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Abstract
The classic Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator (PRG)
(STOC ‘94) for space-bounded computation uses a seed of length O(log n ·
log(nw/ε) + log d) to fool ordered branching programs of length n, width w, and
alphabet size d to within error ε. A series of works have shown that the analysis of the
INW generator can be improved for the class of permutation branching programs or
the more general regular branching programs, improving the O(log2 n) dependence
on the length n to O(log n) or Õ(log n). However, when also considering the depen-
dence on the other parameters, these analyses still fall short of the optimal PRG seed
length O(log(nwd/ε)). In this paper, we prove that any “spectral analysis” of the INW
generator requires seed length

�(log n · log log (min{n, d}) + log n · log (w/ε) + log d)

to fool ordered permutation branching programs of length n, widthw, and alphabet size
d to within error ε. By “spectral analysis” we mean an analysis of the INW generator
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that relies only on the spectral expansion of the graphs used to construct the generator;
this encompasses all prior analyses of the INW generator. Our lower bound matches
the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014)
for regular branching programs of alphabet size d = 2 except for a gap between their
O (log n · log log n) term and our �(log n · log logmin{n, d}) term. It also matches
the upper bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011),
and Steinke (ECCC 2012) for constant-width (w = O(1)) permutation branching pro-
grams of alphabet size d = 2 towithin a constant factor. To fool permutation branching
programs in the measure of spectral norm, we prove that any spectral analysis of the
INW generator requires a seed of length �(log n · log log n + log n · log(1/ε)) when
the width is at least polynomial in n (w = n�(1)), matching the recent upper bound
of Hoza–Pyne–Vadhan (ITCS 2021) to within a constant factor.

Keywords Pseudorandomness · Space-bounded computation · Spectral graph theory

1 Introduction

Starting with the work of Babai et al. [2], there has been three decades of work of con-
structing and analyzing pseudorandom generators for space-bounded computation,
motivated by obtaining unconditional derandomization (e.g. seeking to prove that
BPL = L) and a variety of other applications (e.g. [3–6]). Although we still remain
quite far from having pseudorandom generators that suffice for a full derandomization
of space-bounded computation, there has been substantial progress on pseudorandom
generators for restricted models of space-bounded computation. In particular, a series
of works has shown that the analysis of the classic Impagliazzo–Nisan–Wigderson
(INW) generator [7] can be significantly improved for restricted models (e.g. “per-
mutation branching programs”), but these analyses have not matched the parameters
of an optimal pseudorandom generator. In this work, we show that there are inherent
limitations to the analysis of the INW generator for these restricted models, proving
lower bounds that nearly match the known upper bounds.

1.1 PseudorandomGenerators for Space-Bounded Computation

Like previous work, we will work with the following nonuniform model of space-
bounded computation.

Definition 1.1 Anordered branching program B of length n,widthw andalphabet size
d computes a function B : [d]n → {0, 1}. On an inputσ ∈ [d]n , the branching program
computes as follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n,
it reads the next symbol σt and updates its state according to a transition function
Bt : [w] × [d] → [w] by taking vt = Bt (vt−1, σt ). Note that the transition function
Bt can differ at each time step.

Moreover, there is a set of accept states Ve ⊆ [w]. Let u be the final state of the
branching program on input σ . If u ∈ Ve the branching program accepts, denoted
B(σ ) = 1, and otherwise the program rejects, denoted B(σ ) = 0.
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An ordered branching program can be viewed as a layered digraph, consisting
of n + 1 layers of w vertices each, where for every t = 1, . . . , n and v ∈
[w], the v’th vertex in layer t − 1 has d outgoing edges, going to the vertices
Bt (v, 1), Bt (v, 2), . . . , Bt (v, d) ∈ [w] in layer t .

An ordered branching program corresponds to a streaming algorithm, in that the n
input symbols from [d] are each read only once, and in a fixed order. This is the rele-
vant model for derandomization of space-bounded computation because a randomized
space-bounded algorithm processes its random bits in a streaming fashion. Specifi-
cally, if on an input x , a randomized Turing machine A uses space s and n random bits
σ , the function Bx (σ ) = A(x; σ) can be computed by an ordered branching program
of length n, width w = 2s+O(log s) · O(|x |) and alphabet size 2. In particular, if A is a
randomized logspace algorithm (i.e. a BPL algorithm), then n = w = poly(|x |).

The standard definition of pseudorandom generator is as follows.

Definition 1.2 Let F be a class of functions f : [d]n → {0, 1}. An ε-pseudorandom
generator (ε-PRG) for F is a function GEN : [S] → [d]n such that for every f ∈ F ,

∣
∣
∣
∣

E
x←U[d]n

[ f (x)] − E
x←U[S]

[ f (GEN(x))]
∣
∣
∣
∣
≤ ε,

where U[S] is the uniform distribution over the set [S] = {0, . . . , S − 1}. We say
s := log(S) is the seed length of the PRG. We say a generator GEN is explicit if the
i th symbol of output is computable in space O(s). We say that GEN ε-fools F if it is
an ε-PRG for F .

By the probabilistic method, it can be shown that there exist (non-explicit) ε-PRGs
for the class of ordered branching programs of length n, width w, and alphabet size
d with seed length s = O(log(nwd/ε)), and it can be shown that this is optimal up
to a constant factor (provided that 2n ≥ w, n, d, w ≥ 2, and ε ≤ 1/3). An explicit
construction with such a seed length (even for d = 2 and ε = 1/3) would suffice to
fully derandomize logspace computation (i.e. prove BPL = L).

The classic construction of Impagliazzo, Nisan, andWigderson [7] gives an explicit
PRG with seed length s = O (log n · log(nw/ε) + log d), an improvement over
Nisan’s earlier construction [8] in terms of the dependence on d. For the case corre-
sponding to derandomizing general logspace computation, where d and ε are constant
and w is polynomially related to n, we have s = O

(

log2 n
)

, quadratically worse
than the optimal seed length of s = O(log n). Brody and Verbin [9] showed that
these classic pseudorandom generators require seed length �

(

log2 n
)

even for width
w = 3 (see Appendix A). Meka et al. [10] recently gave a completely different
explicit construction of pseudorandom generator for width w = 3 with seed length
s = Õ (log n · log(1/ε)), but for width w = 4 no explicit constructions with seed
length o

(

log2 n
)

are known.

1.2 Permutation Branching Programs

Motivated by the lack of progress on the general ordered branching program model,
there has been extensive research on restricted models:
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Definition 1.3 An (ordered) regular branching program of length n, width w, and
alphabet size d is an ordered branching program where the associated layered digraph
consists of regular bipartite graphs between every pair of consecutive layers. Equiv-
alently, for every t = 1, . . . , n and every v ∈ [w], there are exactly d pairs
(u, σ ) ∈ [w] × [d] such that Bt (u, σ ) = v.

Definition 1.4 An (ordered) permutation branching program of length n, widthw, and
alphabet size d is an ordered branching program where for all t ∈ [n] and σ ∈ [d],
Bt (·, σ ) is a permutation on [w].

Every permutation branching program is a regular branching program, but not con-
versely.

A series of works has shown that the Impagliazzo–Nisan–Wigderson (INW) pseu-
dorandom generator can be instantiated with smaller seed length for regular or
permutation branching programs. First, Rozenman andVadhan [11] analyzed the INW
generator for carrying out random walks on d-regular w-vertex graphs, which corre-
spond to regular branching programs in which all of the transition functions Bt are
the same. They showed that if the graph is consistently labeled (equivalently, if we
have a permutation branching program), then a seed length of s = O(log(nwd/ε))

suffices for the random walk to get within distance ε of the uniform distribution on
vertices, provided that the length n of the pseudorandom walk is polynomially larger
than the mixing time of a truly random walk. (This “pseudo-mixing” property is non-
standard but has applications, including giving a simpler proof of Reingold’s Theorem
that Undirected Connectivity is in deterministic logspace [12] and the construction of
almost k-wise independent permutations [13].)

Next, Braverman et al. [14] analyzed the INW generator for regular branching pro-
grams of alphabet size d = 2, and achieved seed length s = O(log n · log log n +
log n · log(w/ε)), thereby improving the dependence on the length n from O(log2 n)

to Õ(log n) for the standard pseudorandomness property. For the case of permutation
branching programs of constant width w = O(1) and alphabet size d = 2, Koucký
et al. [15] further improved the seed length to s = Ow(log n · log(1/ε)). The hidden
constant in the Ow(.) depended exponentially on the width w, but was subsequently
improved to a polynomial by De [16] and Steinke [17].

Recently, Hoza et al. [18] turned their attention to permutation branching programs
of unbounded width, and showed that the INW generator fools such programs in
“spectral norm”with seed length s = O (log n · log log n + log n · log (1/ε) + log d).
Here, fooling in spectral norm means that the w × w matrix of probabilities of going
from each initial state to each final state under the generator has distance at most ε in
spectral norm from the same matrix under truly random inputs. ε-fooling in spectral
norm can be shown to imply the standard notion of pseudorandomness for programs
with a single accept state. Surprisingly, the seed length of Ref. [18] even beats the
probabilistic method; indeed they show that a random function requires seed length
�(n) to fool permutation branching programs of unbounded width and a single accept
vertex with high probability. Subsequent to initial publication of this paper, Bogdanov
et al. [19] achieved the same seed length for regular programs with a single accept
vertex, at the cost of only obtaining a hitting set generator.
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Table 1 Spectral analyses of the INW generator

Model Seed length Pseudorandomness Reference

General O (log n · log (nwd/ε)) Standard [7]

Perm., same trans O (log (nwd/ε)) Pseudo-mixing [11]

Regular, d = 2 O (log n · log log n +
log n · log (w/ε))

Standard [14]

Regular O(log n · log log n + log n ·
log(1/ε) + log d)

Hitting [19]

Permutation, d = 2 Ow(log n · log(1/ε)) Standard [15–17]

Permutation O(log n · log log n + log n ·
log(1/ε) + log d)

Spectral [18]

