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Abstract
Adoption of carbon regulation mechanisms facilitates an evolution toward green and sus-
tainable supply chains followed by an increased complexity. Through the development and
usage of a multi-choice goal programming model solved by an improved algorithm, this arti-
cle investigates sustainability strategies for carbon regulations mechanisms. We first propose
a sustainable logistics model that considers assorted vehicle types and gas emissions involved
with product transportation. We then construct a bi-objective model that minimizes total cost
as the first objective function and follows environmental considerations in the second one.
With our novel robust-heuristic optimization approach, we seek to support the decision-
makers in comparison and selection of carbon emission policies in supply chains in complex
settings with assorted vehicle types, demand and economic uncertainty.We deploy our model
in a case-study to evaluate and analyse two carbon reduction policies, i.e., carbon-tax and
cap-and-trade policies. The results demonstrate that our robust-heuristic methodology can
efficiently deal with demand and economic uncertainty, especially in large-scale problems.
Our findings suggest that governmental incentives for a cap-and-trade policy would be more
effective for supply chains in lowering pollution by investing in cleaner technologies and
adopting greener practices.
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1 Introduction

The integration of sustainability issues into supply chain (SC) management has pro-
gressed remarkably, most of it focused on the areas of the green supply chain (GSC)
and the sustainable supply chain (SSC) (Tang and Zhou 2012; Golinska-Dawson et al.
2018; Heydari et al. 2020). Increasing concerns about the environmental impacts and
international and government regulations have attracted research attention to the GSC
problems beyond merely economic aspects (Ivanov et al. 2019). In an GSC, the envi-
ronmental impacts from SCs need to be minimized complementing total cost mini-
mization (Rezaee et al. 2017). Moreover, social aspects in SCs became a trend and
lead to introducing the SSC network (Carter and Rogers 2008; Pavlov et al. 2019).
In general, when the financial, environmental and social impacts of the SC are con-
sidered simultaneously, the traditional SC shifts toward the SSC. The transition from
the traditional goals of the SC to the new sustainable objectives is also identified as
the company’s competitive advantage (Dubey et al. 2015; Giannakis and Papadopoulos
2016).

Improvements in operating costs efficiency and service levels while paying special atten-
tion to the environmental, economic, and social considerations in the SC belong to major
requirements to succeed in highly competitive markets (Golinska-Dawson et al. 2018;
Brandenburg et al. 2019). Due to environmental pollution and increased global warming,
government and international bodies have introduced laws obliging companies to address
environmental issues. One of the most important parts of new regulations is reducing carbon
emissions/footprint that improves the business’s environmental performance (Golinska and
Romano 2012). In an SC, this will bring the integrity of all parts of the SC in social com-
mitments. A carbon footprint reduction project is therefore of a global economic importance
(Fahimnia and Jabbarzadeh 2016).

A recent European Commission report illustrates that the amount of transport gas emis-
sions has been continually increasing, and if no action is taken, transport emissions could
make up more than 30% of total EU gas emissions by the end of 2020. The report also
demonstrates that 93–95% of greenhouse gas emissions resulting from transport oper-
ations are composed of CO2 (Eurostat 2019). The European Union Emissions Trading
System (EU-ETS) is a tool that uses a tiered method for calculating emissions, linked
to necessary uncertainty ranges that are supported in the EU climate policy’s monitoring
and reporting guidelines. The EU-ETS is identified as a powerful system for deducting
greenhouse gas emissions especially CO2 emissions cost-effectively (EU climate actions
2019).

SC’s CO2 emissions can be seen in the various components, including raw material pro-
curement, product manufacturing, distribution and retail, and disposal and recycling (Zhen
et al. 2019; Golinska et al. 2015). Figure 1 illustrates that most of the CO2 emissions are
accounted in transportation and logistics processes of GSCs and SSCs, according to a survey
through 215 SC companies in Europe (GSCmonitor 2015). From GSC and SSC point of
view, Mohammed et al. (2017) concede that although the sources of CO2 emissions have
been broadly investigated in academic research, the decisions regarding types of vehicles
used is critical in real-world transportation systems, and this fact was left ignored in most
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monitor (2015))

of the GSC and SSC models. Moreover, an increasing uncertainty of demand and economic
environments represent a research challenge for design of GSC and SSC (Brandenburg and
Rebs 2015; Allaoui et al. 2019).

Recent literature suggests that instead of choosing an efficient policy from the existing
carbon emission plans, an applicable model for the GSC and SSC could be created by consid-
ering uncertainty features in the key parameters of the model, especially demand and related
costs (He et al. 2019). To this end, we aim to design an GSC by employing a robust-heuristic
optimizationmethod to copewith demand and economic uncertainty and considering assorted
vehicle types.Robust optimization is one of the branches of optimization theory that copewith
uncertain optimization problems. In scenario-based robust optimization, this method com-
bines scenario-based description of problem data with the solution formulations like goal
programming. This approach tries to generate solutions that are less sensitive to realizations
of the model data. Robust optimization has some advantages comparing other approaches
such as stochastic programming (Mulvey et al. 1995).

We contribute to literature by offering a comprehensive approach to minimize carbon
emissions in most of the SC processes and considering diversity of vehicle types and uncer-
tainty in SC costs. We present a bi-objective model that focuses on a specific capacity for
an environmentally-friendly SC and carbon emissions. The proposed bi-objective model
is converted to a single-objective one that aims to solve the problem by using improved
multi-choice goal programming (IMCGP). Since the model is an NP-hard one in large-
scale problems, for reducing the solving time and complexity of the problem, we employ a
heuristic method combined with the improved IMCGP. To test and examine our model, two
carbon reduction policies—namely carbon-tax and cap-and-trade—are compared in a real
case study.

