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Abstract
In the field of machine learning, clustering has become an increasingly popular research topic due to its critical importance.

Many clustering algorithms have been proposed utilizing a variety of approaches. This study focuses on clustering of high-

dimensional data using the maximum margin clustering approach. In this paper, two methods are introduced: The first

method employs the classical maximum margin clustering approach, which separates data into two clusters with the

greatest margin between them. The second method takes cluster compactness into account and searches for two parallel

hyperplanes that best fit to the cluster samples while also being as far apart from each other as possible. Additionally,

robust variants of these clustering methods are introduced to handle outliers and noise within the data samples. The

stochastic gradient algorithm is used to solve the resulting optimization problems, enabling all proposed clustering methods

to scale well with large-scale data. Experimental results demonstrate that the proposed methods are more effective than

existing maximum margin clustering methods, particularly in high-dimensional clustering problems, highlighting the

efficacy of the proposed methods.

Keywords Maximum margin clustering � Subspace clustering � Hyperplane fitting � Large margin � Robust clustering

1 Introduction

Technology has advanced rapidly, and this has enabled

data to be collected in vast amounts with various forms.

The data available range from images, videos, text to web

documents and many other forms, and most of it is in high

dimension in real-world scenarios. The collected data are

usually unlabeled due to the prohibitive costs related to the

human labor that is required to label data manually [1]. To

overcome this limitation, clustering deals with partitioning

data into related groups without any prior knowledge on

the underlying relationships of the groups (clusters) [2].

More precisely, it is used to discover the unknown hidden

groups of data samples and to assign labels to them.

Clustering is widely applied in many applications including

computer vision, bioinformatics, information retrieval, web

analysis, marketing, data analysis and many more. For

example, in marketing research, it can be used to identify

distinct customer bases for marketing research purposes. In

computer vision, it helps in the automatic segmentation of

images (in biological or medical imaging it can be used to

identify instance tumors or cancerous cells). Clustering is

also applied in knowledge discovery and feature extraction.

Despite originating as an unsupervised method, clustering

has been increasingly used in both semi-supervised and

supervised learning applications. Semi-supervised learning

involves a combination of unlabeled data with a limited

amount of labeled data or side-information provided in the

form of similarity/dissimilarity constraints [3, 4]. On the

other hand, supervised clustering methods rely solely on

labeled data to arrange data for further processing, such as

classification [5].

In practical scenarios, high-dimensional data present a

more challenging clustering task compared to low-
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dimensional data. This is mainly due to the dependence of

most clustering algorithms on pairwise Euclidean distances

among data samples. However, in high-dimensional

spaces, Euclidean distances tend to be less reliable, as

demonstrated in existing literature [6–8]. The unreliability

of Euclidean distances in high-dimensional spaces can be

attributed to the sparsity and irregularity of data distribu-

tions. These characteristics lead to erratic Euclidean dis-

tances between samples, which in turn degrade the

clustering performance. The theoretical analysis in [8]

further indicates that as the dimensionality increases, the

distance to the nearest data point approaches that of the

farthest data point, rendering Euclidean distance mean-

ingless in high-dimensional spaces when clustering pairs of

samples.

In this paper, we focus on high-dimensional clustering

problem and propose new binary clustering methods that

maximize the margin between the two clusters. This type

of clustering methods is called as maximum margin clus-

tering methods, and it can be considered as the unsuper-

vised version of the well-known large-margin classifiers

such as the support vector machines [9].

The rest of the paper is organized as follows: Related

methods and our main contributions are given in Sect. 2.

We briefly introduce the maximum margin clustering in

Sect. 3. This is followed by the introduction of our pro-

posed methods in Sect. 4. We present our experimental

results in Sect. 5, and finally our conclusions and future

research directions are given in the last section.

2 Related work

The most successful high-dimensional data clustering

methods can be roughly divided into two groups: the

subspace clustering methods and the maximum margin

clustering methods. Motivation behind these clustering

methods and related studies is explained below.

2.1 Subspace clustering methods

Recently, subspace clustering has gained significant

attention and popularity due to its superior performance in

high-dimensional spaces. The objective of subspace clus-

tering is to divide data samples into groups, where each

group consists of data samples that lie in the same low-

dimensional subspace within the high-dimensional feature

space. This problem has received considerable attention,

particularly in computer vision, as many commonly used

datasets for motion segmentation, hand-written recogni-

tion, and face clustering in different illumination condi-

tions can be modeled by a mixture of linear/affine

subspaces. Various subspace algorithms have been

proposed and can be broadly classified into iterative, sta-

tistical, algebraic, and spectral techniques [10, 11]. Itera-

tive approaches, such as k-subspaces [12], k-means

Projective Clustering [13], Median k-Flats [14], and recent

local affine/convex hull-based methods [6], alternate

between assigning points to linear/affine subspaces and

updating subspace parameters based on the newly assigned

data points to each subspace. RANSAC (RAndom SAm-

pling Consensus) method [10, 15] tries to fit an hyperplane

to a given data. It alternates between randomly selecting

some small subset of points from the dataset and comput-

ing an hyperplane that best fits to the selected data points.

Methods like Mixtures of Probabilistic Principal Com-

ponent Analysis (MPPCA) [16] and Multi-Stage Learning

(MSL) [17] use statistical approaches that involve

approximating each subspace with a Gaussian distribution

and updating cluster memberships and Gaussian distribu-

tion parameters through the Expectation Maximization

(EM) algorithm. Algebraic methods, such as Generalized

PCA [18] and its robust variant [19], tackle the subspace

clustering problem by formulating it as a high-order

polynomial fitting problem. Spectral clustering is the most

widely used technique in subspace clustering, and the

subspace clustering methods using it differ in how they

construct the affinity matrix. For example, some methods

use sparse combination coefficients, while others use sim-

ilarities between local linear subspaces or low-rank repre-

sentation for constructing the affinity matrix [20–23]. In

contrast, a recent greedy selection algorithm creates

numerous local best-fit affine subspaces and selects the best

ones for the given data [24]. Wang et al. [25] extended the

low-rank-based subspace clustering method for the multi-

view data clustering problem in which data samples are

represented more than one feature set. Passalis and Tefas

[26] proposed a discriminative subspace clustering method

that is able to provide regularized low-dimensional repre-

sentations that are optimized toward clustering tasks. In the

proposed methodology, the intra-cluster and the inter-

cluster distances are transformed into similarities and then

manipulated in an appropriate way that ensures that the

representation will not collapse or overfit to the supplied

labels. For more information on subspace clustering,

interested readers are referred to a comprehensive survey

of [27].

Compared to maximum margin clustering, subspace

clustering is more challenging because the dimensions are

not known a priori, unlike hyperplane clustering, where

they are known beforehand [10].

2.2 Maximum margin clustering methods

Large or maximum margin techniques have gained exten-

sive usage in supervised learning and have a proven track
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record of success. The primary approach in this domain is

the support vector machine (SVM), which identifies a lin-

ear separating hyperplane in the feature space that maxi-

mizes the distance between two class samples. In this

context, the margin refers to the Euclidean distance from

the closest samples to the separating hyperplane [1].

