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Abstract Classical classification methods usually assume that pattern recognition models
do not depend on the timing of the data. However, this assumption is not valid in cases where
new data frequently become available. Such situations are common in practice, for exam-
ple, spam filtering or fraud detection, where dependencies between feature values and class
numbers are continually changing. Unfortunately, most classical machine learning methods
(such as decision trees) do not take into consideration the possibility of the model changing,
as a result of so-called concept drift, and they cannot adapt to a new classification model.
This paper focuses on the problem of concept drift, which is a very important issue, espe-
cially in data mining methods that use complex structures (such as decision trees) for making
decisions. We propose an algorithm that is able to co-train decision trees using a modified
NGE (Nested Generalized Exemplar) algorithm. The potential for adaptation of the proposed
algorithm and the quality thereof are evaluated through computer experiments, carried out
on benchmark datasets from the UCI Machine Learning Repository.

Keywords Nested generalized exemplar · Nearest hyperrectangle · Concept drift ·
Decision tree · Incremental learning · Pattern recognition

1 Introduction

Advances in computer science technologies have resulted in many institutions collecting
huge amounts of data, the manual analysis of which is virtually impossible. Nowadays, for
the efficient management of an average enterprise, simple data analysis methods do not suf-
fice because to make smart decisions, hidden knowledge must be extracted from the data
[27]. The biggest disadvantage of most of these methods is that they “assume” that the statis-
tical properties of the discovered concept (that is, the target predicted by the model) remain
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unchanged. In real situations, so-called concept drift occurs frequently [15,37]. The potential
for considering new training data [46] is an important feature of machine learning methods
used in security applications (like spam filters or IDS/IPS) [30] or decision support systems
for marketing departments, which need to follow the changing client behavior [9].

It is obvious that the smaller the data structures used by such systems in making decisions,
the more likely the systems can adapt. As an example, minimal distance methods, known as
lazy classifiers [2], can take into consideration each new training element because no struc-
ture is used in making the decision. On one hand, such methods are very adaptable, but on
the other hand, the cost of their decision making is high. Other kinds of machine learning
methods invest in building data structures that allow them to make inexpensive and rapid
decisions. Unfortunately, these methods are not at all adaptable; for example, although a
decision tree is able to make decisions quickly, the training thereof is costly in terms of time.
Therefore, the design of data mining methods, especially classification ones for data streams,
is currently the focus of intense research [1,3,26,38].

This paper deals with the problem of incremental learning of a given decision tree. As
is well known, the structure of the tree is not predisposed to change as new data become
available. The following alternative approaches can be considered:

1. Rebuilding the tree if new data become available, which is very expensive and impossible
from a practical point of view, especially if the concept drift occurs rapidly;

2. Detecting concept changes in the new data [7] and if these changes are sufficiently
“significant”, then rebuild the tree;

3. Adopting an incremental learning algorithm for the decision tree [6];
4. Generating the tree using a well-known method and then enabling incremental learning

of the given concept by another method—the so-called hybrid approach.

This article focuses on the final alternative. We show how to use the NGE (Nested Generalized
Exemplar) algorithm to improve the results of a given decision tree by considering new
training data.

2 Machine learning algorithms

2.1 Decision tree

One of the most useful and popular trends in data mining is classification, also known as
pattern recognition [8]. The aim of a pattern recognition task is to classify the object into
one of the predefined categories according to its feature values. These methods are usually
applied to many practical areas, such as credit approval, prediction of customer behavior,
fraud detection, designing IPS/IDS, and medical diagnoses, to name but a few. Numerous
approaches have been proposed for constructing efficient classifiers, such as neural networks,
statistical learning, and symbolic learning [4].

