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Abstract
We consider the effect of symmetry on the rigidity of bar-joint frameworks, spher-
ical frameworks and point-hyperplane frameworks in R

d . In particular, for a graph
G = (V , E) and a framework (G, p), we show that, under forced or incidental symme-
try, infinitesimal rigidity for spherical frameworks with vertices in some subset X ⊂ V
realised on the equator and point-hyperplane frameworks with the vertices in X rep-
resenting hyperplanes are equivalent. We then show, again under forced or incidental
symmetry, that infinitesimal rigidity properties under certain symmetry groups can be
paired, or clustered, under inversion on the sphere so that infinitesimal rigidity with a
given group is equivalent to infinitesimal rigidity under a paired group. The fundamen-
tal basic example is that mirror symmetric rigidity is equivalent to half-turn symmetric
rigidity on the 2-sphere.With these results in hand we also deduce some combinatorial
consequences for the rigidity of symmetric bar-joint and point-line frameworks.
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1 Introduction

Given a collection of primitive geometric objects in a space satisfying particular geo-
metric constraints, a fundamental question is whether the given constraints uniquely
determine thewhole configuration up to congruence. The rigidity problem for bar-joint
frameworks in Rd , where the objects are points, the constraints are pairwise distances
and only local deformations are considered, is a classical example. Mathematically, a
(bar-joint) framework in Rd is defined to be a pair (G, p), consisting of an undirected
finite graph G = (V , E) and a map p : V → R

d .
A framework (G, p) in R

d is rigid if the only edge-length-preserving continuous
motions of the vertices arise from isometries of Rd . In general, when d ≥ 2, it is
NP-hard to determine if a given framework is rigid [1].

A standard approach to study the rigidity of bar-joint frameworks is to linearise
the problem by differentiating the length constraints on the corresponding pairs of
points. This leads to the notion of infinitesimal (or equivalently, static) rigidity. An
infinitesimal motion of a framework (G, p) in Rd is a function u : V → R

d such that

〈pi − p j , ui − u j 〉 = 0 for all {i, j} ∈ E, (1.1)

where pi = p(i) and ui = u(i) for each i . An infinitesimal motion u of (G, p) is a
trivial infinitesimalmotion if there exists a skew-symmetricmatrix S and avector t such
that ui = Spi + t for all i ∈ V . (G, p) is infinitesimally rigid if every infinitesimal
motion of (G, p) is trivial, and infinitesimally flexible otherwise. Moreover, if the
framework is suitably generic then rigidity and infinitesimal rigidity coincide [2].

Pogorelov [24, Chap. V] observed that the space of infinitesimal motions of a bar-
joint framework that is constrained to lie on a strict semi-sphere is isomorphic to those
of the framework obtained by a central projection to Euclidean space. Since then,
connections between various types of rigidity models in different spaces have been
extensively studied, see, e.g., [15,27,35]. When talking about infinitesimal rigidity,
these connections are often just consequences of the fact that infinitesimal rigidity
is preserved by projective transformations [7,25]. A key essence of the research are
its geometric and combinatorial interpretations, which sometimes give us unexpected
connections between theory and real applications.

In [9] this line of research was extended to include point-hyperplane frame-
works. These consist of points and hyperplanes combined with point-point distance
constraints, point-hyperplane distance constraints and hyperplane-hyperplane angle
constraints. See Sect. 2.5 for a rigorous definition. Point-hyperplane frameworks have
practical applications in areas such as mechanical and civil engineering as well as
CAD, since point-hyperplane distance constraints may be used to model slider-joints
in engineering structures [9,16]. In particular the following result showed that the
(infinitesimal) rigidity of such frameworks is equivalent to the (infinitesimal) rigidity
of Euclidean and spherical frameworks with a certain special subset of vertices (that
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correspond to the hyperplanes). See Sect. 2.4 for a detailed discussion of spherical
frameworks.

Theorem 1.1 [9, Thms. 2.4 and 2.5] Let G = (V , E) be a graph and X ⊆ V . Then
the following are equivalent:

(a) G can be realised as an infinitesimally rigid bar-joint framework on Sd such that
the points assigned to X lie on the equator.

(b) G can be realised as an infinitesimally rigid point-hyperplane framework in R
d

such that each vertex in X is realised as a hyperplane and each vertex in V \X is
realised as a point.

(c) G can be realised as an infinitesimally rigid bar-joint framework in Rd such that
the points assigned to X lie on a hyperplane.

Symmetry plays a key role in some prominent applications of rigidity, such as the
dynamics of proteins or the designof engineering structures, and the effect of symmetry
on bar-joint frameworks has been well studied over the last decade [17,20,23,33,34]
(see also [31,37] for recent summaries of results). Note that there are two versions
of symmetric rigidity: incidental symmetry where a given framework is symmetric
(and hence not ‘generic’) but any continuous, or infinitesimal, motion is allowed; and
forced symmetry where a given framework is symmetric and it is considered to be
rigid if the only possible motions destroy the symmetry. (Background definitions on
symmetric frameworks are given in Sect. 2.)

In this paper we extend Theorem 1.1 to symmetric frameworks. In particular, given
a framework that admits some point group symmetry we show, in Sects. 3 and 4,
that both forced symmetric and incidentally symmetric infinitesimal rigidity can be
transferred between spherical frameworks with a given set X of vertices realised on
the equator and point-hyperplane frameworks, where the vertices of X are exactly
the vertices realised as hyperplanes. We can give a full analogue of the theorem (i.e.,
showing a symmetric version of (c) is also equivalent) only in the case of mirror
symmetry, again in both the forced and incidental cases.

It turns out that the impact of symmetry under the projective operations used to
prove the above results reveal further unexpected equivalences. That is, certain pairs
of symmetry groups turn out to provide identical infinitesimal rigidity properties. A
fundamental example is that half-turn rotation and mirror symmetry on the 2-sphere
have geometrically equivalent infinitesimal rigidity properties, in both the incidental
and forced contexts. We give a detailed analysis of all such pairings on the 2-sphere
in Sect. 5, consider groups of involutions in higher dimensions in Sect. 6 and discuss
some consequences of these pairings, particularly from the combinatorial perspective,
as we go.

Finally, in Sect. 7, we consider the corresponding results when the action of the
symmetry group is not free on the vertices of the symmetric graph. In this context
we present some examples and again discuss some combinatorial consequences. In
particular, we obtain a combinatorial characterisation of a special class of minimally
infinitesimally rigid point-line frameworks with reflection symmetry. We conclude
Sect. 7 with some observations on the projective/elliptical model which, via statics, is
the root of the projective understanding of rigidity and connects to the projective basis
of the pairings [6].
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2 Rigidity of Symmetric Frameworks

2.1 Symmetric Graphs

Let G = (V , E) be a graph. An automorphism of G is a permutation π : V → V such
that {i, j} ∈ E if and only if {π(i), π( j)} ∈ E . The group of all automorphisms of G
is denoted by Aut(G). For an abstract group �, we say that G is �-symmetric if there
exists a group action θ : � → Aut(G). For the following definitions, we will assume
that the action θ is free on the vertex set of G, and we will omit θ if it is clear from
the context. We will then simply write γ i instead of θ(γ )(i).

The quotient graph of a �-symmetric graphG is the multigraphG/� whose vertex
set is the set V /� of vertex orbits and whose edge set is the set E/� of edge orbits.
Note that an edge orbit may be represented by a loop in G/�. The (quotient) �-gain
graph of a �-symmetric graph G is the pair (G0, ψ), where G0 = (V0, E0) is the
quotient graph of G with an orientation on the edges, and ψ : E0 → � is defined
as follows. Each edge orbit �e connecting �i and � j in G/� can be written as
{{γ i, γ ◦ α j} | γ ∈ �} for a unique α ∈ �. For each �e, orient �e from �i to � j in
G/� and assign to it the gain α. Then E0 is the resulting set of oriented edges, and ψ

is the corresponding gain assignment. (See [17] for details.)
Suppose � is an abstract multiplicative group. A closed walk C = v1, e1, v2, . . . ,

vk, ek, v1 in a quotient �-gain graph (G0, ψ) is called balanced if ψ(C) =
�k

i=1ψ(ei )sign(ei ) = 1, where sign(ei ) = 1 if ei is directed from vi to vi+1, and
sign(ei ) = −1 otherwise. We say that an edge subset F0 ⊆ E0 is balanced if all
closed walks in F0 are balanced; otherwise it is called unbalanced.

Let k ∈ N, l ∈ {0, 1, . . . , 2k − 1} and m ∈ {0, 1, . . . , l}. Then (G0, ψ) is called
(k, l,m)-gain-sparse if

(i) |F | ≤ k|V (F)| − l for any nonempty balanced F ⊆ E0, and
(ii) |F | ≤ k|V (F)| − m for all F ⊆ E0.

Moreover, (G0, ψ) is (k, l,m)-gain-tight if |E(G0)| = k|V (G0)| − m and (G0, ψ)

is (k, l,m)-gain-sparse.

2.2 Schoenflies Notation for Symmetry Groups on the 2-Sphere

We call a subgroup of the orthogonal group O(Rd) a symmetry group (in dimension
d). In the Schoenflies notation, the possible symmetry groups in dimension 3 are Cs ,
Cn , Ci , Cnv , Cnh , Dn , Dnh , Dnd , S2n , T, Td , Th , O, Oh , I and Ih . Cs is generated by
a single reflection s, and Cn , n ≥ 1, is a group generated by an n-fold rotation Cn .
Ci is the group generated by the inversion ι, Cnv is a dihedral group that is generated
by a rotation Cn and a reflection whose reflectional plane contains the rotational axis
of Cn , and Cnh is generated by a rotation Cn and the reflection whose reflectional
plane is perpendicular to the axis of Cn . Further, Dn denotes a symmetry group that
is generated by a rotation Cn and another 2-fold rotation C2 whose rotational axis is
perpendicular to the one ofCn .Dnh andDnd are generated by the generatorsCn andC2
of a groupDn and by a reflection s. In the case ofDnh , themirror of s is the plane that is
perpendicular to the Cn axis and contains the origin (and hence contains the rotational
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axis of C2), whereas in the case of Dnd , the mirror of s is a plane that contains the
Cn axis and forms an angle of π/n with the C2 axis. S2n is a symmetry group which
is generated by a 2n-fold improper rotation (i.e., a rotation by π/n followed by a
reflection in the plane which is perpendicular to the rotational axis). The remaining
seven types of symmetry groups in dimension 3 are related to the Platonic solids and
are placed into three divisions: the tetrahedral groups T, Td and Th , the octahedral
groups O and Oh , and the icosahedral groups I and Ih . See [3] for details.

The only possible symmetry groups in dimension 2 are Cs (reflection symmetry),
Cn (rotational symmetry) andCnv (dihedral symmetry). In Sect. 6wewill also consider
certain types of symmetry groups in dimensions 4 and higher, and we will also make
use of the Schoenflies notation for these groups.

2.3 Symmetric Euclidean Frameworks

Let � be an abstract group, and let G be a �-symmetric graph with respect to the
action θ : � → Aut(G). Suppose also that� acts onRd via a homomorphism τ : � →
O(Rd). A framework (G, p) is called �-symmetric (with respect to θ and τ ) if

τ(γ )(p(i)) = p(θ(γ )(i)) for all γ ∈ � and all i ∈ V . (2.1)

A �-symmetric framework (G, p) (with respect to θ and τ ) is called �-regular if
the rigidity matrix (i.e., the matrix corresponding to the linear system in (1.1)) has
maximum rank among all realisations ofG as a�-symmetric framework (with respect
to θ and τ ).

For example, if (G, p) is a �-regular framework in R2, where G is a Laman graph
(i.e., |E | = 2|V | − 3 and |E ′| ≤ 2|V ′| − 3 for all non-trivial subgraphs (V ′, E ′) of
G), θ acts freely on V , and τ(�) is equal to C3, then the rank of the rigidity matrix
of (G, p) is 2|V | − 3 (i.e., (G, p) is infinitesimally rigid) [29]; if τ(�) is C2 or Cs ,
however, then the rank of the rigidity matrix of (G, p) is less than 2|V | − 3 unless
there is exactly one edge {i, j} ∈ E that is ‘fixed’ by the half-turn or reflection in τ(�)

(i.e., γ i = j and γ j = i , where � = 〈γ 〉). See [4,28], for example, for details.
An infinitesimal motion u of a �-symmetric framework (G, p) is called �-

symmetric (with respect to θ and τ ) if the velocity vectors exhibit the same symmetry
as (G, p), that is, if τ(γ )ui = uγ i for all γ ∈ � and all i ∈ V . We say that (G, p) is
forced �-symmetric infinitesimally rigid if every �-symmetric infinitesimal motion is
trivial.

