.

In terms of numerical methods, phase-field methods 
have seen a tremendous popularity in fracture propagation 
simulations in recent years. Such variational methods were 
first proposed by Francfort and Marigo [16]. A subsequent 
numerical realization was derived by Bourdin et al. [10]. 
Therein, two equations are coupled: one to solve displace-
ment and the other to solve the phase-field unknown. The 
latter is a regularized equation with a model parameter � that 
characterizes the thickness of a smoothed transition zone 
from full fracture to the unbroken material.

In terms of mixed-mode fracture propagation criteria, 
Shen and Stephansson modified Griffith’s criterion (G-cri-
terion) [19], which can only address single-mode fracture 
propagation, into an F-criterion. Zhang et al. [40] and Bry-
ant and Sun [11] then incorporated the F-criterion into the 
phase-field fracture model. Accordingly, the crack driving 
energy in the original phase-field formulation is split into 
mode-I and mode-II parts. This is achieved by splitting the 
crack driving stress �+ into �+

I
 and �+

II
 , or in some cases, 

splitting the crack driving strain e+ into e+
I
 and e+

II
 . Zhang 

et al. modified the energy splitting method for single-mode 
fractures [29] so that the first and second terms of �+ became 
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�+
I

 and �+
II

 respectively [40]. This method can distinguish 
primary cracks from secondary cracks in uniaxially com-
pressed limestones, but it overestimates the maximum force 
response when mode-I loading is dominant [40]. Strobl 
and Seelig [34] and Steinke and Kaliske [33] proposed 
more physically sound splitting methods, where the asym-
metry effects of tension and compression normal stresses 
on fracture propagation are fulfilled explicitly1. However, 
determining fracture surface directions remains unsolved in 
these two studies. Bryant and Sun derived a similar splitting 
method considering the asymmetry effects of tension and 
compression normal strains on fracture propagation [11]. 
The direction of fracture surface is determined by solving a 
local fracture dissipation maximization problem [11]. In the 
numerical experiments, we have carried out, the latter three 
splitting methods [11, 33, 34] showed some numerical insta-
bilities. Newton iteration steps increase sharply when the 
crack starts to propagate and in some cases divergence takes 
place. Freddi and Royer-Carfagni derived a splitting method 
for masonry-like materials based on structured deformation 
theory [17]. This method has a similar formulation to those 
proposed by Strobl and Seelig [34] and Steinke and Kaliske 
[33], but seem numerically more robust. Recently, another 
splitting model was proposed by [9]. However, it can only 
deal with mode-I fracture as it is derived under the principal 
strain coordinate and there is no mode-II fracture driving 
energy term in the formulation.

The objective of the current work is two-fold. First, a 
novel phase-field model for mixed-mode fractures is intro-
duced. Second, this new model is implemented in well-
proven robust and efficient numerical framework, allowing 
for parallel computations and adaptive mesh refinement. We 
explain both novelties in more detail in the following.

First, we develop a splitting method, which splits the 
crack-driving energy into mode-I and mode-II parts. Specifi-
cally, we change the reference frame of the energy splitting 
method proposed by Freddi and Royer-Carfagni [17] from 
principal strain coordinates to local fracture surface coordi-
nates. We then incorporate this method into the mixed-mode 
phase-field fracture formulation proposed by Zhang et al. 
[40] and develop a physically sound and numerically robust 
phase-field model for mixed-mode fracture propagation. 
The fracture surface direction is determined based on the 
maximum-dissipation criterion [11]. We further develop a 
simpler computational algorithm to implement this criterion, 
as derived in Sect. 3.6.

Second, the resulting model is then implemented in a 
framework developed in [20, 21], named pfm-cracks 

[22]. The resulting approach is robust, accurate and efficient 
using parallel computations and adaptive mesh refinement 
employing a predictor–corrector scheme to detect the priori 
unknown fracture path. Three numerical tests are carried out 
under different mesh sizes h and transitional zone sizes � , 
and the results of our new model are compared with those 
of the existing models. These comparisons demonstrate the 
numerical robustness and physical soundness of our new 
model. Preliminary results of this work are published in con-
ference proceedings [15].

The outline of this paper is as follows: in Sect. 2, the nota-
tion and governing equations for mixed-mode phase-field 
fracture model are presented. Next in Sect. 3, several energy 
splitting methods for mixed-mode fractures are reviewed and 
our new splitting method is derived. In Sect. 4, the detailed 
algorithm and numerical scheme used to solve our model are 
presented. Then in Sect. 5, three numerical tests based on 
five existing splitting methods and our new splitting method 
are presented and analyzed. Finally, in Sect. 6, the contents 
of this paper are summarized and conclusions are drawn.

2 � Governing equations for mixed‑mode 
phase‑field fracture models

2.1 � Notation

In this subsection, we introduce the basic notation used in 
the paper. Let B ⊂ ℝ

2 denote the whole two-dimensional 
domain, inside which a lower-dimensional sharp crack 
C ⊂ ℝ exists. Following the idea of Bourdin et al. [10], a 
phase-field variable � ∈ [0, 1] is introduced, where � = 0 
represents the fully damaged state and � = 1 represents the 
undamaged state. Then C is approximated using 𝛺F ⊂ B 
with the help of elliptic functional proposed by Ambro-
sio and Tortorelli [2, 3]. The boundary of the regularized 
fracture is denoted as ��F , whose position is dependent on 
the characteristic length � . Now the entire domain can be 
divided into the intact part 𝛺I ⊂ B and the fractured part 
�F . More specifically,

Figure 1 gives an illustration of the geometric setting 
notation. After applying Dirichlet boundary condition on 
the domain outer boundary �B , we are now faced with a two-
field problem depending on the displacement u ∶ B → ℝ

2 
and phase-field variable � ∶ B → [0, 1] . Finally, we denote 
the L2 scalar product: (1) for vectors, (m, n) ∶= ∫

B
m ⋅ ndx ; 

(2) for second-order tensors, (M,N) ∶= ∫
B
M ∶ Ndx .

(1)�I ∶= {x ∈ B ∣ �(x) = 1},

(2)𝛺F ∶= {x ∈ B ∣ 𝜑(x) < 1}.

1  Although these two papers are not aimed at solving mixed-mode 
fracture problem, the proposed splitting methods are capable of split-
ting �+ into �+

I
 and �+

II
.
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2.2 � Governing equations

In this subsection, we start with the original phase-field frac-
ture model and then introduce its evolvement into the mixed-
mode phase-field fracture model.

Francfort and Marigo generalized Griffith’s theory to form a 
variational model capable of treating crack nucleation, initiation 
and growth [16]. Bourdin then introduce a phase-field variable 
to numerically solve the model [10]. Miehe et al. [30] and Amor 
et al. [4] went one step further and proposed thermodynamically 
consistent phase-field fracture models in which elastic potential 
energy is split into fracture-driving and non-fracture-driving parts. 
Based on the aforementioned literature, the governing equations 
for thermodynamically consistent phase-field fracture model can 
be constructed starting from the energy functional E(u,�):

where Gc is the critical energy release rate, and � is a small 
numerical parameter to prevent singularity in Jacobian 
matrix. e(u) denotes Cauchy strain. �+(u) and �−(u) denote 
the crack-driving and non-crack driving stresses, respec-
tively, and they are fully partitioned from the total stress 
�(u):

The material is assumed to be linear-elastic:

where � and � are Lamé coefficients. Since we are deal-
ing with two-dimensional cases in this paper, we want to 
emphasize that � has different formulations in plane stress 
and plane strain settings:

(3)

E(u,�) =
1

2

(
(1 − �)�2 + �

)(
�+(u), e(u)

)
+

1

2
(�−(u), e(u))

+
Gc

2

(
1

�
(1 − �, 1 − �) + �(∇�,∇�)

)
,

(4)�(u) =�+(u) + �−(u).

(5)�(u) =�tr(e(u))I + 2�e(u),

(6)� =
E�

(1 + �)(1 − �)
in plane stress setting

(7)� =
E�

(1 + �)(1 − 2�)
in plane strain setting,

while � has the same formulation in both settings:

where E denotes Young’s modulus and � denotes Poisson’s 
ratio.

To determine the crack propagation path, we need to find 
the u and � which minimize E(u,�) . In the meantime, an 
inequality constraint must be enforced so that crack irre-
versibility is fulfilled. For the following, let us introduce 
three function spaces: let V ∶=

(
H1

0
(B)

)2 , W ∶= H1(B) , 
Win ∶=

{
� ∈ W ∣ � ≤ �n−1 ≤ 1 a.e. on �

}
.