Of the different concepts and methods for machine learning, induction of a decision tree
is both attractive and efficient [43]. Usually, decision trees are divided into two categories:
(1) classification trees that classify objects into one of the predefined categories (e.g., letters
during text recognition) and (2) regression trees that predict an actual value (e.g., the profit-
able price of new consumer goods). One of the most popular algorithms for regression tree
training is MARS (Multivariable Adaptive Regression Splines), introduced by Friedman [14]
for training a decision tree by fitting piecewise linear regressions. A very interesting propo-
sition that combines the two types of decision trees is CART (Classification and Regression
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Decision Tree) proposed by Breiman et al. [10]. In our research, we focus on classification
trees to propose a method for discrete function approximation that can be adapted to the
classification task. The most well-known decision tree algorithms are ID3 [31], its extension
C4.5 [32], and their descendant C5, which is a commercial version of the new algorithm
developed by Quinlan. As reported on his company’s (RuleQuest Research Pty Ltd) web
page [19], the performance of C5 surpasses that of C4.5, while at the same time having a
very low time complexity. Unfortunately, this algorithm is not open source.

As mentioned above, ID3 is a typical decision tree induction algorithm. It introduces infor-
mation entropy as the splitting attribute’s selection measure and trains a tree from the root to
the leaves, in a top-down manner. The central choice in the ID3 algorithm is selecting “the
best” attribute to be tested at each node in the tree. The proposed algorithm uses information
gain, which is a measure of how well the given attribute separates the training examples
according to the target classification. C4.5 improves the appropriate attribute selection mea-
sure, avoids data overfitting, reduces error pruning, handles attributes with different weights,
improves computational efficiency, handles missing value data and continuous attributes,
and performs other functions. It uses the information gain ratio instead of information gain
as in ID3 [32]. Other decision tree induction methods differ from that presented above, for
example, in their use of different measures for attribute selection, such as the Gini or Twoing
criteria used by CART [10] among others, or another statistical measure.

One of the greatest advantages of a decision tree is that it can easily be converted into a
set of rules. Assume that each decision path is a rule. Let the set of rules RS consist of subsets
of rules that point at the same class (assuming we have M class labels).

RS = {RS1, RS2, . . . , RSM }. (1)

RSi = {r (1)
i , r (2)

i , . . . , r (Ni )
i } (2)

The analysis of different practical examples leads to the following general form of rule r (k)
i .

If x ∈ D(k)
i , then the object belongs to class i ,

where D(k)
i denotes the set of conditions associated with a single path of the decision tree

(i.e., with rule r (k)
i ).

In [31], Quinlan notes that the computational complexity of ID3 (for discrete attributes)
at each node of the tree is O(NL S NA), where NL S is the number of examples in the learning
set and NA is the number of attributes in the node. For continuous attributes, the computa-
tional complexity is quadratic in the size of the learning set [29]. In this case, to speed up the
examination of the candidates, ID3 sorts the examples using the continuous attributes as the
sort key. The computational complexity of this operation is O(NL Slog2 NL S), which means
that a great deal of time is needed for a large dataset. Another time-consuming problem is
pruning, the complexity of which is hard to estimate because it depends on the decision tree
size and structure.

There are several works that deal with the problem of speeding up decision tree genera-
tion. Some of these make additional assumptions that allow the tree to be built faster, such
as in [34] where the authors assume conditional independence of the attributes. This leads
to a reduction in the computational complexity, compared with that of the naïve Bayes or
a one-level decision tree [17]. This concept called NT (Naïve Tree) performs slightly better
than C4.5 and remarkably better than the Naïve Bayes. Of course, the authors warn of uncrit-
ical use of this method, especially where the independence assumption is violated (e.g., in
text classification). Another interesting proposition is presented by Domingos et al. [12]. The
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authors describe and evaluate a novel algorithm for a VFDT (Very Fast Decision Tree) that
trains decision trees using constant memory and constant time per example. The algorithm
uses Hoeffding bounds to guarantee that its output is asymptotically almost identical to that
of a conventional learner.