An important motivation for studying forced �-symmetric infinitesimal rigidity
is that for �-regular frameworks, there exists a non-trivial �-symmetric infinitesimal
motion if and only if there exists a non-trivial symmetry-preserving continuousmotion
[30] (see also [11,19]). A key tool to study forced�-symmetric infinitesimal rigidity is
the so-called orbit matrix (see [34] for details). With the help of this matrix, combina-
torial characterisations for �-regular forced �-symmetric rigidity in the plane (where
the action θ : � → Aut(G) is free on the vertex set) have been obtained for the groups
Cs , Cn , n ∈ N, and C(2n+1)v , n ∈ N, in [17] (see also [20]). In particular we have the
following result for reflectional or rotational symmetry groups.
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Theorem 2.1 Let n ≥ 2 and let (G, p) be aZn-regular bar-joint framework inR2 with
respect to the action θ : Zn → Aut(G) (which acts freely on V ) and τ : Zn → O(R2).
Then (G, p) is forced Zn-symmetric infinitesimally rigid if and only if the quotient
Zn-gain graph (G0, ψ) of G contains a spanning subgraph that is (2, 3, 1)-gain-tight.

For the groups C(2n)v the problem of finding a combinatorial characterisation for �-
regular forced �-symmetric rigidity is still open [17].

If a�-symmetric framework is forced�-symmetric infinitesimally rigid, then itmay
still have non-trivial infinitesimal motions that are not �-symmetric. The problem of
analysing the infinitesimal rigidity of an (incidentally) �-symmetric framework can
be broken up into independent subproblems, one for each irreducible representation
of the group �, by an appropriate block-decomposition of the rigidity matrix. (The
block matrix corresponding to the trivial representation of � is the orbit matrix.)
Combinatorial characterisations of �-regular infinitesimally rigid frameworks in the
plane have been obtained via this approach for a selection of cyclic groups (where
the action θ : � → Aut(G) is free on the vertex set) [13,14,33]. The problem remains
open for all other groups.

We offer a sample result for the groupsCs andC2, as wewill discuss the relationship
between these groups with respect to infinitesimal rigidity in greater detail in Sects. 5
and 7.

Theorem 2.2 Let n ≥ 2 and let (G, p) be a Z2-regular bar-joint framework in R
2

with respect to the action θ : Z2 → Aut(G) (which acts freely on V ) and τ : Z2 →
O(R2), where τ(Z2) = Cs or C2. Then (G, p) is infinitesimally rigid if and only
if the quotient Z2-gain graph (G0, ψ) of G contains a spanning (2, 3, i)-gain-tight
subgraph (Hi , ψi ) for each i = 1, 2.

2.4 Symmetric Frameworks on the Sphere

A spherical framework (G, p) in Sd is a bar-joint framework with p : V → S
d , where

the distance between two points is determined by their spherical distance, i.e., by their
inner product (see Fig. 1). Alternatively, we may model (G, p) as a ‘cone framework’
(G�u, q) inRd+1. The cone graphG�u ofG is obtained fromG by adding the newcone
vertex u and the edges {u, v} for all vertices v ∈ V . The cone framework (G�u, q) is
obtained by fixing the cone vertex u at the origin and setting q|V = p. In the following

Fig. 1 A spherical framework (G, q) with Cs symmetry in S
2 with two points on the equator and the

corresponding point-line framework (G, p, �) with Cs symmetry in the affine plane A
2 obtained from

central projection. Both frameworks are infinitesimally flexible, but forced Z2-symmetric infinitesimally
rigid. The underlying graph G and its quotient Z2-gain graph (with Z2 = 〈γ 〉) are shown on the right
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we will assume that the points p(V ) linearly span Rd+1. For the infinitesimal rigidity
of such a framework we consider the linear system

〈pi , ṗ j 〉 + 〈p j , ṗi 〉 = 0, {i, j} ∈ E, (2.2)

〈pi , ṗi 〉 = 0, i ∈ V . (2.3)

A map ṗ : V → R
d+1 is said to be an infinitesimal motion of (G, p) if it satisfies this

system of linear constraints, and (G, p) is infinitesimally rigid if the dimension of the
space of its infinitesimal motions is equal to

(d+1
2

)
(i.e., every infinitesimal motion of

(G, p) is trivial).
A spherical framework (G, p) in S

d is �-symmetric (with respect to θ and τ ) if it
is �-symmetric as a bar-joint framework in R

d+1 (with respect to θ and τ ). Forced
�-symmetric infinitesimal rigidity for spherical frameworks is defined analogously
as for bar-joint frameworks in Rd . A �-symmetric spherical framework (G, p) (with
respect to θ and τ ) in S

d is �-regular if its spherical rigidity matrix (i.e., the matrix
corresponding to the linear system above) has maximum rank among all realisations
of G as a �-symmetric spherical framework (with respect to θ and τ ).

In [21], combinatorial characterisations for �-regular forced �-symmetric rigidity
onS2 (where the action θ : � → Aut(G) is free on the vertex set) have been established
for the groups Cs , Cn , n ∈ N, Ci , Cnv , n odd, Cnh , n odd, and S2n , n even. (For the
groups Cs and Cn , for example, the characterisation is the same as the one given in
Theorem 2.1 for bar-joint frameworks in R2.) For the remaining groups, this problem
is still open. (See Table 1 in [21] for further details.) The infinitesimal rigidity for
incidentally symmetric frameworks onS2 has not yet been investigated.Wewill discuss
this further in Sects. 3 and 5.

2.5 Symmetric Point-Hyperplane Frameworks

Let G = (VP ∪ VH , E) be a graph where the vertex set V is partitioned into two sets
VP and VH . This induces a partition of the edge set E into the sets EPP , EPH , EHH ,
where EPP consists of pairs of vertices in VP , EHH consists of pairs of vertices in
VH , and EPH consists of pairs of vertices with one vertex in VP and the other one in
VH . We call such a graph G a PH -graph.

A point-hyperplane framework inRd is a triple (G, p, �), whereG = (VP∪VH , E)

is a PH -graph, and p : VP → R
d and � = (a, r) : VH → S

d−1 × R are maps.
These maps p and � are interpreted as follows: each vertex i in VP is mapped to the
point pi in R

d and each vertex j in VH is mapped to the hyperplane in R
d given by

{x ∈ R
d : 〈a j , x〉 + r j = 0}. A point-hyperplane framework in R

2 is also called
a point-line framework [16] (see Fig. 1). In the following we will assume that the
points p(VP ) and hyperplanes �(VH ) affinely spanRd . Each edge in EPP , EPH , EHH

indicates a point-point distance constraint, a point-hyperplane distance constraint, or
a hyperplane-hyperplane angle constraint, respectively. This leads to the following
system of first order constraints (see [9] for details):

〈pi − p j , ṗi − ṗ j 〉 = 0, {i, j} ∈ EPP , (2.4)
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〈pi , ȧ j 〉 + 〈 ṗi , a j 〉 + ṙ j = 0, {i, j} ∈ EPH , (2.5)

〈ai , ȧ j 〉 + 〈ȧi , a j 〉 = 0, {i, j} ∈ EHH , (2.6)

〈ai , ȧi 〉 = 0, i ∈ VH . (2.7)

A map ( ṗ, �̇) is said to be an infinitesimal motion of (G, p, �) if it satisfies this system
of linear constraints, and (G, p, �) is infinitesimally rigid if the dimension of the
space of its infinitesimal motions is equal to

(d+1
2

)
(i.e., every infinitesimal motion of

(G, p, �) is trivial).

Remark 2.3 As discussed in [9], translating a hyperplane in a point-hyperplane frame-
work does not affect its infinitesimal rigidity properties. We may therefore assume
without loss of generality that every hyperplane contains the origin.

Let G = (VP ∪ VH , E) be a PH -graph. A PH -stabilising automorphism of G is
an automorphism π ∈ Aut(G) such that π(x) ∈ VP for all x ∈ VP and π(y) ∈ VH

for all v ∈ VH . The subgroup of all π ∈ Aut(G) that are PH -stabilising is denoted
by AutPH (G). We only consider a PH -graph G to be �-symmetric if there exists a
group action θ : � → AutPH (G).

Let G = (VP ∪ VH , E) be a �-symmetric PH -graph with respect to θ : � →
AutPH (G). Further, let (G, p, �) be a point-hyperplane framework inRd and suppose
� acts on R

d via a homomorphism τ : � → O(Rd). Then (G, p, �) is called �-
symmetric (with respect to θ and τ ) if

τ(γ )(p(i)) = p(θ(γ )(i)) for all γ ∈ � and all i ∈ VP , (2.8)

τ(γ )(a( j)) = ±a(θ(γ )( j)) for all γ ∈ � and all j ∈ VH , (2.9)

r( j) = r(θ(γ )( j)) for all γ ∈ � and all j ∈ VH . (2.10)

An infinitesimal motion ( ṗ, �̇) of a �-symmetric point-hyperplane framework
(G, p, �) is called �-symmetric if it satisfies the constraints in (2.8)–(2.10) and
(G, p, �) is called forced �-symmetric infinitesimally rigid if every �-symmetric
infinitesimal motion is trivial. A �-symmetric point-hyperplane framework (G, p, �)
(with respect to θ and τ ) is �-regular if its point-hyperplane rigidity matrix (i.e., the
matrix corresponding to the linear system (4.6)–(4.9) has maximum rank among all
realisations of G as a �-symmetric point-hyperplane framework (with respect to θ

and τ ).
The infinitesimal rigidity for incidentally or forced �-symmetric point-hyperplane

frameworks has not yet been investigated. We will address these questions in the
remaining sections of this paper. In particular, we will establish combinatorial char-
acterisations for incidental and forced �-symmetric infinitesimal rigidity for some
special classes of point-line frameworks in Sects. 5 and 7.

3 Transfer of Infinitesimal Rigidity

We first state a basic lemma which will be used repeatedly throughout this paper.
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Lemma 3.1 ([35]) Let G = (V , E) be a graph and let I ⊆ V . For a vector q ∈ R
d+1,

let ι denote the inversion operator defined by taking (ι ◦ q)i = −qi if i ∈ I and
(ι◦q)i = qi otherwise. If (G, p) and (G, ι◦ p) are two frameworks on Sd then (G, p)
is infinitesimally rigid if and only if (G, ι ◦ p) is infinitesimally rigid.

Note that the proof uses the fact that the framework is on the sphere in an essential
way. The proof also shows that all other rigidity properties are preserved, including
independence of rows, and isomorphic spaces of infinitesimal motions. We will return
to this in Sect. 7.4. (See Sect. 3.3 in [35] for details.)

Our first theorem extends the transfer of Theorem 1.1, (a) and (b), to symmetric
frameworks. (Note that the special case where there are no points on the equator (i.e.,
points that centrally project to points at infinity) was proved in [35]). We need the
following definitions. For the sphere Sd , we call the intersection of Sd with the linear
hyperplane ofRd+1 with normal vector e = (0, . . . , 0, 1) the equator ofSd .Moreover,
for a group � and a representation τ : � → O(Rd), we let τ̃ : � → O(Rd+1) be the
augmented representation of τ , i.e.,

τ̃ (γ ) =
(

τ(γ ) 0
0 1

)
.

Theorem 3.2 Let G = (V , E) be a graph and X ⊆ V . Further, let τ(�) be a symmetry
group in Rd . Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid �-symmetric bar-joint framework on
S
d (with respect to θ and τ̃ ) such that the points assigned to X lie on the equator.

(b) G can be realised as an infinitesimally rigid�-symmetric point-hyperplane frame-
work in R

d (with respect to θ and τ ) such that each vertex in X is realised as a
hyperplane and each vertex in V \X is realised as a point.

Proof Given a point-hyperplane framework (G, p, �) in Rd , we may construct a cor-
responding spherical framework (G, q) with all points in the upper hemisphere by
setting q(i) = p̂i/‖ p̂i‖, where p̂i = (pi , 1), for all i ∈ VP , and q( j) = (a j , 0) for
all j ∈ VH . It was shown in [9,35] that (G, p, �) is infinitesimally rigid in R

d if and
only if (G, q) is infinitesimally rigid in S

d with all points in the upper hemisphere.
We show that this operation also preserves the � symmetry.

Suppose (G, p, �) is �-symmetric with respect to θ and τ , i.e., equations (2.8)–
(2.10) are satisfied. Without loss of generality, we may assume that the normal vectors
of the hyperplanes, a j , j ∈ VH , are oriented in such a way that we have a plus sign
on the right hand side of equation (2.9). Let i ∈ VP . Then for all γ ∈ � we have
‖ p̂(i)‖ = ‖τ̃ (γ ) p̂(i)‖ and τ̃ (γ ) p̂(i) = p̂(θ(γ )(i)). Thus,

τ̃ (γ )(q(i)) = τ̃ (γ )

(
p̂(i)

‖ p̂(i)‖
)

= 1

‖ p̂(i)‖ τ̃ (γ )( p̂(i))

= 1

‖ p̂(θ(γ )(i))‖ p̂(θ(γ )(i)) = q(θ(γ )(i)).
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Now let j ∈ VH . Then for all γ ∈ � we have

τ̃ (γ )(q( j)) = τ̃ (γ )((a( j), 0)) = (τ (γ )(a( j)), 0) = (a(θ(γ )( j)), 0) = q(θ(γ )( j)).

This says that (G, q) is �-symmetric with respect to θ and τ̃ , as desired.
Conversely, if (G, q) is �-symmetric with respect to θ and τ̃ , then it follows from

τ̃ (γ )(q(i)) = q(θ(γ )(i)) for i ∈ V \X that τ(γ )(p(i)) = p(θ(γ )(i)) for all γ ∈ �.
Similarly, it follows from τ̃ (γ )(q( j)) = q(θ(γ )( j)) for j ∈ X that τ(γ )(a( j)) =
a(θ(γ )( j)) for all γ ∈ �. Moreover, we set r( j) = r(θ(γ )( j)) for all γ ∈ �. Then
(G, p, �) with VH = X and VP = V \X is �-symmetric with respect to θ and τ .