We summarize the aforementioned analyses of the INW generator in Table 1. Let
us elaborate on how all of these results are instantations of the INW generator. Specif-
ically, the INW generator can be viewed as a template for a recursive construction
of a PRG, where a PRG INWi−1 generating ni−1 = 2i−1 output symbols is used to
construct a PRG INWi generating ni = 2i output symbols, by running INWi−1 twice
on a pair of correlated seeds. The pair of seeds are chosen according to a random edge
in an auxiliary expander graph Hi :

INWi (e) = INWi−1(x) · INWi−1(y) for each edge e = (x, y) of Hi , (1)

where · denotes concatenation. Thus different choices of the sequence of graphs
H1, H2, . . . , Hlog n yield different instantiations of the INW generator. In all of the
aforementioned works,1 the pseudorandomness property of the generator is proven
using only the spectral expansion properties of the graphs Hi , namely requiring that
all of the nontrivial normalized eigenvalues of Hi have absolute value at most some
value λi for i = 1, . . . , log n. We call such an analysis a spectral analysis of the
INW generator. Given a spectral analysis of the INW generator, the degrees of the
expanders Hi are then determined by the optimal relationship between expansion and
degree di = poly(1/λi ) (see Proposition 2.6), which in turn determines the seed length
of the final generator, namely

s = �
(

log
(

d · d1 · d2 · · · dlog n
)) = �

⎛

⎝log d +
log n
∑

i=1

log(1/λi )

⎞

⎠ . (2)

1.3 Our Results

Given the improved analyses of the INW generator described in Table 1, it is natural
to wonder how much further these analyses can be pushed. In particular, can the INW

1 Braverman et al. [14] analyze the INW generator constructed with randomness extractors [20], but the
extractor parameters they use follow from spectral expansion properties of the underlying graphs [21].
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generator ε-fool permutation branching programs of length n, width w, and alphabet
size d with seed length matching the optimal seed length of O(log(nwd/ε))? Our
main result is that the answer is no:

Theorem 1.5 (informally stated) Any spectral analysis of the INW generator for ε-
fooling permutation branching programs of length n, width w, and alphabet size d
requires seed length

s = �(log n · log log(min{n, d}) + log n · log(w/ε) + log d) .

Notice that this lower bound nearly matches the upper bounds in Table 1. In particular,
we match the upper bound of Ref. [14] for regular branching programs, except that
we get a log n · log log n term only when d = 2(log n)�(1)

while they have such a term
even when d = 2. We also match the upper bounds of Ref. [15–17] for permutation
branching programs of alphabet size d = 2 and constant width w = O(1).

For foolingwith respect to spectral norm,we canget a lower boundof log n·log log n
whenever w = n�(1), in particular matching the result of Ref. [18] for unbounded-
width permutation branching programs:

Theorem 1.6 (informally stated) For ε-fooling in spectral norm, any spectral analysis
of the INW generator for permutation branching programs of length n, width w, and
alphabet size d = 2 requires seed length

s = �(log n · log log(min{n, w}) + log n · log(1/ε)) .

While our theorems are quite close to the upper bounds, they leave a few regimes
where a spectral analysis of the INW generator could potentially yield an improved
seed length. In particular, a couple of open questions stand out regarding the log n ·
log log n terms in the bounds:

• Can we achieve seed length O(log n · log(w/ε)) for permutation (or even regular)
branching programs of alphabet size d = 2? When the alphabet size is d = 2, the
log log(min{n, d}) term disappears in Theorem 1.5. However, the upper bound of
Ref. [14] for regular branching programs still has an O(log n · log log n) term, and
the upper bounds of Ref. [15–17] only achieve a polynomial dependence on the
width w.

• Can we achieve seed length O(log n · log(1/ε)) for permutation branching pro-
grams with a single accept vertex, alphabet size d = 2, and width w = n (or
even unbounded width)? The best upper bound for this model is Ref. [18], which
has an additional O(log n · log log n) term. This term is necessary for fooling in
spectral-norm by Theorem 1.6 but may not be necessary for the easier task of
fooling programs with a single accept vertex.

A second opportunity for improvement is to go beyond spectral analysis of the INW
generator, and exploit graphs Hi with additional properties. To indicate that there is
some hope for this, we include an observation showing that there exists an instantiation
of the INW generator that achieves optimal seed length, even against more general
ordered branching programs:
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Theorem 1.7 For all n, w, d ∈ N and ε > 0, there exists a sequence of graphs H
such that the INW generator constructed with this sequence ε-fools ordered branching
programsof length n,widthw andalphabet size d andhas seed length O(log(nwd/ε)).

This is an application of the Probabilistic Method, and so does not give an explicit
PRG.

Our lower bounds also say nothing about constructions that deviate from the tem-
plate of the INW generator, and better seed lengths can potentially be obtained by
modifying the INW generator or using it as a tool in more involved constructions.
Examples include the pseudorandom generator for width 3 ordered branching pro-
grams [10], which combines the INW generator with pseudorandom restrictions, and
[22–26], which construct “weighted pseudorandom generators” with a better depen-
dence on the error by taking linear combinations of the INW generator (or blends of
the Nisan and INW generator).

1.4 Techniques

Theorem 1.5 is really three separate lower bounds, whichwe state as separate theorems
here to discuss the proof ideas separately. (The lower bound of s = �(log d) is very
simple.)

Theorem 1.8 (informally stated) Any spectral analysis of the INW generator for (1−
1/w�(1))-fooling permutation branching programs of length n, widthw, and alphabet
size d requires seed length s = �(log n · logw).

Note that the lower bound holds for a very large error parameter, namely ε =
1 − 1/w�(1). In fact, it holds even for obtaining a hitting-set generator, where
Definition 1.2 is relaxed to only require that Ex←U[d]n [ f (x)] > ε implies that
Ex←U[S] [ f (GEN(x))] > 0.

To prove this Theorem 1.8, we show that most of the λi ’s parameterizing the INW
generator must have λi < 1/w�(1), which implies the seed-length lower bound by
Eq. (2). If that is not the case for some value of i , we construct an auxiliary graph
Hi to use in the INW generator (with λ(Hi ) ≤ λi ) such that a permutation branching
program only needs width poly(1/λi ) ≤ w in order to perfectly distinguish a random
edge in Hi from a pair of vertices in Hi that are not adjacent. Specifically, we can
take Hi to be an expander with degree ci = poly(1/λi ) and c2i vertices. To be able to
use such a graph in most levels in the INW generator, we need to pad the number of
vertices. We do this by taking a tensor product with a complete graph, which retains
both the expansion of Hi and the ability of a width w permutation branching program
to distinguish edges and non-edges.We use complete graphs (with an appropriate edge
labeling) for the remaining graphs Hj in the INW generator, and argue a permutation
branching program of width w can still distinguish the output from uniform.

Theorem 1.9 (informally stated) Any spectral analysis of the INW generator for ε-
fooling permutation branching programs of length n, width w = 2, and alphabet size
d requires seed length s = �(log n · log(1/ε)).
To prove Theorem 1.9 we use a construction from Ref. [11] used to show the tightness
of their analysis of the “derandomized square” operation on graphs. (Composing the
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INW generator with a permutation branching programs amounts to performing log n
iterated derandomized square operations on the graph of the branching program.)
Specifically, in order to show that each λi satisfies λi = O(ε), we consider a graph
Hi that has a self-loop probability of λi but has λ(Hi ) ≤ λi . When the self-loop is
taken, it means that two consecutive subsequences of the output of the INW generator
of length 2i−1 are equal to each other, by Eq. (1). Thus the permutation branching
program of width 2 that computes the parity of the input bits on the union of those
two subsequences will distinguish the output of the INW generator from uniform with
advantage �(λi ).

Theorem 1.10 (informally stated) Any spectral analysis of the INW generator for
(1/20)-fooling permutation branching programs of length n, widthw = 2, and alpha-
bet size d requires seed length s = �(log n · log log(min{n, d})).

To prove Theorem 1.10, we want to show that most of the λi ’s must satisfy
λi ≤ O(1/ log n). For the overview, we assume that d = n. It suffices to prove
that

∑log n
i=1 λi ≤ O(1). To do this, we again consider graphs Hi that have a self-loop

probability of λi , but rather than considering only one such graph, we use all of them
in the INW generator. Intuitively, we want to show that the errors of�(λi ) accumulate
to lead to an overall error of �(

∑

i λi ) > ε. We consider a permutation branching
program that corresponds to a random walk on a graph G withw = 2 vertices that has
a self-loop probability of approximately 1− 1/n. A truly random walk of length n on
G will end at its start vertex with probability at most 1−n ·(1/n) ·(1−1/n)n−1 < .64.
We show that a pseudorandom walk using the INW generator with the graphs Hi will
end at its start vertex with probability at least .75. Specifically, we choose our edge
and vertex labelings carefully so that the self-loops in the graphs Hi cause random
walks to backtrack with a high constant probability, so that it is as if we are typically
doing random walks on G of length at most n/4.

Turning to Theorem 1.6, the only part of the lower bound that does not follow from
the same arguments as above is the following:

Theorem 1.11 (informally stated) For 1/3-fooling in spectral norm, any spectral
analysis of the INW generator for permutation branching programs of length n, width
w, and alphabet size d = 2 requires seed length s = �(log n · log log(min{n, w})).
Theproof ofTheorem1.11 is similar to that ofTheorem1.10, but instead of considering
random walks on a 2-vertex graph G with large degree d, we use a graph G of degree
2 and a large number of vertices. Specifically we take G to be the undirected cycle on
w = �(

√
n) vertices. The key point is that the truly random walk on the cycle mixes

in n = �(w2) steps in spectral norm. So a truly random walk of length n will differ
from complete mixing by at most, say 1/3, in spectral norm, but due to backtracking,
the pseudorandom walks using the INW generator will differ from complete mixing
by at least 2/3 in spectral norm.

1.5 Organization

In Sect. 2, we introduce formal definitions and give our general recipe for proving
lower bounds. In Sect. 3, we prove Theorem 1.9, our lower bound in terms of the error
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of the pseudorandom generator. In Sect. 4, we show how the error incurred in different
levels of the INW generator can accumulate, leading to Theorems 1.10 and 1.11. In
Sect. 5, we prove Theorem 1.8, our lower bound in terms of the width. In Appendix A,
we observe that this lower-bound technique gives stronger results for fooling general
(e.g. non-regular) ordered branching programs, and in particular recovers the analysis
of Brody and Verbin for bounds against width-3 ordered branching programs. In
Appendix B, we prove Theorem 1.7, establishing the existence of graphs enabling the
INW generator to achieve optimal seed length.