This minimization problem with inequality constraint can 
be described as

Formulation 1  Let the time step sequence be denoted by 
the index n = 0, 1, 2,… . Find vector-valued displacements 
u ∶= un ∈ {uD + V} and a scalar-valued phase-field variable 
� ∶= �n ∈ Win such that

The variational form of the constrained minimization 
problem in Formulation 1 constitutes the governing equa-
tions for phase-field fracture model by differentiating E(u,�) 
with respect to u and �:

Formulation 2  Let the time step sequence be denoted by the 
index n = 0, 1, 2,… . With u0 and �0 as the initial conditions, 
at each following time step tn , find the displacement and 
phase-field variables {u,�} ∶= {un,�n} ∈ {uD + V} ×Win 
by solving:

and

Here uD ∶= uD(t) is the prescribed Dirichlet boundary 
condition at each time step.

Several stress splitting methods have been proposed to 
compute �+(u) and �−(u) in Formulation 2, among which 
the most prevalent ones are those proposed by Miehe et al. 
[30] and Amor et al. [4]. The splitting method proposed by 
Miehe et al. [30] is as follows:

(8)� =
E

2(1 + �)
,

(9)minE(u,�) s.t.� ≤ �n−1.

(10)

1

2

(
(1 − �)�2 + �

)((
�+(u), e(w)

)
+
(
�+(w), e(u)

))

+
1

2
((�−(u), e(w)) + (�−(w), e(u))) = 0∀w ∈ V ,

(11)

(1 − �)�
(
�+(u) ∶ e(u),� − �

)

+ Gc

(
−
1

�
(1 − �,� − �) + �(∇�,∇(� − �))

)

≥ 0∀� ∈ W ∩ L∞.

(12)𝜎+ =𝜆 < tr(e) > I + 2𝜇e+,

Fig. 1   Geometric setting notation of phase-field fracture model
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with

where ep1 and ep2 are eigenvalues of the strain tensor e, and 
the matrix P consists of normalized eigenvectors, where 
< ⋅ > are Macaulay brackets. The splitting method proposed 
by Amor et al. [4] is as follows:

with

where d is the dimension number of the studied case, which 
in this paper is d = 2.

One problem with Formulation 2 and the above splitting 
methods is that they cannot explicitly account for mixed-mode 
fracture propagation. The reasons are as follows.

The phase-field evolution equation Eq. (11) in Formula-
tion 2 is based on the maximum strain energy release rate cri-
terion or G-criterion, which is that the

where G is the energy release rate describing the crack driv-
ing force and Gc is the critical energy release rate describing 
the crack resistance. According to fracture mechanics, there 
are three basic types of loadings that a crack can experience, 
namely mode-I, II and III loadings, and each type of loading 
corresponds to an energy release rate and a critical energy 
release rate [5]. In this paper, we only consider mode-I and II 
loadings because we only deal with two-dimensional cases. 
When dealing with single-mode cracks, i.e. cracks driven 
by only one basic type of loading, G and Gc in Eq. (19) can 
be replaced by G∗ and G∗c , respectively, where ∗ stands for I 
or II, corresponding to mode-I or II energy release rates and 
critical energy release rates. When dealing with mixed-mode 
cracks, i.e. cracks driven by a combination of two types of 
loadings, G in Eq. (19) is a sum of two basic types of energy 
release rates, and Gc is a composite critical energy release 
rate. For most materials, the composite critical energy 
release rate Gc is hard to obtain. Because Gc is a weighted 
average of GIc and GIIc but the weight coefficients are hard 
to determine. Moreover, the splitting methods described by 
Eqs. (12)–(18) cannot explicitly compute each basic type of 

(13)𝜎− =𝜆(tr(e)− < tr(e) >)I + 2𝜇(e − e+),

(14)e+ =Pe+
p
PT

(15)e+
p
=

(
< ep1 > 0

0 < ep2 >

)
,

(16)𝜎+ =𝜆 < tr(e) > I + 2𝜇eD,

(17)𝜎− =𝜆(tr(e)− < tr(e) >)I,

(18)eD =e −
1

d
tr(e)I,

(19)crack propagates when ∶ G ≥ Gc,

crack driving stress. The �+(u) computed is only a compos-
ite crack driving stress and does not have a clear fracture 
mechanics meaning.

To solve the first problem, Shen and Stephansson [32] sug-
gested to use the F-criterion instead of the G-criterion to pre-
dict mixed-mode fracture propagation. The F-criterion can be 
described as [32]:

where

where � denotes the angle between the current crack sur-
face direction and the crack propagation direction. It can be 
seen from Eq. (21) that when using the F-criterion, instead 
of a composite critical energy release rate, we have clearly 
defined mode-I and II critical energy release rates, i.e. GIc 
and GIIc are used. And these two critical energy release rates 
can be measured using standard methods in laboratories [35, 
36]. Also, Shen and Stephansson found that the F-criterion 
gave more accurate fracture propagation paths than G-cri-
terion when they are simulating crack propagation paths in 
rocks subject to compression with an inclined crack [32].

To solve the second problem, a splitting method capable of 
computing mode-I and mode-II crack driving stresses should 
be used. A detailed description of such a method will be given 
in Sect. 3.

In the works of Zhang et al. [11] and Bryant and Sun [11], 
the F-criterion is incorporated into Eqs. (10) and (11), and 
the phase-field model for mixed-mode fractures is proposed:

Formulation 3  With u0 and �0 as the initial condi-
tions, at each incremental time step n = 1, 2, 3… , 
f ind the displacement and phase-field variables 
{u,�} ∶= {un,�n} ∈ {uD + V} ×Win by solving:

and

Remark 1  If the studied material has the property GIc = GIIc , 
Formulation  3 is the same as Formulation  2 since 

(20)crack propagates when: max
�∈[−�,�)

F(�) ≥ 1,

(21)F(�) =
GI(�)

GIc

+
GII(�)

GIIc

,

(22)

1

2

(
(1 − �)�2 + �

)((
�+
I
(u) + �+

II
(u), e(w)

)
+
(
�+
I
(w) + �+

II
(w), e(u)

))

+
1

2
((�−(u), e(w)) + (�−(w), e(u))) = 0∀w ∈ V ,

(23)

(1 − �)�

((
�+
I
(u)

GIc

+
�+
II
(u)

GIIc

)
∶ e(u),� − �

)

+

(
−
1

�
(1 − �,� − �) + �(∇�,∇(� − �))

)

≥ 0∀� ∈ W ∩ L∞.
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�+
I
(u) + �+

II
(u) = �+(u) . However, it has been recognized 

that most materials have GIIc much larger than GIc due to 
the difference of failure mechanisms [28]. Therefore, the 
phase-field model for mixed-mode fractures is necessary for 
most materials.

The remaining problem now is how to determine the 
mode-I crack driving stress �+

I
 and mode-II crack driving 

stress �+
II

.

3 � Stress splitting methods for mixed‑mode 
phase‑field fracture models

In this section, we first review several stress splitting meth-
ods that have been proposed in the literature. Then we intro-
duce in Sect. 3.6, our modifications to obtain a robust and 
physically sound model.

3.1 � Stress splitting à la Zhang et al. [40]

Based on the method proposed by Miehe et al. [29], i.e. 
Eqs. (12)–(15),

Zhang et  al. [40] directly extracted �+
I

 and �+
II

 from 
Eq. (12) :

This splitting method has the disadvantage of overestimating 
the maximum force response under tension-dominant load-
ing [40]. We can give an illustration of this disadvantage via 
a simple example. Assuming an element at the fracture tip is 
subjected to uniaxial tension stress �xx in the x direction, the 
strain state of the element can be described as

In this case, the crack driving energy should be pure mode-I, 
i.e. 𝜎+

I
∶ e > 0 and �+

II
∶ e = 0 . But if the previous splitting 

method is used, we obtain �+
II
∶ e = 2�(exx)

2 , which is even 
comparable to �+

I
∶ e = (1 − �2)�(exx)

2 . If the studied mate-
rial has GIIc > GIc , this method will underestimate the crack 
driving energy and thus overestimate the force response.

3.2 � Stress splitting à la Amor et al. [4]

Inspired by the work of Zhang et al. [40], we can also com-
pute �+

I
 and �+

II
 by modifying the stress splitting method à 

la Amor et al. [4]. Specifically, we extract �+
I

 and �+
II

 from 
Eq. (16):

(24)𝜎+
I
=𝜆 < tr(e) > I

(25)�+
II
=2�e+.

(26)e =

(
exx 0

0 − �exx

)
.

We again use the uniaxial tension setting to test this modi-
fied splitting method. In this case, �+

II
∶ e = (1 + �)2�(exx)

2 , 
which is comparable to �+

I
∶ e = (1 − �)2�(exx)

2 . Therefore, 
this method also has a force overestimation problem if the 
studied material has the property GIIc > GIc.

3.3 � Stress splitting à la Strobl/Seelig [34] 
and Steinke/Kaliske [33]

The splitting methods proposed by Strobl and Seelig [34] 
and Steinke and Kaliske [33] do not have the overestima-
tion problem. These two methods, although the former is 
presented in the strain form and the latter is presented in the 
stress form, are basically the same. They are both derived 
under the local crack coordinates and both have the assump-
tions that

–	 The fracture can sustain compressive, but not tensile, 
normal stress perpendicular to its surface.