Finally, if we start with a �-symmetric spherical framework (with respect to θ and
τ̃ ) that has points above and below the equator, then, by definition of τ̃ , the vertices
in a vertex orbit lie either all above, or all below, or all on the equator. Therefore, we
may use Lemma 3.1 to invert all vertex orbits in the strict lower hemisphere to the
upper hemisphere, preserving the symmetry and infinitesimal rigidity. ��

Let � be a group, τ : � → O(Rd) be a representation, and τ̃ be the augmented
representation. For a �-symmetric graph G = (V , E) (with respect to θ ) and a (possi-
bly empty) set X ⊆ V , we say that a �-symmetric spherical framework (with respect
to θ and τ̃ ) with all points assigned to X lying on the equator of Sd is �-X-regular
if the spherical rigidity matrix has maximum rank among all realisations of G as a
�-symmetric spherical framework (with respect to θ and τ̃ ) with points assigned to
X lying on the equator. Clearly, a �-regular spherical framework is also �-X -regular.
The converse, however, is in general not true.

Using techniques similar to [35] we can see that the transfer above takes �-X -
regular spherical frameworks to �-regular point-hyperplane frameworks.

Lemma 3.3 Let (G, q) be a �-symmetric framework on Sd , with points assigned to a
(possibly empty) subset X of V lying on the equator, and let (G, p, �) be the corre-
sponding �-symmetric point-hyperplane framework in Rd resulting from the transfer
in Theorem 3.2. Then (G, p, �) is �-regular if and only if (G, q) is �-X-regular.

Proof By Theorem 3.2, q gives the maximum rank for the spherical rigidity matrix
for G (among all �-symmetric realisations of G on Sd with points assigned to X lying
on the equator) if and only if (p, �) gives the maximum rank of the point-hyperplane
rigidity matrix for G (among all �-symmetric point-hyperplane realisations of G in
R
d with VP = V \X and VH = X ). Moreover, moving in open neighbourhoods of

q within the space of �-symmetric realisations of G in S
d with points assigned to X

lying on the equator, and of (p, �) within the space of �-symmetric point-hyperplane
realisations of G in R

d , respectively, the rank of the rigidity matrices cannot drop
immediately, but must be maintained over an open set. ��

From Theorem 3.2 and Lemma 3.3, we immediately obtain the following corollary.

Corollary 3.4 Let G = (V , E) be a graph and X ⊆ V . Further, let τ(�) be a symmetry
group in Rd .
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(a) If X �= ∅, then�-X-regular realisations of G as a spherical framework onSd (with
respect to θ and τ̃ ) are infinitesimally rigid if and only if �-regular realisations
of G as a point-hyperplane framework in R

d (with respect to θ and τ ) with
VP = V \X and VH = X are infinitesimally rigid.

(b) If X = ∅, then �-regular realisations of G as a spherical framework on Sd (with
respect to θ and τ̃ ) are infinitesimally rigid if and only if �-regular realisations
of G as a bar-joint framework in R

d (with respect to θ and τ ) are infinitesimally
rigid.

Remark 3.5 Sincewehave combinatorial characterisations of�-regular infinitesimally
rigid frameworks inR2 (where the action θ : � → Aut(G) is free on the vertex set) for
the groups Cs , C2 and Cn , n odd [33] (recall also Theorem 2.2), those results, together
with Corollary 3.4 (b), immediately provide us with the corresponding combinatorial
characterisations of �-regular infinitesimally rigid spherical frameworks on S

2 for
these groups.

However, we can only deduce complete combinatorial results regarding the
infinitesimal rigidity of point-line frameworks from Corollary 3.4 (a) in some very
special cases (see Theorems 5.4 and 7.4). This is because a �-X -regular spherical
framework is in general not a �-regular spherical framework (even when |X | = 2),
and hence the combinatorial results for �-regular bar-joint frameworks in R

2 (such
as the ones mentioned above) do not apply here. Consider, for example, a framework
(G, p) on S2 with C2 symmetry, where the half-turn swaps two points pi and p j , with
{i, j} ∈ E . If pi and p j lie on the equator, then this edge will always be redundant,
whereas otherwise this is not the case.

For the reflection group Cs in Rd , we also obtain the following complete analogue of
Theorem 1.1.

Corollary 3.6 Let G = (V , E) be a graph, X ⊆ V , and � = Z2. Further let τ(Z2) be
the symmetry group Cs in Rd . Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid �-symmetric bar-joint framework
on S

d (with respect to θ and τ̃ ) such that the points assigned to X lie on the
equator, but not on the line through the origin that is perpendicular to the mirror
hyperplane.

(b) G can be realised as an infinitesimally rigid�-symmetric point-hyperplane frame-
work in R

d (with respect to θ and τ ) such that each vertex in X is realised as a
hyperplane, no hyperplane is parallel to the mirror hyperplane, and each vertex
in V \X is realised as a point.

(c) G can be realised as an infinitesimally rigid �-symmetric bar-joint framework in
R
d (with respect to θ and τ ) such that the points assigned to X lie on a hyperplane

(perpendicular to the mirror hyperplane).

Proof The equivalence of (a) and (b) follows immediately from Theorem 3.2. It
remains to show that (b) and (c) are equivalent.

It was shown in [9] that (G, p, �) is infinitesimally rigid as a point-hyperplane
framework in R

d if and only if (G, q−1 ◦ ι ◦ γ ◦ q) is infinitesimally rigid as a bar-
joint framework in R

d , where q is obtained from (p, �) as described in the proof of
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Theorem 3.2 (and q−1 denotes the inverse function), γ is a rotation inRd+1 around an
axis through the origin, and ι is the inversion operator defined by taking (ι◦q)i = −qi
if i ∈ I and (ι ◦ q)i = qi otherwise. It remains to show that these operations can be
performed while preserving the mirror symmetry. To preserve the mirror symmetry,
the rotation γ must be around the axis that is perpendicular to the mirror hyperplane.
Since, by assumption, there is no vertex on that axis, all points can be moved off the
equator by rotating around that axis. We can clearly now use the inversion operator ι to
move all points onto the strict upper hemispherewhile preserving themirror symmetry.
This gives the result. ��

Note that for any group containing a rotation the operation γ will destroy the
symmetry, so the proof of Corollary 3.6 is not sufficient to handle other groups.

4 Transfer of Forced-Symmetric Infinitesimal Rigidity

As is standard for discussions on forced-symmetric rigidity, we will assume for sim-
plicity throughout this section that G = (V , E) is a �-symmetric graph with respect
to θ , where θ acts freely on V .

First we state the forced-symmetric analogue of Lemma 3.1, which was also proved
in [35].

Lemma 4.1 Let G = (V , E) be a�-symmetric graphwith respect to θ : � → Aut(G),
and let τ(�) be a symmetry group in dimension d. Further let I ⊆ V be a set of vertex
orbits under the group action θ . For a vector q ∈ R

d+1, let ι denote the inversion
operator defined by taking (ι ◦ q)i = −qi if i ∈ I and (ι ◦ q)i = qi otherwise. Then
(G, p) is a �-symmetric framework on S

d (with respect to θ and τ̃ ) if and only if
(G, ι ◦ p) is. Moreover, (G, p) is forced �-symmetric infinitesimally rigid if and only
if (G, ι ◦ p) is forced �-symmetric infinitesimally rigid.

Next we will extend the transfer results of Sect. 3 to the context of forced �-
symmetric rigidity, where the action is free on the vertices, by adapting the approach
in [9].

Let (G, p) be a �-symmetric spherical framework and let (G0, ψ) = (V0, E0, ψ)

be the �-gain graph of G. In the following we identify V0 with a set of representative
vertices for the vertex orbits under�. Recall that (G0, ψ) is a directed (group-labelled)
multigraph, so we denote an edge from a vertex i to a (not necessarily distinct) vertex
j by (i, j). By definition, a �-symmetric infinitesimal motion ṗ of (G, p) satisfies
the following linear system:

〈
pi , τ (ψ((i, j))) ṗ j

〉 + 〈
τ(ψ((i, j)))p j , ṗi

〉 = 0, (i, j) ∈ E0, (4.1)

〈pi , ṗi 〉 = 0, i ∈ V0. (4.2)

In the following we will simplify notation by setting ψ((i, j)) = ψi j . For a �-
symmetric point-hyperplane framework (G, p, �) in R

d , we first show the different
types of geometric constraints to help the reader see where the linear system for a
�-symmetric infinitesimal motion comes from:
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‖pi − τ(ψi j )p j‖2 = const, (i, j) ∈ E0PP , (4.3)

|〈pi , τ (ψi j )a j 〉 + r j | = const, (i, j) ∈ E0PH , (4.4)

〈ai , τ (ψi j )a j 〉 = const, (i, j) ∈ E0HH . (4.5)

Since ai ∈ S
d−1, we also have the constraint

〈ai , ai 〉 = 1, i ∈ V0H .

Taking derivatives we get the following system of first order constraints (recall also
Sect. 2.5):

〈
pi − τ(ψi j )p j , ṗi − τ(ψi j ) ṗ j

〉 = 0, (i, j) ∈ E0PP , (4.6)

〈pi , τ (ψi j )ȧ j 〉 + 〈 ṗi , τ (ψi j )a j 〉 + ṙ j = 0, (i, j) ∈ E0PH , (4.7)

〈ai , τ (ψi j )ȧ j 〉 + 〈ȧi , τ (ψi j )a j 〉 = 0, (i, j) ∈ E0HH , (4.8)

〈ai , ȧi 〉 = 0, i ∈ V0H . (4.9)

Wenow translate (G, p, �) to the point-hyperplane framework (G, p̂, �) in affine space
A
d by setting p̂i = (pi , 1) for all i ∈ V0P .

〈
p̂i − τ̃ (ψi j ) p̂ j , ˙̂pi − τ̃ (ψi j ) ˙̂p j

〉 = 0, (i, j) ∈ E0PP , (4.10)

〈 p̂i , τ̃ (ψi j )�̇ j 〉 + 〈 ˙̂pi , τ̃ (ψi j )� j 〉 = 0, (i, j) ∈ E0PH , (4.11)

〈ai , τ (ψi j )ȧ j 〉 + 〈ȧi , τ (ψi j )a j 〉 = 0, (i, j) ∈ E0HH , (4.12)

〈 ˙̂pi , e〉 = 0, i ∈ V0P , (4.13)

〈ai , ȧi 〉 = 0, i ∈ V0H . (4.14)

where e is the vector whose last coordinate is 1 and all others are equal to 0.
As in [9] the last coordinate of �i is not important when analysing the infinitesimal

rigidity of (G, p, �) (recall also Remark 2.3), and we may always assume that � is a
map with � : VL → S

d−1 × {0}. Under this assumption, we can regard each �i as a
point on the equator Q of Sd by identifying S

d−1 × {0} with Q. Hence (4.14) can be
written as 〈�i , �̇i 〉 = 0, i.e., �̇i ∈ T�iS

d for all i ∈ V0H , where TxY (or simply TY if x
is not relevant) denotes the tangent hyperplane at the point x to the space Y . Moreover,
(4.12) gives

〈�i , τ̃ (ψi j )�̇ j 〉 + 〈�̇i , τ̃ (ψi j )� j 〉 = 0

for all (i, j) ∈ E0HH .
Let Sd>0 denote the strict upper hemisphere of Sd and define φ : Ad → S

d
>0 to be

the central projection, that is, φ(x) = x/‖x‖, x ∈ A
d , and for each x ∈ A

d , define
χx : TAd → Tφ(x)S

d by

χx (m) = m − 〈m, x〉e
‖x‖ , m ∈ TAd .
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It was shown in [35] that Eq. (4.10) can be rewritten as

〈
φ( p̂i ), χτ̃ (ψi j ) p̂ j (τ̃ (ψi j ) ˙̂p j )

〉 + 〈
φ((τ̃ (ψi j ) p̂ j ), χ p̂i (

˙̂pi )
〉

=
〈
p̂i − τ̃ (ψi j ) p̂ j , ˙̂pi − τ̃ (ψi j ) ˙̂p j

〉

‖ p̂i‖‖ p̂ j‖ = 0

for all (i, j) ∈ E0 with i, j ∈ V0P . As in [9], (4.11) can also be rewritten as

〈φ( p̂i ), τ̃ (ψi j )�̇ j 〉 + 〈ψ p̂i (
˙̂pi ), τ̃ (ψi j )� j 〉 = 〈 p̂i , τ̃ (ψi j )�̇ j 〉 + 〈 ˙̂pi , τ̃ (ψi j )� j 〉

‖ p̂i‖ = 0

for all (i, j) ∈ E0 with i ∈ V0P and j ∈ V0H . These equations imply that ( ˙̂p, �̇) is
a �-symmetric infinitesimal motion of (G, p̂, �) if and only if q̇ is a �-symmetric
infinitesimal motion of (G, q), where (G, q) is the bar-joint framework on S

d≥0 (i.e.,
the upper hemisphere including the equator) given by

qi =
{

φ( p̂i ), i ∈ V0P ,

(ai , 0), i ∈ V0H ,
(4.15)

and q̇i ∈ TqiS
d is given by

q̇i =
{

χ p̂i (
˙̂pi ), i ∈ V0P ,

�̇i i ∈ V0H .