Maximum margin clustering techniques are an extension

of the large margin concept to unsupervised learning, and

they are built based on the cluster assumption of [28],

which states that the decision boundary should not cross

high-density regions, but instead lie in low-density regions.

These methods identify the maximum margin hyperplane

that separates the data from different clusters. In contrast to

supervised maximum margin learning problems, the opti-

mization problem in unsupervised clustering tasks becomes

non-convex.

The first maximum margin clustering (MMC) method

was proposed by Xu et al. [29]. The authors proposed the

clustering problem as a non-convex integer programming

problem. After some relaxations, the clustering problem is

solved by using semi-definite programming (SDP). How-

ever this approach is computationally intensive and only

suitable for small datasets including several hundreds of

samples. Furthermore, it does not allow to use the bias

term, which constraints the clustering boundaries to pass

through the origin. Valizdegan and Jin [30] attempted to

reduce the computational costs and the missing bias term

problem by proposing the generalized maximum margin

clustering (GMMC). This method reduced the costs sig-

nificantly as it reduces the number of parameters in the

SDP formulation from n2 to n, where n is the number of

samples. However, this method also requires to solve a

SDP problem and therefore it is suitable only for small

datasets. Zhang et al. [31] proposed alternating optimiza-

tion directly to solve the maximum margin clustering. The

proposed method iteratively solves a series of support

vector regression (SVR) problem that uses the Laplacian

loss rather than the common hinge loss. Using the Lapla-

cian loss avoids being stuck in local optimal solutions. A

similar method using support vector regression cost for

MMC is also used in [32].

More recently, Zhao et al [33] proposed an efficient

cutting plane maximum margin clustering algorithm

(CPMMC). They use constrained concave–convex proce-

dure to solve each optimization problem after constructing

a nested sequence of successively tighter relaxations on the

original maximum margin problem. Li et al. [34] proposed

to solve the maximum margin clustering problem via

Label-Generating (LG-MMC). This method maximizes the

margin by generating the most violated label vectors iter-

atively and then combines them via efficient multiple

kernel learning. The authors formulated the problem as a

relaxed convex optimization problem avoiding semi-defi-

nite programming (SDP) which is very expensive. Their

approach scales better than other convex relaxation

approaches. Wang et al. [35] proposed the Manifold Reg-

ularized Maximum Margin Clustering (MRMMC) method

which combines the maximum margin data discrimination

and data manifold in a unified clustering objective func-

tion. To this end, the authors added another loss term

including the graph Laplacian obtained from the adjacency

matrix to the existing MMC objective function to ensure

that the locally similar samples are assigned to the same

clusters. However, this makes the problem more compli-

cated and restricts to apply it to large-scale datasets since

one has to create a n� n Laplacian matrix, where n is the

number of samples.

Hu et al. [36] and Zeng et al. [37] proposed a semi-

supervised maximum margin clustering method that uti-

lizes similarity and dissimilarity constraints between data

samples. Hoai and De la Torre [38] applied the maximum

margin concept for temporal clustering in time series. Chen

at al. [39] proposed Bayesian max-margin clustering

(BMC) which allows maximum margin constraints to be

included in a Bayesian clustering model. In [40], a variant

of the maximum margin clustering which uses latent rep-

resentation of data samples is proposed. More recently, Li

et al. [41] proposed a new MMC method using bundle

method which is called as Bundle Maximum Margin

Clustering (BMMC) method. In this method, the non-

convex clustering problem is first decomposed into a series

of convex sub-problems, and then, the bundle method is

utilized to solve each sub-problem. Another MMC method

using incremental learning is introduced in [42]. Xue et al.

[43] introduced the indefinite kernel MMC method, which

approximates the original indefinite kernel by seeking a

proxy positive definite kernel and incorporates an F-norm

regularizer into the learning problem. The proposed

method firstly transforms the clustering problem into a

classification one solved by indefinite kernel support vector

machine (IKSVM) with an extra class balance constraint,

and then the obtained prediction labels are used as the new

input class labels at next iteration until the error rate of

prediction is smaller than a pre-specified tolerance. Xiaoa

et al. [44] applied the maximum margin clustering method

to multi-view data learning problem in which data samples

are represented more than one feature set. The main idea is

to apply complementarity principle by considering one

view as the main learning information and the other views

as the privileged information, so that multiple views can

provide information to complement each other. The

resulting clustering method is non-convex optimization

problem, and it is solved by applying the constrained

concave–convex procedure and cutting plane techniques.

Zhang and Zhu [45] proposed optimal margin distribution

Neural Computing and Applications (2024) 36:5981–6003 5983

123



clustering method which characterizes the margin distri-

bution by the first- and second-order statistics, i.e., the

margin mean and variance. A stochastic mirror descent

method is used to solve the resultant minimax problem. A

hierarchical margin clustering method that performs clus-

tering recursively in a top–down manner to extend the

binary clustering to multiple clusters is introduced in [46].

A deep transductive semi-supervised maximum margin

clustering approach utilizing pairwise constraints is pro-

posed in [47]. The proposed method unifies transductive

learning, feature learning and maximum margin techniques

in the semi-supervised clustering framework. To this end, a

deep network structure with restricted Boltzmann machines

(RBMs) is learned greedily by using the most violated

constraints as in Sequential Minimization Optimization

(SMO) algorithm, and the objective function is optimized

by using gradient descent. A clustering method which is

similar to maximum margin clustering has been proposed

in [48]. The main goal is to find low-density hyperplanes

for binary clustering. Low-density hyperplanes avoid

intersecting high-density regions and typically pass

between high-density clusters, which keep the individual

clusters intact. The proposed method is built based on a

modified stochastic gradient descent applied on a convo-

lution of the empirical distribution function with a

smoothing kernel function.

The maximum margin clustering methods are success-

fully used in different domains including computer vision

[31, 49–51], time series analysis [38] and medical appli-

cations [52]. For example, [31] used MMC for image

segmentation, Farhadi and Tabrizi [49] used MMC for

finding different view points of human activities, [51] used

MMC to discover geographical clusters of beach images,

whereas Hoai and Zisserman [50] used it to improve the

performance for visual object classification in computer

vision. Similarly, Zhu et al. [52] used MMC and immune

evolutionary method for diagnosis of electrocardiogram

arrhythmia.

Lastly, we would like to point out that there are close

ties with the maximum margin clustering methods and

spectral clustering methods. This issue is first explained in

[53]. In this study, the authors show that the Normalized

Cuts (NCuts) clustering method of Shi and Malik [54] lifts

the dataset into an infinite-dimensional feature space and

cuts the data by passing a hyperplane through a margin in

the projected space. It then labels data points that fall on

the same side of the hyperplane as belonging to the same

cluster. Then, Valizadegan and Jin [30] showed the formal

connection between the maximum margin clustering and

the spectral clustering.