–	 The fracture cannot sustain shear stress tangential to its 
surface, i.e. the fracture surface is frictionless.

For the convenience of implementation, we only present the 
strain-form formulation [34]. In 2D case, let n and s denote 
the directions normal and tangential to the fracture surface, 
respectively. Their formulation reads:

where

We again use the uniaxial tension example to test this split-
ting method. If the fracture propagation direction is perpen-
dicular to the uniaxial loading, which is a fair assumption in 
homogeneous isotropic material, then e+

II
= 0 , �+

II
= 0 , and 

correspondingly �+
II
(u) ∶ e(u) = 0 . Therefore, this splitting 

(27)𝜎+
I
=𝜆 < tr(e) > I

(28)�+
II
=2�eD.

(29)
�+
I
=�tr(e+

I
)I + 2�e+

I

�+
II
=�tr(e+

II
)I + 2�e+

II

�− =�tr(e−)I + 2�e−,

(30)e+
I
=

⎧⎪⎨⎪⎩

�
enn +

𝜆

𝜆+2𝜇
ess 0

0 0

�
if enn +

𝜆

𝜆+2𝜇
ess > 0,

0 if enn +
𝜆

𝜆+2𝜇
ess ≤ 0,

(31)e
+

II
=

(
0 e

ns

0 0

)
,

(32)e− =e − e+
I
− e+

II
.
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method does not have the overestimation problem in uni-
axial tension test. However in our experiment, this method 
is not numerically robust as the Newton iteration step has a 
sharp increase when crack starts to propagate and sometimes 
divergence takes place. The reason for this is not fully clear 
yet. But the singular strain tensors in Eqs. (30) and (31) 
might lead to a large condition number in the local Jacobian 
matrix and thus result in an ill-conditioned global Jacobian 
matrix. Consequently, the nonlinear and linear solvers show 
bad convergence histories. The performance comparison of 
Newton solvers incorporating different stress splitting meth-
ods are presented in Sects. 5.1 and 5.2.

3.4 � Stress splitting à la Bryant/Sun [11]

Bryant and Sun derived a similar splitting method based 
on the assumptions that [11]:

–	 The fracture can sustain compressive, but not tensile, 
normal strain perpendicular to its surface.

–	 The fracture surface cannot sustain shear strain tan-
gential to its surface.

Although this method is originally presented in energy-
form [11], it is presented here in an equivalent strain-form 
so that the differences between different splitting methods 
are more clear:

Then �+
I

 and �+
II

 are calculated using Eq. (29). This method, 
similar to the one à la Strobl/Seelig and Steinke/Kaliske, can 
address the uniaxial example well, but is not numerically 
robust due to the potential ill-conditioned Jacobian matrix.

3.5 � Stress splitting à la Freddi/Royer‑Carfagni [17]

Freddi and Royer-Carfagni derived an energy splitting 
method based on the structural strain theory under prin-
cipal strain coordinates [17]. Its assumption is that the 
structured, or non-elastic, part of the strain can be repre-
sented by a symmetric positive-semidefinite tensor. Let p1 
denotes the direction of the eigenvector corresponding to 
the most-positive eigenvalue. And p2 denotes the direction 
of the other eigenvector. The method’s formulation reads:

(33)e+
I
=

⎧⎪⎨⎪⎩

�
enn 0

0 0

�
if enn ≥ 0,

0 if enn < 0.

(34)e+
II
=
1

2

(
0 ens
esn 0

)
.

Equation (35) is very similar to Eq. (30) if p1 and n coin-
cide. It can also be inferred that Eq. (35) is numerically more 
robust than Eq. (30). Because in the most “dangerous” case 
where both principal strains are positive, the crack driv-
ing strain tensor e+ is not singular anymore. This inference 
will be verified by the numerical test results in Sect. 5. This 
splitting method can capture the tensile fracture geometry 
under compression loading [18]. But it does not account for 
mixed-mode fractures, as there is only e+ instead of e+

I
 and 

e+
II

 in the formulation.

3.6 � Our stress splitting model

Based on the previous explanations, we perform a heuristic 
modification resulting in a novel stress splitting model. 
To this end, the reference frame is changed from principal 
strain coordinates to local crack coordinates, and e+

I
 and e+

II
 

are determined to account for mixed-mode fractures. The 
new formulation reads:

Comparing Eq. (36) with Eq. (30), we see that the main dif-
ference between our stress splitting method and the stress 
splitting method á la Strobl/Seelig and Steinke/Kaliske is 
that we employ an additional if/else condition when 
enn +

𝜆

𝜆+2𝜇
ess > 0 and ess > 0 . Adding this condition influ-

ences our stress splitting method in two ways:

–	 From the physical point of view, this additional condition 
brings in one more assumption that, when the fracture is 
subject to normal tensile stress perpendicular to its surface 
and normal tensile strain parallel to its surface, the total 
elastic energy originated from the normal strain should be 
dissipated to form fracture surfaces.

(35)

e+ =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
ep1 0

0 ep2

�
if ep2 > 0,

�
ep1 +

𝜆

𝜆+2𝜇
ep2 0

0 0

�
if ep2 ≤ 0 and ep1 +

𝜆

𝜆+2𝜇
ep2 > 0,

0 if ep1 +
𝜆

𝜆+2𝜇
ep2 ≤ 0.

(36)

e+
I
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
enn 0

0 ess

�
if enn +

𝜆

𝜆+2𝜇
ess > 0 and ess > 0,

�
enn +

𝜆

𝜆+2𝜇
ess 0

0 0

�
if enn +

𝜆

𝜆+2𝜇
ess > 0 and ess ≤ 0,

0 if enn +
𝜆

𝜆+2𝜇
ess ≤ 0,

(37)e+
II
=
1

2

(
0 ens
esn 0

)
.
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–	 From the numerical point of view, this additional condition 
makes our splitting method more robust than the method à 
la Strobl/Seelig and Steinke/Kaliske. In the case where 
enn +

𝜆

𝜆+2𝜇
ess > 0 and ess > 0 , the strain tensor matrix in 

the first condition of Eq. (30) might have a large condition 
number, resulting in an ill-conditioned Jacobian matrix. 
However, in the same case, the first condition of Eq. (36) 
gives an strain tensor matrix with smaller condition num-
ber, thus resulting in a better-conditioned Jacobian matrix.

Again, �+
I
 and �+

II
 are calculated using Eq. (29). As for the 

fracture surface direction determination, we solve an additional 
local dissipation maximization problem [11]. Let � denote the 
angle between n and p1 , we define the normalized crack driv-
ing energy as

then the normal direction of crack surface can be determined 
by

After a simple derivation, we obtain

In all three situations, the local maximum points of F(u, �) 
are located at � = 0 or � =

�

4
 or both. Therefore, instead of 

implementing complicated global maximum search algo-
rithm, we can compare F(u, 0) and F(u, �

4
) and choose the 

� that maximizes F(u, �) as �n . The details about the imple-
mentation will be presented in Sect. 4.4.

4 � Finite‑element implementation 
and solution algorithms

In this section, we first briefly introduce our spatial dis-
cretization strategy. Then we introduce a primal-dual 
active set method used to treat crack irreversibility. This 
approach can be characterized as a semi-smooth Newton 
method [23] and is then combined with a classical Newton 

(38)F(u, �) =

(
�+
I
(u, �)

GIc

+
�+
II
(u, �)

GIIc

)
∶ e(u),

(39)�n =Arg{ max
�∈[0,

�

2
)
F(u, �)}.

(40)𝜕F(u, 𝜃)

𝜕𝜃
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇
�
ep1 − ep2

�2� 1

GIIc

−
2

GIc

�
sin 4𝜃 if enn +

𝜆

𝜆+2𝜇
ess > 0 and ess > 0,

𝜇
�
ep1 − ep2

�2� 1

GIIc

−
1

GIc

�
sin 4𝜃

−
(𝜆+2𝜇)

�
e2
p1
−e2

p2

�

GIc

sin 2𝜃 if enn +
𝜆

𝜆+2𝜇
ess > 0 and ess ≤ 0,

𝜇(ep1−ep2)
2

GIIc

sin 4𝜃 if enn +
𝜆

𝜆+2𝜇
ess ≤ 0.

technique, resulting in a combined Newton algorithm [20, 
21]. Then our specific forms of the Newton residual and 
the Jacobian matrix are presented. Finally, we derive a 
new algorithm for implementing our suggested splitting 
method. The resulting implementation is an extension 
of the open-source phase-field fracture code [21] (pfm-
cracks [22]) that uses finite elements from deal.II [6].