Since each χx is bijective and hence invertible, this gives us an isomorphism between
the spaces of infinitesimal motions of (G, p̂, �) and (G, q). Moreover, by applying
the above isomorphism to a framework on the complete graph that affinely spans Ad ,
we see that the spaces of trivial �-symmetric infinitesimal motions have the same
dimension. Finally, we can simply identify Ad with Rd , i.e., the infinitesimal rigidity
properties of (G, p̂, �) in Ad are the same as for (G, p, �) in Rd .

As in [9, Thm. 2.2] the above discussion allows us to obtain the following analogue
of Theorem 3.2.

Theorem 4.2 Let G = (V , E) be a �-symmetric graph (with respect to θ ), where θ

acts freely on V . Further, let X ⊆ V , and let τ(�) be a symmetry group in R
d . Then

the following are equivalent:

(a) G can be realised as a forced �-symmetric infinitesimally rigid bar-joint frame-
work on Sd (with respect to θ and τ̃ ) such that the points assigned to X lie on the
equator.

(b) G can be realised as a forced �-symmetric infinitesimally rigid point-hyperplane
framework in R

d (with respect to θ and τ ) such that each vertex in X is realised
as a hyperplane and each vertex in V \X is realised as a point.

As in Corollary 3.4 we may deduce the following.
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Corollary 4.3 Let G = (V , E) be a �-symmetric graph (with respect to θ ), where θ

acts freely on V . Further, let X ⊆ V and let τ(�) be a symmetry group in R
d .

(a) If X �= ∅, then �-X-regular realisations of G as a spherical framework on S
d

(with respect to θ and τ̃ ) are forced�-symmetric infinitesimally rigid if and only if
�-regular realisations of G as a point-hyperplane framework in Rd (with respect
to θ and τ ) with VP = V \X and VH = X are forced �-symmetric infinitesimally
rigid.

(b) If X = ∅, then �-regular realisations of G as a spherical framework on S
d (with

respect to θ and τ̃ ) are forced �-symmetric infinitesimally rigid if and only if
�-regular realisations of G as a bar-joint framework inRd (with respect to θ and
τ ) are forced �-symmetric infinitesimally rigid.

Note that (b) was already used in [21]. As for incidental symmetry, for the reflection
group Cs in R

d , we also obtain the following complete analogue of Theorem 1.1,
whose proof is similar to the one for Corollary 3.6.

Corollary 4.4 Let G = (V , E) be a graph, X ⊆ V , and � = Z2. Further let τ(Z2) be
the symmetry group Cs in Rd . Then the following are equivalent:

(a) G can be realised as a forced �-symmetric infinitesimally rigid �-symmetric bar-
joint framework on S

d (with respect to θ and τ̃ ) such that the points assigned to
X lie on the equator, but not on the line through the origin that is perpendicular
to the mirror hyperplane.

(b) G canbe realised as a forced�-symmetric infinitesimally rigid�-symmetric point-
hyperplane framework in Rd (with respect to θ and τ ) such that each vertex in X
is realised as a hyperplane, no hyperplane is parallel to the mirror hyperplane,
and each vertex in V \X is realised as a point.

(c) G can be realised as a forced �-symmetric infinitesimally rigid �-symmetric bar-
joint framework in R

d (with respect to θ and τ ) such that the points assigned to
X lie on a hyperplane (perpendicular to the mirror hyperplane).

5 Group Pairings on S
2 and inR

2

We now consider relationships between symmetry groups with respect to infinitesimal
rigidity and forced �-symmetric infinitesimal rigidity in both S2 and R2. (Analogous
results for higher dimensions will be considered in Sect. 6.) Throughout this section
we will again assume that G = (V , E) is a �-symmetric graph with respect to θ ,
where θ acts freely on V . (Non-free actions are discussed in Sect. 7.)

For simplicity we first deal with the basic pairing of mirror symmetry and half-turn
symmetry. In later subsections we will generalise to other groups.

5.1 Half-Turn andMirror Symmetry

We prove that (forced Z2-symmetric) infinitesimal rigidity under half-turn symmetry
is equivalent to (forced Z2-symmetric) infinitesimal rigidity under mirror symmetry
on S2 (see also Fig. 2).
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Theorem 5.1 Let G = (V , E) be a graph and let θ : Z2 → Aut(G) act freely on V .
Further, let X be a (possibly empty) subset of V . Then the following are equivalent:

(a) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid bar-joint framework on S2 with respect to θ and τ : Z2 → Cs , where points
assigned to X lie on a great circle.

(b) G can be realised as aZ2-symmetric (resp. forcedZ2-symmetric) bar-joint frame-
work on S2 with respect to θ and τ ′ : Z2 → C2, where points assigned to X lie on
a great circle.

Proof We first prove the equivalence of (a) and (b) for infinitesimal rigidity. Let Z2 =
{1,−1}. Suppose that V0 = {v1, v2, . . . , vn} is a set of representatives for the vertex
orbits of G under the action of θ , and that G has vertex set {v1, v′

1, v2, v
′
2, . . . , vn, v

′
n},

with θ(−1)vi = v′
i for all i = 1, . . . , n. Without loss of generality we consider

τ(−1) to be the reflection in the plane x = 0. Hence for a framework (G, p)
that is Z2-symmetric with respect to θ and τ we have p(vi ) = (xi , yi , zi ) and
p(v′

i ) = (x ′
i , y

′
i , z

′
i ) = (−xi , yi , zi ). Applying inversion to the set I = V − V0

gives us (xi , yi , zi ) for each vi ∈ V0 and (xi ,−yi ,−zi ) for each v′
i ∈ V − V0. Note

that (xi ,−yi ,−zi ) is the half-turn rotation of (xi , yi , zi ) about the x-axis, so we let
τ ′(−1) be the half-turn rotation about the x-axis. This partial inversion process is
clearly reversible, and since inversion of points on S

2 preserves infinitesimal rigidity
by Lemma 3.1, and since points on a great circle remain on the same great circle under
inversion, the proof is complete.

Next we prove the equivalence of (a) and (b) for forced Z2-symmetric infinitesimal
rigidity. Let (G, p) and (G, q) be the two corresponding frameworks with Cs and C2
symmetry. The matrix Oθ,τ (G, p) corresponding to the linear system (2.2) and (2.3)
for (G, p) has the following form (this matrix is also known as the spherical orbit
matrix of (G, p) [35]):

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

vi v j

...

(vi , v j ) 0 . . . 0 pi − τ(ψi j )p j 0 . . . 0 p j − τ(ψi j )pi 0 . . . 0
...

(vi , vi ) 0 . . . 0 2(pi − τ(ψi j )pi ) 0 . . . 0 0 0 . . . 0
...

vi 0 . . . 0 pi 0 . . . 0 0 0 . . . 0
...

v j 0 . . . 0 0 0 . . . 0 p j 0 . . . 0
...

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

where pi = p(vi ) and ψi j = ψ((vi , v j )). (Note that τ(ψi j ) = τ(ψi j )
−1 since τ(ψi j )

is an involution.)
We show that we can obtain the spherical orbit matrix Oθ,τ ′(G, q) for (G, q) from

Oθ,τ (G, p) by carrying out elementary row operations.
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Fig. 2 Infinitesimally rigid frameworks on S2 with reflection and half-turn symmetry, illustrating the proof
of Theorem 5.1

For any edge (vi , v j )with gainψi j = −1, subtract the row corresponding to vi and
the row corresponding to v j from the row corresponding to (vi , v j ). Subsequently,
multiply the new row corresponding to (vi , v j ) by −1 and add back the rows corre-
sponding to vi and v j . Similarly, for any loop edge (vi , vi ) (which necessarily has the
gain label ψi j = −1), we divide the row corresponding to (vi , vi ) by 2, then subtract
the row corresponding to vi , and then multiply the resulting row by −1. Finally we
add back the row corresponding to vi and multiply the row by 2. Any edge (vi , v j )

with gain ψi j = 1 is left alone. The resulting matrix has the form

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

vi v j

...

(vi , v j ) 0 . . . 0 pi + τ(ψi j )p j 0 . . . 0 p j + τ(ψi j )pi 0 . . . 0
...

(vi , vi ) 0 . . . 0 2(pi + τ(ψi j )pi ) 0 . . . 0 0 0 . . . 0
...

vi 0 . . . 0 pi 0 . . . 0 0 0 . . . 0
...

v j 0 . . . 0 0 0 . . . 0 p j 0 . . . 0
...

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

By the definition of τ and τ ′, for each i we have τ(−1)pi = −τ ′(−1)pi . Thus,
the matrix above is indeed equal to Oθ,τ ′(G, q), and Oθ,τ (G, p) and Oθ,τ ′(G, q)

cleary have the same rank. By applying the above argument to a framework on the
complete graph that affinely spans R3, we see that the spaces of trivial Z2-symmetric
infinitesimal motions with respect to τ and τ ′ have the same dimension. This gives
the result. ��

From Theorem 5.1 we obtain the following corollary (see also Fig. 3).
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Corollary 5.2 Let G = (V , E) be a graph and let θ : Z2 → Aut(G) act freely on V .
Then the following are equivalent:

(a) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid bar-joint framework in R

2 with respect to θ and τ : Z2 → Cs .
(b) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally

rigid bar-joint framework in R
2 with respect to θ and τ ′ : Z2 → C2.

Moreover, for any nonempty subset X of V , the following are equivalent.

(c) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid point-line framework in R

2 with respect to θ and τ : Z2 → Cs , such that
each vertex in X is realised as a line and each vertex in V \X is realised as a
point.

(d) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid bar-joint framework in R2 with respect to θ and τ ′ : Z2 → C2, such that the
points assigned to X are collinear.

Finally, for any nonempty subset X of V , the following are equivalent.

(e) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid bar-joint framework inR2 with respect to θ and τ : Z2 → Cs , such that each
point assigned to X lies on the mirror line (and is hence coincident with another
point assigned to X ).

(f) G can be realised as a Z2-symmetric (resp. forced Z2-symmetric) infinitesimally
rigid point-line framework in R

2 with respect to θ and τ ′ : Z2 → C2, such that
each vertex in X is realised as a line (and is hence parallel to another line assigned
to X ) and each vertex in V \X is realised as a point.

Proof We first make some general remarks that are relevant to proving all three equiv-
alences.

By Theorem 5.1, there exists aZ2-symmetric (resp. forcedZ2-symmetric) infinites-
imally rigid bar-joint framework (G, p)onS2 with respect to θ and τ : Z2 → Cs ,where
points assigned to X lie on the equator if and only if there exists aZ2-symmetric (resp.
forced Z2-symmetric) infinitesimally rigid Z2-symmetric bar-joint framework (G, q)

on S
2 with respect to θ and τ ′ : Z2 → C2, where points assigned to X lie on the

equator. Let (G, q) be obtained from (G, p) as described in the proof of Theorem 5.1.
In particular, suppose (as in the proof of Theorem 5.1) that τ(−1) is the reflection in
the x = 0 plane and τ ′(−1) is the half-turn around the x-axis. We now use the transfer
mappings described in the proof of Theorem 3.2 to project these spherical frameworks
to bar-joint or point-line frameworks in R

2.
If necessary, we may invert orbits of points of (G, p) (under the Z2-action) so that

all points of the resulting framework (G, ι ◦ p) lie on the (closed) upper hemisphere
(preserving the mirror symmetry). We may then centrally project (G, ι ◦ p) to the
affine plane z = 1 (which may then be identified with R

2) to either obtain a bar-joint
framework (G, p′) inR2 with Cs symmetry if no point of (G, ι◦ p) lies on the equator,
or to obtain a point-line framework (G, p′, �′) inR2 with Cs symmetry such that each
vertex in X is realised as a line and each vertex in V \X is realised as a point.

Similarly, if necessary, we can invert orbits of points of (G, q) (under theZ2-action)
so that all points of the resulting framework (G, ι◦q) lie on the (closed) left hemisphere
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Fig. 3 The pair of infinitesimally rigid (point-line and bar-joint) frameworks in R
2 corresponding to the

pair of spherical frameworks shown in Fig. 2, illustrating the proof of Corollary 5.2, (c) and (d)

(preserving the half-turn symmetry).Wemay then rotate the entire framework (G, ι◦q)

about the y axis by π/2 so that all points of the resulting framework (G, γ ◦ ι ◦ q) lie
on the (closed) upper hemisphere. We may then centrally project (G, γ ◦ ι ◦ q) to the
affine plane z = 1 (which may then be identified with R

2) to either obtain a bar-joint
framework (G, q ′) in R

2 with C2 symmetry if no point of (G, γ ◦ ι ◦ q) lies on the
equator, or to obtain a point-line framework (G, q ′, �′) in R2 with C2 symmetry such
that each vertex in X is realised as a line and each vertex in V \X is realised as a point.

All the operations described above preserve infinitesimal rigidity and forced Z2-
symmetric infinitesimal rigidity, as shown in Sects. 3 and 4. Note that (G, p) has no
point on the equator (or respectively the x = 0 plane) if and only if (G, q) has no point
on the equator (resp. the x = 0 plane). This proves the equivalence of (a) and (b).