2 Structure of Lower Bounds

We now give the general approach to proving our lower bounds. To define spectral
analysis, we introduce notation related to labeled graphs and distributions.

Definition 2.1 (One-way labeling [11]) A one-way labeling of a d-regular directed
(multi)graph G assigns a label in [d] to each edge (u, v) such that for every vertex
u, the labels of the outgoing edges of u are distinct. For G with a one-way labeling,
let G[u, i] denote the vertex v such that (u, v) is labeled i . Furthermore, for ȳ =
(y1, . . . , yk) ∈ [d]k let Gk[x, ȳ] be the vertex obtained from following the sequence
of edge labels ȳ, i.e. Gk[x, ȳ] = G[G[. . .G[x, y1], . . . , yk−1], yk].
For the remainder of the paper all graphs have one-way labelings.

• For all w ∈ N, let Jw be the w-regular graph on w vertices with the one-way
labeling Jw[x, y] = y for all x, y ∈ [w] (i.e. the complete directed graph with self
loops).

• For all w ∈ N, let Iw be the 1-regular graph with one-way labeling Iw[x, 0] = x
for all x ∈ [w], i.e. a single (directed) self loop on every vertex.

We occasionally write J∗ (resp. I∗) where the size of the graph is obvious from context.
All logs are base-2, and we use the nonstandard definition that [T ] = {0, . . . , T − 1}
for all T ∈ N. In addition, we work with the random walk matrices of graphs, and the
distribution induced by taking walks on graphs according to the output of a PRG.

Definition 2.2 For a d-regular labeled graph G on w vertices and a label y ∈ [d], let
WG[y] ∈ {0, 1}w×w be the matrix where entry (u, v) is 1 if and only if G[u, y] = v.
Furthermore, we can define the random walk matrix of G as WG = E[WG[U[d]]].
Furthermore, for a function GEN : [S] → [d]k , define

WGk ◦ GEN = E[WGk [GEN(U[S])]].

Note that with this notation, WGk = (WG)k for every k.

Definition 2.3 For a d-regular digraph G on w vertices, define the spectral expansion
of G as λ(G) = maxx :x⊥1,x �=
0 ‖xWG‖2/‖x‖2.

We now formally define the INW PRG.
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Definition 2.4 Given d0 ∈ N and a set of graphsH = (H1, . . . , H�)where deg(Hi ) =
di and |Hi | = ∏i−1

j=0 d j , the INW generator constructed with H, denoted INWH or

INW� when the family is clear, is the function INWH : [d0] × · · · × [d�] → [d0]2�

defined recursively where for x ∈ [d0] we have INW0(x) = x and for (x, y) ∈
([d0] × · · · × [di ], [di+1]) we have

INWi+1(x, y) = (INWi (x), INWi (Hi+1[x, y])).

The seed length of INWH is thus log
(
∏�

i=0 di
)

.2

We then define an analysis of the INW PRG that only “knows about” the spectral
gap of the auxiliary graphs. For the remainder of the paper (with the exception of
Appendix B) we assume all auxiliary graphs H are undirected,3 so we can assume
WH has a basis of eigenvectors.

Definition 2.5 For d0 ∈ N and λ1, . . . , λ� ≥ 0, let INW(d0, λ1, . . . , λ�) be the set
of INW PRGs GEN : [S] → [d0]2�

constructed with auxiliary undirected regular
graphs H1, . . . , H� where λ(Hi ) ≤ λi for all i . We say INW(d0, λ1, . . . , λ�) ε-fools
a class of functions F if every GEN ∈ INW(d0, λ1, . . . , λ�) ε-fools every f ∈ F .
Furthermore, define sINW(d0, λ1, . . . , λ�) as the minimal seed length of all PRGs in
INW(d0, λ1, . . . , λ�). We call the set (λ1, . . . , λ�) a constraint, and say a family of
graphs (H1, . . . , H�) satisfies the constraint if λ(Hi ) ≤ λi for all i .

Given a family of INW PRGs, we can derive a lower bound on the seed length
via the relation between degree and maximum expansion, as given by the following
standard fact.

Proposition 2.6 (see e.g. [27]) Let G be an undirected d-regular graph on V vertices.
Then

λ(G) ≥ 1√
d

√

V − d

V − 1
.

In particular d ≥ min{2/λ(G)2, (V + 1)/2}.
That is, the degree must be at least polynomially related to 1/λ(G) [as assumed in

the seed-length calculation in Eq. (2)], unless d is very close to the number of vertices.
To deal with the latter case in our seed-length lower bounds, we will remove the terms
corresponding to λi ’s where the 2/λ(G)2 > (V + 1)/2, yielding the following:

Lemma 2.7 Given INW(d0, λ1, . . . , λ�), there is a set S ⊆ {1, . . . , �} with |S| ≤
2 log(�) + 2 log log(1/λmin) where λmin = min{λ1, . . . , λ�} such that

sINW(d0, λ1, . . . , λ�) = �

⎛

⎝
∑

i∈{1,...,�}\S
log(1/λi )

⎞

⎠ .

2 We do not require the domain to be a power of two, to avoid complications with non-power of two di ’s.
3 Technically, the “undirected” graphs in this paper are really symmetric directed graphs. That is, each
“undirected edge” {u, v} represents two directed edges, (u, v) and (v, u). The labels of these two directed
edges need not be equal.
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Proof Let t = log(1/λmin). Recall that sINW(d0, λ1, . . . , λ�) = log(d0 · mp), where
mp is the minimum product of degrees over all sets of auxiliary graphs H1, . . . , H�

with the required spectral expansion. Let H1, . . . , H� be such a minimal family, let
di = deg(Hi ) for each i , and let R be the set of “dense” graphs, i.e., the set of
i ∈ {1, . . . , �} such that 2/λ(Hi )

2 > (|Hi |+1)/2. We now break into two cases based
on |R|:
1. First, suppose |R| ≥ 2 log(�t). Then set S = ∅. To prove that this works, let

pi = ∏i
j=0 d j , so |Hi | = pi−1. Observe that if i ∈ R, then di ≥ (|Hi | + 1)/2 =

(pi−1 + 1)/2 by Proposition 2.6. Therefore,

pi = pi−1 · di ≥ 1

2
· pi−1 · (pi−1 + 1) ≥ p3/2i−1,

where the last step uses the fact that pi−1 ≥ d0 ≥ 2. Consequently, for each i ∈ R,
we have log pi ≥ 3

2 ·log pi−1, and so log p� ≥ (3/2)|R| ≥ (3/2)2 log(�t) = �(�·t).
2. Otherwise, let S = R. For every i /∈ S, we have deg(Hi ) ≥ 2/λ(Hi )

2 ≥ 2/λ2i by
Proposition 2.6. Thus,

mp ≥
∏

i∈Sc
deg(Hi ) ≥

∏

i∈Sc
1

λ2i
.

Thus we bound sINW = log(d0 · mp) as desired.

��
We remark that, fixing d, sINW(d, ·) is monotonic with respect to every parameter,

since a set of graphs that satisfies a constraint (λ1, . . . , λ�) also satisfies every looser
set of constraints.

Finally, we define the tensor product of graphs, and recall a basic fact about their
expansion, as we will construct some auxiliary graphs via tensoring a small expander
with the complete graph.

Definition 2.8 Given a pair of labeled graphs G, H on w1, w2 vertices with
degrees d1, d2 respectively, define the tensor product G ⊗ H to be the d1d2-
regular graph on w1w2 vertices with neighbor relation (G ⊗ H)[(u, v), (e1, e2)] =
(G[u, e1], H [v, e2]).
Proposition 2.9 (see e.g. [28, Lemma 4.33]) Let G, H be undirected regular graphs.
Then λ(G ⊗ H) = max(λ(G), λ(H)).

3 Dependence on Error

In this section, we prove Theorem 1.9, establishing a lower bound on the seed length
as a function of the error of the generator.
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Theorem 3.1 (Formal Statement of Theorem 1.9) For every d and n = 2� and ε ≥
2−n/2 andλ1, . . . , λ� ≥ 0, if INW(d, λ1, . . . , λ�) ε-fools ordered permutation branch-
ing programs of length n, width 2, and alphabet size d, then sINW(d, λ1, . . . , λ�) =
�(log(1/ε) · (log(n) − log log(1/ε))).

This follows as a consequence of the following lemma, which essentially states that
constructing an ε-biased space using the spectral INW generator requires constraining
all spectral gaps to be O(1/ε).

Lemma 3.2 For all d ∈ N and ε > 0, for every constraint (λ1, . . . , λ�) where there is
r such that λr > 3ε, there is a family of auxiliary graphs H = (H1, . . . , H�) where
λ(Hi ) ≤ λi and an alphabet size d, width 2, length n = 2� permutation branching
program B such that INWH fails to ε-fool B.

To prove the lemma, we define convex combinations of graphs on the same vertex set.

Definition 3.3 For G,G ′ arbitrary d-regular graphs on n vertices, and λ = a/b ∈
Q∩ [0, 1], let H = λG + (1−λ)G ′ be the (d · b)-regular directed graph on n vertices
where for x ∈ [n] and (y, c) ∈ [d] × [b]:

H [x, (y, c)] =
{

G[x, y] c < a

G ′[x, y] c ≥ a

We remark that with this definition,WH = λWG + (1−λ)WG ′ . We implicitly extend
this to convex combinations of graphs with non-equal degrees d, d ′ by duplicating
edges so both graphs have degree LCM(d, d ′).

We can then construct a bad family of graphs and a distinguisher.

Proof of Lemma 3.2 Let μ be a rational number in (3ε, λr ] and let K = 22
r−1

and
define

H = μIK + (1 − μ)JK .

Then define the familyH = (J2, J4, . . . , J22r−2 , H , J∗, . . . , J∗). It is clearH satisfies
the constraint.