4.1 � Spatial discretization

A Galerkin finite element method is used to spatially dis-
cretize the 2D domain. Quadrilateral elements with bilin-
ear shape functions ( Q1 ) for both u and � are used. Con-
sequently, we work with the discrete spaces Vh ⊂ V  , and 
Wh ⊂ W  . For the locally adapted meshes, we work with 
hanging nodes, see, e.g. the work of Carey and Oden [12].

4.2 � Primal‑dual active set method and a combined 
Newton algorithm

In this subsection, we follow closely the work of Heister 
et al. [20] and recapitulate the main steps for Newton’s 
method solving an unconstrained minimization problem. 

To this end, the primal-dual active set method is used to 
treat crack irreversibility and the final algorithm which 
combines the former two methods into one iteration at 
each time step.

4.2.1 � Newton’s method for a minimization problem

First, we rewrite Formulation 1 into a more compact form:

where U ∈ {uD + V} ×Win is the solution of current time 
step, and Ū is the solution from last time step.

(41)min E(U),

(42)subject to U ≤ Ū on 𝛷 ∶= 0 ×W,
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The unconstrained minimization problem in Eq.  (41) 
can be solved using Newton’s method. A Newton iteration 
sequence U0,U1,… ,UN can be constructed in each time 
step, with

where the update �Uk is computed as the solution of the 
linear system:

if at each Newton iteration step, the condition

is fulfilled, and let the initial guess U0 = Ū , then the crack 
irreversibility constraint in Eq. (42) can be fulfilled since 
Uk+1 = Uk + 𝛿Uk ≤ Uk ≤ ⋯U0 = Ū on �.

4.2.2 � A primal‑dual active set method

In the following, the notation is shorten by dropping the 
index k of Newton iteration, i.e. �U ∶= �Uk , and setting 
G ∶= ∇2E(Uk) , F ∶= −∇E(Uk) . Thus, the system described 
by Eqs. (44) and (45) can be rewritten as a minimization 
problem:

Following the work of Hintermüller et al. [23], the minimi-
zation problem Eq. (46) can be solved using a primal-dual 
active set strategy. Using a Lagrange multiplier � ∈ 0 ×W∗ 
(where W∗ is the dual space of W), the minimization problem 
can be described using a equation system:

where

for a given c > 0 . The primal-dual active set strategy 
replaces the condition C(�U, �) = 0 with �U = 0 on � in 
the active set A and � = 0 in the inactive set I  . In other 
words, the active set is the subdomain where the constraint is 
applied and no PDE is solved. The inactive set is the subdo-
main where constraint is already fulfilled and PDE is solved. 
The algorithm for computing active set reads:

Algorithm 1  In each time step, with �U0 and �0 as initial 
condition, repeat for k = 1, 2,… until the active set Ak does 
no longer change: 

(43)Uk+1 = Uk + �Uk,

(44)∇2E
(
Uk

)
�Uk = −∇E(Uk),

(45)�Uk ≤ 0 on �,

(46)min
(
1

2
(�U,G�U) − (F, �U)

)
, with �U ≤ 0 on �.

(47)(G�U, Z) + (�,Z) =(F, Z) ∀Z ∈ V ×W,

(48)C(�U, �) =0,

(49)C(�U, �) =� −max(0, � + c�U) with �U ∈ �,

1.	 Compute active set: 

2.	 Compute �Uk ∈ V ×W  and �k ∈ 0 ×W∗ using: 

A discretized version of step 2 leads to a linear system 
with block structure:

Using quadrature only on the support points of �k
h
 , B block 

becomes diagonal. The equations BT�Uk
h
= 0 is not actually 

solved, but handled via linear constraints used to eliminate 
equations in the G block on active set Ak . The eliminated 
equations are those where the ith entry of �k

h
 is non-zero. 

Therefore, the linear equation system simplifies to

where Ĝ and F̂ stem from G and F by removing the con-
strained rows from the system.

Finally, each entry of �k
h
 can be computed using:

Then �k
h
 is used to compute the active set Ak+1 . The index i 

is in the active set Ak+1 if

and in the inactive set Ik+1 otherwise.

4.2.3 � A combined semi‑smooth Newton solver

In the implementation, two Newton iterations, namely the 
active set computation iteration and the PDE solving itera-
tion, are combined into one iteration to calculate the vari-
able �Uk . The combined iteration contains a back-tracking 
line search to improve the convergence radius. Moreover, 
Eq. (55) is rewritten using the earlier notation:

and the linear residual −∇E�

(
Uk

h

)
− ∇2E�

(
Uk

h

)
�Uk

h
 is 

replaced by the non-linear residual R
(
Uk+1

h

)
= −∇E�

(
Uk+1

h

)
 . 

Finally, the algorithm combining two iterations can be 
described as

(50)
A

k =
{
x ∣ 𝜆k−1(x) + c𝛿Uk−1(x) > 0

}
,

I
k =

{
x ∣ 𝜆k−1(x) + c𝛿Uk−1(x) ≤ 0

}
.

(51)

(G�Uk, Z) + (�k, Z) =(F, Z)∀Z ∈ V ×W,

(�Uk,�) =0 on Ak ∀� ∈ 0 × {W ∩ L∞},

�k =0 on Ik.

(52)
(

G B

BT 0

)(
�Uk

h

�k
h

)
=

(
F

0

)
.

(53)Ĝ𝛿Uk
h
= F̂,

(54)(�k
h
)i = (B−1)ii

(
F − G�Uk

h

)
i
.

(55)
(
𝜆k
h

)
i
+ c

(
𝛿Uk

h

)
i
> 0,

(56)(B−1)ii
(
−∇E𝜖

(
Uk

h

)
− ∇2E𝜖

(
Uk

h

)
𝛿Uk

h

)
i
+ c

(
𝛿Uk

h

)
i
> 0,
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Algorithm 2  In each time step, with U0 , �U0 and �0 as initial 
conditions, repeat for k = 1, 2,⋯ until the active set Ak does 
no longer change and R̂

(
Uk

h

)
< TOL R̂

(
U0

h

)
 : 

1.	 Assemble the non-linear residual R
(
Uk

h

)
= −∇E�

(
Uk

h

)
.

2.	 C o m p u t e  a c t i v e  s e t 
A

k =
{
i ∣

(
B−1

)
ii

(
R(Uk

h
)
)
i
+ c

(
𝛿Uk−1

h

)
i
> 0

}
.

3.	 Assemble Jacobian matrix G = ∇2E�

(
Uk

h

)
 and right-

hand side
	   F = R(Uk

h
).

4.	 Eliminate rows and columns in Ak from G and F to 
obtain Ĝ and F̂.

5.	 Solve linear system Ĝ𝛿Uk = F̂.
6.	 Find a step size 0 < 𝜔 ≤ 1 such that 

Remark 2  In the stopping criterion in Algorithm 2, the resid-
ual on the inactive set R̂

(
Uk

h

)
 instead of full residual R

(
Uk

h

)
 is 

used. The former is obtained by eliminating the constrained 
rows in the latter.

4.3 � Formulation of the Newton residual 
and the Jacobian matrix

In this subsection, we introduce the specific forms of the 
Newton residual and Jacobian matrix. A monolithic scheme 
in which all equations are solved simultaneously is used to 
solve the aforementioned PDE system. However, the energy 
functional in Eq. (3) and its derived mixed-mode form are 
not convex with respect to both u and � , but convex with 
respect to only u or � if the other is fixed. The critical term 
is the cross term 

(
(1 − �)�2 + �

)(
�+(u), e(u)

)
 . Heister et al. 

linearized � in the cross term by a time-lagging interpolation 
scheme 𝜑 ≈ 𝜑̃ ∶= 𝜑̃(𝜑n−1,𝜑n−2) [20]. A simple sub-iteration 
with a few cycles can be adopted to increase the accuracy 
comparable to fully monolithic schemes [38].

However, in this work, we choose a more conservative 
linearization scheme that 𝜑 ≈ 𝜑̃ ∶= 𝜑n−1 to further increase 
the stability of the solver. Finally, the Newton residual 
(right-hand side) is written as

(57)Uk+1
h

= Uk
h
+ 𝜔𝛿Uk

h
with R̂

(
Uk+1

h

)
< R̂

(
Uk

h

)
.