The remainder of this paper is organised as follows. In Sect. 2, we present a detailed
literature review about the topic. In Sect. 3, the problem is defined and formulated. We
explain our novel solution approach in Sect. 4.6. A real case study and related numerical
tests are provided in Sect. 5, illustrating the effectiveness of the proposed model. Managerial
insights are provided in Sect. 7. In Sect. 8, we conclude with summarizing major insights of
our study and outlining possible future research directions.
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2 Literature review

In this section, we provide a brief review of extant literature in GSC and CO2 footprint
modeling and sustainability considerations in SC modeling. We also develop a conceptual
linkage between these subjects to provide the contributions expected from this study. A
summary of recent literature on these topics is presented in Table 1.

2.1 Green supply chain and CO2 footprint modeling

In recent years, a greater focus on carbon emissions and footprints can be observed in GSC
models (Mohammed et al. 2018; Tirkolaee et al. 2020). Carbon footprint measurements are
needed to provide a reliable estimate of the total amount of greenhouse gas emissions released
in the life cycle of products and services along the SC. These estimations can include various
elements from raw material extraction to production, distribution, storage, and recycling
(Plassmann et al. 2010). Chen and Chen (2017) study the carbon footprint and allocation
of responsibility involved with the production stage. Despite the advantage of optimizing
the social value of the GSC, they only consider single-period and single-product network
and ignore the transportation and holding processes as the source of carbon emissions. In
another study evaluating environmental implications in the SC, Bazan et al. (2015) minimize
the total cost of the reverse logistics network, considering carbon footprint and production
energy simultaneously. The green concept has also been employed for green inventory routing
problemswith consideration of several interval fuel consumptions (Franco et al. 2016, 2017).

In a review article, Dekker et al. (2012) discuss green logistics and the integration of
different environmental aspects into green logistics, the most important of which is carbon
emissions in transportation. Du et al. (2016) also examine low-carbon production and its
implementation in the SC. Their suggested that a commercial system according to energy
consumption can still be profitable in the case of low-carbon production. Hao et al. (2017)
investigate the amount of greenhouse gas emissions and energy consumption, using a life
cycle assessment framework under recycling options. The authors develop a low-carbon
design approach to estimate the carbon footprint at each stage of the product life cycle.
Aiming to minimize carbon footprint in a reverse logistics network, Kannan et al. (2012)
propose a single-product, single-period linear integer programming model. Moreover, Zhao
et al. (2013) develop a mathematical model to minimize the level of carbon emissions in
transportation system and distribution centers. However, their model lacks the consideration
of uncertainty in its parameters—a distinctive and substantial contributionmade by our study.

Our literature analysis demonstrates that the consideration of uncertainty has been growing
for the recent years. For instance, in a study aimed at designing an SSC network under the
uncertainty of capacity of suppliers, producers, and warehouses, Shaw et al. (2016) propose
a model including greenhouse gas emissions and carbon trading issues. The authors also
contemplate demand uncertainty in their model. Aljuneidi and Bulgak (2020) present an
integrated approach to designing a reverse logistics network for a sustainable manufacturing
company. Their model minimizes carbon emissions and transportation distances between
facilities by considering a hybrid production and reproduction system.Moreover, Reddy et al.
(2019) consider a reverse-logistic network design (RLND) and develop amixed-integer linear
programming (MILP)model in amulti-period configuration. Their proposed network focuses
on the choice of vehicle type and carbon emissions through operations and transportation by
defining a corresponding binary variable that is equal to one when a vehicle type is selected
between two nodes. Although their model has the advantage of vehicle type selection, the
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model is developed for a single period and does not consider any uncertainty in the main
parameters of the model. Our review of the literature about GSC models also shows that
the majority of the studies develop a multi-objective optimization problem and incorporate
uncertainty in a non-linear context. They solve the proposed problem using a single-objective
model converted from a multi-objective one (Govindan et al. 2020).

2.2 Sustainability considerations in supply chainmodelling

We now turn to multi-objective issues in designing SSC. Given the growing concern over
sustainability in recent years, researchers and practitioners began to incorporate social and
environmental factors into SC design in addition to economic factors. One of the main objec-
tive is to develop a model that can simultaneously cover economic, social, and environmental
perspectives. While most research has focused on the economic aspects of SCs (Jahani et al.
2019), some recent studies have taken environmental aspects into account (Moreno-Camacho
et al. 2019). Researchers believe that the use of sustainable SC management (SSCM) will
bring several advantages for the organizations such as reducing environmental risks and pol-
lution (Ansari and Kant 2017) and improving customer relationships (Sauer and Seuring
2019).

The sustainability issues can be addressed by defining a multi-objective optimization
model for an SC.Accordingly,Arampantzi andMinis (2017) consider amulti-objectivemath-
ematical framework for an SSC design, including significant decisions in high-performance
SC design or redesign. Their model complies with all three goals of the SSC, i.e., eco-
nomic, social, and environmental areas. Jabbarzadeh et al. (2018) present a hybrid approach
to designing an SSC network that is flexible in the face of random disturbances. They also
employ a fuzzy c-means clustering method to measure and evaluate suppliers’ sustainabil-
ity performance. Although a new methodology is developed in their study for the SSC, the
model considers a single-period and single-product problem. Considering a multi-product
andmulti-period reverse SC, John et al. (2017) develop anMILPmodel by integrating the car-
bon emission cost of transport activities. This study has ignored carbon emissions generated
in the production and holding activities, and the uncertainty features in the main parameters
like demand.