In many of the comparative studies on classifiers reported in the literature, the decision
trees achieve good results and are thus usually used in business applications [22]. To speed up
decision tree generation and to deal effectively with huge databases, we need time-efficient
distributed decision tree induction methods with the ability to use a network computational
system [44]. Various parallel decision tree algorithms have been proposed. SLIQ [28] and its
extension SPRINT [35] use a pre-sorting technique in the tree-growing phase and propose
new pruning procedures. In [25], a data distributed parallel formulation of C4.5 is given, in
which only frequency statistics from the data are used to select the best attribute. BOAT [16]
trains an approximate tree using a fixed size subsample of the training set and then improves
on this using the whole dataset. SPIES, a parallel algorithm for decision tree induction with
almost linear speedup is presented in [21]. In [36], synchronous and partitioned decision tree
induction algorithms are presented. Additionally, the authors compare these propositions
and formulate a hybrid algorithm. The study presented in [45] is interesting in that three
parallel versions of the decision tree algorithm are proposed, namely (i) feature-based par-
allelization, (ii) node-based parallelization, and (iii) data-based parallelization. The results
of experiments evaluating the relationship between speedup and the number of processors
are also given.

The above mentioned algorithms focus on constructing a decision tree for a given set of
data. If new data become available, the algorithms have to start from the beginning, because
the structure of a decision tree is difficult to modify. This characteristic of the methods is
not too disadvantageous if the database grows at a slow rate, but for fast-growing databases
it could cause serious problems. The need for tree rebuilding is usually caused by concept
drift, which means that the recognition task model is not stable and depends on time. Gen-
erally speaking, concept drift could be caused by changes in the probabilities of classes or
conditional probability distributions of classes [23].

Various decision tree algorithms for streaming data can be found in [6]. The modification
of the VFDT algorithm to handle a changing environment was proposed in [18]. The method
proposed in [20] builds a decision tree using horizontal parallelism based on an online method
for building histograms from new data. In the paper, the authors show that the classification
error of their proposition for a distributed version of the decision tree induction is slightly
worse than the original one, but the bound on the error is usually acceptable for practical
implementation.

As mentioned in the introduction, we are interested in developing a hybrid adaptive deci-
sion tree training method. To achieve this aim, we make use of the NGE algorithm, which
produces a data structure consisting of so-called hyperrectangles that can easily be used in
conjunction with the decision making concept described below.

2.2 Nearest hyperrectangle algorithm

The nearest hyperrectangle algorithm was described in [33], with subsequent modifications
and an evaluation through computational experiments presented in [39,40]. As previously
mentioned, the greatest advantage of this method is its low computational complexity. This is
achieved by reducing the size of the data structure (compared with minimal distance methods)
stored in memory, which is required to make a decision.

123



A hybrid decision tree training method using data streams 339

In [33], the following knowledge representation was proposed. Hk,i denotes the k-th
hyperrectangle pointing to the i-th class:

Hk,i =

⎡
⎢⎢⎢⎢⎢⎣

x (1)
k,i x̄ (1)

k,i

x (2)
k,i x̄ (2)

k,i

...
...

x (d)
k,i x̄ (d)

k,i

⎤
⎥⎥⎥⎥⎥⎦

(3)

where x (l)
k,i and x̄ (l)

k,i denote constraints on the l-th feature x (l) of vector x,i.e., x (l)
k,i ≤ x (l) ≤ x̄ (l)

k,i .
The proposed measure of distance between object xm and hyperrectangle Hk,i is given by

d
(
xm, Hk,i

) = γk,i

√√√√√
d∑

l=1

⎡
⎣α(l)

⎛
⎝ dk,i

(
x (l)

m

)

x̄ (l)
k,i − x (l)

k,i

⎞
⎠

⎤
⎦

2

, (4)

where

dk,i

(
x (l)

m

)
=

⎧⎪⎪⎨
⎪⎪⎩

x (l)
m − x̄ (l)

k,i if x (l)
m > x̄ (l)

k,i

x (l)
k,i − x (l)

m if x (l)
k,i > x (l)

m

0 if x (l)
k,i ≤ x (l)

m ≤ x̄ (l)
k,i

. (5)

In the above equation, the weighted distance between the object and hyperrectangle is used
as the distance measure. A weight γk,i denotes the importance given to the hyperrectangle. In
[39], a distance measure for discrete features is proposed, which is proportional to the num-
ber of measures between the given hyperrectangle and the training objects during learning.
In addition, the distance measure takes into consideration the importance of each feature,
by multiplying the distance between the l-th feature and the edge of the hyperrectangle by
weight α(l). The authors suggest setting these weights to 1 in practice. Further discussion of
this can be found in [40].