For the equivalence of (c) and (d)wemay assume (by slightly perturbing the vertices
if necessary) that (G, p) has no point on the mirror plane. If (G, p) has a non-empty
set of vertices positioned on the equator, then the same is true for (G, q). Also, (G, p)
has no point on the y-axis if and only if (G, q) has no point on the y-axis. Moreover,
(G, p) has no point on the mirror plane if and only if (G, γ ◦ ι◦q) has no point on the
equator. So in this case, the operations described above for (G, p) and (G, q) yield the
point-line framework (G, p′, �′) inR2 with Cs symmetry and the bar-joint framework
(G, q ′) with C2 symmetry, respectively. This proves the equivalence of (c) and (d).

Finally, note that (G, p) has a coincident pair of points on the mirror plane if and
only if (G, γ ◦ ι◦q) has a pair of opposite points on the equator. By rotating the entire
framework (G, γ ◦ ι ◦ q) around its half-turn axis (i.e., the z-axis), we may always
assume without loss of generality that (G, γ ◦ ι ◦ q) has no vertex on the y-axis, and
hence neither does (G, p). This proves the equivalence of (e) and (f). ��

Remark 5.3 It follows from the equivalence of (a) and (b) in Corollary 5.2 that a Z2-
regular realisation of a graphG as a bar-joint framework inR2 with respect to θ : Z2 →
Aut(G) (which acts freely on V ) and τ : Z2 → Cs is infinitesimally rigid (resp. forced
Z2-symmetric infinitesimally rigid) if and only if aZ2-regular realisation ofG as a bar-
joint framework inR2 with respect to θ and τ ′ : Z2 → C2 is infinitesimally rigid (resp.
forced Z2-symmetric infinitesimally rigid), since we may use an argument similar to
the one inLemma3.3 to see thatZ2-regularity is preserved under the described transfer.
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Therefore, mirror and half-turn symmetry have the same combinatorial character-
isation for Z2-regular infinitesimal rigidity (resp. forced Z2-symmetric infinitesimal
rigidity) on S2, as well as inR2, by Corollaries 3.4 and 4.3.While the characterisations
for C2 and Cs are already known (recall Theorems 2.1 and 2.2), our result explains
the combinatorics as more than a coincidence arising from the fact that corresponding
spaces of trivial infinitesimal motions associated with the irreducible representations
for C2 and Cs are the same. In particular, this equivalence of C2 and Cs does not rely
on the ‘regularity’ assumption.

Corollary 5.2 may also be used to obtain the following combinatorial characterisa-
tion of (forced or incidentally) Z2-regular infinitesimally rigid point-line frameworks
with exactly two lines and Cs symmetry (recall also Fig. 1).

Theorem 5.4 Let Z2 = 〈γ 〉 and let (G, p, �) be a Z2-regular point-line framework
in R

2 with respect to θ : Z2 → AutPH (G) and τ : Z2 → Cs , where |VH | = 2 and θ

acts freely on V = VP ∪ VH . Let (G0, ψ) be the quotient Z2-gain graph of G. Then
(G, p, �) is infinitesimally rigid (resp. forced Z2-symmetric infinitesimally rigid) if
and only if the quotient Z2-gain graph (G0, ψ) of G contains a spanning (2, 3, i)-
gain-tight subgraph (Hi , ψi ) for each i = 1, 2 (resp. a spanning (2, 3, 1)-gain-tight
subgraph (H1, ψ1)).

Proof Suppose (G, p′, �′) is infinitesimally rigid (resp. forcedZ2-symmetric infinites-
imally rigid) with Cs symmetry as stated in the theorem. We transfer (G, p′, �′) to a
bar-joint framework (G, q ′) inR2 withC2 symmetry as in the proof ofCorollary 5.2, (c)
and (d). Then (G, q ′) is also infinitesimally rigid (resp. forcedZ2-symmetric infinites-
imally rigid) and it follows from Theorem 2.2 (resp. Theorem 2.1) that (G0, ψ) must
satisfy the stated gain-sparsity conditions.

Conversely, suppose that (G0, ψ) satisfies the stated gain-sparsity conditions. We
claim that if (G, p′, �′) is Z2-regular, then so is (G, q ′). To see this, note first that
if (G, p′, �′) is Z2-regular, then the spherical framework (G, p) with Cs symmetry
obtained from the central projection of (G, p′, �′) is Z2-VH -regular. In fact, since
|VH | = 2 we may deduce that (G, p) is even a Z2-regular spherical framework. In
other words, we may slightly perturb the two points of (G, p) corresponding to the
vertices in VH in an arbitrary direction while preserving theCs symmetry (in particular
we may move them symmetrically off the equator) without reducing the rank of the
corresponding spherical rigidity matrices. But this implies that there exists an open
neighbourhood ofZ2-symmetric bar-joint realisations ofG inR2 (with respect to θ and
τ ′ : Z2 → C2) around (G, q ′) in which the rank of the corresponding bar-joint rigidity
matrices is maintained. Therefore, we may deduce that (G, q ′) is indeed Z2-regular,
as claimed.

Thus, it follows fromTheorem2.2 (resp. Theorem2.1) that (G, q ′) is infinitesimally
rigid (resp. forced Z2-symmetric infinitesimally rigid). Therefore, the same is true for
(G, p′, �′) and the proof is complete. ��
Remark 5.5 SinceZ2-regularity is preserved under the transfer described in (a) and (b)
of Corollary 5.2, and since any non-trivial Z2-symmetric infinitesimal motion extends
to a non-trvial continuous motion for Z2-regular frameworks (see [30,34] for details),
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it follows that we may also use (a) and (b) to transfer continuous motions between
frameworks with C2 and Cs symmetry. Using the proof idea of [30], similar statements
can also be obtained for the other transfers described in Corollary 5.2.

5.2 All Groups

Theorem 5.1 can be extended to other pairings of groups, as follows. As before, let
G = (V , E) be a �-symmetric graph with respect to θ : � → Aut(G), where θ acts
freely on V .

The notation G ↔ H for symmetry groups G and H in dimension 3 with the
same underlying abstract group � means that there exists a �-symmetric spherical
framework (G, p) on S2 with respect to θ and τ(�) = G, and a �-symmetric spherical
framework (G, q) on S2 with respect to θ and τ ′(�) = H such that (G, q) is obtained
from (G, p) by taking an index 2 subgroup �′ of � and inverting each point of (G, p)
assigned to the set V \{γ v : γ ∈ �′, v ∈ V0}, where V0 is a set of representatives for
the vertex orbits under the group action θ .

Theorem 5.6 Let (G, p) be a �-symmetric framework on S
2 with respect to θ and τ

and let (G, q) be a �-symmetric framework on S
2 with respect to θ and τ ′ obtained

from (G, p) by the partial inversion process described above. Then τ(�) ↔ τ ′(�)

must be one of the following pairings:

• C2 ↔ Cs ;
• C2n ↔ Cnh where n is odd;
• C2n ↔ S2n where n is even;
• Cnv ↔ Dn for all n;
• C2nv ↔ Dnd where n is even;
• C2nv ↔ Dnh where n is odd;
• Td ↔ O.

Moreover, (G, p) is a �-symmetric (resp. forced �-symmetric) infinitesimally rigid
framework on S2 with respect to θ and τ if and only if (G, q) is a �-symmetric (resp.
forced �-symmetric) infinitesimally rigid framework on S2 with respect to θ and τ ′.

Proof The proof that the stated groups are linked and all possibilities are listed can
be extracted from [6]. Alternatively it can be verified directly by applying the partial
inversion mentioned above, as we illustrate in one particular case in Fig. 4. We have
already seen that inversion preserves infinitesimal rigidity in Lemma 3.1. To prove the
statement regarding forced �-symmetric infinitesmal rigidity, we may use exactly the
same argument (using the spherical orbit matrix) as in the proof of Theorem 5.1. ��

Theorem 5.6 gives a complete classification of those symmetry groups which can
be paired by partial inversion as described above. Every group not occurring in the
statement either contains inversion as a group element (Ci , C2nh , D2nh , D(2n+1)d ,
S2(2n+1), Th , Oh and Ih), or does not contain an index 2 subgroup (T and I), and
hence no pairing would exist. (Note that for symmetry groups containing inversion,
the partial inversion process would not preserve the underlying abstract group.)
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Fig. 4 A pair of frameworks on S
2 with C6 and C3h symmetry, illustrating Theorem 5.6

5.3 Combinatorial Consequences

We obtain new combinatorial results and insights for the 2-sphere and the Euclidean
plane from Theorem 5.6.

5.3.1 Infinitesimal Rigidity

Recall from Remark 3.5 that we currently only have combinatorial characterisations
of �-regular infinitesimally rigid frameworks on S2 (or R2) for the groups Cs , C2 and
Cn , n odd (where the action θ : � → Aut(G) is free on the vertex set). It follows
from Theorem 5.6 that if we can extend these results for S2 to one of the groups listed
in Theorem 5.6, then we immediately obtain the corresponding result for the paired
group as a corollary.

Moreover, if we manage to establish a combinatorial characterisation for �-regular
infinitesimal rigidity on S2, where τ(�) is a symmetry group of the form Cn or Cnv (for
any n ∈ N), then the central projection argument from Sect. 3 immediately provides
us with a combinatorial characterisation for �-regular infinitesimal rigidity inR2, and
vice versa. For symmetry groups in dimension 3 which do not exist in dimension 2
(such as Cnh , S2n , Dn , etc.), this is not the case, since the central projection from the
2-sphere to A2 (or R2) would collapse the group � to a smaller group, and hence this
process would generally yield a framework which is not �′-regular for the collapsed
group �′.

5.3.2 Forced 0-Symmetric Infinitesimal Rigidity

As mentioned in the end of Sect. 2.4, combinatorial characterisations for �-regular
forced �-symmetric rigidity on S

2 (where the action θ : � → Aut(G) is free on the
vertex set) have been established for the groups Cs , Ci , Cn , n ∈ N, Cnv , n odd, Cnh , n
odd, and S2n , n even. The corresponding results for all other groups remain open, and
some conjectures are given in [21, Tab. 1].
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We can use the equivalence of forced �-symmetric infinitesimal rigidity for the
pair Cnv ↔ Dn given by Theorem 5.6 to deduce the following new result. We refer
the reader to [17, Def. 7.1] for the definition of a maximum Dn-tight �-gain graph.

Theorem 5.7 Let (G, p) be a �-regular framework on S
2 with respect to θ and τ ,

where τ(�) = Dn, n odd. Let (G0, ψ) be the quotient �-gain graph of G. Then
(G, p) is forced �-symmetric infinitesimally rigid if and only if (G0, ψ) contains a
spanning subgraph that is maximum Dn-tight.

Proof [17, Thm. 8.2] showed that for the �-gain graph being maximum Dn-tight it
is necessary and sufficient to characterise �-regular forced �-symmetric infinitesimal
rigidity for Cnv in the case when n is odd. Theorem 5.6 tells us that this is equivalent
to �-regular forced �-symmetric infinitesimal rigidity forDn , giving the theorem. ��

Note that the only symmetry groups for which we do not have combinatorial char-
acterisations for �-regular forced �-symmetric infinitesimal rigidity in R

2 are the
groups C2nv , n ∈ N, and significant new insights are needed to solve these cases.

5.4 Double Cover Frameworks

In the previous section, we paired up symmetry groups with the same underlying
abstract group �. Here we will see that some rigidity statements can still be developed
without this condition.

The notation G � H for symmetry groups G andH in dimension 3 with respective
abstract groups� and�′ means that there exists a�-symmetric spherical framework on
S
2 with respect to θ and τ(�) = G, whereG does not contain the inversion element, and

a �′-symmetric spherical framework (G ′, p′) on S2 with respect to θ ′ and τ ′(�′) = H

such that (G ′, p′) is obtained from (G, p) by taking the union of (G, p) with the
framework (G, q), where q is defined by q(i) = −p(i) for each vertex i of G.
Clearly, we have 2|�| = |�′|. We say that (G ′, p′) is the double cover framework of
(G, p).

The most basic example is the pair C1 � Ci , where C1 is the trivial group and Ci
is the inversion group in dimension 3.

The process of constructing the double cover framework (G ′, p′) of a spherical
framework (G, p) will clearly not preserve infinitesimal rigidity since (G ′, p′) is
disconnected, and hencewill contain a 3-dimensional space of non-trivial infinitesimal
motions even when (G, p) is infinitesimally rigid on S

2. However, since none of
these infinitesimal motions are �′-symmetric, this construction does preserve forced-
symmetric infinitesimal rigidity. That is, we have the following result:

Theorem 5.8 Let (G, p) be a �-symmetric framework on S
2 with respect to θ and τ ,

and let (G ′, p′) be the �′-symmetric double cover framework of (G, p) on S
2 with

respect to θ ′ and τ ′. Then τ(�) � τ ′(�′) must be one of the following pairings:

• C1 � Ci ;
• Cs � C2h;
• Cn � S2n, where n is odd;
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• Cn � Cnh, where n is even;
• Cnv � Dnd , where n is odd;
• Cnv � Dnh, where n is even;
• Cnh � C2nh, where n is odd;
• S2n � C2nh where n is even;
• Dn � Dnd , where n is odd;
• Dn � Dnh, where n is even;
• Dnh � D2nh, where n is odd;
• Dnd � D2nh, where n is even;
• T � Th; Td � Oh; O � Oh; I � Ih.