Taking uncertainty into account is a common characteristic of recent modeling approaches
for SSC design. Habibi et al. (2017) propose a multi-objective mathematical model for an
SSC network under an uncertain return product parameter. In their RLND model, they pro-
pose the first objective as minimization of total cost, including the cost of moving facilities,
cost of transfer stations, allocation costs of facilities, shipment costs, recovery activities costs,
and penalty costs. The second objective of their model deliberates the minimization of envi-
ronmental impacts and visual pollution. Zahiri et al. (2018) develop another multi-objective
mixed-integer nonlinear programming (MINLP) model for an SSC network under the uncer-
tain demand and supply parameters. They propose the first objective as the minimization
of total cost, incorporating inventory costs, location and allocation costs of facilities, man-
ufacturing costs, shipment costs, procurement costs, and fixed ordering costs. The second
objective of their model is defined as the minimization of environmental impacts, and the
third objective complies with themaximization of an SC’s responsiveness. This research only
models a single-product network in which the sources of carbon emissions are ignored in
the environmental impacts. In the case of sustainability and the RLND model, many studies
can be found regarding a sustainable closed-loop SC network (e.g. Govindan et al. (2016);
Soleimani et al. (2017); Sahebjamnia et al. (2018)). Also, some recent motivating studies
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consider green and sustainable closed-loop SC (see Zhen et al. (2019); Yun et al. (2020);
Esmaeili et al. (2020)).

2.3 Contributions of the study

The literature review illustrates that although there are many studies in the GSC and SSC
fields, there are still some gaps. For example, some studies ignore considering the multi-
ple sources of carbon emissions (see the models provided by Jindal and Sangwan (2017),
Chen and Chen (2017), John et al. (2017), Reddy et al. (2019) and Govindan et al. (2020)).
Even if some studies consider carbon emissions in various processes of the SC, they ignore
the consideration of different types of vehicles in the transportation. We demonstrated the
remarkable effect of this assumption in the Introduction Section (see the models developed
by Soleimani et al. (2017), Yadollahinia et al. (2018), Yavari and Geraeli (2019), Banasik
et al. (2019) and Zahiri et al. (2018)). We also insist on considering uncertainty features in all
main parameters of a GSC or SSCmodel that is ignored in several relevant models (Chibeles-
Martins et al. 2016; John et al. 2017; Reddy et al. 2019; Franco and Alfonso-Lizarazo 2020).
Finally, researchers have had less attention to compare different carbon policies and they
usually focused on carbon cap-and-trade policy (see Kaur and Singh (2018) and Gholizadeh
et al. (2020)).

We contribute to closing these research gaps in multiple ways. Our article investigates
sustainability strategies for carbon regulations mechanisms. We first propose a sustainable
logistics model that considers assorted vehicle types and gas emissions involved with prod-
uct transportation. We then construct a bi-objective model that minimizes total cost as the
first objective function and follows environmental considerations in the second one. With
our novel robust-heuristic optimization approach, we offer a decision-making support in
comparison and selection of carbon emission policies in GSCs in complex settings with
assorted vehicle types, demand and economic uncertainty. Due to the existence of nonlinear
constraints arising from uncertain parameters, in our proposed MINLP model, we employ
a robust optimization approach along with a heuristic method which allows reducing the
computational time at different levels of uncertainty. Distinctively, in contrast to the consid-
eration of uncertainty in demand and costs in the existing GSC and SSC models, our model
has the advantage of contemplating uncertainty in all main costs associated with an SC
(i.e. production, transportation, ordering, holding, and shortage costs). We deploy our model
in a case-study to evaluate and analyse two carbon reduction policies, i.e., carbon-tax and
cap-and-trade policies. The results demonstrate that our robust-heuristic methodology can
efficiently deal with demand and economic uncertainty, especially in large-scale problems.
Selecting optimal vehicle types with the lowest carbon emissions is another original feature
of our study that can help managers to deduct carbon emissions more effectively in their
GSCs. Our findings suggest that governmental incentives for a cap-and-trade policy would
be more effective for supply chains in lowering pollution by investing in cleaner technologies
and adopting greener practices.

3 Problem statement

In this study, we consider a CO2 footprint network and an emissions-reduction business
scenario. We study a multi-period setting for a multi-product and multi-tier SC with multiple
suppliers and multi-carrier transport. The problem involves ordering, manufacturing, and
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Fig. 2 Supply chain network and carbon emission sources

shipping products using the carriers/vehicles and is aimed at minimizing total purchasing
costs while incorporating carbon emissions costs. This is achieved by optimally allocated
orders among potential suppliers through different types of vehicles. Figure 2 represents the
proposed classification of carbon emission sources in SC processes. It can be observed in
Fig. 2 that total carbon emissions include two parts: (1) operation-related carbon emissions
and (2) transportation-related carbon emissions. The operation-related emissions are derived
from two causes: production (how items are procured, and the quantity produced) and storage
(holding inventory). The transportation-related emissions are derived from the vehicles and
their types (the mileage, carrying load, and distance traveled by each vehicle).

Figure 3 shows the sustainable logistics framework used in this study to highlight the SC
network and the carbon footprint emissions from each SC process. The range and bounds
of carbon emissions are of great importance in determining and calculating both direct and
indirect emissions throughout the SC.Without a clear identification of this range, no footprint
measurement or reporting would be possible. One major advantage of this framework is that
it calculates not only the carbon emissions from the viewpoint of the procurement of products
but also from the perspectives of holding inventory and logistics, providing a holistic view
of the SC (Paksoy et al. 2019).

Carbon footprint recovery options are considered as carbon cap-and-trade policies. Con-
stant gas releases are associated with the selected vehicles and their types. The variable gas
emissions related to a vehicle is a function of the distance covered by the vehicle, its mileage,
the type of fuel consumed by the vehicle, and the load transported by the vehicle. Carbon-
and-trade policy is used tomanage and control greenhouse gas emissions, in which a constant
share is permitted for the SC. The carbon market can be considered a potential option for
selling government-granted allotments of CO2 outputs.