Now let B be the length n, width 2, alphabet size d permutation branching program
where, letting T = {0, . . . , �d/2�}, we have

B(σ ) =
2r
⊕

i=1

I[σi ∈ T ].

Let δ := Pr[B(U[d]n ) = 1]. Furthermore, for every seed σ = (x, u, ∗) we have

INWH(σ )1..2r = INWr ((x, u)) = (INWr−1(x), INWr−1(H [x, u])) = (x, H [x, u]).
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From our definition of H , with probability 1 − μ over the random seed σ the first
2r bits output are (x, y) where (x, y) is distributed uniformly over {0, 1}2r , and with
probability μ the first 2r bits of output are (x, x), which has parity zero for all x .
Therefore, letting [S] be the seed space of INWH,

Pr[B(INWH(U[S])) = 1] = δ · (1 − μ) + 0 · μ = δ − μ · δ < δ − ε

where the final step uses that δ ∈ (1/3, 2/3), and so INWH fails to ε-fool B. ��

We can then prove Theorem 3.1.

Proof of Theorem 3.1 Applying Lemma 3.2, every family INW(d, λ1, . . . , λ�) that ε-
fools length n, width 2, alphabet size d permutation branching programs has λi ≤ 3ε
for all i , so we obtain sINW(d, λ1, . . . , λ�) ≥ sINW(d, 3ε, . . . , 3ε). Now fix a family
of graphs H = (H1, . . . , H�) satisfying this constraint, and let di = deg(Hi ) and
pi = ∏

j≤i di . Let t = �log log(1/ε)� and note t ≤ � by assumption on ε. We show
that log(pt ) ≥ �(log(1/ε)) by considering two cases:

• If there is some i ∈ [t] such that di ≥ 2/ε2, then clearly log(pt ) ≥ log(di ) ≥
�(log(1/ε)).

• Otherwise, by Proposition 2.6, we have di ≥ (pi−1+1)/2 for every i ∈ {1, . . . , t−
1}. Therefore,

pi = pi−1 · di ≥ 1

2
· pi−1 · (pi−1 + 1).

Since p0 = d0 ≥ 2, the inequality above implies p1 ≥ 3 and p2 ≥ 6, hence
log(p2) > 2 = 20 + 1. In subsequent steps, the inequality above implies pi ≥
1
2 p

2
i−1 and hence log(pi ) ≥ 2 log(pi−1)−1. Consequently, log(pt ) ≥ 2t−2 +1 =

�(log(1/ε)).

Thus, for every i > t , every level contributes at least �(log(1/ε)) bits of seed, so we
obtain the lower bound of �(log(1/ε) · (log(n) − log log(1/ε))). ��

4 Accumulation of Error

In this section, we prove the lower bounds on seed length �(log n · log logmin{n, d})
and�(log n·log logmin{n, w}) fromTheorems 1.5 and 1.6, respectively.As discussed
in the introduction, in both of these lower bounds, we wish to show that that the error
�(λi ) demonstrated in Sect. 3 actually accumulates to give an error of ε = �(

∑

i λi ),
which will imply that most of the λi ’s are O(1/ log n) and hence we require seed
length �(log n · log log n). For the standard notion of pseudorandomness, we will be
able to argue this when the alphabet size of the branching programs is polynomially
related to n, and for fooling in spectral norm, we will be able to argue it when the
width of the branching program is polynomially related to n.
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4.1 The INW PRG On Reversible Graphs

Wewill analyze the distribution of the output of the INW PRG over graphs, taking the
transition function of the branching program to equal that of the graph. We recall the
connection between consistently labeled graphs and permutation branching programs.

Definition 4.1 A d-regular labeled graph G on w vertices is consistently labeled if
G[v, i] = G[v′, i] implies v = v′ for all v, v′ ∈ [w], i ∈ [d]. Equivalently, each edge
label i ∈ [d] defines a permutation over [w].
Remark 4.2 Given a d-regular consistently labeled graph G on w vertices and n ∈ N,
the branching program G(n) of length n, width w and alphabet size d with transition
functions G1(v, b) = · · · = Gn(v, b) = G[v, b] is a permutation branching program.

To prove Theorems 1.5 and 1.6, we introduce a graph property that will be satisfied
by the graphs we use as our distinguishing permutation branching programs. Further-
more, given such a graph we construct a family of expanders such that the INW PRG
behaves as if it is taking walks that are a constant factor shorter than truly random,
and are thus distinguishable.

Definition 4.3 A d-regular labeled graph G on w vertices is reversible if there exists
an involution π : [d] → [d] such that for every edge label σ ∈ [d] and vertex v ∈ [w]
we have G2[v, (σ, π(σ ))] = G[G[v, σ ], π(σ )] = v, i.e. WG2 [(σ, π(σ ))] = I for all
σ .

We remark that this notion can be considered a directed analogue of Ta-Shma’s
notion of a “locally invertible graph” [29].

Furthermore, given an involutionπ and an edge sequence σ = (σ1, . . . , σm), define

π(σ)
def= (π(σm), . . . , π(σ1)). Then reversibility extends to arbitrary edge sequences.

Lemma 4.4 Given a d-regular reversible graph G with involution π , for every vertex
v and edge sequence σ ∈ [d]m, G2m[v, (σ, π(σ ))] = v.

Proof This follows from induction on m. The case m = 1 is clear from the definition,
and assuming it holds for m − 1, fix arbitrary v and σ ∈ [d]m . We have

G2m[v, (σ, π(σ ))] = Gm−1[G[G[Gm−1[v, σ1..m−1], σm], π(σm)], π(σ1..m−1)]
= Gm−1[Gm−1[v, σ1..m−1], π(σ1..m−1)] = v,

so the inductive step holds. ��
Now given a reversible graph and a constraint set that is not too restrictive, we

can construct an INW PRG that performs in a highly structured fashion. Intuitively,
each generator output will consist of a mixture of truly random steps and steps that
are “backtracked” and thus do not contribute to mixing. These backtracked steps will
wipe out at least 3/4 of progress with high probability over the seed.
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Lemma 4.5 Let G be a d-regular reversible graph and (λi )� a constraint where
∑�

i=1 λi ≥ 8. Then there is a family of auxiliary graphs H = (H1, . . . , H�) where
λ(Hi ) ≤ λi such that INWH satisfies:

• W
G2� ◦ INWH is a convex combination of W

0
G, . . . ,W

2�

G .

• In this convex combination, the sum of coefficients on W
0
G , . . . ,W

2�/4
G is at least

.99.

Our strategy is to use the fact that the graph is reversible to cause PRG outputs to
backtrack with high probability. To do so, we define a property that each level of our
PRG construction will satisfy.

Definition 4.6 Given an involution π : [d] → [d], a generator GEN : [S] → [d]r
is balanced with respect to π if Pr[GEN(U[S]) = v] = Pr[GEN(U[S]) = π(v)] for
every v ∈ [d]r .
We are now prepared to prove the lemma. We iteratively construct the PRG to comply
with the constraint, while backtracking as many steps as possible.

Proof of Lemma 4.5 Assume without essential loss of generality that λi is rational for
every i . Let INW0 : [d] → [d] be the trivial PRG that outputs its input. At each step
we maintain that INWi is balanced with respect to π , which is clearly satisfied for
level 0.

Given INWi : [Si ] → [d]2i , we showhow to construct INWi+1 : [Si+1] → [d]2i+1
.

For every output t ∈ [d]2i , let

[Si ] ⊇ Rt = INW−1
i (t)

be the seeds that cause the generator to output t . We have by assumption that |Rt | =
|Rπ(t)| for all t . Let Mt be an arbitrary bijection between Rt and Rπ(t) and define M as
the 1-regular graph on [Si ] that maps v ∈ Rt to Mt (v) for every v and t . Then define

Hi+1 = λi+1M + (1 − λi+1)J∗.

And define INWi+1 using this graph. Then the INW PRG constructed with this graph
remains balanced.

Claim 4.7 INWi+1(x, u) = (INWi (x), INWi (Hi+1[x, u])) is balanced with respect
to π .

Proof Fix an arbitrary output (a, b) ∈ [d]2i × [d]2i . We have

Pr
[

INWi+1

(

U[Si+1]

)

= (a, b)
]

= λi+1 Pr
x←U[Si ]

[INWi (x) = a ∧ INWi (M[x, 0]) = b]

+ (1 − λi+1) Pr
x←U[Si ],y←U[Si ]

[INWi (x) = a ∧ INWi (y) = b]

=: λi+1 · αa,b + (1 − λi+1) · βa,b.
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Thus, it suffices to show αa,b = απ(b),π(a) and βa,b = βπ(b),π(a).

• If either αa,b or απ(b),π(a) is nonzero, we must have b = π(a) from the way M
was constructed. Thus, (a, b) = (a, π(a)) = (π(b), π(a)) so αa,b = απ(b),π(a).

• Let βa := PrUS [INWi (US) = a]. By the inductive hypothesis βa = βπ(a) and
βb = βπ(b). Thus, βa,b = βaβb = βπ(b)βπ(a) = βπ(b),π(a).

��
Finally, for every 1 ≤ i ≤ �, we have λ(Hi ) ≤ λi · λ(M) ≤ λi since the complete
graph falls out, so the family satisfies the constraint. We then analyze the distribution
of outputs of the PRG. Since INW0 is the trivial PRG we have WG ◦ INW0 = WG .

Claim 4.8 For all i ∈ [�],

W
G2i+1 ◦ INWi+1 = λi+1I|G| + (1 − λi+1)(WG2i ◦ INWi )

2.

Proof Fixing an arbitrary vertex v in G, we compute the distribution of
G[v, INWi+1(σ )] over a random seed σ = (x, u) ← U[Si+1] of INWi+1. From our
construction of Hi+1, with probability λi+1 over the random seed this corresponds to
a neighbor in the graph M , so we have

INWi+1(σ ) = (INWi (x), INWi (Hi+1[x, u])) = (t, π(t))

for some t ∈ [d]2i , and soG[v, INWi+1(σ )] = v. Otherwise, with probability 1−λi+1
over the random seed Hi+1[x, u] corresponds to a neighbor in J∗, so we have

INWi+1(σ ) = (INWi (x), INWi (Hi+1[x, u])) = (INWi (x), INWi (y))

with x, y independent and uniformly distributed over U[Si ], so the result follows. ��
Inductively define a sequence of integer-valued random variables K0, . . . , K� as fol-
lows.