2.2.1 Our contributions

In this paper, we propose new methods for the maximum

margin clustering. The first proposed method uses the

classical maximum margin clustering objective function,

and it tries to split the data into two clusters with the largest

margin between them. As opposed to the other existing

methods, we solve the primal problem by using Stochastic

Gradient (SG) algorithm. The second proposed clustering

method searches for two compact clusters with the largest

margin between them. It should be noted that the classical

MMC objective function does not attempt to minimize the

intra-cluster variances; thus, there is no guarantee that the

returned clusters are compact. In contrast, our proposed

method searches for two parallel hyperplanes that best fit to

the two clusters and are far from each other as much as

possible. Therefore, this clustering method can be seen as a

clustering method that unifies the maximum margin clus-

tering and subspace clustering. In the proposed clustering

method, the variations of the samples in the same clusters

are minimized, whereas the inter-cluster distances are

maximized.

In this study, we focus on binary clustering methods.

However the proposed methods can always be used for

multi-class clustering by hierarchically splitting the clus-

ters until we reach the desired number of the clusters as in

NCuts clustering method. We also do not use kernel

functions since we are interested in clustering of high-di-

mensional data samples. Our proposed methods are simpler

and faster than the majority of other maximum margin

clustering methods, and they scale well with large datasets.

Briefly, our contributions can be summarized as follows:

• We propose an efficient algorithm using stochastic

gradient to solve the classical maximum margin clus-

tering problem more efficiently. Moreover, we intro-

duce a novel maximum margin clustering method

utilizing robust ramp losses to handle the outliers and

noise within the data.

• We propose a completely novel maximum margin

clustering method that returns compact clusters by

minimizing the intra-cluster variances. This issue is

ignored by the existing maximum margin clustering

methods in the literature. The proposed method finds

two parallel hyperplanes that best fit to two cluster

samples with the maximum margin between them. In

addition, we introduce the robust version of this

clustering method to cope with the outliers and noise

within data.

• Our proposed methods significantly outperform other

maximum margin and subspace clustering methods in

the majority of the tested datasets. Moreover, the

proposed clustering methods are more effective in terms
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of running speed and they scale well with the large-

scale data as demonstrated in the experiments.

3 Maximum margin clustering

MMC follows the maximum margin principle used in

supervised SVM (support vector machine) learning. It aims

to identify hyperplanes that divide the data into two sepa-

rate clusters with the largest margin between them out of

all potential labelings. SVM, a successful method in

supervised learning, has been employed in this capacity.

Consider that we are given a dataset in the form

xi; yið Þf gni¼1 where xi 2 IRd is the example data vector and

yi 2 f�1;þ1g is the corresponding labels. The SVM

method finds a hyperplane characterized by (w; b) which

results in a large margin separating the two classes (in a

binary case) by solving the following optimization

problem:

min
w;b;ni

1

2
kwk2 þ C

Xn

i¼1

ni

s.t. yi w
>xi þ b

� �
� 1� ni; ni � 0;

ð1Þ

where ni’s are slack variables for errors, and C is a positive

regularization parameter used to tune errors and the sepa-

ration margin.

Maximum margin clustering is an extension of SVM to

the unsupervised learning. Here, our main interest is to find

the hyperplanes that partition the data into two different

clusters with the largest margin between them over all the

possible labelings. Large margin clustering problem can be

formulated as follows:

min
w;b;y;ni

1

2
kwk2 þ C

Xn

i¼1

ni

s.t. yi w
>xi þ b

� �
� 1� ni; ni � 0;

ð2Þ

Note that the maximum margin clustering follows the same

formulation as SVM, the only difference is now being that

in this case the labels are unknown. This is a much difficult

optimization problem since it is non-convex. The above

optimization problem has a trivially optimal solution that

can be obtained by assigning all data samples to the same

cluster. In this case, the resulting margin can be infinite. To

avoid this problem, we need to put a constraint on the

cluster balance. This also alleviates other undesired solu-

tions which separate a single outlier or a very small groups

of samples from the remaining data. To this end, Xu et al.

[29] introduced the following class balance constraint on

the labels y,

�l� e>y� l ð3Þ

where l� 0 is a constant controlling the class imbalance

and e is the vector whose all entries are set to 1.

Zhao et al. [33] proved that the optimization problem

given in (2) can also be formulated as,

min
w;b;ni

1

2
kwk2 þ C

Xn

i¼1

ni

s.t. w>xi þ b
�� ��� 1� ni; ni � 0;

� l� e>y� l;

ð4Þ

where the labeling vector y is calculated as

yi ¼ signðw>xi þ bÞ. It should be noted that this is much

easier to solve since the variable y does not exist in the new

formulation. By setting,

ni ¼ max 0; 1� w>xi þ b
�� ��� �

; i ¼ 1; :::; n; ð5Þ

the optimization problem becomes,

min
w;b;ni

1

2
kwk2 þ C

Xn

i¼1

H1 w>xi þ b
�� ��� �

s.t. � l� e>y� l;

ð6Þ

where the function H1ðtÞ ¼ maxð0; 1� tÞ is the classical

hinge loss. The loss term, H1ð w>xi þ bj jÞ ¼
max 0; 1� w>xi þ bj jf g used in (6), is plotted in Fig. 1, and
it is called the symmetric hinge loss. This loss term is

widely used in transductive SVMs [1]. Almost all of the

maximum margin clustering methods take the dual of the

optimization problems given in (2) or (6) and solve the dual

problem by SDP or cutting plane algorithms. For example,

Xu et al. [29] used the following dual problem,

min
M;d;g;l

d

s.t.
M �K eþ l� g

ðeþ l� gÞ> d� 2Cg>e

" #
� 0

g� 0; l� 0;M� 0

ð7Þ

where � operation denotes the elementwise product

between two matrices, and K denotes the n� n kernel

matrix formed from the inner products of feature vectors.

This requires a solving complicated semi-definite
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programming with complexity Oðn2Þ. Furthermore, the

maximum margin clustering algorithm formulated here

requires clustering boundaries to pass through the origins

of data, which is unsuitable for clustering data with

unbalanced clusters. Valizadegan and Jin [30] introduced

the Generalized Maximum Margin Clustering (GMMC)

method which uses the following alternative optimization

that reduced the cost from Oðn2Þ to O(n)

min
d;g;y;k

1

2
ðeþ g� dþ kyÞ>diagðyÞK�1diagðyÞðeþ g

� dþ kyÞ þ Cd

Xn

i¼1

d2i

s.t. g� 0; d� 0; y 2 þ1;�1f gn:
ð8Þ

However, GMMC cannot handle medium datasets with

more than one thousand instances as stated in [34].

4 The proposed methods

We have proposed two different maximum margin clus-

tering methods along with their robust versions. The first

proposed method uses the classical MMC objective func-

tion whose main goal is to split the data into two clusters

by using a hyperplane with the maximum margin between

clusters. The second one uses a different objective function

which targets both the cluster compactness and the maxi-

mum margin. To this end, the proposed method searches

for two parallel hyperplanes that best fit to the cluster

samples with the maximum margin between these two

hyperplanes. For robust variations of the proposed meth-

ods, we utilize the ramp loss functions that are more robust

against to the noise and outliers within data samples. Using

ramp losses also allows us to employ more stable concave–

convex procedure that solves a convex optimization prob-

lem at each iteration. As stated earlier, we focus on binary

clustering methods here, and the proposed methods can

always be used for multi-class clustering by hierarchically

splitting the clusters as in NCuts clustering. The proposed

methods are explained in the following subsections.