Sustainable logistics planning has two principal objectives, namely minimizing the total
cost and maximizing the vehicle’s transportation performance (Dekker et al. 2012). The plan
is aimed at reducing carbon emissions by determining SC’s inventory levels under uncertainty
and carbon policies (carbon-tax and cap-and-trade). Given that each policy has its merits, the
comparison of the policies is also investigated in the plan.
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Government

Supplier Manufacture Retailer Customer
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Fig. 3 Sustainable logistics framework used in this study (based on Lee (2011))

Since demand and costs associated with a product can be impacted by unexpected events
like unstable economic situations, it is difficult to predict the exact distribution of the product
and its future demands and costs. Hence, there is no guarantee that the distribution of proba-
bilities, particularly in our multi-period problem, will be stabilized. Despite the availability
of enough data to produce valid scenarios, it is challenging to estimate future demands and
costs regarding each scenario. Consequently, we develop a probabilistic model in our study
to formulate the uncertainty of these parameters in each scenario.

4 Model

The list of indicators, variables, and symbols used in our proposed mathematical model are
presented as follows:

4.1 List of indices and sets

i Products i = 1, 2, . . . , I
j Suppliers j = 1, 2, . . . , J
t Time periods t = 1, 2, . . . , T
v Vehicle v = 1, 2, . . . , V
s Scenarios s = 1, 2, . . . , S

4.2 List of parameters

Dits Demand for product i in period t under scenario s.
CPi jts Procurement cost of product i from supplier j in period t under scenario s.
CT jvts Transportation cost from supplier j using vehicle v in period t under scenario s.
COi jts Ordering cost of product i procured from supplier j in period t under scenario s.
CHits Holding inventory cost of product i in period t under scenario s.
CSits Shortage cost of product i in period t under scenario s.
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Capi jt Capacity of supplier j to provide product i in period t .
σ jv Capacity of vehicle v available for supplier j
N jvt Total number of vehicle v available for supplier j in period t .
Fi jvt Amount of carbon gas emissions in executing a lot size of X units of product i

procured from supplier j by using vehicle v in period t .
τ Amount of permitted carbon gas emissions during the entire planning horizon.
cp Price on carbon per unit.
δvts Carbon emissions factor caused by vehicle v in period t under scenario s.
EOt Amount of carbon gas emissions due to placing an order in period t .
EHt Amount of carbon gas emissions due to holding a unit of a product at a warehouse

in period t .
Livt Lead time of supplier j using vehicle v in period t .
ELit Lead time lower tolerance for product i in period t .
ULit Lead time upper tolerance for product i in period t .
DDj Distance between supplier j and the buyer.
Mvt Mileage (km per liter) of vehicle v at the beginning of period t .
M Big number.
ps Probability of the occurrence of scenario s.

4.3 List of decision variables

π Extra or spare carbon credit sold or bought over the entire planning horizon.
Xi jvts Quantity of product i procured by supplier j using vehicle v in period t under

scenario s.
Sits Quantity of shortage in product i in period t under scenario s.
Ii ts Inventory level of product i carried from period t to t + 1 under scenario s.
Ui jvt Binary variable equals to 1 if product i is supplied by supplier j using vehicle v in

period t ; 0 otherwise.
Y jvts Binary variable equals to 1 if vehicle v is chosen with the lowest carbon emission

for buying from supplier j during period t under scenario s; otherwise 0.

4.4 List of assumptions

The main assumptions of the problem, according to the literature of robust heuristics models
(e.g. Kaur and Singh (2018); Gholizadeh et al. (2020)) are presented as follows:

• Demand and main costs (procurement, transportation, ordering, and holding inventory
costs) are considered uncertain in a scenario-based stochastic approach.

• Sustainable procurement is modelled using uncertain data, delay in delivery, and shortage
in supply.

• The supplier and the vehicles capacities are known.
• Any plant and production process in the SC network can be assumed as a supplier with

limited capacity in the model.

We also add the following assumptions with respect to our new contributions to literature:

• The procurement and logistics processes represent real-time demand or capacity changes
for each period.

• In logistics, an empty vehicle (with no load) releases constant CO2, whereas the variable
CO2 emission is a function of size, distance, and the mileage of vehicles.
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4.5 Proposed formulation

The total cost of procurement is represented in the first objective function (Eq. 1) and contains
production, shipping, ordering, inventory, shortage, and carbon selling/buying income/cost.
The lowest carbon gas emission coverage related to vehicle selection is addressed in the
second objective function (Eq. 2).

min Obj1 =
∑

i

∑

j

∑

t

∑

s

∑

v

CPi jts Xi jvts +
∑

i

∑

j

∑

t

∑

s

∑

v

COi jtsUi jvt

+
∑

i

∑

j

∑

v

∑

t

∑

s

CT jvts DD j Xi jvts +
∑

i

∑

t

∑

s

CHits Ii ts

+
∑

i

∑

t

∑

s

CSits Sits + πcp (1)

min Obj2 =
∑

j

∑

v

∑

t

∑

s

Y jvts DD jδvts (2)

The main constraints of the proposed optimization model are defined in Eqs. (3)–(12)
and explained in Table 2. Equation (7) is the most important constraint of the model and
used to plan and control carbon emissions in both carbon-tax and cap-and-trade policies. We
employ this constraint to examine our first contribution listed in Sect. 2.3. The index v in all
designated parameters and variables is also used for incorporating the contributions of the
study regarding the consideration of assorted vehicle types and the lowest levels of carbon
emissions in vehicles and transportation systems.