• K0 = 1 with probability one.
• Let 0 < i ≤ �. With probability λi , the variable Ki is equal to 0, and with
probability 1− λi , the variable Ki is the sum of two independent copies of Ki−1.

By induction, Claim 4.8 implies that W
G2i ◦ INWi = EKi

[

W
Ki
G

]

for each i . This

shows that W
G2� ◦ INW� is a convex combination over W

0
G, . . . ,W

2�

G , and to bound

the coefficients, wemust bound Pr[K� ≤ 2�/4]. Observe thatE[K0] = 1 andE[Ki ] =
(1 − λi ) · 2 · E[Ki−1] for i > 0. Therefore,

E[K�] = 2� ·
�
∏

i=1

(1 − λi ) ≤ 2� ·
�
∏

i=1

e−λi = 2� · e−λ1−λ2−···−λ� ≤ 2� · e−8.

Consequently, by Markov’s inequality, Pr[K� > 2�/4] ≤ 4 · e−8 < 0.01. ��
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4.2 Branching Programs of Large Alphabet Size

We first give the formal statement of the theorem:

Theorem 4.9 (Formal Statement of Theorem 1.10) For every n = 2� and λ1, . . . , λ� ≥
0, if INW(d, λ1, . . . , λ�) (1/20)-fools ordered permutation branching programs of
length n, width 2, and alphabet size d, then we have sINW(d, λ1, . . . , λ�) = �(log n ·
log log(min{n, d})).

We can now prove the key lemmas, the first being the constraint against polynomial
alphabet size permutation branching programs of width 2.

Lemma 4.10 For every n = 2� (for � ≥ 4) and d ≥ n and every constraint
(λ1, . . . , λ�) where

∑�
i=1 λi ≥ 8, there is a family of auxiliary graphs H =

(H1, . . . , H�) where λ(Hi ) ≤ λi and a length n, width 2, alphabet size d permu-
tation branching program B such that the INW generator constructed withH fails to
(1/20)-fool B.

Proof Let G be the d-regular graph on Z2 with the following neighbor relation:

G[v, b] =
{

v + 1 if b ≡ n − 1 (mod n)

v else.

Let δ ∈ ( 1
2n , 1

n ] be the probability of taking a non-self-loop step.
We will work with walks of length n over this graph, equivalent to computation

on the length n, alphabet size d permutation branching program B = G(n) as in
Remark 4.2.

It is easy to see that G is reversible (in fact with π the identity function), so we
apply Lemma 4.5 withG and (λ1, . . . , λ�) and obtain a PRG INWH whereH satisfies
the constraint.

To obtain the separation, we examine the probability that a random output of INWH
ends at state 0 from state 0 (i.e. (WG(n) ◦ INWH)0,0), compared to the equivalent

probability over truly random input (i.e. (WG(n) )0,0 = (W
(n)

G )0,0).
The probability a random walk of length n from state 0 in G ends at state 0 is

upper bounded by 1 minus the probability that such a walk takes exactly one non-self
loop step. Recall that Bin(m, p, t) is the probability of obtaining t heads from m iid
Bernoulli(p) draws. Therefore,

(

WG(n)

)

0,0 ≤ 1 − Bin(n, δ, 1) = 1 − nδ (1 − δ)n−1 .
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One can show that the derivative of the right-hand side with respect to δ (holding n
fixed) is nonpositive for all δ ≤ 1

n . Since δ ∈ ( 1
2n , 1

n

]

, it follows that

(

WG(n)

)

0,0 ≤ 1 − 1

2
·
(

1 − 1

2n

)n−1

= 1 − 1

2
·
((

1 − 1

2n

)(n−1)/15
)15

≤ 1 − 1

2
·
(

1 − n − 1

30n

)15

(Bernoulli’s inequality)

< 1 − 1

2
·
(

1 − 1

30

)15

< 0.7.

(Note that we were able to apply Bernoulli’s inequality because we assumed � ≥ 4
and hence (n − 1)/15 ≥ 1.) Intuitively, in the PRG output no backtracked section
can possibly change the parity of the state, so (WG(n) ◦ INWH)0,0 is at least the
probability that none of the non-backtracked steps (which are truly random) traverse
edges in the cycle. Formally, for all m ∈ N we have (W

m
G)0,0 ≥ Bin(m, δ, 0). Since

this bound is monotonically decreasing with m, we lower bound (WG(n) ◦ INWH)0,0
by Lemma 4.5:

(

WG(n) ◦ INWH
)

0,0 ≥ 1

100
Bin (n, δ, 0) + 99

100
Bin (n/4, δ, 0)

≥ 1

100
Bin (n, 1/n, 0) + 99

100
Bin (n/4, 1/n, 0)

≥ 99

100
(1 − 1/n)n/4

≥ .75

Therefore
(

WG(n) ◦ INWH
)

0,0 − (

WG(n)

)

0,0 > .05 and we have an �(1) separation
as desired. ��
We can then use this lemma to prove the main result.

Proof of Theorem 4.9 Let t = �log(min{n, d})� and fix some constraint (λ1, . . . , λ�)

such that INW(d, λ1, . . . , λ�) (1/20)-fools the model.

Claim 4.11 Every block (λi , . . . , λi+t−1) satisfies
∑i+t−1

j=i λ j < 8.

Proof Note that given (λi , . . . , λi+t−1) with
∑i+t−1

j=i λi ≥ 8, Lemma 4.10 gives a
length 2t ≤ n, width 2, alphabet size d permutation branching program B and a
family of auxiliary graphs H = (Hi , . . . , Hi+t−1) satisfying the constraint such that
INWH fails to (1/20)-fool B, so it remains to show how to embed this into a length-n
construction.
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Note that for j ∈ {i, . . . , i + t − 1}, we have |Hj | = ∏ j−1
k=i−1 dk where di−1 = d

and dk = deg(Hk). Let us define a new family of graphs (H ′
1, . . . , H

′
�). For j < i , let

H ′
j = J∗.
Observe that H ′

i−1 is a graph on vertex set [d]2i−2
. Now we define H ′

i as follows.

The vertex space is [d]2i−1
, which we think of as [d] × [d]2i−1−1. Let (ai−1, bi−1) ∈

[d] × [d]2i−1−1 be a vertex, and let (ai , bi ) be an edge label, where ai ∈ [di ] and
bi ∈ [d]2i−1−1. Then we let

H ′
i [(ai−1, bi−1), (ai , bi )] = (Hi [ai−1, ai ], J∗[bi−1, bi ]).

More generally, for j ∈ {i, . . . , i + t − 1}, we define H ′
j as follows. Let

(ai−1, bi−1, . . . , a j−1, b j−1) be a vertex and let (a j , b j ) be an edge label, where

ak ∈ [dk] and bk ∈ [d](2i−1−1)·2k−i
for each k ∈ {i − 1, . . . , j − 1}. Then

H ′
j [(ai−1, bi−1, . . . , a j−1, b j−1), (a j , b j )] = (a′

i−1, b
′
i−1, . . . , a

′
j−1, b

′
j−1),

where (a′
i−1, . . . , a

′
j−1) = Hj [(ai−1, . . . , a j−1), a j ] and (b′

i−1, . . . , b
′
j−1) =

J∗[(bi−1, . . . , b j−1), b j ]. Note that with this definition, H ′
j is isomorphic as a graph

to Hj ⊗ J∗, and hence λ(H ′
j ) ≤ λ(Hj ) by Proposition 2.9. Finally, for j ≥ t , let

H ′
j = J∗.
The new program B ′ will ignore the final n − 2t layers. Since the first i − 1 graphs

in the familyH′ are Jd , Jd2 , . . . , Jd2i−2 , we modify B such that it only reads the first

symbol of each block of length 2i−1, with identity transitions on all other symbols.
Thus, the function computed by B ′ is given by

B ′(σ1, . . . , σn) = B(σ1, σ1+2i−1 , σ1+2i−1·2, . . . , σ1+2i−1·(2t−1)).

Then the distribution of outputs of INWH′ on symbols 1, 1+2i−1, . . . , 1+2i−1·(2t−1)
will be identical to that of INWH, so INWH′ will fail to (1/20)-fool the alphabet size
d, length n modified program. ��

Dividing [�] into atmost �/t+1 ≤ 2�/t blocks of size atmost t , we have byClaim 4.11
that

∑�
i=1 λi < 16�/t , so at least �/2 of the constraints satisfy λi < 32/t . Let I be

the indices such that this occurs. Then let

γi =
{

32/t i ∈ I

1 else.

Then sINW(d, λ1, . . . , λ�) ≥ sINW(d, γ1, . . . , γ�) = �(log(t)·(log n−O(log log n)))

= �(log n · log log(min(n, d)) via Lemma 2.7. ��

123



3172 Algorithmica (2024) 86:3153–3185

4.3 Fooling in Spectral Norm

We now formally state our lower bound for fooling programs in spectral norm (which
we precisely define in Definition 4.14).

Theorem 4.12 (Formal Statement of Theorem1.11)For every n = 2� andλ1, . . . , λ� ≥
0, if INW(2, λ1, . . . , λ�) 1/3-fools ordered permutation branching programs of
length n, width w, and alphabet size 2 with respect to spectral norm, then
sINW(2, λ1, . . . , λ�) = �(log n · log log(min{n, w})).
To prove this, we introduce notation for distributions over a branching program, using
the notation of Reingold et al. [30].

Definition 4.13 Given a length n, width w, alphabet size d branching program B with
transition functions B1, . . . , Bn , for t ∈ [n] letBt : [d] → {0, 1}w×w be definedwhere
Bt [s]i, j = 1 if Bt (i, s) = j and 0 otherwise. For 0 ≤ i < j ≤ n let Bi .. j be defined
as Bi .. j [si+1 . . . s j ] = Bi+1[si+1] · · ·B j [s j ], and let B = B0..n . For a function GEN :
[S] → [d]n , define the distribution of B on GEN as B ◦ GEN = E[B[GEN(U[S])]].
Furthermore, we define B ◦U[d]n = E[B[U[d]n ]].
Note that this definition exactly matches Definition 2.2 when the branching program
is equal to G(n) for a consistently labeled graph G (with Bt = G for all steps t as in
Remark 4.2). We can then define fooling with respect to a norm.