Moreover, (G, p) is forced �-symmetric infinitesimally rigid on S
2 if and only if

(G ′, p′) is forced �′-symmetric infinitesimally rigid on S2.

Proof The groups τ(�) on the left hand side of the list of group pairings shown
above are all the symmetry groups in dimension 3 that do not contain the inversion
element. It is easy to check that the corresponding groups τ ′(�′) listed above satisfy
τ(�) � τ ′(�′).

To see the final statement of the theorem, note that by definition, the double cover
framework (G ′, p′) consists of two connected components with τ(�) symmetry, and
the two components are images of each other under inversion. Any �′-symmetric
infinitesimal motion of (G ′, p′) must preserve the (first order) distances between any
pair of points lying in distinct components. This gives the result. ��
Note that transferring the result above to Euclidean space will result in the double
cover frameworks having |V (G ′)|/2| = |V (G)| pairs of coincident points. Hence
when we have a combinatorial understanding of the smaller group, then the theorem
gives us some combinatorial information about symmetric frameworks with pairs of
coincident points. Note however that the general problem of characterising generic
infinitesimal rigidity modulo assuming that a number of pairs of points are coincident
is likely to be challenging [10].

6 Pairings in Higher Dimensions

The result in Theorem 5.1 can be easily generalised to higher dimensions. For simplic-
ity, we will focus our discussion on symmetry groups consisting of only involutions.
Note that in our context an involution is an inversion in a k-dimensional subspace.

Let S be a k-dimensional subspace of Rd for some k < d. We denote inversion
in S by ιS . So the matrix representing the isometry ιS is the diagonal matrix with 1’s
corresponding to the “dimensions of S” and−1’s otherwise. Any involution ιS clearly
gives us a symmetry group of order 2, which we denote by CιS .

Theorem 6.1 Let G = (V , E) be a graph and let θ : Z2 → Aut(G) act freely on
V . Further, let S1, S2 be subspaces of Rd+1 such that dim S1 = k1, dim S2 = k2,
k1 + k2 = d + 1 and S1 ∩ S2 is 0-dimensional, and let X be a (possibly empty) subset
of V . Then the following are equivalent:
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(a) G can be realised as an infinitesimally rigid (resp. forced Z2-symmetric infinites-
imally rigid) Z2-symmetric bar-joint framework on S

d with respect to θ and
τ : Z2 → CιS1

, where points assigned to X lie on a great circle.
(b) G can be realised as an infinitesimally rigid (resp. forced Z2-symmetric infinites-

imally rigid) Z2-symmetric bar-joint framework on S
d with respect to θ and

τ ′ : Z2 → CιS2
, where points assigned to X lie on a great circle.

Proof Let Z2 = {1,−1}. Suppose that V0 = {v1, v2, . . . , vn} is a set of represen-
tatives for the vertex orbits of G under the action of θ , and that G has vertex set
{v1, v′

1, v2, v
′
2, . . . , vn, v

′
n}, with θ(−1)vi = v′

i for all i = 1, . . . , n. Let (G, p)
be a Z2-symmetric framework on S

d with respect to θ and τ : Z2 → CιS1
. We

denote p(vi ) = (xi1 , xi2 , . . . , xid+1) and we assume without loss of generality that
τ(−1)(vi ) = p(v′

i ) = (−xi1 ,−xi2 , . . . ,−xik , xik+1 , . . . , xid+1). Applying inver-
sion to the set I = V − V0 gives us (xi1 , xi2 , . . . , xid+1) for each vi ∈ V0 and
(xi1 , xi2 , . . . , xik ,−xik+1 , . . . ,−xid+1) for each v′

i ∈ V − V0. Note that

(xi1 , xi2 , . . . , xik ,−xik+1 , . . . ,−xid+1) = τ ′(−1)p(vi ).

It follows that CιS1
↔ CιS2

. Since points on a great circle remain on the great circle
under the partial inversion above, the proof is complete, by Lemma 3.1. The equiva-
lence of (a) and (b) for forced Z2-symmetric infinitesimal rigidity follows in a similar
manner (that is, via a sequence of row operations) to the proof of Theorem 5.1. ��

Theorem 6.1 in the case when d = 3 gives us results which can be transferred to
R
3. In particular this yields a generalisation of the pairing between mirror symmetry

and half-turn symmetry in the plane. In 3-space, the corresponding pairing is mirror
symmetry and inversion in a point, as the following result shows.

Corollary 6.2 Let G = (V , E) be a graph and let θ : Z2 → Aut(G) act freely on V .
Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid (resp. forced Z2-symmetric infinites-
imally rigid) bar-joint framework in R3 with respect to θ and τ : Z2 → Cs .

(b) G can be realised as an infinitesimally rigid (resp. forced Z2-symmetric infinites-
imally rigid) bar-joint framework in R3 with respect to θ and τ ′ : Z2 → Ci .

Proof The proof is analogous to the one for Corollary 5.2. By Theorem 6.1 there exist
two infinitesimally rigid (resp. forcedZ2-symmetric infinitesimally rigid) frameworks
(G, p) and (G, q) on S

3 which are Z2-symmetric with respective symmetry groups
Cs and CιS , where S is a line that is perpendicular to the mirror hyperplane for the
reflection in Cs . We denote the coordinates of a point in R

4 by (x, y, w, z), and we
suppose without loss of generality that the mirror hyperplane for the reflection in Cs

is given by x = 0, and that S is the x-axis. We may assume that (G, p) has no point
on the equator (i.e., on the hyperplane z = 0) and no point on the mirror x = 0. This
is true if and only if (G, q) also has no point on the z = 0 or x = 0 hyperplane.

As described in the proof of Corollary 5.2, we may apply partial inversion to points
of (G, p) to move all points into the strict upper hemisphere (i.e., z > 0 for all points),
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followed by a central projection of the resulting framework to the affine plane z = 1 to
obtain a bar-joint framework in R3 with symmetry group Cs . Similarly, we may apply
partial inversion to points of (G, q) to move all points onto the strict left hemisphere
(i.e., x < 0 for all points), followed by a rotation of the whole framework by π/2
(taking the x-axis to the z-axis) to move all points onto the strict upper hemisphere.
Central projection of the resulting framework to the affine plane z = 1 then yields
a bar-joint framework in R

3 with symmetry group Ci . Since all of these operations
preserve infinitesimal rigidity (resp. forced Z2-symmetric infinitesimal rigidity), the
result follows. ��

Similarly, we obtain the following result, which shows that C2v and C2h are also
paired up in R3.

Corollary 6.3 Let G = (V , E) be a graph and let θ : Z2 × Z2 → Aut(G) act freely
on V . Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid (resp. forced (Z2×Z2)-symmetric
infinitesimally rigid) bar-joint framework in R

3 with respect to θ and τ : Z2 ×
Z2 → C2v .

(b) G can be realised as an infinitesimally rigid (resp. forced (Z2×Z2)-symmetric
infinitesimally rigid) bar-joint framework in R

3 with respect to θ and τ ′ : Z2 ×
Z2 → C2h.

Proof First, we claim that on S
3, the symmetry group C2v with the two reflections

having the respective mirror hyperplanes x = 0 and y = 0, and the half-turn having
the 2-dimensional axis x = y = 0, is paired with the symmetry group S generated by
the half-turn with the axis w = z = 0 and the generalised inversion in the y-axis.

To see this, consider a vertex orbit of a (Z2×Z2)-symmetric framework (G, p)onS3

with respect to θ and τ̃ : Z2×Z2 → C2v . The points of (G, p) corresponding to such an
orbit are of the form (x, y, w, z), (−x, y, w, z), (−x,−y, w, z), (x,−y, w, z). Now,
invert the two points corresponding to the orbit of (x, y, w, z) under the reflection in
the y = 0 hyperplane (i.e., the points (x, y, w, z) and (−x, y,−w,−z)) to obtain the
orbit (−x,−y,−w,−z), (−x, y, w, z), (−x,−y, w, z), (−x, y,−w,−z). If we do
this for each vertex orbit of (G, p), then we obtain a (Z2×Z2)-symmetric framework
(G, q) on S

3 with respect to θ and τ̃ ′ : Z2 × Z2 → S, as claimed.
Consider the spherical framework (G, p)withC2v symmetry. Invert orbits of points

of (G, p) tomove all points onto the strict upper hemisphere (z > 0) and then centrally
project the resulting framework onto the hyperplane z = 1 to obtain a (Z2×Z2)-
symmetric bar-joint framework in R3 with respect to θ and τ : Z2 × Z2 → C2v . (The
points corresponding to a vertex orbit of this framework have the form (x, y, w),
(−x, y, w), (−x,−y, w), (x,−y, w).)

Consider the other spherical framework (G, q)with S symmetry. Rotate the frame-
work by π/2 taking the x-axis to the z-axis (i.e., the rotation matrix has a 1 at positions
(1, 4), (2, 2), (3, 3) and a −1 at position (4, 1), and zeros elsewhere) to move all
points onto the strict upper hemisphere. Then the points of any vertex orbit of the
resulting framework are of the form (−z,−y,−w, x), (z, y, w, x), (z,−y, w, x),
(−z, y,−w, x). Finally centrally project the framework onto the hyperplane z = 1
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to obtain a (Z2×Z2)-symmetric bar-joint framework in R
3 with respect to θ and

τ ′ : Z2 ×Z2 → C2h , where C2h is generated by the reflection with mirror plane y = 0
and the half-turn about the y-axis. (The points corresponding to a vertex orbit of this
framework have the form (−z,−y,−w), (z, y, w), (z,−y, w), (−z, y,−w).)

Since all of these operations preserve infinitesimal rigidity (resp. forced (Z2×Z2)-
symmetric infinitesimal rigidity), the result follows. ��

Remark 6.4 From the proofs of Corollaries 6.2 and 6.3 we can also easily obtain
analogous statements to the ones in (c)&(d) and (e)&(f) of Corollary 5.2 for the
group pairings Cs , Ci , and C2v , C2h . We leave the details to the reader.

The only other symmetry groups containing only involutions in R
3 are C2 and D2.

Neither of them is paired with another group.

Remark 6.5 It follows from Corollary 6.2 that a Z2-regular realisation of a graph G as
a bar-joint framework in R

3 with respect to θ : Z2 → Aut(G) (which acts freely on
V ) and τ : Z2 → Cs is infinitesimally rigid (resp. forcedZ2-symmetric infinitesimally
rigid) if and only if a Z2-regular realisation of G as a bar-joint framework in R2 with
respect to θ and τ ′ : Z2 → Ci is infinitesimally rigid (resp. forced Z2-symmetric
infinitesimally rigid), since Z2-regularity is preserved under the described transfer.

In particular, this provides a direct geometric argument for the fact that the combina-
torial characterisations forZ2-regular infinitesimal rigidity (resp. forcedZ2-symmetric
infinitesimal rigidity) are the same for body-bar frameworks (i.e., structures consist-
ing of full-dimensional rigid bodies connected in pairs by rigid bars) with mirror and
inversion symmetry in R

3, as shown in [32]; see also [12].
Similarly, Corollary 6.3 explains the fact that the combinatorial characterisations for

(Z2×Z2)-regular infinitesimal rigidity (resp. forced (Z2×Z2)-symmetric infinitesimal
rigidity) are the same for body-bar frameworks with C2v and C2h symmetry in R3.

Note that combinatorial characterisations of �-regular forced �-symmetric infinites-
imally rigid body-bar frameworks have been established for all symmetry groups
in general dimension [38]. Moreover, combinatorial characterisations of �-regular
infinitesimally rigid body-bar frameworks have been established for all symmetry
groups that have Z2 ×· · ·×Z2 as an underlying abstract group � [32]. Thus, our new
geometric insights do not yield any new combinatorial results regarding the rigidity
of symmetric body-bar frameworks in Rd .

There are of course many symmetry groups in R
d , d ≥ 3, that contain elements

that are not involutions. We leave it as an open problem to establish a complete list of
group pairings in these higher-dimensional spaces.

7 Non-Free Actions

In Sect. 5, we made the assumption that G = (V , E) is a �-symmetric graph with
respect to θ : � → Aut(G), where θ acts freely on V . In this section we will consider
the case when θ does not act freely on V .
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7.1 Background

We say that a vertex i of a �-symmetric graph G (with respect to θ ) is fixed by γ ∈ �,
γ �= 1, if θ(γ )(i) = i (or in short γ (i) = i). Similarly, an edge {i, j} is fixed by γ if
either γ (i) = i and γ ( j) = j or γ (i) = j and γ ( j) = i . The number of vertices and
edges of G fixed by γ are denoted by |Vγ | and |Eγ |, respectively.

For forced �-symmetric rigidity, an orbit matrix has been established for bar-joint
frameworks in [34] which allows for θ to be non-free on V . However, the structure
of the orbit matrix becomes significantly more complex when θ is not free on V and
hence the corresponding conditions for forced�-symmetric rigidity also becomemore
involved. Thus, the combinatorics of �-regular forced �-symmetric rigidity has not
yet been properly investigated in the case when θ is not free on V . In the following
we will therefore focus on incidentally symmetric frameworks.