2.3 Nested generalized exemplar algorithm

First, note that the NGE is a learning method that generalizes a given training set TS into a
set of hyperrectangles in an n-dimensional Euclidean space, with

T S = {(x1, j1), (x2, j2), . . . , (xn, jn)}, (6)

where for the i-th element, xi and ji denote, respectively, observations (feature vector values)
and the correct class label.

The NGE could be considered an amplification of minimal distance classifiers. The main
advantage of the NGE over classical minimal distance classifiers is its low computational
complexity. The computational load of a minimal distance classification of a single object is
O(nd), where d is the dimension of feature vectors and n is the number of training samples.
Therefore, the classification task requires a large amount of time, particularly if n is large.
Minimal distance classifiers differ from most other techniques of classification in that train-
ing objects are needed during classification, whereas in typical inductive learning methods,
they are needed only during the training. Various experiments evaluating the classification
speedup of the NGE are given in [11].
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2.4 iDTt-NGE algorithm

Here, we propose a novel iDTt-NGE (incremental Decision T ree training N G E) algo-
rithm by modifying the NGE. This method is an improved version of the rb-NGE (rule-based
NGE) presented in [42]. The iDTt-NGE, distinct from the rb-NGE, has been adapted for train-
ing using data streams. The algorithm works in two main phases.

1. Phase 1: Decision tree induction and its transform into a set of hyperrectangles.
2. Phase 2: Rebuilding the set of hyperrectangles using the NGE algorithm.

Given below is a detailed discussion of these phases in the iDTt-NGE algorithm.

2.4.1 Phase 1: Decision tree induction and its transform into a set of hyperrectangles

In this step, we use a decision tree induction algorithm, e.g., C4.5 to train a tree based on TS
and then we convert it into a set of rules RS (1) taking into consideration that each decision
path is a de facto individual rule. We assume that conditions formulated in the rules apply to
continuous features belonging to a closed interval. It the rule does not include any conditions
for a given feature, we use the smallest possible value for the feature and the largest one
as the constraint connected to the feature. If a feature does not belong to a closed interval,
the constraints have to be established in terms of the lowest and highest values of the given
feature in the subset of TS in which the class label is consistent with the label given by the
rule. Finally, we create hyperrectangles equivalent to the rules from RS. For example, Hk,i

is created based on r (k)
i , as

Hk,i =

⎡
⎢⎢⎢⎣

x (1) x̄ (1)

x (2) x̄ (2)

...
...

x (d) x̄ (d)

⎤
⎥⎥⎥⎦ , (7)

where x (s) and x̄ (s) denote the smallest and highest values, respectively, of the s-th feature
of xallowed by r (k)

i .

2.4.2 Phase 2: rebuilding the set of hyperrectangles using NGE algorithm

The original NGE algorithm uses randomly chosen elements of TS (known as seeds) to ini-
tialize the hyperrectangles and the rest of the training objects to generalize them. We initialize
the hyperrectangles using a decision tree induction algorithm. If new data become available
and we choose to consider new training elements, then we use these to change the concept
hidden in the set of hyperrectangles.

Mainly, we take advantage of the functions proposed in the original NGE algorithm. Here,
we examine some of the important steps of this phase.

(a) Generalize Hi based on (xl , jl) This procedure expands the constraints given by Hi so
that (xl , jl) fulfills the condition of the hyperrectangle.