(58)

F =
1

2

(
(1 − 𝜅)𝜑̃2 + 𝜅

)((
𝜎+
I
(u) + 𝜎+

II
(u), e(w)

)

+
(
𝜎+
I
(w) + 𝜎+

II
(w), e(u)

))

+
1

2
((𝜎−(u), e(w)) + (𝜎−(w), e(u)))

+ (1 − 𝜅)𝜑

((
𝜎+
I
(u)

G
Ic

+
𝜎+
II
(u)

G
IIc

)
∶ e(u),𝜓

)

+

(
−
1

𝜖
(1 − 𝜑,𝜓) + 𝜖(∇𝜑,∇𝜓)

)

and the corresponding Jacobian matrix is written as

4.4 � Algorithm of the new splitting method

In this subsection, we introduce the algorithm of computing 
�+
I
(u) , �+

II
(u) and �−(u) in Eq. (58), as well as �+

I
(�u) , �+

II
(�u) 

and �−(�u) in Eq. (59). In the finite element implementation, 
�u is approximated using �uivi , where �ui is the displacement 
increment on the nodal point, and vi is the corresponding 
trial function. Therefore, what we need to compute for the 
Jacobian matrix are �+

I
(v) , �+

II
(v) and �−(v) (Here we drop 

the subscript i to simplify the notation). The computation of 
�+
I
(w) , �+

II
(w) and �−(w) is similar to that of �+

I
(v) , �+

II
(v) and 

�−(v) . The only difference are the input trial/test functions.
The scheme to compute �+

I
(u) , �+

II
(u) and �−(u) can be 

described as

Algorithm 3  On  each quadrature point, at each Newton 
iteration step k = 1, 2,… , we have u ∶= uk−1 : 

1.	 Compute the strain tensor e(u): 

2.	 Compute eigenvalues ep1 and ep2 ( ep1 > ep2 ) and the 
matrix P consisting of normalized eigenvectors corre-
sponding to e(u).

3.	 Compute the strain tensor under local crack coordinate 
ec(u, �) with the input � = 0 and

�

4
 : 

 where 

(59)

G =
1

2

(
(1 − 𝜅)𝜑̃2 + 𝜅

)((
𝜎+
I
(𝛿u) + 𝜎+

II
(𝛿u), e(w)

)

+
(
𝜎+
I
(w) + 𝜎+

II
(w), e(𝛿u)

))

+
1

2
((𝜎−(𝛿u), e(w)) + (𝜎−(w), e(𝛿u)))

+ (1 − 𝜅)𝜑

((
𝜎+
I
(𝛿u)

G
Ic

+
𝜎+
II
(𝛿u)

G
IIc

)
∶ e(u)

+

(
𝜎+
I
(u)

G
Ic

+
𝜎+
II
(u)

G
IIc

)
∶ e(𝛿u),𝜓

)

+

(
1

𝜖
(𝛿𝜑,𝜓) + 𝜖(∇𝛿𝜑,∇𝜓)

)
.

(60)e(u) =
1

2

(
∇u + ∇Tu

)
.

(61)ec(u, �) =QepQ
T ,

(62)e
p
=

(
e
p1 0

0 e
p2

)
,
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4.	 Decompose ec(u, �) into mode-I crack driving part 
e+
cI
(u, �) , mode-II crack driving part e+

cII
(u, �) and non-

dissipation part e−
c
(u, �) according to Eqs. (36), (37) and 

(32).
5.	 Compute the counterparts of e+

cI
(u, �) , e+

cII
(u, �) and 

e−
c
(u, �) in the global x–y coordinates: 

 where 

6.	 Compute �+
I
(u, �) , �+

II
(u, �) and �−(u, �) using Eq. (29).

7.	 Compute F(u, 0) and F(u, �
4
) using Eq. (38) and deter-

mine the crack surface direction by 

8.	 Compute �+
I
(u) ∶= �+

I
(u, �n) , �+

II
(u) ∶= �+

II
(u, �n) and 

�−(u) ∶= �−(u, �n) using steps 3–6 with the input � = �n.

The scheme to compute �+
I
(v) , �+

II
(v) and �−(v) is similar 

but more complex and can be described as

Algorithm 4  On each quadrature point, at each Newton itera-
tion step k = 1, 2,… , we have u ∶= uk−1 and v: 

1.	 Compute the strain tensor e(u) and the linearized strain 
tensor e(v): 

2.	 Compute the linearized eigenvalues ep1(v) and ep2(v) 
and the matrix P(v) consisting of linearized normalized 
eigenvectors.

3.	 Compute the linearized strain tensor under local crack 
coordinate ec(v) : 

 where 

(63)Q =

(
cos(�) sin(�)

− sin(�) cos(�)

)
.

(64)

e+
I
(u, �) =STe+

cI
(u, �)S,

e+
II
(u, �) =STe+

cII
(u, �)S,

e−(u, �) =STe−
c
(u, �)S,

(65)S = QPT .

(66)𝜃
n
=

⎧
⎪⎨⎪⎩

0 if F(u, 0) ≥ F(u,
𝜋

4
),

𝜋

4
if F(u, 0) < F(u,

𝜋

4
).

(67)e(u) =
1

2

(
∇u + ∇Tu

)
,

(68)e(v) =
1

2

(
∇v + ∇Tv

)
.

(69)ec(v) =Qep(v)Q
T ,

4.	 Decompose ec(v) into mode-I crack driving part e+
cI
(v) , 

mode-II crack driving part e+
cII
(v) and non-dissipation 

part e−
c
(v) by 

5.	 Compute the counterparts of e+
cI
(v) , e+

cII
(v) and e−

c
(v) in 

the global x–y coordinate: 

 where 

6.	 Compute �+
I
(v) , �+

II
(v) and �−(v) using Eq. (29).

5 � Numerical tests

In this section, we compare five existing energy splitting 
methods with our new splitting method. Therein, we com-
pare the simulated crack geometry and load–displacement 
curves. The numerical performance is evaluated by observ-
ing Newton iteration numbers.

The six methods are named as Miehe’s method [29], 
mixed-Miehe’s method [40], Strobl’s method [33, 34], Bry-
ant’s method [11], Freddi’s method [17] and mixed-Freddi’s 
method (our new method). We notice that:

–	 In the cases using Miehe’s method and Freddi’s method, 
the original phase-field model in Formulation 2 is used. 

(70)ep(v) =

(
ep1(v) 0

0 ep2(v)

)

(71)Q =

(
cos(�n) sin(�n)

− sin(�n) cos(�n)

)
.

(72)

e
+

cI
(v) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
e
nn
(v) 0

0 e
ss
(v)

�
if e

nn
+

𝜆

𝜆+2𝜇
e
ss
> 0 and e

ss
> 0,

⎛
⎜⎜⎝
e
nn
(v) +

𝜆

𝜆+2𝜇
e
ss
(v) 0

0 0

⎞
⎟⎟⎠
if e

nn
+

𝜆

𝜆+2𝜇
e
ss
> 0 and e

ss
≤ 0,

0 if e
nn
+

𝜆

𝜆+2𝜇
e
ss
≤ 0,

(73)e+
cII
(v) =

1

2

(
0 ens(v)

esn(v) 0

)
,

(74)e−
c
(v) = ec(v) − e+

cI
(v) − e+

cII
(v).

(75)

e+
I
(v) =(S(v))Te+

cI
S + STe+

cI
(v)S + STe+

cI
S(v),

e+
II
(v) =(S(v))Te+

cII
S + STe+

cII
(v)S + STe+

cII
S(v),

e−(v) =(S(v))Te−S + STe−(v)S + STe−S(v),

(76)S(v) = Q(P(v))T .
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While in the remaining cases, the mixed-mode phase-
field model in Formulation 3 is used.

–	 In the cases using Strobl’s method and Bryant’s method, 
the crack directions are also computed using steps 1–7 
in Algorithm 32.

The comparison is based on three numerical tests, namely 
single-edge notched tension test, single-edge notched shear 
test and uniaxial compression test with an inclined notch. 
The first two tests are chosen for the following purposes:

–	 Showing the numerical robustness of our new splitting 
method.

–	 Showing that when the crack is pure mode-I, our new 
method coincides well with Freddi’s method and does 
not overestimate force responses.

The uniaxial compression test with an inclined notch is cho-
sen to show that our new method can best capture the mixed-
mode fracture geometry observed in the experiment. In each 
test, three uniformly refined meshes are used to guarantee 
the reliability of the results. Two adaptively refined meshes 
are also used to demonstrate the compatibility of our new 
method with adaptive mesh refinement. To guarantee that 
the fracture profile width becomes smaller as mesh becomes 
finer—which is the main reason to use fine mesh—we let � 
to change adaptively as the mesh is refined. To be more spe-
cific, we set � = 2hmin , where hmin is the minimum mesh size.

5.1 � Single‑edge notched tension test

5.1.1 � Configuration and boundary conditions

The configuration of this test is illustrated in Fig. 2. We 
emphasize that the fracture generated under this configu-
ration should be pure mode-I and the incorporation of 
GIIc , whatever value it has, should not change the crack 

propagation behavior. In the uniform mesh cases, the ini-
tial domain is five, six and seven times uniformly refined, 
leading to 4096, 16384 and 65536 mesh cells, and the mini-
mum mesh size hmin = 0.022mm, 0.011 mm and 0.0055 mm, 
respectively. In the adaptive-refined mesh cases, the domain 
is first five times uniformly refined and then one and two 
times adaptively refined. The threshold for adaptive mesh 
refinement is set as �threshold = 0.5.