A (bar-joint, spherical or point-hyperplane) framework is called isostatic if it is
infinitesimally rigid and the removal of any edge yields an infinitesimally flexible
framework. For bar-joint frameworks, the following combinatorial characterisations
of �-regular isostatic frameworks in the plane were established in [28,29].

We say that a graph G = (V , E) is (2, 3)-tight if |E | = 2|V | − 3 and for all
subgraphs (V ′, E ′) with |E ′| > 0 we have |E ′| ≤ 2|V ′| − 3.

Theorem 7.1 ([28,29]) Let� = 〈γ 〉and let (G, p)be a�-regular bar-joint framework
(with respect to θ and τ ) in R2, where τ(�) ∈ {Cs,C2,C3}. Then (G, p) is isostatic if
and only if G is (2, 3)-tight and

(i) |Eγ | = 1 for τ(�) = Cs ,
(ii) |Vγ | = 0 and |Eγ | = 1 for τ(�) = C2,
(iii) |Vγ | = 0 for τ(�) = C3.

As shown in [4], only two other non-trivial symmetry groups can give isostatic frame-
works in the plane, namely C2v and C3v . A Laman-type theorem (analogous to the
one above) has not yet been established for these groups, see [28,29]. There are also
no combinatorial characterisations of �-regular isostatic frameworks in higher dimen-
sions, except that for body-bar frameworks in Euclidean 3-space, some partial results,
as well as a number of conjectures, were given [12] for a range of symmetry groups.

Combinatorial characterisations analogous to the ones in Theorem 7.1 have not
yet been investigated for symmetric spherical frameworks or point-hyperplane frame-
works. (Necessary conditions for a symmetric point-line framework in the plane to be
isostatic have been obtained in [23], but to the best of our knowledge, sufficiency of
these conditions has not been investigated yet.)

Note that Corollary 5.2 explains why the conditions in Theorem 7.1 are the same
for C2 and Cs in the case when θ acts freely on V . Moreover, it immediately follows
from the results in Sect. 3 that Theorem 7.1 also gives combinatorial characterisations
of �-regular isostatic spherical frameworks on S

2 with mirror, half-turn and 3-fold
rotational symmetry.
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7.2 Group Pairings Under Non-free Actions

Consider our partial inversion process of linking up groups on the d-sphere where
some vertices are fixed by non-trivial group elements. Here if the fixed vertices are
left alone in the partial inversion, then the resulting framework will typically not be
symmetric. We will discuss this issue further in Sect. 7.4. However, in the projection
to Euclidean d-space, symmetry can be recovered.

The key example is the C2 and Cs pairing on S2 andR2. Take a bar-joint framework
with Cs symmetry in R

2 and project it (as described in the proof of Corollary 5.2)
to a spherical framework (G, p) with Cs symmetry on S

2. Suppose G has a vertex
v that is fixed by the reflection. Now apply the partial inversion to all vertex orbits
of size 2 of (G, p), as described in the proof of Theorem 5.1. Since v is in a vertex
orbit of size 1, it is left alone in the partial inversion process, so the resulting spherical
framework (G, q) does not have C2 symmetry (unless we add the symmetric copy of
the point corresponding to v; see Sect. 7.4). However, when we project (G, q) to a
point-line framework in R

2 as described in the proof of Corollary 5.2, then the point
corresponding to the vertex v is mapped to a line, and we may assume that it goes
through the origin (since lines can be translatedwithout affecting infinitesimal rigidity,
by Remark 2.3). Thus, the resulting point-line framework in R2 does have the desired
C2 symmetry. This yields the following extension of Corollary 5.2.

Corollary 7.2 Let G = (V , E) be a Z2-symmetric graph with respect to θ : Z2 →
Aut(G), and let F be the subset of vertices of G that are fixed by the non-trivial
element of Z2 (with respect to θ ). Then the following are equivalent:

(a) G can be realised as a Z2-symmetric isostatic bar-joint framework in R
2 with

respect to θ and τ : Z2 → Cs .
(b) G can be realised as a Z2-symmetric isostatic point-line framework in R

2 with
respect to θ and τ ′ : Z2 → C2, such that each vertex in F is realised as a line and
each vertex in V \F is realised as a point.

More generally, by carefully tracking the effect of our transfer mappings on points
and lines that are fixed by a reflection or half-turn, we obtain the following result. (See
also Fig. 5 for an illustration of an example.)

Corollary 7.3 Let G = (V , E) be a Z2-symmetric graph with respect to θ : Z2 →
Aut(G), and suppose F is the subset of vertices of G that are fixed by the non-trivial
element ofZ2 (with respect to θ ). Let X be a non-empty subset of V , and let FX = F∩X
and F ′

X = F\X. Then the following are equivalent:

(a) G can be realised as a Z2-symmetric isostatic point-line framework in R
2 with

respect to θ and τ : Z2 → Cs such that each vertex in X is realised as a line
(with FX‖ and FX⊥ denoting the vertices in FX that are realised parallel and
perpendicular to the mirror line of the reflection in Cs , respectively) and each
vertex in V \X is realised as a point.

(b) G can be realised as a Z2-symmetric isostatic point-line framework in R
2 with

respect to θ and τ ′ : Z2 → C2, such that each vertex in F ′
X and each vertex in

FX⊥ is realised as a line (with all lines in FX⊥ parallel to each other), and each
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Fig. 5 A point-line framework (G, p, �) with Cs symmetry in R
2. This framework has a non-trivial

symmetry-preserving motion and gives a symmetric point-line framework model of the ‘grab-bucket mech-
anism’ in engineering [26, p. 270]. It has the two point vertices a, b and the line vertex � fixed by the
reflection, and the line corresponding to � lies along the mirror line. (G, p, �) may be transformed to the
flexible point-line framework with C2 symmetry in R

2 shown on the right

vertex in V \(F ′
X ∪ FX⊥) is realised as a point so that all the points of X\FX⊥ are

collinear (and perpendicular to the lines of FX⊥ ) and all points of FX‖ lie at the
origin.

Proof Let (G, p, �) be a Z2-symmetric isostatic point-line framework in R
2 with

respect to θ and τ : Z2 → Cs and apply to it the transfer mappings from the proofs of
Theorem 5.1 and Corollary 5.2. In this transfer any point of (G, p, �) corresponding
to a vertex in F ′

X is mapped to a line, all lines of (G, p, �) corresponding to a vertex in
FX⊥ are mapped to parallel lines, and all lines of (G, p, �) corresponding to a vertex in
FX‖ are mapped to a point at the origin.Moreover, the lines of (G, p, �) corresponding
to vertices in X\F are mapped to collinear points (with the line of collinearity being
perpendicular to the lines of FX⊥), and any point of (G, p, �) corresponding to a vertex
in V \(X ∪ F) is mapped to a point. It follows that this transfer yields the desired Z2-
symmetric isostatic point-line framework in R

2 with respect to θ and τ ′ : Z2 → C2.
Since this process is clearly reversible, the result follows. ��

7.3 Combinatorial Consequences

As mentioned above, necessary conditions for a point-line framework with C2 or
Cs symmetry to be isostatic in the plane were obtained in [23]. While this required
methods from group representation theory, we may obtain some of these conditions
more directly using Corollaries 7.2 and 7.3 in conjunction with Corollary 3.6 and
Theorem 7.1. For example, if we start with an isostatic point-line framework (G, p, �)
in the plane with C2 symmetry and with no point at the origin (the centre of the half-
turn), then this can be transferred to an isostatic bar-joint framework (G, q) with Cs

symmetry in the plane, and Theorem 7.1 then implies that G must be (2, 3)-tight and
that here exists exactly one edge of G that is fixed by the non-trivial element in Z2.
From the necessary conditions for a point-line framework with C2 symmetry to be
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isostatic we can then also obtain necessary conditions for a point-line framework with
Cs symmetry to be isostatic.

We may also derive some new conditions. For example, if an isostatic point-line
framework with Cs symmetry and underlying graph G = (VP ∪ VH , E) has a single
line only, and θ acts freely on VP , then this line cannot lie along the mirror line, for
otherwise this would transfer to an isostatic bar-joint framework with C2 symmetry in
the plane with a vertex that is fixed by the half-turn, contradicting Theorem 7.1.

We may even obtain both necessary and sufficient conditions for �-regular point-
line frameworks to be isostatic in some special cases, as the following result shows.

Theorem 7.4 Let Z2 = 〈γ 〉 and let (G, p, �) be a Z2-regular point-line framework in
R
2 with respect to θ : Z2 → AutPH (G) and τ : Z2 → C2. Suppose that γ fixes each

i ∈ VH and that θ acts freely on VP. Then (G, p, �) is isostatic if and only if G is
(2, 3)-tight and |Eγ | = 1.

Proof Suppose (G, q ′, �′) is isostatic with symmetry C2 as stated in the theorem. We
transfer (G, q ′, �′) to a bar-joint framework (G, p′) with Cs symmetry as in Corol-
lary 7.2. Then (G, p′) is also isostatic and it follows from Theorem 7.1 that G must
be (2, 3)-tight and G must have exactly one edge that is fixed by γ .

Conversely, suppose that G is (2, 3)-tight and |Eγ | = 1. By the definition of θ ,
we claim that if (G, q ′, �′) is Z2-regular, then so is (G, p′). To see this, take an open
neighbourhood of Z2-symmetric point-line realisations of G in R

2 (with respect to θ

and τ : Z2 → C2) around (G, q ′, �′) in which the rank of the corresponding point-line
rigidity matrices is maintained. Then the transfer process described in the proofs of
Theorem 5.1 and Corollary 5.2 maps this neighbourhood to an open neighbourhood of
Z2-symmetric bar-joint realisations of G in R

2 (with respect to θ and τ ′ : Z2 → Cs)
around (G, p′), since θ forces all vertices in VH to be mapped to points on the mirror
line corresponding to the reflection in Cs . Since the rank of the corresponding bar-joint
rigidity matrices is maintained in this neighbourhood, we may deduce that (G, p′) is
Z2-regular, as claimed. Thus, it follows from Theorem 7.1 that (G, p′) is isostatic.
Therefore, (G, q ′, �′) is also isostatic. ��

7.4 Group Pairings in Elliptic Geometry

To better fit our work into the historical evolution of rigidity theory, with a projective
geometric background, we begin by recalling (and extending) the concept of static
rigidity, the language of structural or civil engineers for several centuries.

Let Rd
S
(G, p) denote the matrix of coefficients of the linear system describing

spherical infinitesimal rigidity (see Eqs. (2.2)–(2.3)). We can define a spherical frame-
work (G, p) to be statically rigid if the row space of Rd

S
(G, p) spans the space of all

possible row vectors which are orthogonal to the space of trivial infinitesimal motions.
The elements of this space are called equilibrium loads on the framework viewed as
forces applied to each vertex, and static rigidity is the property that all equilibrium
loads are linear combinations of the rows: they are resolved. Thus static rigidity is
based on the dimension of the row space being the difference between the number
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of columns and the dimension of the trivial motions of Sd . Since row rank equals
column rank, this is the dual of infinitesimal rigidity and gives us an equivalent way
of understanding infinitesimal motions.

Historically, static rigidity was studied by engineers and was recognised as pro-
jectively invariant, first implicitly by Möbius who wrote a textbook on statics using
barycentric coordinates (his precursor of homogenous coordinates now used for pro-
jective geometry). Balancing weighted points is the language of forces and statics.
Immediately after hearing a talk on the ‘new geometry’ (projective geometry) in
1863, a British engineer Rankine (then writing a text on statics) published a short
note observing the invariance of statics under projective geometry [25]. This context
of projective invariance was part of the milieu of Cayley and Klein when geometry
was a shared vocabulary and approach of mathematicians and engineers.

As part of the revival of the mathematical theory of rigidity in the 1970’s, Crapo
and Whiteley presented the statics of frameworks in terms of explicitly projective
notation and reasoning, including references to 3D translations as rotations about
lines at infinity (sliders) [7]. The work here builds on those continuing explorations.

In this paper we have used the spherical model of frameworks with points on the
equator to incorporate hyperplanes intoEuclidean bar-joint frameworks, and to analyse
the infinitesimal rigidity of this larger class of point-hyperplane frameworks. This also
implicitly incorporates projective transformations. Consider the following sequence
of operations on a point-hyperplane framework inRd : first project to Sd ; then apply an
isometry of Sd ; and finally reproject toRd . The resulting point-hyperplane framework
in R

d is a projective transformation of the original framework. By restricting this
process to the upper hemisphere Sd>0, there is no ambiguity or collapsing of points in
this process. Antipodal points on the equator, however, map to parallel hyperplanes
(or the same hyperplane through the origin), but with opposite normals.

When we consider certain �-symmetric spherical frameworks (G, p), where
θ : � → Aut(G) acts freely on the vertices, then we have seen in Sect. 5 that we
may invert the points corresponding to an index 2 subgroup of � without changing the
infinitesimal rigidity properties, in order to establish a group pairing τ(�) ↔ τ ′(�)

as in Theorem 5.6. However, we have also seen in Sect. 7.2 that if θ does not act
freely on the vertices, then the presence of the fixed vertices implies that this partial
inversion process destroys the symmetry of the spherical framework. Nevertheless, in
the projection to Euclidean space, the symmetry can be recovered, as fixed points on
the equator are mapped to fixed hyperplanes which may be shifted to go through the
origin (recall Remark 2.3). Since antipodal points on the equator project to the same
hyperplane, we can actually think of the symmetry as being present on the sphere as
well, provided that we somehow identify antipodal points on the sphere.