4.1 Robust maximum margin clustering

4.1.1 Maximum margin clustering by using stochastic
gradient (SG) algorithm

Our first proposed method implements the maximum

margin clustering method whose objective function is

given below,

min
w;b;ni

1

2
kwk2 þ C

n

Xn

i¼1

H1 w>xi þ b
�� ��� �

s.t. � l�
Xn

i¼1

�
w>xi þ b

�
� l:

ð9Þ

This optimization problem differs from the one given in (6)

in the way the balance constraint, �l� e>y� l is relaxed

and transformed into �l�
Pn

i¼1

�
w>xi þ b

�
� l. This

relaxation is adopted in many MMC methods implement-

ing both SDP and cutting plane methods [33, 35, 37]. As

opposed to the other maximum margin methods in the

literature, we solve the primal problem by using SG

algorithm instead of the dual problem. To enforce the

balance constraint, we project the returned hyperplane

parameters to the feasible set imposed by the constraint. To

this end, we formulate it as the following sub-problem,

PðvÞ ¼ argmin
v02IRdþ1

1

2
v� v0k k2; s:t: � l� v0>x� l ð10Þ

which has a closed-form solution

PðvÞ ¼

v� �x
v>�x� lð Þ
k�xk2

; if v>�x[ l

v� �x
v> �xþ lð Þ
k�xk2

; if vT �x\� l

v; otherwise.

8
>>>>><

>>>>>:

ð11Þ

Here, the vector v must be set to v ¼ w b½ � and �x ¼Pn
i xi n

� �
in our clustering problem.

In contrast to the other MMC methods, we solve the

primal optimization problem by using SG algorithm

instead of the dual problem. Therefore, our proposed

method is very efficient and it scales well with training set

size since the complexity of SG algorithms solving SVM-

type problems does not depend on the size of the training

set as proved in [55]. More precisely, our algorithm finds

an �-accurate solution using only Oð1=ðC�ÞÞ iterations,

while each iteration involves a single inner product

between w and x. To put it another way, the total time it

takes to obtain a precise solution can be expressed as

Oðd=ðC�ÞÞ, where d is the dimensionality of w and x. We

call this method as MMC-SG, and it can be summarized as

in Algorithm 1.
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Algorithm 1 Stochastic Gradient-Based Solver with Projection for MMC clustering (MMC-SG)

4.1.2 Robust maximum margin clustering by using
stochastic gradient (SG) algorithm

We can use a more robust loss function by interchanging

the symmetric hinge loss with the more robust version, the

symmetric ramp loss. The symmetric ramp loss function is

plotted in Fig. 1b. Using symmetric ramp loss function

avoids the effects of data samples which are too close to the

separating hyperplane that are harder to cluster. Using

ramp loss also allows us to solve the optimization problem

by using concave–convex procedure (CCP) [56], which has

a theoretical convergence proof. Another advantage of

using CCP is its stability since it solves a convex opti-

mization problem iteratively. In this case, the new clus-

tering objective function becomes:

min
w;b;ni

1

2
kwk2 þ C

n

Xn

i¼1

SRs

�
w>xi þ b

�

s.t. � l�
Xn

i¼1

�
w>xi þ b

�
� l:

ð12Þ

In this equation, the symmetric ramp loss function SRsðtÞ is
given as,

SRsðtÞ ¼ RsðtÞ þ Rsð�tÞ; ð13Þ
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where RsðtÞ ¼ minð1� s;maxð0; 1� tÞÞ is the ‘‘ramp

loss.’’ It is shown in Fig. 2. The ramp loss includes setting

a parameter, �1\s� 0, by the user. This loss function can

be represented as the sum of the convex hinge loss and a

concave loss function (or as the difference between two

convex hinge losses), i.e., RsðtÞ ¼ H1ðtÞ � HsðtÞ. The ramp

loss function is essentially a ‘‘clipped’’ form of the hinge

loss, with the location of the clipping determined by the

parameter s. In the case of the symmetric ramp loss func-

tion, the s parameter dictates the width of the flat section of

the symmetric component shown in Fig. 1b.

To train the proposed clustering method with the sym-

metric ramp loss function defined on unlabeled samples,

each unlabeled sample must appear as two examples

labeled with both possible classes [1, 57]. We express this

more formally as,

yi ¼ 1; i 2 1; . . .; n½ �;
yi ¼ �1; i 2 nþ 1; . . .; 2n½ �;
xi ¼ xi�n; i 2 nþ 1; . . .; 2n½ �:

ð14Þ

Then, by using the equations RsðtÞ ¼ H1ðtÞ � HsðtÞ and

SRsðtÞ ¼ RsðtÞ þ Rsð�tÞ, the above cost function without

the constraint can be decomposed into convex and concave

parts as,

JðhÞ ¼ JconvexðhÞ þ JconcaveðhÞ; ð15Þ

where

JconvexðhÞ ¼ 1

2
wk k2þC

X2n

i¼1

H1 yi
�
w>xi þ b

�� �
; ð16Þ

and

JconcaveðhÞ ¼ �C
X2n

i¼1

Hs yi
�
w>xi þ b

�� �
: ð17Þ

Due to the decomposability of the cost function presented

in (12) into a convex and concave component, the opti-

mization problem can be effectively solved by utilizing the

concave–convex procedure (CCCP) as proposed in the

literature [56]. By leveraging the CCCP algorithm, the

objective of minimizing JðhÞ with regard to the parameter

set h ¼ ðw; bÞ can be accomplished through an iterative

parameter update scheme governed by the following rule,

htþ1 ¼ argmin
h

ðJconvexðhÞ þ J0concaveðh
tÞhÞ; ð18Þ

subject to the constraint �l�
Pn

i¼1

�
w>xi þ b

�
� l. To

optimize this loss function, the derivative of the concave

part with respect to h must be found first,

oJconcaveðhÞ
oh

¼ �C
X2n

i¼1

oHsðhÞ
ofhðxiÞ

ofhðxiÞ
oh

:

To simplify this process, let us define

bi ¼
oJconcaveðhÞ

ofhðxiÞ

¼ C; if yi
�
w>xi þ b

�
\s and i ¼ 1� i� 2n

0; otherwise:

(

ð19Þ

The utilization of the function definition fhðxÞ ¼ w>xþ b

and its derivative ofhðxiÞ=oh ¼ ðxi; 1Þ facilitates the

application of CCCP updates to the minimization problem,

wherein each update necessitates the minimization of the

ensuing cost:

JðhÞ ¼ JconvexðhÞ þ
oJconcaveðhÞ

oh

¼ JconvexðhÞ þ
X2n

i¼1

bi
ofhðxiÞ
oh

 !
h

¼ JconvexðhÞ þ
X2n

i¼1

biyi
�
w>xi þ b

�
:

subject to �l�
Pn

i¼1

�
w>xi þ b

�
� l. The inclusion of the

hinge losses within the convex cost function leads to the

transformation of the entire optimization problem into the

following form,

argmin
w;b

1

2
wk k2þC

X2n

i¼1

H1 yi
�
w>xi þ b

�� �

þ
X2n

i¼1

biyi
�
w>xi þ b

�

s.t. � l�
Xn

i¼1

�
w>xi þ b

�
� l:

ð20Þ

As the cost function mentioned above comprises a sum-

mation of convex functions, the resulting function can be

classified as convex. This methodology is termed as Robust

Maximum Margin Clustering using SG (RMMC-SG) and

is presented in Algorithm 2. To solve the central convex

minimization problem of the CCCP algorithm defined in

Algorithm 2, we employ the SG algorithm provided in

Algorithm 3.
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Algorithm 2 The Robust Maximum Margin Clustering by Using CCP (RMMC-SG)
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Algorithm 3 Stochastic Gradient-Based Solver for Robust MMC (RMMC-SG)

4.2 Robust and compact maximum margin
clustering

4.2.1 Compact maximum margin clustering (CMMC)

In our second proposed method, we enforce not only the

maximum margin between clusters but also the cluster com-

pactness. To this end, we follow the same strategy as in large

margin classifiers using affine hulls [58] and search for two

parallel hyperplanes that best fit to the cluster samples but at

the same time as far as possible from each other (from this

point of view, the proposed clusteringmethod can be regarded

as the unsupervised version of the largemargin classifier using

affine hulls). Therefore, the proposed clustering method can

be seen as a hybrid method that combines the maximum

margin clustering and subspace clustering methods. The dif-

ference between the subspace clustering methods and our

proposed method is that we are fitting the cluster samples to

parallel hyperplanes that can be regarded as d � 1 dimen-

sional affine spaces, whereas general subspace clustering

methods do not require parallel subspaces and the dimensions

of the subspaces are not fixed. This idea is visualized in Fig. 3,
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where two clusters lying on two parallel hyperplanes are

separatedwith themaximummargin. In this case, each cluster

can be approximated with any fitting affine subspace that lies

inside the supporting hyperplanes.

The clustering problem that searches for two parallel

hyperplanes that best fit to the cluster samples and sepa-

rated with a large margin can be formulated as,

min
w;b;ni

1

2
kwk2 þ C

n

Xn

i¼1

w>xi þ b
�� ��� 1
�� ��

s.t. � l�
Xn

i¼1

�
w>xi þ b

�
� l:

ð21Þ

The second loss term is visualized in Fig. 4, and it is

similar to the Laplacian loss used in support vector

regression. It should be noted that the Laplacian loss is also

used for the maximum margin clustering in [31]. However,

they start with assigned labels and they iteratively solve the

convex supervised learning problem using Laplacian loss

in each iteration. Based on the returned hyperplane, they

update the labels and continue with solving new supervised

learning problem. In contrast, our problem is non-convex,

we do not have label information, and we solve only one

optimization problem. It should be noted the second term

penalizes all the samples that do not lie exactly on the

supporting hyperplanes, which is difficult to hold in prac-

tice. To avoid this problem, we can define a positive con-

stant, 0� n\1 (similar to the slack variables in support

vector regression problem), that allows not to punish the

samples lying in the intervals between w>xi þ b ¼ 1þ n
and w>xi þ b ¼ 1� n for positive cluster samples and

between w>xi þ b ¼ �1þ n and w>xi þ b ¼ �1� n for

the negative samples as illustrated in Fig. 5. We imple-

mented our method with this user-defined n parameter. The

resulting method is called the Compact Maximum Margin

Clustering by using SG (CMMC-SG), and it is given in

Algorithm 4.

Fig. 1 Loss functions used for

the maximum margin

clustering. a The symmetric

hinge loss,

H1ð tj jÞ ¼ maxð0; 1� jtjÞ, b
The symmetric ramp loss,

SRsðtÞ ¼ RsðtÞ þ Rsð�tÞ.
Here, we set s ¼ �0:20

Fig. 2 The illustration of the ramp loss function, RsðtÞ ¼ H1ðtÞ � HsðtÞ, where HaðtÞ ¼ maxð0; a� tÞ is the classical hinge loss. Here, we set

s ¼ �0:20
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Algorithm 4 Stochastic Gradient-Based Solver with Projection for Compact MMC clustering (CMMC-SG)
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4.2.2 Robust compact maximum margin clustering
(RCMMC)

One of the problems with the loss function given in

Eq. (21) is that it is affected by the samples that are far

from the supporting hyperplanes that are used for approx-

imating clusters. There may be outliers or noisy data that

may be far from the fitting hyperplanes, and the proposed

CMMC-SG method may not return good clusters in such

cases. To avoid this problem and to make the method more

robust to outliers and noisy samples, we can suppress the

costs coming from the samples that lie very far from the

fitting hyperplanes. To this end, we use the following

robust clustering cost in the new clustering method,

min
w;b;ni

1

2
kwk2 þ C

n

Xn

i¼1

G1

�
w>xi þ b

�
þ G�1

�
w>xi þ b

�� �
;

s.t. � l�
Xn

i¼1

�
w>xi þ b

�
� l:

ð22Þ

where G1ðxÞ and G�1ðxÞ are mixture of hinge losses and

they are defined as,

G1ðxÞ ¼ maxð�1; t � xÞ �maxð�1; s� xÞ

þmaxð1; t þ xÞ �maxð1; sþ xÞ;

G�1ðxÞ ¼ maxð1; t � xÞ �maxð1; s� xÞ

þmaxð�1; t þ xÞ �maxð�1; sþ xÞ:

ð23Þ

Here, t is a user-defined constant that can take values

between 0 and 0.5, and s ¼ t þ 0:8. The parameter, t, is

similar to n term, and it controls the flat region around -1

and 1. These loss terms are plotted in Fig. 6. The resulting

method can be solved directly or by using CCP procedure

as before since the loss terms can be decomposed into

convex and concave parts. The algorithm solving the

optimization problem directly is summarized in

Algorithm 5.

Fig. 4 The visualization of the

loss terms: a the loss termPn
i¼1 w>xi þ bj j � 1j j, b the

loss term which also uses n term

(here it is set to n ¼ 0:20
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Fig. 3 The proposed method searches for two parallel hyperplanes

(supporting hyperplanes) that best fit to the cluster samples and

separated with a large margin. This corresponds to the approximating

cluster samples with affine hulls (affine subspaces) that lie on the

supporting hyperplanes
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Algorithm 5 Stochastic Gradient-Based Solver with Projection for Robust Compact Maximum Margin Clustering (RCMMC)
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5 Experiments

In this section we present the test results of our proposed

clustering methods, MMC-SG, RMMC-SG, CMMC-SG

and RCMMC-SG. We compare our algorithms against

each other and also with the existing maximum margin

clustering and subspace clustering methods including

CPMMC [33], IterSVR [31], LG-MMC [34], Projective k-

means [13], SMC [21], SSC [11], LRR [23] and OSC [59].

Our methods have several parameters that must be set by

the user, and we would like to point out that initialization

of the proposed clustering methods is crucial for good

accuracies. Therefore, we initialized the proposed cluster-

ing methods by using either CPMMC or k-means clustering

outputs. The user must set C parameter and balance ratio, l.