(b) Generalize the new hyperrectangle based on (xl , jl) This procedure creates a hyper-
rectangle so that the upper and lower values of the constraints are equal to xl given in
Fig. 1.

(c) Find the nearest two hyperrectangles to (xl , jl) This procedure uses the function for
finding the n-th nearest hyperrectangle given in Fig. 2.
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procedure generalize_hyperrectangle( ikH , , ( )ll ix , )

for s:=1 to d:

      if 
( ) ( )( ) ( )s

l
sk

i xxD >  then
( ) ( )( ) ( )s

l
sk

i xxD =

      if 
( ) ( )( ) ( )s

l
sk

i xxD <  then 
( ) ( )( ) ( )s

l
sk

i xxD =

endfor

Fig. 1 Pseudocode for generalized hyperrectangle used by iDTt-NGE

procedure find_next_nearest_hyperrectangle ( )( )ll ixn ,,

1. compute distance between ( )ll ix ,  and each hyperrectangles 

2. sort hyperrectangles according mentioned distance ( )ll ix ,

3. return n–th hyperrectangle 

Fig. 2 Pseudocode to find the n-th nearest hyperrectangle used by RB-NGE

(d) Prune the set of hyperrectangles To protect the classifier from overfitting, we use the
rule post-pruning method proposed by Quinlan [32]. First, every hyperrectangle is pruned
to remove redundant conditions. This is probably the most popular method for pruning
(e.g., used in C4.5), and in practice, it yields high-accuracy performance. A flowchart of
the proposed iDTt-NGE algorithm is given in Fig. 3.

3 Experiments

To evaluate the quality of the proposed modification, two experiments were carried out.

3.1 Experiment 1

The objectives of this experiment were as follows:

• To investigate whether the number of initial hyperrectangles has an influence on the
quality of classifiers trained by RB-NGE

• To compare the classification accuracy of the following algorithms:

◦ NN—nearest neighbor,
◦ NGE-3—NGE initialized by 3 seeds,
◦ NNGE—non-nested NGE initialized by 3 seeds [11],
◦ iDTt-NGE3—iDTt-NGE initialized by 3 rules and co-trained using 20% of the original

elements,
◦ iDTt -NGE6 - iDTt -NGE initialized by 6 rules (for Iris dataset, only 5 rules were

used) and co-trained as in the previous algorithm.

Initial rules for iDTt -NGE were randomly chosen from the set of rules given by the C4.5
algorithm.
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Rebuilding set of hyperrectangles using NGE 
algorithm

l:=1

find two nearest 
hyperrectangles to 

(xl, jl) – H1, H2

if label of H1

consists with jl

if label of H2

consists with jl

generalize H1 on
the basis of (xl, ji)
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the basis of (xl, ji)

generalize new 
hyperrectangle on
the basis of (xl, ji)

yes

no

yes

no

l:=l+1

l>n

prune set of 
hyperrectangels

yes

no

Decision tree generation and its transforming into set of 
hyperrectangles

given initial TS

i:=1

create Hk,i 
correspond to ri

(k)

k>Nk

k:=1

k:=k+1

i:=i+1

i>M

yes

no

no

Train decision tree 
using e.g. C4.5

Transform 
decision tree into 

rule set RS 

yes

Use nearest 
hyperrectangle classifier 
and collect new data in 

TS

Decision to rebuild 
the concept

Fig. 3 Flowchart of iDTt-NGE algorithm

3.1.1 Setup of experiment 1

The setup of this experiment was as follows.

1. All experiments were carried out in WEKA [41] and Matlab (with the PRTools toolbox)
environments [13].

2. Classifier errors were estimated using separate validation sets consisting of 30–50% of
the original elements. Each experiment was repeated 10 times with the averaged values
presented as the results.

All experiments were carried out on 5 benchmark datasets from the UCI Machine Learning
Repository [5] as described in Table 1.

3.1.2 Results

Results for NNGE, NN, and NGE-3 have been published in [11,40], but to ensure we repeated
the experiments exactly and we also obtained our own results, which are very similar. These
are presented in Fig. 4.