For the displacements, a non-homogeneous time-
dependent Dirichlet boundary condition is applied on the 
top boundary:

where t denotes the total loading time. And the incremental 
time step size is set as �t = 1.0 × 10−4 s. For the phase-field 
function, homogeneous Neumann boundary conditions are 
applied on the entire boundary.

5.1.2 � Material and model parameters

We consider plane stress setting and use the mechani-
cal parameters the same as those in [30], namely 
� = 121.15 kN/mm2 , � = 80.77 kN/mm2 . In the cases using 
Miehe’s method and Freddi’s method, Gc = 2.7 × 10−3 kN/
mm, otherwise GIc = 2.7 × 10−3 kN/mm and GIIc = 10GIc . 
Characteristic length � = 2hmin . Numerical parameter 
� = 1.0 × 10−10 . Newton solver tolerance is set as 1.0 × 10−6.

5.1.3 � Quantities of interest

Apart from crack geometry, we also check the average stress 
normal to the top boundary:

where �top ∶= {(x, y) ∈ B ∣ 0 mm ≤ x ≤ 1 mm, y = 1 mm} 
is the top boundary, n is the outward unit vector normal to 
the top boundary surface and H is the Hausdorff measure.

5.1.4 � Discussion of our findings with respect to crack 
geometries

Figure 3 highlights the crack geometry of different splitting 
methods when the domain is seven times uniformly refined.

We make the following observations:

–	 All methods except Bryant’s can correctly capture the 
straight fracture path propagating from the center to 
the left boundary. The Newton’s solver incorporat-
ing Bryant’s method does not converge when the frac-

(77)uy(t) = ūt with ū = 1 mm/s,

(78)�y ∶=

∫
�top

n ⋅ � ⋅ ndx

H(�top)
,

Fig. 2   Configuration of single-
edge notched tension test

0.5mm
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uy

2  Although in these two cases, �F(u,�)
��

 has different formulations from 
Eq. (40), the local maximum points of F(u, �) are still located at � = 0 
or � =

�

4
 or both. Therefore, Algorithm 3 can still be used to compute 

crack surface direction in these two cases.
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ture initiates at the center, so the computation ends at 
u = 6.3 × 10−3 mm.

–	 The fracture propagation in mixed-Miehe’s method is 
noticeably lagged compared with that in Miehe’s method, 
although the fracture is pure Mode-I and the incorpora-
tion of GIIc should not affect fracture propagation.

–	 The fracture propagation in mixed-Freddi’s method 
is almost, if not exactly, the same as that in Freddi’s 
method. Algorithm 3 identifies �n = 0 to be the direction 
of maximum dissipation, thus �+

II
= 0 and the incorpora-

tion of GIIc does not affect the fracture propagation.

We also want to emphasize that, due to the influence of 
boundary conditions, the fracture profile enlarges when 
the fracture touches the boundary. This phenomenon has 
been reported by previous studies in single-edge notched 
tension test [29], single-edge notched shear test [20], 
and pressurized crack propagation test [37]. Similarly, 
we observed this phenomenon in all of our three tests, as 
shown in Figs. 3, 11 and 20.

5.1.5 � Discussion of Newton’s performance

Figure 4 displays the Newton iteration numbers for dif-
ferent splitting methods when the domain is seven times 
uniformly refined. It shows that

–	 The Newton solvers incorporating Bryant’s, Strobl’s 
and Freddi’s methods have worse performance than 
those incorporating other methods. In Bryant’s case, 
the Newton solver stagnates at the 63th time step. In 

Fig. 3   Crack geometries of 
different splitting methods in 
single-edge notched tension test
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Strobl’s case, the Newton iteration number fluctuates 
between the 80th and 110th time steps, with the high-
est Newton iteration number 134. In Freddi’s case, 
the Newton iteration number increases to 35 after the 
63th time step and remains at high level until the crack 
reaches the boundary at the 114th time step.

–	 The Newton solver incorporating mixed-Freddi’s 
method has better performance than that incorporating 
Freddi’s method. Between the 63th and 114th time steps 
mixed-Freddi’s case has comparable Newton step num-
bers with Miehe’s case. While Freddi’s case has New-
ton step number two times more than that in Miehe’s 
case.

5.1.6 � Discussion of the load–displacement curves

Figure 5 displays the load–displacement curves of the six 
splitting methods under three uniformly refined meshes. It 
shows that

–	 All but Bryant’s and Strobl’s methods can capture the 
full loading and unloading processes. In Bryant’s and 

Strobl’s cases, the Newton solver stagnates before the 
load decreases to zero.

–	 In all but mixed-Miehe’s cases, the load–displacement 
curves of the same splitting method are consistent under 
three different meshes. But the maximum load response 
increases as mesh refinement increases and � decreases. 
This phenomenon has also been observed in the work of 
Zhang et al. [41] However in mixed-Miehe’s case, the 
finest mesh, seven times global refinement, has the inter-
mediate load response, indicating the instability of the 
method.

In Fig. 6, we observe the load–displacement curves of the six 
splitting methods when the domain is seven times refined. 
It shows that

–	 All but Bryant’s and mixed-Miehe’s methods have 
almost the same load–displacement curves. Particularly, 
the load–displacement curves of Strobl’s, Freddi’s and 
mixed-Freddi’s are almost identical that they overlap 
with each other. The only difference among them is that 
the curve terminated earlier in Strobl’s case, which can 
also be observed in Fig. 5.
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Fig. 5   Load–displacement curves of different splitting methods under three uniformly refined meshes for single-edge notched tension test



S2892	 Engineering with Computers (2022) 38 (Suppl 4):S2879–S2903

1 3

–	 In Bryant’s case, the load–displacement curve termi-
nates early due to the Newton solver non-convergence. 
In mixed-Miehe’s case, the maximum load response is 
about 37% higher than that in other cases. This phenom-
enon verifies the overestimation problem of mixed-Mie-
he’s method, as mentioned in Sect. 3.1.

We remark that although Bryant’s method worked well in 
uniaxial compression tests with single and multiple notches 
in [11], it appeared to be not numerically robust in all of our 
tests, namely the single-edge notched tension, single-edge 
notched shear and uniaxial compression with an inclined 
notch. But Bryant’s model is still a significant reference for 
this paper as it gives inspiration for how to determine the 
crack surface direction.

5.1.7 � Discussion of the adaptive mesh refinement

Figure 7 shows the crack geometry of mixed-Freddi’s split-
ting method under five times global refinement plus two 
adaptive refinement cycles (5+2). Comparing Fig. 7 with the 
last row in Fig. 3, we observe that the crack in 5+2 refine-
ment case has almost the same propagation progress and 
smeared width as those in 7+0 refinement case.

In Fig. 8 the load–displacement curves of mixed-Freddi’s 
method under 5+0, 5+1 and 5+2 refinement are displayed. 
Comparing Fig. 8 with the last sub-figure in Fig. 5, we can 

see that the 5+1 and 5+2 refined cases have very similar 
load responses with the 6+0 and 7+0 refined cases.

In conclusion of this first numerical example, mixed-
Freddi’s method works well with adaptive mesh refinement. 
Here, almost the same crack geometry and load response of 
uniform refinement case can be captured, but with much less 
degrees of freedom (DoFs). For example, the 7+0 case has 
198531 DoFs through the entire computation process, while 
the 5+2 case has only 12771 DoFs at the 1st time step and 
18903 DoFs at the 114th time step. Illustration of meshes 
for the 7+0 case (only uniformly refined) and 5+2 case (five 
times uniformly refined and two times adaptively refined) for 
the single-edge notched tension test are displayed in Fig. 9.

5.2 � Single‑edge notched shear test

5.2.1 � Configuration and boundary conditions

The configuration of this test is illustrated in Fig. 10. 
This test is widely used to check whether an energy split-
ting method is capable of only inducing fractures in the 
tensile-loaded region. If the splitting method fails to rep-
licate this behavior or if no splitting method is used, we 
will get an incorrect branched crack geometry, as shown 
in for instance the work of Bourdin et al. [10] We empha-
size that the fracture generated under this configuration is 
also pure mode-I although shear load is applied at the top 
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Fig. 7   Crack geometries of 
mixed-Freddi’s splitting method 
under 5+2 mesh refinement in 
single-edge notched tension test
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boundary. The maximum principal stress in the tensile-
loaded region drives the crack to propagate [11].

The boundary condition is similar to that in the ten-
sion case, but the loading direction is now tangential to 
the top boundary:

Correspondingly, we now check the average stress tangential 
to the top boundary:

where s is the unit vector tangential to the top boundary 
surface.

5.2.2 � Material and model parameters

The mesh refinement strategy, mechanical and numeri-
cal parameters are the same as those in the single-edge 
notched tension test presented in the previous subsection.