Definition 4.14 Let ‖ · ‖ be a norm on w × w real matrices and B a set of ordered
branching programs of length n, width w, and alphabet size d. We say a function
GEN : {0, 1}s → [d]n ε-fools B with respect to ‖ · ‖ if for every B ∈ B we have

∥
∥B ◦ GEN − B ◦U[d]n

∥
∥ ≤ ε.

To use this definition, we need to select a matrix norm. We define several different
norms on matrices A ∈ R

w×w. Note that throughout the paper, all vectors are row
vectors. Some examples include:

• ‖A‖2 = maxx∈Rw−{0} ‖xA‖2/‖x‖2. We call this the spectral norm, and it is what
we obtain bounds against.

• ‖A‖1 = maxx∈Rw−{0} ‖xA‖1/‖x‖1 = maxi ‖Ai,·‖1 where Ai,· is the i th row of
A.

• ‖A‖max = maxi, j |Ai, j |.
We remark that fooling in �1 norm is equivalent (up to a factor of 2) to the conventional
notion of fooling programs with an arbitrary set of accept vertices, and fooling in max-
norm is equivalent to fooling programs with a single accept vertex. We work with �1
norm in Appendix B, whereas here we obtain bounds against spectral norm.

Wenowprove themain lemma for spectral fooling of polynomialwidth permutation
branching programs over a binary alphabet.

Lemma 4.15 For every n = 2� and every constraint (λ1, . . . , λ�)where
∑�

i=1 λi ≥ 8,
there is a family of auxiliary graphs H = (H1, . . . , H�) where λ(Hi ) ≤ λi and a
length n, width O(

√
n), alphabet size 2 permutation branching program B such that
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the INW generator constructed with H fails to (1/3)-fool B with respect to spectral
norm.

Proof Our distinguishing permutation branching program is again a consistently
labeled graph, with transitions equal at every layer, as in Remark 4.2. For everym ∈ N,
let Cm be the 2-regular consistently labeled undirected m-cycle and let v2 be a nor-
malized eigenvector ofWCm with second largest eigenvalue. For an m ×m matrix A,

let λ2(A)
def= v2AvT2 , and recall that λ2(WCm ) = cos(2π/m) = 1 − �(1/m2) (see

e.g. [27]). We will apply this definition to matrices A ∈ span{I,WCm ,W
2
Cm

, . . .}; v2
is an eigenvector of all these matrices, but it is not always the second eigenvector.
Nonetheless, it is convenient for us to measure expansion with respect to v2. Note that
when v2 is an eigenvector of A, λ2(Ak) = λ2(A)k for all k.

Recall that λ2(W
n
Cm

) = λ2(WCm )n = (1 − �(1/m2))n . Now given n, choose
w = �(

√
n) to be some integer such that randomwalks of length n are 1/3mixedwith

respect to λ2, but walks of length n/2 are not. Formally let w = argminm∈N(1/9 ≤
λ2(W

n
Cm

) < 1/3).
We then observe that G = Cw is reversible, so we apply Lemma 4.5 with G and

(λ1, . . . , λ�) and obtain a PRG INWH where H satisfies the constraint.
Intuitively, “wasting” a constant fraction of steps by not making progress on mix-

ing is enough to distinguish INW output from truly random in spectral norm. Since

λ2(W
a
Cw

) ≤ λ2(W
b
Cw

) for all a ≥ b, we again obtain a lower bound by Lemma 4.5:

λ2(WCn
w

◦ INWH) ≥ 1

100
λ2(W

n
Cw

) + 99

100
λ2(W

n/4
Cw

) = 1

100
λ2(WCw

)n + 99

100
λ2(WCw

)n/4.

But then

∥
∥WCn

w
◦ INWH − WCn

w
◦U{0,1}n ]

∥
∥
2

≥ v2(WCn
w

◦ INWH − W
n
Cw

)vT2

= λ2(WCn
w

◦ INWH) − λ2(W
n
Cw

)

≥ 1

100
λ2(WCw)n + 99

100
λ2(WCw)n/4 − λ2(WCw)n

≥ 99

100
· min
x∈[1/9,1/3)(x

1/4 − x) > .42,

where the final line follows from a numerical calculation, so we have the desired
separation. ��
We can then use this lemma to prove Theorem 4.12.

Proof of Theorem 4.12 Let t = �log(min{n, w})� and fix an arbitrary constraint
(λ1, . . . , λ�) such that INW(d, λ1, . . . , λ�) (1/3)-fools themodel with respect to spec-
tral norm.

Claim 4.16 Every block (λi , . . . , λi+t−1) satisfies
∑i+t−1

j=i λ j < 8.
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The proof of the claim is essentially identical to that of Claim 4.11. Let us now use the
claim to prove the theorem. Dividing [�] into at most �/t + 1 ≤ 2�/t blocks of size at
most t , we have by the claim that

∑�
i=1 λi < 16�/t , so at least �/2 of the constraints

satisfy λi < 32/t . Let I be the indices such that this occurs. Then let

γi =
{

32/t i ∈ I

1 else.

Then sINW(d, λ1, . . . , λ�) ≥ sINW(d, γ1, . . . , γ�) = �(log(t)·(log n−O(log log n)))

= �(log n · log log(min{n, w}) via Lemma 2.7. ��

5 Dependence onWidth

In this section, we prove Theorem 1.8, establishing a lower bound on the seed length
as a function of the width of the permutation branching program. Since we prove the
INW generator does not even hit the distinguisher, we recall the formal definition of
a hitting set generator.

Definition 5.1 Let F be a class of functions f : [d]n → {0, 1}. An ε-hitting set
generator (ε-HSG) for F is a function GEN : {0, 1}s → [d]n such that for every
f ∈ F whereEx←U[d]n [ f (x)] > ε, there exists y ∈ {0, 1}s such that f (GEN(y)) = 1.

We are now prepared to give the formal statement.

Theorem 5.2 (Formal Statement of Theorem1.8)For every d andn = 2� andw ≤ 2n/2

and λ1, . . . , λ� ≥ 0, if INW(d, λ1, . . . , λ�) is a (1/2)-hitting set generator for ordered
permutation branching programs (with arbitrary sets of accept vertices) of length n,
width w, and alphabet size d, then sINW(d, λ1, . . . , λ�) = �(log(w) · (log(n) −
log log(w)).

Theproof proceeds by showing that any INWPRGmust constrain almost all spectral
gaps to be at most 1/w�(1). To do this, we establish that if there is a constraint where
λr > 1/wc for some c > 0, there is a graph E on

√
w vertices and a permutation

branching program that perfectly distinguishes between a pair of edges in E and
random vertices. To enable this to work for all levels of the PRG, we tensor E with a
large complete graph. We now state the main lemma.

Lemma 5.3 There exists c > 0 and w0 ∈ N such that for all d ∈ N and w ≥ w0,
for all r ≥ 1 + log logw, for every constraint (λ1, . . . , λr ) such that λr > 1/wc,
there is a family of auxiliary graphs H = (H1, . . . , Hr ) where λ(Hi ) ≤ λi and an
alphabet size d, width w2, length 2r permutation branching program B such that
Pr[B(U[d]2r ) = 1] ≥ 1 − w−�(1) and INWr fails to hit B.

To prove this, we recall the existence of expanders that are not too dense.

Proposition 5.4 (see e.g. [31]) There are global constants c > 0 and v0 ∈ N such
that for every S ≥ v0, there is an undirected regular graph Z on S vertices such that
deg(Z) <

√
S and λ(Z) < 1/Sc.
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We furthermore prove that we can approximately tensor these graphs, in effect creating
block expanders on an arbitrary number of vertices:

Proposition 5.5 There are global constants c > 0 and v0 ∈ N such that for every
d ≥ b ≥ v0, there is a regular graph Z = (V , E) on d vertices with the following
properties.

• There is a partition p : V → [b] such that Vi := |p−1(i)| ∈ {�d/b�, �d/b�} for
every i .

• There is a regular graph N on [b] with degree r ≤ √
b such that if (u, v) ∈ E,

then (p(u), p(v)) ∈ E(N ) or p(u) = p(v).
• λ(Z) ≤ 1/bc + b/d.

Proof For convenience, we will use positive rational edge weights in our definition of
the graph Z . Such a graph can be converted into an unweighted graph by duplicating
edges, similar to Definition 3.3.

Let N be the graph on b vertices of Proposition 5.4. Let a := �d/b�. To define Z ,
we begin by blowing up each vertex vi in N to a cloud Vi of size either a or a + 1,
such that there are d vertices in total. Then, for every undirected edge {vi , v j } in N :

• Add a complete bipartite graph between Vi and Vj to Z in which each edge has
weight 1.

• If |Vi | = a, then add a clique to Vj , including self loops, in which each edge has
weight 1/|Vj |, thus increasing the weighted degree of each vertex in Vj by one.

• Similarly, if |Vj | = a, then add a clique to Vi , including self loops, in which each
edge has weight 1/|Vi |.

By construction, every vertex in Z has weighted degree precisely deg(N ) · (a + 1),
so Z is regular. Furthermore, at each vertex in Z , the weight of the incident “clique
edges” is at most deg(N ), i.e., a ( 1

a+1 )-fraction of the total weight of all incident edges.
Now we show that Z has the claimed expansion. Let W̃ ∈ R

d×d be the random
walk matrix of Z and letW ∈ R

b(a+1)×b(a+1) be the randomwalk matrix of the tensor
product N ⊗ Ja+1. Let P ∈ R

b(a+1)×d be the “truncation matrix,” i.e., xP consists
of the first d entries of x , and let L ∈ R

d×b(a+1) be the “padding matrix,” i.e., xL
consists of x followed by b(a + 1) − d zeroes. Then we can write

W̃ = LWP + 
,

where the “error matrix” 
 ∈ R
d×d is given by

(x
)i = wp(i) · 1

|p−1(p(i))| ·
∑

j∈p−1(p(i))

x j ,

wherewp(i) ∈ [0, 1
a+1 ] is the fraction of “clique edges” among all the edges incident to

each vertex in the cloud Vp(i). Consequently, for any test vector x ∈ R
d with ‖x‖2 = 1

and x ⊥ 
1, we have
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‖xW̃‖2 ≤ ‖xLWP‖2 + ‖x
‖2

≤ λ(N ) +

√
√
√
√
√

∑

j∈[b]
w2

j · |p−1( j)| ·
⎛

⎝
1

|p−1( j)| ·
∑

i∈p−1( j)

xi

⎞

⎠

2

≤ λ(N ) +
√
√
√
√

∑

j∈[b]
w2

j · |p−1( j)| · 1

|p−1( j)| ·
∑

i∈p−1( j)

x2i

≤ λ(N ) + 1

a + 1
.