We used a small part of the datasets to determine the best

parameter values, and then we run the proposed clustering

methods on the entire dataset. Typically, setting the bal-

ance parameter very small values l\0:1 produced better

accuracies. Also, setting the step size of the SG method is

important and we decreased the initial value at each iter-

ation by dividing the initial value with the iteration

number.

5.1 Experiments on low-dimensional datasets

We used the following low-dimensional datasets that are

commonly used for comparison of the maximum margin

clustering methods: Wine [60], UCI-Digits [61], Letter

[62], Satellite [63], Usps [64] and Ionosphere [65]. We

present the detailed description of these datasets in

Table 1, where n is the number of data samples, d is the

dimension, and c is the number of classes. In these clus-

tering problems, the number of samples, n, is much higher

than the dimensionality of the feature space, d. In each

dataset, we take only the first 2 classes, with the exception

of when we explicitly indicate which classes we take, for

example UCI-digit dataset where the two combinations of

classes are indicated explicitly. For the UCI-digits dataset,

we chose the (1 &7, 2 &7, 3 &8, and 8 &9) pair combi-

nations which are the most difficult to differentiate as noted

by [33].

In our assessment of clustering accuracy, we follow the

same setting as in [29], where we do not include the labels

in all samples when we run our clustering algorithms.

Then, we compare the true class labels and the cluster

memberships returned by the tested clustering methods.

Finally, to measure the clustering accuracy, we used the

classification accuracy which is adopted by other maxi-

mum margin clustering and subspace clustering methods.

The results are averaged over 10 independent runs for all

the clustering algorithms. We initialized the proposed

clustering methods by using CPMMC. For the proposed

MMC-SG and RMMC-SG methods, we used the separating

hyperplane returned by CPMMC for initialization. How-

ever, for CMMC-SG and RCMMC-SG methods, we

applied supervised affine hull margin classifier to find the

supporting hyperplanes that best fit to the clusters returned

by CPMMC. Then, we initialized our compact maximum

margin clustering methods with the resulting hyperplane.

The accuracies of the tested clustering methods are

given in Table 2. Among the maximum margin-clustering

methods, IterSVR [31] achieves the best accuracy for two

datasets, CPMMC [33] obtains the best accuracy for one

dataset, and our proposed clustering method, RMMC-SG,

Fig. 6 The visualization of the loss terms: a the plot of G1ðxÞ þ G�1ðxÞ, b the plot for G1ðxÞ, c the plot for G�1ðxÞ. Here, t is set to 0.2

Fig. 5 The visualization of the compact maximum margin clustering

that does not punish the samples closer to the best fitting hyperplanes
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yields the best accuracy for one dataset. It should be noted

that although CPMMC method obtains the best accuracy

for one dataset, it significantly fails for Letter A &B,

Satellite and Wine datasets. (The authors report better

accuracies on some of the tested datasets. But, we never

obtained these results although we tried many hyper-pa-

rameters. The authors of [34] also report the same accu-

racies that we reported in Table 2). SMC method is the best

performing method among subspace clustering methods,

and this method also seems the best performing method

among all tested clustering methods. Regarding our pro-

posed clustering methods, MMC-SG, RMMC-SG and

RCMMC-SG perform well and yield comparable results to

the best performing clustering methods. But, CMMC-SG

significantly fails for the most of the tested datasets. This

shows that exact fitting of the data samples to supporting

hyperplanes does not work well for low-dimensional

datasets. This is expected since the data samples span the

whole feature space, and it is impossible to fit the data to

the lower-dimensional parallel hyperplanes. This is also

clear from the successful results of RCMMC-SG, which is

the robust counterpart of CMMC-SG. It does not punish the

samples very far from the supporting hyperplanes and

obtains the best accuracies among the proposed clustering

methods in general.

5.2 Experiments on high-dimensional datasets

We also compared our proposed clustering methods on

high-dimensional datasets: Coil-100 [66], FaceScrub [67],

Cifar 10, Gender [1], 20 Newsgroups [68] and Duke Breast

Cancer MRI (DBC-MRI) [69] datasets.

The Coil-100 database [66] includes 100 different

objects and 72 views of each object taken at 5-degree-apart

orientations. All images are converted to gray-scale ima-

ges, and their original dimensionality 128 � 128 was

reduced to d ¼ 64� 64 ¼ 4096 by down-sampling. We

applied k-means clustering to determine the most difficult

classes for clustering and chose 5 difficult binary-class

pairs.

The FaceScrub dataset [67] includes face images of 530

celebrities. It has been created by detecting faces based on

automated search of public figures on the internet followed

by manually checking and cleaning the results. We

extracted 4096-dimensional CNN features of face images

by using a network pre-trained on a large-scale face

Table 1 Information on the datasets used for comparison of the

proposed binary clustering methods

Dataset Instance (n) Dimension (d) Classes (c)

Wine 130 13 2

UCI-Digits 1 &7 1137 64 2

UCI-Digits 2 &7 1123 64 2

UCI-Digits 3 &8 1126 64 2

UCI-Digits 8 &9 1116 64 2

Letter 1555 16 2

Satellite 4435 36 2

Ionosphere 351 34 2

Usps 7291 256 2

Table 2 Clustering accuracies (%) of tested methods on low-dimensional datasets

Methods UCI Dig. 1

&7

UCI Dig. 2

&7

UCI Dig. 3

&8

UCI Dig. 8

&9

Ionosphere Letter A

&B

Satellite 1

&2

Usps Wine

MMC-SG 98:6	 3:4 99:8	 0:3 96:9	 0:6 94:5	 1:6 70:1	 0:0 93:8	 0:03 97:2	 1:2 99:0	 0:04 94:9	 0:4

RMMC-

SG

99:5	 0:1 99:9	 0:2 97:2	 0:0 95:1	 0:3 66:0	 0:1 93:8	 0:03 98:1	 0:02 96:1	 2:2 95:0	 0:5

CMMC-

SG

60:0	 6:0 75:1	 15:0 60:6	 3:4 60:1	 6:2 71:5	 0:0 92:3	 0:06 68:4	 7:0 99:7	 0:0 93:9	 0:0

RCMMC-

SG

99:6	 0:2 99:2	 2:1 96:8	 0:7 96:0	 0:8 71:5	 0:0 94:0	 0:0 98:3	 0:02 99:8	 0:0 95:0	 0:4

CPMMC 94:2	 0:0 100	 0:0 96:9	 0:0 94:9	 0:0 64:1	 0:0 70:0	 0:0 70:0	 0:0 98:2	 0:0 60:0	 0:0

IterSVR 99:7	 0:0 100	 0:0 96:7	 0:1 96:6	 0:0 69:1	 0:2 91:6	 0:0 83:4	 0:0 97:7	 0:02 93:9	 0:0

LG-MMC 96:7	 0:0 88:4	 0:0 78:2	 0:0 96:3	 0:0 62:4	 0:0 92:7	 0:0 97:0	 0:0 75:9	 0:0 93:1	 0:0

P-k-means 60:4	 0:0 98:8	 3:7 96:7	 1:6 89:0	 0:0 74:7	 0:0 88:1	 0:0 85:2	 0:3 100	 0:0 83:9	 0:2