5.2.3 � Discussion of our findings with respect to crack 
geometries

Figure 11 displays the crack geometry of different split-
ting methods when the domain is seven times uniformly 
refined. We make the following observations:

(79)ux(t) = ūt with ū = 1 mm/s.

(80)�x ∶=

∫
�top

s ⋅ � ⋅ ndx

H(�top)
,

–	 All methods except Bryant’s can correctly capture the 
curved fracture path propagating from the center to 
the lower-left corner. The Newton’s solver incorporat-
ing Bryant’s method does not converge when the frac-
ture initiates at the center so the computation ends at 
u = 8.9 × 10−3 mm.

–	 The fracture propagation in mixed-Miehe’s case is 
noticeably lagged compared with that in Miehe’s case. 
While the fracture propagation in mixed-Freddi’s case 
is almost, if not exactly, the same as that in Freddi’s 
case.

5.2.4 � Discussion of Newton’s performance

In Fig. 12, the Newton iterations are monitored for differ-
ent splitting methods when the domain is seven times uni-
formly refined. The Newton solver performances of different 
splitting methods are similar to those in the tension case. In 
detail:

–	 The Newton solvers incorporating Bryant’s, Strobl’s and 
Freddi’s methods still have much higher iteration num-
bers at certain time steps than those incorporating other 
splitting methods.

–	 The Newton solver incorporating mixed-Freddi’s method 
has approximately 10 Newton iteration steps at each time 
step when the crack is propagating, showing a better per-
formance than the solver incorporating Freddi’s method.

5.2.5 � Discussion of the load–displacement curves

Figure 13 shows the load–displacement curves of the six 
splitting methods under three uniformly refined meshes. 
Again, the findings are similar to those in single-edge 
notched tension test. In detail,

–	 All but Bryant’s and Strobl’s methods can capture the full 
loading–unloading process.

–	 In all cases, the maximum load response increases as 
mesh refinement increases and � decreases.

Fig. 9   Mesh comparison 
between 7+0 and 5+2 cases 
using mixed-Freddi’s method 
for single-edge notched tension 
test

7+0 case 5+2 case

Fig. 10   Configuration of single-
edge notched shear test
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–	 After the crack reaches the boundary, the tangen-
tial load, instead of going to zero, starts to increase. 
This nonphysical phenomenon is caused by the elas-
tic response of the cracked specimen clamped at the 
undamaged lower right portion of the boundary [1].

We remark that if Amor’s method [4] and Bryant’s method 
[11] are used, the stresses can go completely to zero in the 
single-edge notched shear test when the crack reaches the 
boundary [1, 11]. However, in our shear tests: (1) Amor’s 
method results in an undesirable sub-horizontal crack 
geometry; (2) Bryant’s method is not numerically robust 
and only works in very limited cases.

Figure 14 displays the load–displacement curves of 
the six splitting methods when the domain is seven times 
refined. We observe

–	 All but Bryant’s and mixed-Miehe’s methods have sim-
ilar load–displacement curves. Specifically, the load–
displacement curve of mixed-Freddi’s method overlaps 
with that of Strobl’s method, and it only diverges from 
that of Freddi’s method after the crack reaches bound-
ary and load starts to re-increase.

–	 In Bryant’s case, the load–displacement curve termi-
nates early due to the Newton solver non-convergence. 
In mixed-Miehe’s case, the maximum load response is 
about 59% higher than that in other cases.

Fig. 11   Crack geometries of dif-
ferent splitting methods for the 
single-edge notched shear test
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5.2.6 � Discussion of the adaptive mesh refinement

Similar to the single-edge notched tension test, Figs. 15 and 
16 show that employing adaptive mesh refinement repro-
duces the findings obtained with uniform refinement, but 
with much less DoFs. Illustration of meshes for the 7+0 case 
(only uniformly refined) and 5+2 case (five times uniformly 
refined and two times adaptively refined) for the single-edge 
notched shear test are displayed in Fig. 17.

5.3 � Uniaxial compression test with an inclined 
notch

In this test, we only present and compare Miehe’s, mixed-
Miehe’s, Freddi’s and mixed-Freddi’s methods since 
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Fig. 13   Load–displacement curves of different splitting methods under three uniformly refined meshes in single-edge notched shear test
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mixed-Freddi’s splitting method 
under 5+2 mesh refinement in 
single-edge notched shear test
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Bryant’s and Strobl’s methods appear to be less robust in 
the previous tests.

5.3.1 � Preliminary considerations

As it is already reviewed by Wong [39], various experiments 
have been done to study the crack geometry in specimens 
containing a single flaw under uniaxial compression. To 
choose one experiment from them as the benchmark for our 
numerical test, we make the following considerations:

–	 We want to find an experimental setting which is featured 
with distinct mode-I and mode-II fractures.

–	 Since we only consider two-dimensional situations in the 
present study, we want to find an experimental configura-
tion satisfying the plane stress setting. More specifically, 
the dimension of the specimen in the z direction should 
be much smaller than the dimensions in the x and y direc-
tions. And the crack should penetrate through the speci-
men in the z direction.

–	 Since we do not consider the friction force on the frac-
ture surface, we want to find an configuration with an 
open flaw, i.e. a notch, so that this frictionless simplifi-
cation has minor influence on the comparison between 
simulation and experiment results.

A first possibility is the limestone experimental setting 
presented by Ingraffea and Heuze [26], which is chosen 
as the numerical test case in the work of Zhang et al. [40]. 
However, in this setting, the primary and secondary cracks 
are all mode-I cracks [25, 26]. Instead, we choose the 
marble experimental setting used by Huang et al. [24], in 
which distinct mode-I and mode-II fractures are induced. 
As shown in Fig. 18, the crack geometry of this setting can 
be summarized as

–	 Mode-I cracks: 1—primary forward tensile cracks 
(PFTCs), 2—secondary forward tensile cracks (SFTCs) 
and 3—backward tensile cracks (BTCs).

–	 Mode-II cracks: 4—forward shear belts (FSBs) and 5—
backward shear belts (BSBs).

The formation of FSBs and BSBs is caused by the coa-
lescence of micro-cracks [24]. These micro-cracks are 
essential to increasing the production rates in the oil and 
gas industry as they can largely increase the permeability 
of rocks (see for instance the work of Zoback and Byerlee 
[42]).

5.3.2 � Configuration and boundary conditions

The configuration of this test is illustrated in Fig. 19. The 
uniformly refined base mesh is first generated with 7952 
mesh cells. On this basis, (1) in the uniformly refined mesh 
cases, the domain is zero, one and two times uniformly 
refined, leading to 7952, 31808 and 127232 mesh cells, 
and the minimum mesh size hmin = 1.17 mm, 0.59 mm and 
0.29 mm , respectively. (2) In the adaptively refined mesh 
cases, the domain is further one and two times adaptively 
refined. The threshold for adaptive mesh refinement is set 
as �threshold = 0.5.

For the displacements, a compressive Dirichlet boundary 
condition is applied at the top boundary:

And the incremental time step size is set as �t = 1.0 × 10−3 s. 
For the phase-field function, homogeneous Neumann bound-
ary conditions are applied on the entire boundary.

(81)uy(t) = ūt with ū = −1 mm/s.
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Fig. 16   Load–displacement curves of mixed-Freddi’s method under 
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Fig. 17   Mesh comparison 
between 7+0 and 5+2 cases 
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for single-edge notched shear 
test
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5.3.3 � Materials and model parameters

We consider plane stress setting and use the mechanical 
parameters as follows: Young’s modulus E = 63.5 kN/mm2 
[24] and Poisson’s ratio � = 0.21 . In the cases using Miehe’s 
method and Freddi’s method, Gc = 11.0 × 10−6 kN/mm, oth-
erwise GIc = 11.0 × 10−6 kN/mm and GIIc = 10GIc [40]. The 
parameters � , � and the Newton solver tolerance are set to 
the same values as in the previous two tests.

5.3.4 � Quantities of interest

Apart from the crack geometry, we also check the average 
compressive stress normal to the top boundary:

In this test, the zero and one time uniformly refined cases 
have similar crack propagation behaviors. But the two times 
uniformly refined case behaves differently. Therefore, we 
present the crack geometries of both one and two times uni-
formly refined cases.

(82)�y ∶= −

∫
�top

n ⋅ � ⋅ ndx

H(�top)
.

5.3.5 � Discussion of our findings with respect to crack 
geometries

In Fig. 20, the crack geometries of different splitting meth-
ods are shown when the domain is one time uniformly 
refined. In this test, the crack propagation progresses (i.e., 
the paths and lengths) of different splitting methods vary sig-
nificantly. Therefore, for different splitting methods we pre-
sent our findings at different time steps. To show the paths of 
FSBs and BSBs more clearly, we use a sharp-transition color 
bar scheme to present our simulation results in this test.

We make the following observations:

–	 Stage(a): In all four cases, PFTCs initiate near the notch 
tip and propagate in the direction sub-perpendicular to 
the notch surface.