��
Wenote that counterintutively, our lower bound relies on the existence of expanders

with an upper bound on their degree.

Proof of Lemma 5.3 Let l = �logd(w)�.We break into cases depending on if l is strictly
greater than 0 (equivalently, if d ≤ w or d > w).

1. Case 1: l > 0. Here, let Z be the graph on S := dl ∈ [√w,w] vertices with
deg(Z) ≤ √

S and λ(Z) ≤ 1/wc obtained from Proposition 5.4.
2. Case 2: l = 0. Let Z be the d-vertex graph of Proposition 5.5 with b = �w1/8�,

and let N be the associated block graph. Observe that λ(Z) ≤ 1/wc/8 +1/w7/8 ≤
1/wc′

.

Now, in both cases let the graph family beH = (J∗, . . . , J∗, Z ⊗ J∗) and observe that
it satisfies the expansion constraint by Proposition 2.9. Next, we show that both cases
can be distinguished from uniform output by a PRG, in both cases by checking if two
blocks of symbols correspond to an edge in Hr .

1. Case 1: Let B be the permutation branching program that reads the symbols in
coordinates [1, l]∪ [2r−1 +1, 2r−1 + l], and on reading (x, y), accepts if and only
if (x, y) /∈ E(Z). This program has width d2l ≤ w2. We have by construction
that INWH does not hit B. Moreover, the probability that two random vertices in
Z are not connected by an edge is at least (S − √

S)/S ≥ 1 − w−1/4, and thus
Pr[B(U[d]2r ) = 1] ≥ 1 − w−1/4, so we obtain the desired result.

2. Case 2: Recall that V1, . . . , Vb is the partition of [d] induced by the vertices in Z ,
and note that b ≤ w2. Let B be the permutation branching program that reads the
symbols at coordinates 1 and 2r−1 + 1, and on reading (x, y), accepts if and only
if

p(x) �= p(y) and (p(x), p(y)) /∈ E(N ).

Note that this can be implemented by a permutation branching program of width
b2 ≤ w, as the program only needs b distinct vertices to remember the necessary
information about each symbol. We have by construction that INWH does not hit
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B.
We claim that on a random input (x, y) ← U[d] × U[d], the random variable
(p(x), p(y)) is ε-close to uniform over [b] × [b], where ε = b · (b/d) ≤ w−3/4.
To see this, note that for every i ∈ [b], Pr[p(x) = i] ∈ (1/b − 1/d, 1/b + 1/d)

and thus for every i, j ∈ [b],

Pr[p(x) = i ∧ p(y) = j] ∈ (1/b2 − 2/bd, 1/b2 + 3/bd).

Thus, the total variation distance from uniform over (i, j) is at most b2(3/bd) =
3b/d ≤ 3w−7/8.
Thus,

Pr[B(U[d]2r ) = 1] = Pr
(x,y)←U[d]2

[(p(x), p(y)) /∈ E(N ) ∧ p(x) �= p(y)]

≥ Pr
(u,v)←U[b]2

[(u, v) /∈ E(N ) ∧ u �= v] − 3w−7/8

≥ 1 − √
b/b − w−1/16 − 3w−7/8.

Thus, in both cases we obtain that the generator fails to hit the program, and the
program has expectation 1 − w−�(1). ��

We now apply this lemma to prove the theorem.

Proof of Theorem 5.2 Let INW(d, λ1, . . . , λ�) be a (1/2)-HSG for width w, length
n branching programs. Let t = �log log(√w)� and note t ≤ � by assumption on
w. Now fix a family of graphs H = (H1, . . . , H�) satisfying this constraint and let
di = deg(Hi ) and pi = ∏

j≤i di .

Claim 5.6 For i ≤ t , we have log(pi ) = �(2i ).

Proof Let i0 be a constant, large enough that 22
i0−1

is larger than the constant w0

in Lemma 5.3, and large enough that for all w ≥ 22
i0−1

, the quantity 1 − w−�(1)

that appears in Lemma 5.3 is bigger than 1/2. We will show by induction that for all
i0 < i ≤ t , we have

log(pi ) ≥ α · 2i + 1, (3)

where α ∈ (0, 1) is a sufficiently small positive constant.
Let i0 < i ≤ t . By Lemma 5.3 with w = 22

i−1
, we have λi ≤ 2−c·2i−1

for some
positive constant c. By Proposition 2.6, we have di ≥ min{2/λ2i , (pi−1 + 1)/2}. We
split into two cases depending on which term of the min is smaller.

First, suppose di ≥ 2/λ2i . Then log(pi ) ≥ log(di ) ≥ c · 2i + 1, so provided we
choose α ≤ c, (3) is satisfied. Now, suppose instead that di ≥ (pi−1 + 1)/2. If
i > i0 + 1, then log(pi ) ≥ 2 log(pi−1) − 1, so we are done by induction. Finally,
suppose i = i0 + 1 (the base case). Trivially, pi−1 ≥ 2, so di ≥ 3/2, which implies
di ≥ 2 since di is an integer, and therefore pi = pi−1 ·di ≥ 4. Therefore, by choosing
α < 2−i0 , we ensure that (3) holds in this case as well. ��
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Now, for every i > t , we can apply Lemma 5.3 again (assumingw is sufficiently large)
to get λi ≤ 1/wc. Consequently, by Proposition 2.6, we have di ≥ min{2w2c, pt/2}
and hence log(di ) = �(log(w)). Thus, we obtain a seed length lower bound of
�(log(w)(log(n) − log log(w))). ��

A Appendix A General Branching Programs

In this appendix, we show that Theorem 5.2 can be strengthened for general (e.g. non-
regular) ordered branching programs, in the sense that the hitting parameter becomes
exponentially close to 1. Moreover, we recover the result of Brody and Verbin that
spectral analyses of the INW generator require seed length�(log2 n) even for width-3
BPs.

Theorem A.1 For every n = 2� and λ1, . . . , λ� ≥ 0, there is a parameter ε = 1 −
2−�(n1/4) such that if INW(2, λ1, . . . , λ�) is an ε-HSG against ordered branching pro-
grams of length n, width 3, and alphabet size 2, then sINW(2, λ1, . . . , λ�) = �(log2 n).

To do this, we show that width 3 ordered branching programs can distinguish graphs
with a polynomially small spectral gap.

Lemma A.2 There exists n0, c > 0 such that for all n = 2� ≥ n0, for every constraint
(λ1, . . . , λ�) where there exists �/4 ≥ r ≥ log log n such that λr > 1/nc, there is a
family of auxiliary graphsH = (H1, . . . , H�)where λ(Hi ) ≤ λi and a length n, width
3, alphabet size 2 branching program B such that Pr[B(U{0,1}n ) = 1] ≥ 1 − 2−n1/4

and INWH fails to hit B.

The proof is similar to the (sketched) proof in [14] that ordered branching programs
can distinguish coins slightly biased towards 1, and is essentially the argument of
Brody and Verbin [9].

Proof Let 2s = S be the power of two satisfying n1/8 ≤ S < n1/4. Let E be the
graph on S vertices with deg(E) = D where D <

√
S and λ(E) ≤ 1/nc obtained

from Proposition 5.4, where we assume S ≥ v0 by our choice of n0. Then for some
K = 2k ≥ S to be chosen later define

Hr = E ⊗ JK/S .

Given v ∈ [K ] and (i, j) ∈ [D] × [K/S], the neighbor relation of Hr decomposes
as:

Hr [v, (i, j)] = (E[vs, i], J [v′, j])

where vs denotes the s bit prefix of v and v′ the k − s bit suffix. Choose K = 22
r−1

and let the family beH = (J2, . . . , J22r−1 , Hr , J∗, . . . , J∗). Verifying thatH satisfies
the constraint is direct.

Then choose some (x, y) ∈ [S] × [S] such that (x, y) /∈ E and create the length
n, width 3 branching program B computing the function f : {0, 1}n → {0, 1} defined
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as

f (σ ) =
n/2r−1
∨

i=0

(σ2r ·i+1...2r ·i+s = x ∧ σ2r ·i+k+1...2r ·i+k+s = y).

Since (x, y) is chosen such that it will never be output by INWH in the bits of output
corresponding to neighbor relations in E , and these bits are precisely those checked
by B, we have that INWH fails to hit B. However, a truly random input satisfies
each clause with probability 2−2s ≥ 2− log(n)/2 and since there are n/2r ≥ n3/4 such
clauses, the accept probability is at least

Pr[B(U{0,1}n ) = 1] = 1 − (1 − 1/
√
n)n

3/4 ≥ 1 − exp(−n1/4),

so we obtain a super-constant HSG separation. ��
We can then prove the theorem:

Proof of TheoremA.1 Applying Lemma A.2, every family INW(2, λ1, . . . , λ�) that
1 − exp(−n1/4)-fools ordered branching programs of length n, width 3 and alpha-
bet size 2 must have λi < 1/n�(1) for all i ∈ [log log n, . . . , �/4], so we obtain
sINW(2, λ1, . . . , λ�) = �(log2 n) via Lemma 2.7. ��

B Appendix B Existence of Optimal INWGenerators

Despite spectral analysis of INW PRGs already reaching lower bounds in multiple
cases, and clearly being incapable of giving a full derandomization of space bounded
computation, there exists an INW PRG with seed length matching that of the proba-
bilistic method, for any class of functions:

Theorem B.1 Let n = 2� ∈ N, let d ∈ N, and letF be a family of functions f : [d]n →
{0, 1}. There is a family of graphsH = (H1, . . . , H�) such that INWH ε-foolsF , and
INWH has seed length O(log log |F | + log(n/ε) + log log(d)).