Ii(t−1)s − Si(t−1)s +
∑

j

∑

v

Xi jvts − Ii ts + Sits = Dits ∀i, t, s (3)

Ii(t−1)s − Si(t−1)s ≤ DitsUi jvt ∀i, j, v, t, s (4)
∑

v

∑

s

Xi jvts ≤ Capi jt ∀i, j, t (5)

∑

i

∑

s

Xi jvts ≤ σ jvN jvt ∀ j, v, t (6)

∑

i

∑

j

∑

t

∑

s

∑

v

(
Fi jvt Xi jvts + DDj

Mvt
δvt

)
Ui jvt +

∑

i

∑

j

∑

v

∑

t

EOtUi jvt (7)

+
∑

i

∑

t

∑

s

EHt Iits = π + τ

LivtUi jvt ≤ ULit + M(1 −Ui jvt ) ∀i, j, v, t (8)

LivtUi jvt ≥ ELit + M(1 −Ui jvt ) ∀i, j, v, t (9)
∑

j

Y jvts ≥ 1 ∀v, t (10)

Xi jvts, I i ts, bits, π ≥ 0 ∀i, j, v, t, s (11)

Ui jvt , Y jvts ∈ {0, 1} ∀i, j, v, t, s (12)

According to the proposed mathematical formulation introduced in Sect. 4.5, multiplying
a continuous variable by a binary variable, formulated in Eq. (7), leads to an MINLP model.
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Table 2 The main constraints of
the proposed model and their
explanations

Constraint # Explanation of the constraint

(3) The inventory balance for each product in
each period and under each scenario

(4) At each period, the inventory level and the
shortage of a product at the end of the
previous period cannot exceed the amount
of demand in the period if the product is
procured from the corresponding supplier

(5) The capacity limit of each product for each
supplier in each period

(6) The vehicle capacity limit for each vehicle
used for each supplier in each period

(7) The carbon emission equality constraint,
which declares that the total carbon
emission caused by procuring items from
suppliers, transportation-related carbon
emission, placing an order, and holding a
unit of products should be less than equal
to the carbon gas emissions quota plus
spare/extra carbon gas emissions
bought/sold over the entire planning
horizon

(8) & (9) The products procured from various
suppliers are received during the related
period

(10) At least one vehicle with the lowest carbon
emissions is assigned to the selected
suppliers

(11) Introducing the non-negative decision
variables

(12) Introducing the binary decision variables

To solve this problem, a traditional method is normally introduced in the MINLP models’
literature to turn the model into an MILP model (Jahani et al. 2018).

4.6 Traditional linearization approach

Regarding the linearization of the nonlinear terms of an MINLP model, several linearization
constraints can be defined as follows (Gholizadeh et al. 2018):

∑

s

Xi jvts ≤ Ui jvt M ∀i, j, v, t (13)

∑

s

ξi jvts ≤
∑

s

Xi jvts ∀i, j, v, t (14)

∑

s

ξi jvts ≥
∑

s

Xi jvts − (1 −Ui jvt ) ∗ M ∀i, j, v, t (15)

Where ξi jvts is a continuous positive auxiliary variable and M is a sufficiently large
positive number.
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Fig. 4 Classification of uncertainty types for available data and the corresponding applicablemodelingmethods
(According to Bairamzadeh et al. (2018))

4.7 Robust optimization counterpart

EveryGSC requires informationmanagement that necessitates consideration of several issues
regarding input data in SC modelling (Kolinski et al. 2019). According to Bairamzadeh et al.
(2018), input data can include three types of uncertainties based on the amount of available
information: (1) randomness, (2) epistemic, and (3) deep uncertainty. Randomness uncer-
tainty occurs once there is adequate and valid historical data for estimating the probability
distribution. Epistemic uncertainty is often characterized by the deficiency of information in
input data. This kind of uncertainty is generally presented in the form of judgmental data
from linguistic features, and the data may be collected by experienced professionals. Finally,
deep uncertainty is related to the lack of information necessary to predict the objective or
subjective probability of future conditions (Bairamzadeh et al. 2018). Figure 4 demonstrates
the classification of uncertainty types and suitable modeling methods based on the nature of
uncertainty.

Sincewe assume data availability to estimate the probability distribution of the parameters,
the type of uncertainty in this study is assumed as random. Therefore, because the scenario-
based robust optimization is one of the methods applied to tackle the randomness uncertainty
(see Fig. 4), we utilize this approach in our study.

To solve optimization problems with data uncertainty, a robust approach was proposed in
the early 1970s and has been widely studied and developed (Bairamzadeh et al. 2018). Under
this approach, the solution tends to accept an optimal answer for the nominal values of data
to ensure that the optimal response is available when the data is changed (Mohammed et al.
2018; Özmen et al. 2017).

In the aforementioned robust optimization approach, two kinds of variables exist: (1)
design variables and (2) control variables. Decisions related to design variables are made
before the potential parameters are realized and cannot be adjusted after realization. Time
control variables are subject to tuning and trigger a particular occurrence of potential parame-
ters. Also, the model’s limits include structural and control constraints. Structural constraints
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refer to equations without uncertain parameters or variables, whereas control constraints
include non-deterministic parameters or variables.

According to Mulvey et al. (1995), a typical mathematical formulation for a robust opti-
mization model is represented in Eq. (16). The x vector reflects design variables, and the
y vector describes control variables. A, B, and C are the parameter coefficient vectors and
b and e are the parameter vectors (the right hand side values). A and b are certain values,
while B, C , and e are uncertain. A special understanding of these parameters is known as a
scenario that is determined by s index in these parameters. The probability of each scenario is
determined by ps . The � symbol is employed to represent a set of scenarios. Consequently,
the coefficients specifying uncertainty are Cs and Bs for each scenario (s ∈ �). Also, the
control variable y is modified after awareness of the scenario and can be replaced with ys
regarding scenario s. As a consequence of the uncertainty of the parameters, the model may
not be justified for some scenarios. Therefore, ηs is defined to represent the model under
unjustified scenario s. Once the model is justified, ηs is equal to zero, and in other situations,
it will gain a positive number.

Min σ(x, y1, y2, . . . , ys) + γρ(η1, η2, . . . , ηs)

s.t .