This leads us back to the projective roots of infinitesimal rigidity, since the sphere
with antipodal points identified is the ‘metric projective space’ also called the elliptic
geometry. This approach is central to the approach in [6], where the symmetries in
projective space are described, and pairings of spherical symmetries are organised
using inversions.

We have explored these topics using two equivalent geometric models: the sphere
with antipodal points identified or equivalently, the sphere with points as equivalence
classes of pairs of antipodal points. The sphere with antipodal points identified can be
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represented working from Lemma 3.1 and the associated matrices. It is easy to see that
Rd
S
(G, p) is rank equivalent to the following matrix which we call the basic spherical

rigidity matrix:

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

vi v j

...

{vi , v j } 0 . . . 0 p j 0 . . . 0 pi 0 . . . 0
...

{vi , vi } 0 . . . 0 2pi 0 . . . 0 0 0 . . . 0
...

vi 0 . . . 0 pi 0 . . . 0 0 0 . . . 0
...

v j 0 . . . 0 0 0 . . . 0 p j 0 . . . 0
...
...

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

We can use inversion on this matrix to represent the geometry of this more com-
plete projective model of equivalent frameworks in the projective or elliptic space.
Specifically, by applying inversion to any chosen subset of the vertices, taking pi to
εi pi with εi = ±1, the matrix can be transformed by row and column multiplications
into the following form, Rd

S
(G, ε p):

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

εivi ε jv j

...

εiε j {vi , v j } 0 . . . 0 ε j p j 0 . . . 0 εi pi 0 . . . 0
...

{vi , vi } 0 . . . 0 2εi pi 0 . . . 0 0 0 . . . 0
...

vi 0 . . . 0 εi pi 0 . . . 0 0 0 . . . 0
...

v j 0 . . . 0 0 0 . . . 0 ε j p j 0 . . . 0
...
...

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Lemma 3.1 implies that all the matrix properties (rank, size, dimensions of kernel and
co-kernel) are preserved. Therefore the associated rigidity properties of infinitesimal
and static rigidity are equivalent. If we collect the class of all these inversions, we cre-
ate the ι-equivalent spherical frameworks. All ι-equivalent spherical frameworks have
the same projection intoRd given that we do not distinguish positively and negatively
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weighted points, or hyperplanes through the origins with opposite normals. A sym-
metry of the frameworks modulo this ι-equivalence is a transformation of equivalence
classes.

Under this identification, half-turn symmetry andmirror symmetry are ι-equivalent,
with the added clarification that: where a mirror symmetry appears to take a point on
the equator perpendicular to the mirror to its antipode, this is a fixed point. In this
perspective, a half-turn not only fixes the center of rotation, but all points on the
equator, in all dimensions. In projection, we must identify both versions of a line (±
the normal) and see the line as fixed, as we also see ± a point as the same fixed point.

The static theory outlined at the beginning of this subsection extends indirectly to
point-hyperplane frameworks [8]. This static theory provides a basis for the theory of
tensegrity frameworks [8], but there are subtleties in a projective theory of tensegrity
frameworks on the sphere, and in their projections, which deserve an extended explo-
ration. The static theory can also be applied to the row space and row dependencies
of orbit matrices under symmetry [34].

8 Further Work

1. Global rigidity. Connelly and Whiteley [5] explored the connections between
global rigidity of frameworks in spherical space and their projections to Euclidean
space. The key technique used was to model spherical frameworks as ‘cone frame-
works’ in Euclidean space. Such a framework has a cone vertex realised at the
origin which is adjacent to all other vertices (recall also Sect. 2.4). Observing that
inversion within a cone preserved global rigidity, we anticipate a number of the
results here will transfer. Since equilibrium stresses are a second tool for global
rigidity, and we can trace the impact of inversion and projection on the signs of the
stresses, the tools exist for a more detailed analysis of the transfer and the pairings
to track the effect on global rigidity [18,37]. However this is a largely unexplored
problem in the presence of symmetry, or indeed for point-hyperplane frameworks
so we leave this as future work.

2. Change of metrics. Infinitesimal rigidity, as a projective invariant, is invariant
under change of metrics among those with a shared projective geometry [22,27].
With this background, and the recognition that hyperbolic frameworks (as cones)
project to Minkowski frameworks, we anticipate that the results for the Euclidean
and spherical spaces extend to Minkowski space (or more generally any pseudo-
Euclidean space) and then to the hyperbolic and De Sitter spaces. See [22,35] for
more details. We further expect that the pairing results of this paper can be adapted
to this context, when the corresponding symmetries exist. In particular, half-turn
symmetry will correspond to mirror symmetry by the known transfers of rigidity
results from the Euclidean space to Minkowski space. Since Minkowski space has
the full space of translations, we anticipate that there are full extensions to a theory
of point-hyperplane frameworks in Minkowski space.

3. Parallel drawings. It is well known that, for the plane, the theory of parallel
drawings is isomorphic to the theory of infinitesimal rigidity [36]; so the pair-
ing of half-turn symmetry with mirror symmetry in the plane also transfers. More
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generally, the theory of parallel drawings of point-hyperplane frameworks in all
dimensions is projectively invariant. This suggests that pairings of symmetries will
have analogues for the theory of symmetric parallel drawings.

Acknowledgements Our collaboration on this paper was initiated during the BIRSworkshop on ‘Advances
inCombinatorial andGeometricRigidity’ in July 2015.WalterWhiteley’swork has been supported bygrants
from NSERC (Canada). Katie Clinch’s work is supported by JST CREST (JPMJCR14D2).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbott, T.: Generalizations of Kempe’s Universality Theorem. MSc thesis, Massachusetts Institute of
Technology (2008)

2. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)
3. Bishop, D.M.: Group Theory and Chemistry. Dover, New York (1973)
4. Connelly, R., Fowler, P.W., Guest, S.D., Schulze, B., Whiteley, W.J.: When is a symmetric pin-jointed

framework isostatic? Int. J. Solids Struct. 46(3-4), 762–773 (2009)
5. Connelly, R., Whiteley, W.J.: Global rigidity: the effect of coning. Discrete Comput. Geom. 43(4),

717–735 (2010)
6. Conway, J.H., Smith,D.A.:OnQuaternions andOctonions: theirGeometry,Arithmetic, andSymmetry.

A K Peters, Natick (2003)
7. Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures, a projective geometric

introduction. Struct. Topol. 6, 43–82 (1982)
8. Eftekhari, Y.: Geometry of Point-Hyperplane and Spherical Frameworks. PhD thesis, York University

(2017)
9. Eftekhari, Y., Jackson, B., Nixon, A., Schulze, B., Tanigawa, S.,Whiteley,W.: Point-hyperplane frame-

works, slider joints, and rigidity preserving transformations. J. Comb. Theory Ser. B 135, 44–74 (2019)
10. Fekete, Zs., Jordán, T., Kaszanitzky, V.E.: Rigid two-dimensional frameworks with two coincident

points. Graphs Comb. 31(3), 585–599 (2015)
11. Guest, S.D., Fowler, P.W.: Symmetry conditions and finite mechanisms. J. Mech. Mater. Struct. 2(2),

293–301 (2007)
12. Guest, S.D., Schulze, B., Whiteley, W.J.: When is a symmetric body-bar structure isostatic? Int. J.

Solids Struct. 47(20), 2745–2754 (2010)
13. Ikeshita,R.: InfinitesimalRigidity of Symmetric Frameworks.MSc thesis,University ofTokyo,Depart-

ment of Mathematical Informatics (2015)
14. Ikeshita, R., Tanigawa, S.: Count matroids of group-labeled graphs. Combinatorica 38(5), 1101–1127

(2018)
15. Izmestiev, I.: Projective background of the infinitesimal rigidity of frameworks. Geom. Dedicata 140,

183–203 (2009)
16. Jackson, B., Owen, J.C.: A characterisation of the generic rigidity of 2-dimensional point-line frame-

works. J. Comb. Theory B 119, 96–121 (2016)
17. Jordán, T., Kaszanitzky, V.E., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane.

Discrete Comput. Geom. 55(2), 314–372 (2016)
18. Jordán, T., Whiteley, W.: Global rigidity. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook

of Discrete and Computational Geometry. CRC Press Series Discrete Mathematics and Applications,
3rd edn, pp. 1661–1694. CRC Press, Boca Raton (2017)

123

http://creativecommons.org/licenses/by/4.0/


518 Discrete & Computational Geometry (2020) 64:483–518

19. Kangwai, R.D., Guest, S.D.: Detection of finite mechanisms in symmetric structures. Int. J. Solids
Struct. 36(36), 5507–5527 (1999)

20. Malestein, J., Theran, L.: Frameworks with forced symmetry I: reflections and rotations. Discrete
Comput. Geom. 54(2), 339–367 (2015)

21. Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. Geom. Dedicata 182,
163–201 (2016)

22. Nixon, A.,Whiteley,W.: Change of metrics in rigidity theory. In: Sitharam,M., St. John, A., Sidman, J.
(eds.) Handbook of Geometric Constraint Systems Principles. CRC Press Series Discrete Mathematics
and Applications, pp. 351–374. CRC Press, Boca Raton (2019)

23. Owen, J.C., Power, S.C.: Frameworks symmetry and rigidity. Int. J. Comput. Geom. Appl. 20(6),
723–750 (2010)

24. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Translations of Mathematical Monographs,
vol. 35. American Mathematical Society, Providence (1973)

25. Rankine, W.J.M.: On the application of barycentric perspective to the transformation of structures.
Philos. Mag. 26, 387–388 (1863)

26. Rosenauer, N., Willis, A.H.: Kinematics of Mechanisms. Dover, New York (1967)
27. Saliola, F.V., Whiteley W.: Some notes on the equivalence of first-order rigidity in various geometries

(2007). arXiv:0709.3354
28. Schulze, B.: Symmetric Laman theorems for the groups C2 and Cs . Electron. J. Comb. 17(1), R154

(2010)
29. Schulze, B.: Symmetric versions of Laman’s theorem. Discrete Comput. Geom. 44(4), 946–972 (2010)
30. Schulze, B.: Symmetry as a sufficient condition for a finite flex. SIAM J. Discrete Math. 24(4), 1291–

1312 (2010)
31. Schulze, B.: Combinatorial rigidity of symmetric and periodic frameworks. In: Sitharam, M., St. John,

A., Sidman, J. (eds.) Handbook ofGeometric Constraint Systems Principles. CRCPress SeriesDiscrete
Mathematics and Applications, pp. 543–565. CRC Press, Boca Raton (2019)

32. Schulze, B., Tanigawa, S.: Linking rigid bodies symmetrically. Eur. J. Comb. 42, 145–166 (2014)
33. Schulze, B., Tanigawa, S.: Infinitesimal rigidity of symmetric bar-joint frameworks. SIAM J. Discrete

Math. 29(3), 1259–1286 (2015)
34. Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discrete Comput.

Geom. 46(3), 561–598 (2011)
35. Schulze, B., Whiteley, W.: Coning, symmetry and spherical frameworks. Discrete Comput. Geom.

48(3), 622–657 (2012)
36. Schulze, B., Whiteley, W.: Rigidity and scene analysis. In: Goodman, J.E., O’Rourke, J., Tóth, C.D.

(eds.) Handbook of Discrete and Computational Geometry. CRC Press Series Discrete Mathematics
and Applications, 3rd edn, pp. 1593–1632. CRC Press, Boca Raton (2017)

37. Schulze, B., Whiteley, W.: Rigidity of symmetric frameworks. In: Goodman, J.E., O’Rourke, J., Tóth,
C.D. (eds.) Handbook of Discrete and Computational Geometry. CRC Press Series Discrete Mathe-
matics and Applications, 3rd edn, pp. 1633–1659. CRC Press, Boca Raton (2017)

38. Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. Trans. Am. Math. Soc. 367(12),
8597–8641 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/0709.3354

	Pairing Symmetries for Euclidean and Spherical Frameworks
	Abstract
	1 Introduction
	2 Rigidity of Symmetric Frameworks
	2.1 Symmetric Graphs
	2.2 Schoenflies Notation for Symmetry Groups on the 2-Sphere
	2.3 Symmetric Euclidean Frameworks
	2.4 Symmetric Frameworks on the Sphere
	2.5 Symmetric Point-Hyperplane Frameworks

	3 Transfer of Infinitesimal Rigidity
	4 Transfer of Forced-Symmetric Infinitesimal Rigidity
	5 Group Pairings on mathbbS2 and in mathbbR2
	5.1 Half-Turn and Mirror Symmetry
	5.2 All Groups
	5.3 Combinatorial Consequences
	5.3.1 Infinitesimal Rigidity
	5.3.2 Forced Γ-Symmetric Infinitesimal Rigidity

	5.4 Double Cover Frameworks

	6 Pairings in Higher Dimensions
	7 Non-Free Actions
	7.1 Background
	7.2 Group Pairings Under Non-free Actions
	7.3 Combinatorial Consequences
	7.4 Group Pairings in Elliptic Geometry

	8 Further Work
	Acknowledgements
	References