SMC 100	 0:0 99:7	 0:0 96:6	 0:0 90:7	 0:0 70:4	 0:0 94:3	 0:0 99:3	 0:0 100	 0:0 96:9	 0:0

SSC 96:1	 0:0 98:3	 0:0 89:6	 0:0 71:7	 6:4 65:0	 0:0 51:2	 0:0 96:5	 0:05 97:4	 0:0 89:2	 0:0

LRR 95:5	 0:6 95:2	 0:0 91:0	 0:0 89:3	 0:0 70:1	 0:1 91:0	 0:0 99:4	 0:0 98:9	 0:0 96:2	 0:0

OSC 70:6	 0:0 99:2	 0:0 95:2	 0:0 88:0	 0:2 65:1	 8:0 92:2	 0:0 97:1	 0:0 99:9	 0:0 97:7	 0:0

The bold fonts represent the best accuracies
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dataset. For a fair evaluation, we did not apply any fine-

tuning to the pre-trained deep neural network since it uses

label information. We again determined 5 difficult binary-

class pairs based on k-means clustering. The number of

samples belonging to the selected classes changes between

203 and 283.

The Cifar 10 dataset consists of 60K, 32� 32 color

images of 10 classes, with 6K images per class. There are

50K training and 10K test samples. We extracted

4096-dimensional CNN features of images by using a

network pre-trained on ILSVRC 2015 dataset. We did not

apply any fine-tuning as before.

For Gender dataset, we adopted the same dataset we

used in [1]. This dataset was created by using three pub-

licly available datasets, namely, Labelled Faces in the Wild

[70], PubFig [71], and PAL [72]. From the Internet, we also

downloaded a total of 14,000 face images. Multiple inde-

pendent individuals annotated these images. We then cre-

ated a subset of approximately 34,000 near-frontal images,

characterized by a yaw angle within the range of - 30� to
30�. This dataset presents a considerable challenge as it

comprises ‘‘in-the-wild’’ images that exhibit significant

variations in illumination, race, resolution and background

clutter. In Fig. 7, a random selection of face images from

this dataset is displayed. We initially used a commercial

face detector to locate and identify the images, followed by

the utilization of a landmark detector [73]. These detected

landmarks were instrumental in transforming the faces into

a standardized pose of dimensions 60 � 40 pixels. We

further trained a 2048-dimensional feature descriptor using

a Convolutional Neural Network (CNN) with 7 convolu-

tional and 2 fully connected layers. As opposed to the our

Fig. 7 Samples of male (left) and female (right) images from ‘‘in-the-wild’’ dataset used for gender estimation experiments
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proposed clustering methods, most of the tested clustering

methods had memory or convergence problems when we

used full 34K data; therefore, we randomly selected 1000

samples from each gender 5 times and used these samples

for clustering tests.

The 20 Newsgroups dataset contains about 20,000

newsgroup documents. They are distributed across almost

equitably among 20 different newsgroups categories, each

matching a different topic. Some of the newsgroups are

very closely related to each other for instance

comp.sys.ibm.pc.hardware and comp.sys.mac.hardware,

while others are strongly unrelated such as misc.forsale and

soc.religion.christian for instance. The data are represented

with 61,188 high-dimensional bag of words features. We

determined 5 difficult binary-class pairs based on k-means

clustering as before.

Duke Breast Cancer MRI dataset has 922 patients col-

lected in Duke Hospital from January 1, 2000, to March 23,

2014, with invasive breast cancer and available pre-oper-

ative MRI. In total, 529 dimensional features are extracted

from MRI data by using a wide range of imaging charac-

teristics including size, shape, texture, and enhancement of

both the tumor and the surrounding tissue.

It should be noted that the dimension of the sample

space, d, is much larger than the number of samples in each

class in all tested datasets. CPMMC significantly failed on

these datasets; thus, we initialized the proposed clustering

methods by using the clusters returned by the k-means

clustering (we also omitted the results of CPMMC since

they are too low). To this end, we applied the classical

SVM and affine hull margin classifiers to find the hyper-

planes separating the clusters returned by k-means clus-

tering method. Then, the separating hyperplane returned by

SVM is used to initialize the proposed MMC-SG and

RMMC-SG clustering method, and the separating

hyperplane returned by the affine hull margin classifier is

used to initialize CMMC-SG and RCMMC-SG clustering

methods.

The results are given in Table 3. Missing results in the

table indicate that the corresponding clustering methods

had a memory or convergence problem due to the size of

the dataset. As opposed to the low-dimensional clustering

results, our proposed method, RCMMC-SG, typically

yields the best clustering accuracies for high-dimensional

datasets achieving the best performance on five datasets

among all tested six datasets. OSC achieves the best

clustering accuracy on the FaceScrub dataset followed by

our proposed clustering method CMMC-SG. The proposed

CMMC-SG, which significantly failed for low-dimensional

clustering problems, also performs well due to the high

dimensionality of the feature spaces. Among the proposed

methods, the clustering methods returning compact clusters

perform better compared to the ones that aim maximum

margin clustering only. This clearly shows that fitting of

the data samples to supporting hyperplanes significantly

improves accuracies for high-dimensional clustering

problems. This is also illustrated in Fig. 8. We plotted the

decision scores,
�
w>xi þ b

�
, obtained by the proposed

clustering methods in this figure. The samples are sorted

based on true class memberships (e.g., the first 72 scores

belong to the first class samples and the remaining 72

scores belong to the second class samples in the first row).

As seen in the figure, the proposed clustering methods

typically return correct labels with a few exceptions. Also,

the scores of the samples belonging to Coil dataset returned

by the compact maximum margin clustering methods,

CMMC-SG and RCMMC-SG, are compactly clustered

around ? 1 and - 1, which shows that the majority of the

samples exactly lie on the parallel supporting hyperplanes.

Our proposed CMMC-SG and RCMMC-SG clustering

Table 3 Clustering accuracies

(%) of tested clustering methods

on high-dimensional datasets

Methods Coil FaceScrub Cifar 10 Gender 20 Newsgroups DBC-MRI

MMC-SG 94:3	 4:8 97:5	 3:3 80:0	 7:3 97:8	 0:0 84:7	 16:5 67:3	 5:0

RMMC-SG 93:3	 4:5 98:3	 1:8 79:4	 9:0 97:8	 0:0 85:9	 13:1 62:7	 4:1

CMMC-SG 90:7	 0:5 99:4	 0:4 83:5	 3:7 97:8	 0:1 84:9	 16:8 75:9	 7:6

RCMMC-SG 95:6	 1:8 98:6	 0:9 87:1	 6:4 97:8	 0:0 86:4	 13:7 79:6	 1:1

IterSVR 88:5	 6:4 96:5	 5:4 82:8	 7:9 97:8	 0:0 85:0	 18:2 59:6	 8:3

LG-MMC 91:9	 6:5 91:0	 4:5 65:9	 3:6 94:3	 0:0 84:8	 8:8 79:6	 0:3

P-k -means 76:9	 16:2 60:2	 3:5 62:3	 8:9 80:2	 0:2 68:1	 6:6 59:1	 7:2

SMC 90:6	 5:6 95:5	 1:7 51:2	 0:8 84:2	 5:9 64:5	 0:6 79:6	 1:2

SSC 93:9	 6:5 98:9	 2:2 83:1	 4:4 91:7	 0:0 – 75:0	 1:7

LRR 87:9	 13:0 98:2	 1:2 83:3	 4:2 50:1	 0:0 – –

OSC 93:9	 5:9 99:8	 0:2 86:7	 4:0 97:4	 0:0 – 59:1	 2:7

k-means 80:6	 8:0 87:5	 7:2 77:5	 10:0 97:8	 0:0 84:0	 16:2 57:7	 4:7

The bold fonts represent the best accuracies
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methods significantly outperform other maximum margin