–	 Stage(b): In Freddi’s case, PFTCs propagate in a cur-
vature manner and gradually turn to the direction paral-
lel with the loading direction. In mixed-Freddi’s case, 
PFTCs propagate in the same manner as that in Freddi’s 
case. Additionally, the FSBs and BSBs start to form. In 
Miehe’s and mixed-Miehe’s cases, PFTCs become fat at 
the early propagation stage and has a tendency to propa-
gate towards the upper-right and lower-left corners. And 
BTCs initiate sub-perpendicular to the notch surface. In 
the mean time, FSBs and BSBs start to form.

–	 Stage(c): In Freddi’s case, the PFTCs continue propagat-
ing in the vertical direction and BTCs start to initiate. 
In mixed-Freddi’s case, the PFTCs and BTCs propagate 
in the same manner as that in Freddi’s case. FSBs and 
BSBs become larger and the phase-field variable in them 
become lower, indicating further damage. In Miehe’s 
case, the PFTCs propagate towards the corners, BTCs 
propagate sub-vertically, and the FSBs and BSBs become 
layered. In the meantime, there are two cracks initiating 
near the upper-right and lower-left corners. In mixed-
Miehe’s case, the crack propagation behavior is very 
similar to that in Miehe’s case, except that the PFTCs 
now propagate sub-vertically instead of towards the cor-
ners.

–	 Stage(d): In Freddi’s case, the PFTCs reach the bound-
ary and BTCs propagate vertically to some extent. In 
mixed-Freddi’s case, the PFTCs and BTCs propagate in 
a similar manner as those in Freddi’s case. And the FSBs 
and BSBs continue evolving into the final X-shape. In 
Miehe’s case, the PFTCs and the cracks initiating near 
the corners propagate towards each other and finally get 
connected. In mixed-Miehe’s case, the cracks initiating 
near the corners propagate towards and get connected to 
the middle parts of PFTCs, finally forming a branched 
crack geometry.

Fig. 18   Experimental crack 
geometry of marble in uni-
axial compression test with an 
inclined notch [24]
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Fig. 19   Configuration of uniaxial compression test with an inclined 
notch
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It is clear that Miehe’s and mixed-Miehe’s methods can-
not capture the correct crack geometry in this test. They 
lead to an ‘average damage’ state in the uniaxially com-
pressed specimen. Freddi’s method can only capture the 
PFTCs geometry. Mixed-Freddi’s splitting can best capture 
the PFTCs, FSBs and BSBs geometries. The reason why 
mixed-Freddi’s method can capture FSBs and BSBs is that, 
in the X-shape compressive region, e+

II
 in Eq. (37) is non-zero 

and drives the mode-II micro-cracks to propagate. The only 
discrepancy between the results of mixed-Freddi’s simula-
tion and the results of experiment is that there are no SFTCs. 
This discrepancy is acceptable because in the experiment 
SFTCs propagate in a very similar manner as PFTCs, and 
the initiation positions of SFTCs and PFTCs are very near 
to each other.

Figure 21 displays the crack geometries when the domain 
is two times uniformly refined. The main differences 
between Figs. 20 and 21 can be summarized as follows:

–	 In Miehe’s and mixed-Miehe’s cases, the PFTCs start 
branching at stage(b). Thus, the crack geometries in these 
two cases become more similar to each other.

–	 In Freddi’s and mixed-Freddi’s cases, PFTCs stop prop-
agating after having reached certain lengths. The load 
response continue increasing until the solver dies. The 
specimen does not rupture at the end of the simulation.

The reason for crack branching in Miehe’s and mixed-
Miehe’s cases might be that the cracks become thinner as 
� decreases, so the originally merged neighboring cracks 
now become distinct from each other and thus exhibiting the 
branching behavior. The reason for the non-rupture phenom-
enon in Freddi’s and mixed-Freddi’s cases is more compli-
cated. One physical interpretation is that the crack smeared 
width � can represent the width of micro-crack zones sur-
rounding the propagating macro-cracks. In rocks, there 
are usually wide micro-crack zones around macro cracks 

Fig. 20   Crack geometries of 
different splitting methods 
when the domain is one time 
uniformly refined in the uni-
axial compression test with an 
inclined notch

Stage (a) Stage (b) Stage (c) Stage (d)

Miehe

Mixed-Miehe

Freddi

Mixed-Freddi

40th time step 70th time step 86th time step 88th time step

80th time step 213th time step 254th time step 258th time step

40th time step 100th time step 140th time step 167th time step

40th time step 100th time step 135th time step 146th time step
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[14]. But in more isotropic and homogeneous materials like 
poly(methyl methacrylate) (PMMA), the macro cracks are 
sharper and there are very thin or even no micro-crack zones 
[8]. In other words, when other parameters are fixed, large 
� can better describe the cracking behavior of rocks while 
small � is more suitable for PMMA. Therefore, in the one 
time refined case, the simulated crack geometries are simi-
lar to those in the marble experiment, where the specimen 
ruptures as cracks propagate to the boundary. While in the 
two times refined case, the simulated crack geometries are 
similar to those in the PMMA experiment [25–27], where 
PFTCs stop propagating after having reached certain length 
and specimen does not rupture even when load increases 
to a very high level. We also want to emphasize that in this 
extreme case, the mixed-Freddi’s method is numerically 
more robust than Freddi’s method, as the PFTCs can propa-
gate further in mixed-Freddi’s case.

5.3.6 � Discussion of the load–displacement curves

Figure 22 monitors the load–displacement curves of the 
four splitting methods under three times uniformly refined 
meshes. We observe

–	 As it is already stated in Eq. (5), we use a linear elastic 
constitutive law in the phase-field model. However, in 
Miehe’s and mixed-Miehe’s cases, the load–displace-
ment curves exhibit softening behavior before peak 
loading, which might be caused by the wide-smeared 
crack profile. In Freddi and mixed-Freddi’s cases, the 
load–displacement curves are straight lines from zero 
loading to peak loading, which is a typical behavior of 
linear-elastic brittle material. Therefore, we can con-
clude that Freddi’s and mixed-Freddi’s method can bet-
ter capture the constitutive behavior in this test.

Fig. 21   Crack geometries of 
different splitting methods 
when the domain is two times 
uniformly refined in uni-
axial compression test with an 
inclined notch
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Fig. 22   Load–displacement curves of different splitting methods under three uniformly refined meshes in uniaxial compression test with an 
inclined notch

Fig. 23   Crack geometries of 
mixed-Freddi’s splitting method 
under 0+1 mesh refinement in 
uniaxial compression test with 
an inclined notch
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–	 When the domain is zero and one time uniformly 
refined, the simulation continues until the load starts 
to decrease (when cracks reach boundaries) in all four 
cases. When the domain is two times uniformly refined, 
the simulation still continues until the load starts to 
decrease in Miehe’s and mixed-Miehe’s cases. While 
in Freddi’s and mixed-Freddi’s cases, the simulation 
ends before the load decreases. Again we can see that 
mixed-Freddi’s method is numerically more robust 
than Freddi’s method, as the load–displacement curve 
extends further in mixed-Freddi’s case.

5.3.7 � Discussion of the adaptive mesh refinement

As before, Figs. 23 and 24 show that tests using adaptive 
refinement can reproduce the results in tests using uniform 
refinement, but with much less DoFs, as shown in Fig. 25.

6 � Conclusions

In this work, we developed on the basis of existing stud-
ies [11, 17, 33, 34, 40], a phase-field fracture model for 
capturing mixed-mode fracture propagation behavior. 
We used the phase-field fracture governing equations 

which incorporated the F-criterion [40]. Additionally, 
we changed the reference frame of the energy splitting 
method proposed by Freddi and Royer-Carfagni [17] from 
principal strain coordinates to local fracture surface coor-
dinates so that the crack-driving energy was further split 
into mode-I crack driving part and mode-II crack driving 
part. The fracture surface direction was determined based 
on the maximum-dissipation criterion [11], and a simpler 
algorithm is proposed by us. Our computational frame-
work was based on the implementation of pfm-cracks 
[22], where a quasi-monolithic scheme was used to solve 
the governing equations and adaptive mesh refinement 
and parallel computations were employed to reduce com-
putation time. In this framework, a semi-smooth Newton 
method was used to solve the non-linear PDEs and treat 
the crack irreversibility. We hence provided the detailed 
algorithm to compute the right-hand side and Jacobian 
matrix of Newton’s method. Finally, to show the supe-
riority of our new model over existing models, we used 
two classical numerical tests to demonstrate its numerical 
robustness and one practical test to demonstrate its physi-
cal soundness. We also showed the good compatibility of 
our new model with adaptive mesh refinement for reducing 
the computational cost. In the future, we are interested in 
extending the new model to three-dimensional scenarios 
so that more practical settings from engineering applica-
tions can be treated.
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