Ax = b,

Bsx + Cs ys + ηs = es ,

x ≥ 0 , ys ≥ 0 , ηs ≥ 0 , ∀s ∈ � (16)

The objective function represented in Eq. (16) includes two terms. The first term calculates
the robustness of the solutionwhich shows the risk-aversion level of decision-makers and their
desire for lower costs. The second part calculates the robustness of the model by penalizing
the solutions that violate the control constraints. The trade-off between the model robustness
and the solution robustness is incorporated using coefficient (weight) γ . To better explain
the effect of γ , if we insert a small value for this parameter, the objective function focuses on
minimizing the first term, and the probability of obtaining an infeasible solution increases.
Whereas, if γ is large, the solution tends to be more feasible, but the first part of the objective
function (i.e. σ(x, y1, y2, . . . , ys)) takes higher values. The ξ symbol and the array of ξ =
f (x, y) are specified as cost and utility functions, respectively. For each scenario, the high
variance for ξs = f (x, ys) determines that the decision is taken at high risk. In other words,
a tiny variation in the uncertain parameters can result in large variations in the value of
f function. Mulvey et al. (1995) employ the terms formulated in Eq. (17) to illustrate the
solution’s stability. δ is a weight reflecting the solution variance.

σ(0) =
∑

s∈�

psξs + δ
∑

s∈�

ps

(
ξs −

∑

s∈�

p′
sξ

′
s

)2

(17)

Since the square term of Eq. (17) (i.e.
∑

s∈� ps(ξs − ∑
s∈� p′

sξ
′
s)

2) increases the com-
putational time of solving the model, Yu and Li (2000) introduce the absolute value of the
term, shown in Eq. (18), to reduce the operations related to the total computational time.

σ(0) =
∑

s∈�

psξs + δ
∑

s∈�

ps

∣∣∣∣ξs −
∑

s∈�

p′
sξ

′
s

∣∣∣∣ (18)

Dealingwith Eq. (18), which contains an absolute value and outlines a non-linear function,
two additional variablesQ+

s andQ−
s are defined to linearize the resultant objective function.
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If
∑

s∈� p′
sξ

′
s is more than ξs , Q−

s is returned and otherwise Q+
s . Therefore, Eq. (18) is

reformulated as follows:

σ(0) =
∑

s∈�

psξs + δ
∑

s∈�

ps(Q+
s + Q−

s )

s.t .

ξs −
∑

s∈�

p′
sξ

′
s = Q+

s + Q−
s , s ∈ �,

Q+
s ,Q−

s ≥ 0, s ∈ �. (19)

According to the constraints of Eq. (19), it is clear that one of the values of Q+
s and Q−

s
is always zero for any δ ≥ 0 (Lee 2011). Using Eq. (16), the objective function of the final
robust optimization model is formulated as follows:

∑

s∈�

psξs + δ
∑

s∈�

ps(Q+
s + Q−

s ) + γ
∑

s∈�

psηs (20)

Utilizing the abovementioned robust optimization method, the objective functions of our
proposed problem are formulated as follows:

MinZ F =
∑

s

ps OB J1s + λ
∑

s

ps

(
OBJ1s −

∑

′s
p′
s OB J1′

s + 2θs

)
+ ω

∑

s

psδs

(21)

MinRF =
∑

s

ps OB J2s + λ
∑

s

ps

((
OBJ2s −

∑

′s
p′
s OB J2′

s

)
+ 2θs

)
(22)

Several new constraints should be added to the model, as introduced in Eqs. (23)–(25),
where λ is the coefficient related to the importance (weight) of optimality robustness and ω

reflects the infeasibility weight that a decision-maker sets experimentally. The first and the
second terms in Eqs. (21) and (22) indicate the mean and variance of each objective function,
respectively.

OBJ1s −
∑

s

ps OB J1s + θs ≥ 0 xm ∀s (23)

OBJ2s −
∑

s

ps OB J2s + θs ≥ 0 xm ∀s (24)

θs ≥ 0 (25)

The last term in Eq. (21) measures the model robustness in terms of the infeasibility values
of control constraints under each scenario. Constraints (23) to (25) are auxiliary constraints
included in the optimization model for converting the nonlinear objective function to a linear
one.

5 Solution approach

As previously mentioned, the model presented in this paper defines two minimization objec-
tive functions with different orientations. Therefore, when seeking interactivity between the
objective functions, we employ an IMCGP to solve the problem. The model presented in this
section is a combination of two different methods explained in the following subsections.
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We also compare the results of our solution approach with other methods using a real case
study and several related numerical examples to create expected levels for our goals.

5.1 Improvedmulti-choice goal programming (IMCGP)

One of the most effective ways to increase the efficiency of an optimization model is to
incorporate the experts’ opinions into the problem. To this end, the goal programmingmethod
describes the level of achievement for each of the objective functions according to the experts’
opinions. It is identified as an efficient, well-defined way to solve multi-objective models
(Yadollahinia et al. 2018). We employ this method to solve our proposed multi-objective
model.

Recently, a new multi-choice goal programming (MCGP) approach was proposed by
Jadidi et al. (2015). The superiority of this model in comparisonwith the otherMCGPmodels
is the recommended methodology in which the decision-makers can control their priorities
more efficiently. The authors present a model that contains the revised goal programming
approach (introduced by Chang (2008)) and the original goal programming along with a
priority function, taking into account goal efficiency. They believe that sometimes the value
of the target functionwill pass our expectation level, resulting in a penalty for the optimization
model. The following equations introduce their model:

Max
∑

k

(wa
k ak − wb

kβk)

s.t .

fk(X) = αk fk,min + (1 − αk) fk,max + βk( f
−
k − fk,max ) ∀k

αk ≤ yk ≤ 1 + αk ∀k
βk + yk ≤ 1 ∀k
yk ∈ {0, 1}, 0 ≤ αk, βk ≤ 1 ∀k (26)