3.1.3 Evaluation of experimental results

For this experiment, the following observations can be made.
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Table 1 Description of datasets used in Experiment 1

Dataset Number of Short description

Instances Attributes Classes

Iris 150 4 3 One of the most popular benchmark
datasets devoted to the recognition
of a type of iris plant.

LED* 1000 7 10 Dataset consists of digit
representations on a 7 segment
LED display. Problem is
complicated by adding noise which
means that each segment could be
inverted with a 10% probability
[10].

Waveform* 5000 40 3 Problem of recognizing 3 classes of
waves introduced by Breiman et al.
[10].

Heart-dis 303 14 5 This is a very popular benchmark
dataset for heart disease diagnosis.

Voting 435 16 2 Dataset includes votes for each of the
U.S. House of Representatives
Congressmen on the 16 key votes
in 1984.

* We generated a number of instances using software from UCI; for the LED dataset we applied 10% noise
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Fig. 4 Classification errors using different datasets from UCI

• As anticipated, the quality of NGE and iDTt -NGE is worse than that of NN for 4 of the
databases, although for the Waveform dataset our proposed approach achieves the best
quality.

• The quality of NNGE is very similar to that of NN.
• An increasing number of initial rules enable the iDTt -NGE to achieve better performance.

Additionally, as discussed in [42], the quality of iDTt -NGE is almost independent of the
training process. It is worth noting that the original NGE and NN algorithms are highly
dependent on the number of training objects.
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Fig. 5 Classification error for different sizes of LED dataset

3.2 Experiment 2

The main goal of the second experiment was to assess the potential to adapt the iDTt-NGE
algorithm. We devised the following scenario to evaluate this characteristic.

• For a given number of training elements, train a decision tree using the C4.5 algorithm.
• Then, randomly choose 20 training elements and train another decision tree based on

the remaining elements. The obtained tree is then co-trained using iDTt-NGE with the
randomly chosen elements.

• This scenario was repeated for varying numbers of training elements.

3.2.1 Setup of experiment 2

The setup of this experiments was as follows.

1. All experiments were carried out in WEKA [41] and Matlab (with the PRTools toolbox)
environments [13].

2. We used artificial datasets of the LED dataset, generated by the WEKA software. For
each fixed number of training elements, we generated TS independently 10 times using
different seeds and with the application of 10% noise.

3. Classifier errors were estimated using the ten-fold cross-validation method [24].

3.2.2 Results

The results of the experiments, i.e., the relationship between the classification error and size
of the learning set for the LED dataset, are presented in Fig. 5.

3.2.3 Evaluation of experimental results

The following observations can be made regarding this experiment.

• C4.5 co-trained by iDTt-NGE achieves only a slightly worse quality than the original one,
but what is more important is that the computational cost of the co-training procedure is
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significantly lower than the cost of training a new tree. It is worth noting that the optimal
Bayes classifier error is 26% [10].

• The co-trained classifier is slightly more stable (smaller standard deviation) than the
original tree.

4 Conclusions

A modification of the NGE algorithm has been presented in this paper. This modification
could be interpreted as an information fusion model, because in producing a knowledge
representation in the form of hyperrectangles, it uses rules and a training set simultaneously.
The proposed algorithm was evaluated through computer experiments.

The results obtained are encouraging, enabling us to continue working on algorithms
from the NGE family. It is worth noting that classifiers obtained from algorithms based on
the NGE concept are easily adaptable because if new training objects become available, we
can improve the hyperrectangles by starting an NGE procedure for the new objects. This is
not commonly the case in classifiers trained by machine learning methods, e.g., we cannot
improve given decision trees by learning new objects. A second advantage of using the NGE
method is the low computational cost for classification. Additionally, the quality of the non-
nested NGE makes it worthwhile to start working on an implementation thereof as a method
for decision tree co-training.

The results obtained are promising and as such, we intend to carry out new experiments
on a wider range of datasets.
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