clustering methods. Among subspace clustering methods,

OSC is the best performing one, and it also achieves the

best accuracy on the FaceScrub dataset. CPMMC failed to

converge on all tested datasets and yielded very low

accuracies. Therefore, we omitted its results in the table.
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Fig. 8 The visualization of the

scores of the proposed methods

tested on the Coil and

FaceScrub datasets. The first

two rows show the scores

obtained on the Coil dataset,

and the last two rows show the

scores obtained on the

FaceScrub dataset. When the

number of samples is very small

compared to the dimensionality

as in Coil dataset, the cluster

samples fit to the supporting

hyperplanes better
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5.3 Comparison of testing times

One of the main problems associated with traditional

maximum margin approaches is that they are computa-

tionally expensive and only suitable for a dataset with a

few hundred samples. In contrast, our proposed clustering

methods are very efficient and they scale well with training

set size since we utilize Stochastic Gradient (SA) algo-

rithm. As indicated in [55], the complexity of SG algo-

rithms solving SVM-type problems does not depend on the

size of the training set and they are fast since we have to

make simple dot products between samples, xi and

hyperplane normal, w. To verify these facts, we conducted

experiments to compare testing times of all the clustering

methods used in this study.

We compared the testing times of the clustering methods

on 5 datasets: UCI Digits 1 &7, Ionosphere, Coil, Face-

Scrub and Gender 34K datasets. Please note that we used

all 34K samples in the Gender dataset rather than 2K

samples used in high-dimensional clustering experiments

given above. The tests are conducted on a computer having

Intel Xeon CPU E5-2609 v3@1.90 GHz and 128 GB RAM

memory. The testing time of LG-MMC is omitted since it

could be run only on another computer with a different

operating system. The testing times only show the time

spent for the operations in the main clustering algorithms

and the time spent for the initialization of the clustering

algorithms are not reported. The results are given in

Table 4 and the most efficient times are indicated with bold

fonts. As seen in the table, our clustering methods are

typically the most fast clustering algorithms. For low-di-

mensional datasets, UCI-Digits 1 &7 and Ionosphere all

methods finish the clustering in reasonable times with the

exception of LRR on Ionosphere dataset. For high-dimen-

sional feature spaces with the small data sizes (Coil and

FaceScrub datasets), all tested methods are quite fast with

the exception of P–k-means clustering method. This is

reasonable since this clustering method solves

computationally expensive eigen-decomposition of large

matrices in each iteration because of high-dimensional

feature sizes. Other large-margin and subspace clustering

methods are no affected badly since the dataset size is

small. But, when the dataset size increases to 34 K sam-

ples, all margin and subspace clustering methods signifi-

cantly fail and they cannot converge in 24 h with the

exception of SMC method which converged in approxi-

mately 4.11 h. Because, large margin clustering methods

solving the problem in the dual space use kernel matrices

with size 34,000 � 34,000 which is even hard to fit to the

memory. In a similar manner, the subspace methods create

affinity matrices with the same size and operate on them.

Therefore, almost all margin clustering and subspace

clustering methods are not feasible even for moderate size

datasets including more than 10 K samples. In contrast, our

proposed clustering methods are still very efficient and

they scale well with the large dataset sizes. For example,

our slowest clustering algorithm RCMMC-SG is still 493

times faster than SMC on the Gender 34 K dataset.

6 Discussions ad conclusion

This paper presents new robust clustering methods that aim

to maximize the margin between two clusters. The key idea

is to split the data into two clusters with the greatest pos-

sible margin between them. Additionally, we introduce two

novel clustering methods that build upon this approach by

combining maximum margin and subspace clustering to

produce more condensed clusters. To achieve this, our

proposed methods search for two parallel hyperplanes that

best fit the cluster samples while maintaining maximum

distance from each other. In order to handle noisy or outlier

samples, we also introduce more robust loss terms that

minimize the influence of these samples. Our experimental

results demonstrate that our proposed robust compact

clustering method, RCMMC-SG, significantly improves

Table 4 Testing times of the

clustering methods
Methods UCI-Digits 1 &7 Ionosphere Coil FaceScrub Gender 34K

MMC-SG 0.14 s 0.14 s 0.15 s 0.18 s 37.83 s

RMMC-SG 0.14 s 0.13 s 0.17 s 0.21 s 37.94 s

CMMC-SG 0.14 s 0.36 s 0.18 s 0.22 s 140.00 s

RCMMC-SG 0.15 s 0.38 s 1.85 s 2.85 s 300.35 s

IterSVR 0.24 s 0.17 s 2.10 s 4.64 s [ 24 hours

P– k -means 1.07 s 0.40 s 697.50 s 208.73 s [ 24 hours

SMC 1.56 s 1.72 s 1.28 s 2.81 s 148000 s

LRR 1.32 s 9.32 s 0.92 s 2.52 s [ 24 hours

OSC 2.31 s 0.25 s 1.63 s 2.81 s [ 24 hours

SSC 1.64 s 1.57 s 1.45 s 3.22 s [ 24 hours

k-means 0.91 s 0.87 s 0.22 s 0.32 s 14.64 s
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clustering accuracy, particularly in high-dimensional clus-

tering scenarios.

In our proposed clustering methods, we solve the opti-

mization problem in the primal space. This enables us to

use fast and efficient stochastic gradient algorithm, yet we

cannot use the kernel functions since the problem is not

solved in the dual space. Therefore, the proposed methods

will not work well for low-dimensional spaces where the

classes have nonlinear decision boundaries. Moreover, the

proposed CMMC-SG clustering method which enforces the

cluster samples to lie on the hyperplanes only work well

when the dimension of the feature space is higher than the

number of data samples. If this condition is not met, the

data samples typically span the whole feature space and it

becomes impossible to fit to the lower-dimensional parallel

hyperplanes. This is also the main reason why CMMC-SG

performed badly in low-dimensional datasets. Its robust

version does not have these limitations since it does not

punish samples far from the hyperplanes severely. In

general, our proposed methods are mostly suitable for high-

dimensional clustering problems where the traditional

clustering methods perform poorly. That is why we restrict

our focus on high-dimensional clustering problems in this

study.

As a potential future research topic, the proposed clus-

tering methods can be adopted to semi-supervised classi-

fication settings where there is limited amount of labeled

data and many unlabeled data. Also, an interesting line of

research can be application of the proposed clustering

methods to multi-view data learning problem in which data

samples are represented more than one feature set.
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