In Equation set (26), the proposed single-objective optimization model for the MCGP
is developed in which k is the number of objective functions that should be converted to
maximization functions. The range of [ fk,min, fk,max ] determines a boundary for the aspi-
ration level yk specified by the decision-makers ( fk,min ≤ yk ≤ fk,max ). αk is a continuous
coefficient, valued between 0 and 1, and calculates the normalized distance between the k-th
objective function and fk,max (αk = fk,max− fk (X)

fk,max− fk,min
). f +

k and f −
k indicate the k-th value of the

objective function in the desired and undesired conditions, respectively. βk also defines the
normalized distance between the k-th value of the objective function ( fk(X)) and fk,max in

case fk,max is greater than fk(X) (βk = fk (X)− fk,max

f −
k − fk,max

). wa
k and wb

k are the weights specifying

the importance of the k-th objective with respect to αk and βk .
Jadidi et al. (2015) assume that fk,min = f +

k and divide the range of [ f −
k , f +

k ] into
two suboptimal regions of [ fk,max , fk,min] and a less favorable boundary of [ f −

k , fk,max ].
They note that one of αk and βk is zero in each of these boundaries. Figure 5 illustrates the
boundaries introduced by the authors. LDR and MDR stand for the less and more desirable
ranges, respectively.

The single-objective model introduced in Equation set (26) can be rewritten for our bi-
objective model as follows:

MaxZ = wa
1α1 + wa

2α2 − wb
1β1 − wa

2β2
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Fig. 5 Relationship between parameters in the proposed IMCGP approach (according to Jadidi et al. (2015))

S.t:

Z1 = α1 f1,min + (1 − α1) ∗ f1,max + β1 ∗ ( f −
1 − f1,max )

Z2 = α2 f2,min + (1 − α2) ∗ f2,max + β2 ∗ ( f −
2 − f2,max )

α1 ≤ y1 ≤ 1 + α1

β1 + y1 ≤ 1

α2 ≤ y2 ≤ 1 + α2

β2 + y2 ≤ 1

y1, y2 ∈ {0, 1}
α1, α2, β1, β2 ≥ 0 (27)

The values of f +
k , f −

k , fk,min and fk,max can be obtained using the abovementioned
method for our minimization functions:

• To obtain the value of f +
k we solve a sub-problem with the k-th objective function and

all of the constraints to minimize the objective, and the achieved solution is equal to f +
k .

• To estimate the value of f −
k , a sub-problem is solved to maximize the k-th objective

function and the solution is equal to f −
k .

• The value of fk,min is obtained using a manner similar to f +
k .

• To obtain the value of fk,max , a sub-problem with the corresponding objective is solved
to maximize the function. fk,max is less than or equal to the achieved solution (based on
the decision-makers’ opinion).

The pseudo code of the proposed algorithm is presented in ”Appendix B”.

5.2 Heuristic approach

Since the computational time for solving an MILNP model increases drastically by adding
the linearization binary variables, in this section, we consider a heuristic solution approach
for our proposed problem given the circumstances of uncertain data. We introduce our new
heuristic method in three steps as shown in Fig. 6. These steps are applied to the MINLP
model as a heuristic MINLP (HMINLP) model for medium and large sample sizes. Table 3
introduces each optimization model and the corresponding solution methodology defined in
this research.
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• Relax the constraints including binary variables in the MINLP model
by jvt ≥ 0. The resultant model is called relaxed MINLP.

• Solve the relaxed MILNP model optimally.

• From the solution obtained by the relaxed MINLP, list all the non-
zero values of binary variables jvt

Step 1

Step 3

Step 2

• Set all non-zero values of jvt as 1 and add these as constraints to 
the original MINLP.

• Solve the new model optimally.  

Fig. 6 Steps defined for the proposed heuristic solution approach

Table 3 Definition of the
proposed optimization models
and the corresponding solution
approaches

Model Equations Methodology

MINLP (1)–(12) IMCGP

MILP (1)–(6), (8)–(15) IMCGP

HMNLP (1)–(12) Heuristic method + IMCGP

6 Case study

A study on a real-world operational case makes it possible to understand the applicability of
our model. We selected a carbon black manufacturer in Iran where the environmental issues
are of utmost importance to the government and decision-makers. In this section, initially,
some explanations about the firm are presented to specify how the random parameters have
been estimated for the relevant processes. We also utilized the opinion of the firm’s experts
for a better estimation of the necessary parameters in our proposed model.

Carbon black is an essential additive for producing rubber. Although the product is a
useful raw material for many industries, it has negative implications for both human health
and our climate. Therefore, the design of a holistic SC concerned with environmental issues
is crucial for decision-makers. Iran Carbon Company1 produces carbon black (industrial
carbon black) used by rubber factories. At present, the capacity of carbon black production
in this company is over 36 thousand tons of industrial soot. The company’s raw materials
include furfural extract, cracked fuel oil (CFO), and fluid catalytic cracking (FCC), which
are mainly purchased fromAbadan Refinery, Amirkabir, Bandaremam, Shazand, Tabriz, and
Jam petrochemical companies. Although the company produces only carbon black, it is able
to meet customers’ requirements via several products (e.g. N220, N330, N339, N375, N550,
N660) with its high-tech packing system.