In particular, there is an instantiation of the INW PRG with optimal seed length for
ordered branching programs:

Corollary B.2 For all d, w, n, ε, there is a family of graphs H such that INWH ε-
fools ordered branching programs of length n, width w and alphabet size d, and this
generator has seed length O(log(nwd/ε)).

The proof of Corollary B.2 is slightly more involved than the standard proof that a
random function is a good PRG with high probability, but it uses essentially the same
idea. For the first O(log log(nwd/ε)) levels, we use complete graphs to construct the
generator, i.e., the generator is the trivial “identity PRG” on O(log(nwd/ε)) bits. At
higher levels, we use a randomly-chosen one-outregular digraph, and argue that with
high probability the INW generator constructed with this graph is a good approxi-
mation of the concatenation of two lower-level generators over every function in the
family.
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Remark B.3 A digraph H of degree 1 on 2s vertices can also be viewed as a hash
function h : {0, 1}s → {0, 1}s . Thus, our PRG has the form

G(x) = (x, h1(x), h2(x), h1(h2(x)), h3(x), h1(h3(x)), . . . ),

where |x | = O(log(nwd/ε)) and each hash function hi is “hard-coded” into the
PRG. This PRG G is identical to Nisan’s PRG [8], except that in Nisan’s (explicit)
construction, the hash functions hi are selected pairwise-independently by the PRG
“at runtime,” requiring a longer seed.

Besides the similarity between the two constructions, there are also similarities
between our analysis and Nisan’s analysis [8]. Like us, Nisan shows that after fixing
several hash functions, a random choice for the next hash function is “good” with high
probability. However, Nisan only needs to ensure that the hash function is “good” for
one branching program, whereas we must establish “goodness” for all functions in F
simultaneously.

We first prove a lemma on the existence of good graphs for all sufficiently high
levels of the INW generator. We view the previous levels of the PRG simply as a
fixed function with sufficient seed length, and use the probabilistic method to find a
one-outregular digraph such that the INW generator constructed with this graph (and
the fixed function as a base) approximates the concatenation of two copies of the fixed
function.

Lemma B.4 Let d,m ∈ N, let ε > 0, letF be a family of functions f : [d]2m → {0, 1},
and let G : [S] → [d]m where S > 1

2 · ε−2 · ln(2|F |). There exists a 1-outregular
digraph H on S vertices such that if we define G ′(x) = (G(x),G(H [x, 0])) and
(G,G)(x, y) = (G(x),G(y)), then for every f ∈ F , we have

∣
∣
∣ f ◦ G ′ − f ◦ (G,G)

∣
∣
∣ ≤ ε,

where the notation g denotes the expected value of the function g under a uniform
random input.

Proof Sample H uniformly at random from all 1-outregular graphs on S vertices, i.e.,
for each vertex s ∈ [S] we include an edge (s, z) where z ← U[S].
Now fix an arbitrary f ∈ F and let α := f ◦ (G,G). Let

Xs = f (G(s),G(H [s, 0]))

and thus Es[Xs] = f ◦ G ′.
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Furthermore, we have that Xs ∈ {0, 1}, and the Xs are independent for all s. Using
that the neighbor of every vertex s is distributed uniformly over the set of vertices:

E
H

[

E
s
[Xs]

]

= E
s

[

E
H
[Xs]

]

= E
s
[ f (G(s),G(U[S])))]

= E
s,s′

f ((G(s),G(s′)))

= f ◦ (G,G) = α.

We now apply the probabilistic method to show there exists such a good H . By
Hoeffding’s inequality:

Pr
H

[∣
∣
∣E
s
[Xs] − α

∣
∣
∣ > ε

]

≤ 2 exp(−2ε2S).

Note that the failure probability is exponentially small in S, i.e. the number of seeds
at the prior level, despite H having degree 1. Then for a random H , the probability
Es[Xs] fails to ε-approximate α for any f ∈ F is bounded by 2|F | exp(−2ε2S).
Using the assumption S > 1

2 · ε−2 · ln(2|F |), we obtain that the failure probability
is strictly below 1, so there is a graph H that is good for every f ∈ F , and letting
G ′(x) = (G(x),G(H [x, 0])) completes the proof. ��

We can then use this to prove the main theorem.

Proof of Theorem B.1 Let Fi be the set of restrictions of functions in F to i (arbitrary)
input variables. Observe that |Fi | ≤ |F |(d + 1)n , as every variable can be either
assigned a value or left unrestricted. Let L = 1

2 · ε−2 · ln(2|F | · (d + 1)n) be the
corresponding bound from Lemma B.4.

Let r be the smallest integer such that 22
r

> L . For k ∈ {1, . . . , r} let Hk = J
22k−1 .

Now let r ≤ k ≤ �. By induction, assume that we have constructed H1, . . . , Hk .
Let Hk = (H1, . . . , Hk) and Gk = INWHk . If k < �, then let Hk+1 be the 1-
outregular graph obtained from Lemma B.4 with F = F2k+1 and G = Gk . We prove
by induction that Gk (ε · (2k − 1))-fools F2k . For all k < r this is trivial. Now fix an
arbitrary f ∈ F2k+1 . Note that

E[ f (Gk+1(U ))] ≤ E[ f (Gk(U )||Gk(U ))] + ε (Lemma B.4)

≤ E[ f (U[d]2k ||Gk(U ))] + ε + ε · (2k − 1)

≤ E[ f ] + ε + 2ε · (2k − 1)

where the second and third lines use the inductive hypothesis. A similar argument holds
for the opposite direction, so we obtain the desired result. Then by taking ε ← ε/n,
we conclude.

Moreover, the seed length of INWH = G� is log(L) = O(log log(|F |)+log(n/ε)+
log log(d)). ��
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C Appendix C Seed Length Lower Bound

For completeness, we include a proof of the seed length lower bound for general
pseudorandom generators (not necessarily following the INW template) against per-
mutation branching programs.

Proposition C.1 Given n, d ∈ N and ε > 0, let G : {0, 1}s → [d]n be an ε-PRG
for permutation branching programs of length n, width 2, and alphabet size d. Then
s = �(log(nd/ε)), provided 2−n ≤ ε < 1/3. Furthermore, the same lower bound
holds if G is an ε-PRG for permutation branching programs with respect to spectral
norm.

Proof First, note that for any matrix M ∈ R
w×w, we have ‖M‖max ≤ ‖M‖2. From

this, we obtain that lower bounds against δ-fooling a program with a single accept
vertex imply the equivalent lower bounds against δ-fooling in spectral norm, since

δ ≤ (

B ◦ G − B ◦Un
)

v0,vacc
≤ ∥
∥B ◦ G − B ◦Un

∥
∥
2 .

For the bounds against n and ε, let v : [d] → {0, 1} be an approximately balanced
function, i.e., Eσ [v(σ )] ∈ [1/3, 2/3].
1. First, we show that s ≥ log(d). If s ≤ log(d)−1, there are at most d/2 distinct first

symbols output by G. Then there exists a width-2 permutation branching program
B with a single accept vertex that accepts input σ if and only if σ1 is not output
by G. This program satisfies Pr[B(U[d]n ) = 1] ≥ 1/2 but Pr[B(G(Us)) = 1] = 0
by construction, a contradiction.

2. Next, we show that s ≥ �(log(1/ε)). For x ∈ [d]n and a ∈ {0, 1}n letEQi (x, a) =
I[v(xi ) = ai ]. Set l = �log(1/ε)/ log(3)�−1. For every x ∈ {0, 1}l , we have that

ga(x) =
l

⊕

i=1

EQi (x, a)

is computable by an alphabet size d, width 2 permutation branching program, and
hence G fools ga with error ε. By the well known AND trick [19], G thus fools

fa(x) =
l
∧

i=1

EQi (x, a)

for every a up to error 2ε. AsE[ fa(U[d]n )] ≥ 3−l > 2ε,G hits every such program.
But there are 2l = (1/ε)�(1) such programs and each string output by G can hit
at most one, so we conclude.

3. Finally, we show that s ≥ log n. For this step, we recall the proof of [18]:
If 2s ≤ n − 1, there is some nonzero vector z ∈ F

n
2 such that for every x ,

n
∑

i=1

zi · v(G(x)i ) ≡ 0 (mod 2).
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The function B(x) = ∑n
i=1 zi · v(xi ) mod 2 can be computed by a width-2

alphabet size-d permutation branching program with a single accept vertex, and
Pr[B(U[d]n ) = 1] ≥ 1/3, but Pr[B(G(Us)) = 1] = 0, a contradiction.

��
Finally, we note that by allowing an arbitrary set of accept vertices, we also obtain

a lower bound in terms of width:

Proposition C.2 Given n, w, d ∈ N, if G : {0, 1}s → [d]n is a (1/3)-PRG for per-
mutation branching programs of width w with an arbitrary set of accept vertices then
s = �(logw), provided w ≤ dn.

Proof If w < d, then we are done by the prior �(log d) lower bound. Now assume
w ≥ d, and let l = �logd(w)� ≥ 1. Our assumption w ≤ dn implies that l ≤ n, so we
can define

S = {(G(x)1, . . . ,G(x)l) ∈ [d]l : x ∈ {0, 1}s}.

Assume for the sake of contradiction that s ≤ l log(d) − 1. Then |S| ≤ 2s ≤ dl/2.
Let B : [d]n → {0, 1} be the function

B(σ ) = 1 ⇐⇒ (σ1, . . . , σl) /∈ S.

The function B can be computed by a width w, length n, alphabet size d permutation
branching program: the program stores the first l symbols of its input in its state, and
then in the final layer, sequences in S are marked as rejecting and sequences outside S
are marked as accepting. (Here we are using dl ≤ w.) However, Pr[B(U[d]n ) = 1] ≥
1/2 and Pr[B(G(Us)) = 1] = 0, a contradiction. Therefore,

s > l log d − 1 >
1

2
· logd(w) · log d − 1 = 1

2
logw − 1.

��
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