1 http://www.iran-carbon.com/en/.
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Table 4 Case study: estimation of the certain parameters introduced in the model

Parameter Value

Capi j t—Capacity of supplier (ton) Uniform (16000,36000)

σ jv—Capacity of vehicle (ton) Uniform (150,350)

N jvt—Total number of vehicle Uniform (15,25)

τ (ton)—Amount of permitted carbon gas emissions Uniform (40,50)

cp (MIRR/kg)—Price on carbon per unit Uniform (0.6,1.2)

Fi jvt (kg)—Amount of carbon gas emissions in executing a lot size Uniform (0.1,15)

EOt (kg)—Amount of carbon gas emissions due to placing an order Uniform (0.08,0.12)

EHt (kg)—Amount of carbon gas emissions due to holding a unit of product Uniform (0.06,0.09)

ULit—Lead time upper tolerance Uniform (90,180)

ELit—Lead time lower tolerance Uniform (20,80)

Livt—Lead time of supplier Uniform (10,50)

In this study, we consider three scenarios, namely pessimistic, most likely and optimistic
ones. The highest occurrence probability is associated with the most likely scenario. More-
over, the values of the proposed model’s parameters are estimated according to the opinion of
the company’s experts. As noted in Sect. 5.1, this study applies an improved MCGP method
to solve the proposed model. Hence, the parameters related to this approach (e.g. weights of
the objective functions, fk,min , and fk,max ) are estimated based on the experts’ opinions as
well. Other parameters relative to the proposed solution approach are collected from similar
papers, such as Jadidi et al. (2015). Tables 4 and 5 show the values of certain and uncertain
parameters used in our model, respectively. The monetary values are reported with MIRR
(million Iranian Rials, the currency of Iran). In addition, the data is collected according to
the opinions of the experts working in the carbon black manufacturer.

Following the study of Mohammed et al. (2017), three types of vehicles, i.e. light truck,
mid-size truck, and heavy-duty truck, are contemplated. The values of carbon emission factors
and transportation costs for each of these types are given in Table 6. The δvts parameter was
estimated by the carbon emissions caused by each vehicle type in kg per ton of carrying load
of carbon black in every km distance. CT jvts parameter was estimated by the average cost
of transportation from suppliers using each type of vehicle in MIRR per ton of carbon black
carrying load in every km distance.

To evaluate the proposed model, several numerical examples have been generated and
employed in the sensitivity analysis tests. The model was coded in GAMS software using a
computer system with a dual-core 1.40 GHz Pentium CPU and 3 GB of RAM. Numerical
examples are presented in four different problemsizes introduced inTable 7, eachofwhichhas
been examined and tested at fivedifferent levels of uncertainty (penalty costs P = {0.1−1.0}).
We solve our proposed MINLP and MILP models, separately, with certain data (using the
deterministic solution) and five uncertainty levels of data (using the robust solution), then
compare them with our combined robust-heuristic solution, introduced in Sect. 5.2.

We also investigated the value of the objective functions (Obj1 and Obj2) in both deter-
ministic and robust cases according to the various penalty costs defined for the availability
of data. As it can be seen in Table 10, every objective function value in the deterministic
model is greater than the corresponding value of the robust approach for each of the five
penalty costs of uncertainty. The values also increase once we have more available data (as
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Table 5 Case study: estimation of the uncertain parameters introduced in the model under the occurrence of
different scenarios

Parameter Pessimistic range Expected range Optimistic range

Dits (ton)—Demand of products Uniform (2000,3000) Uniform (3000,4000) Uniform (4000,5000)

CPi jts (MIRR/ton)—Procurement
cost of products

Uniform (8,10) Uniform (4,8) Uniform (2,4)

COi jts (MIRR/ton)—Ordering cost
of products

Uniform (8,12) Uniform (6,8) Uniform (3,6)

CHits (MIRR/ton)—Holding
inventory cost of products

Uniform (8,10) Uniform (5,8) Uniform (2,5)

CSits (MIRR/ton)—Shortage cost of
products

Uniform (100,120) Uniform (80,100) Uniform (60,80)

the penalty cost is greater). These trends can be found in any of the MINLP, MILP, and
HMINLP models in each of the four problem sizes. Moreover, in each problem size and
penalty cost, the target value of the MINLP model is lower than the corresponding one for
the MILP and HMINLP models. The values of the objectives increase accordingly for the
HMINLP model. Although we observe this slight increase in the values for the HMINLP
model (which is not desirable for our minimization problem), the computational times of
solving the problems, shown in Table 11, affirm the merit of the proposed heuristic approach,
especially for solving the HMINLP model for the bigger problem sizes. Figures 7 and 8
illustrate the comparison of the objective functions (reported thoroughly in Tables 10 and
11) in terms of various penalty costs. According to these reasonable trends of the values of
objective functions in both deterministic and robust approaches, we can conclude that the
models are stable and well-integrated.

6.1 Consideration of different carbon policies

We now examine the first objective function of our model, introduced in Eq. (1), to explore
the total cost of the SC with respect to several conditions of data availability or uncertainty.
Aimed at comparing the carbon-tax policy, in which the carbon price is constant, with the
cap-and-trade policy, we explore the effect of changing carbon capacity in each of these
policies, separately. Figure 9 illustrates the result of the proposed HMINLP model under the
condition of certainty and a constant carbon price (cp = 10). Figures 10 and 11 show the
results of the total cost under uncertainty conditions and this constant price. We focus on
investigating the effect of changes in carbon capacity on total costs and carbon emissions in
the chain.

Figure 9 shows that by increasing carbon capacity, the total cost is reduced and carbon
emissions increase, but by a specific level of carbon capacity (the point near 45.5 tons). Until
this point, the carbon emission curve shows a linear increasing trend per carbon capacity,
and consequently, a consistent decline in total cost; however, after this level, more carbon
capacitywill result in unvarying total cost and carbon emissions. Thismeans that if the carbon
capacity is set to this value as its maximum level (45.5 tons), both the minimum total cost
will add the highest carbon emissions. Figure 9 also determines a trade-off level (e.g. the
break-even point 43.8) for the contrary criteria of decision-making—namely total cost, total
carbon emission, and carbon capacity. Upon investigation of the model’s formulas, carbon
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Table 7 Case study: problem
sizes defined for the numerical
tests

Problem number Problem dimension

1 |I | × |J | × |V | × |T | × |S| = 8 × 8 × 3 × 3 × 3

2 |I | × |J | × |V | × |T | × |S| = 10 × 10 × 5 × 6 × 3

3 |I | × |J | × |V | × |T | × |S| = 15 × 15 × 10 × 5 × 3

4 |I | × |J | × |V | × |T | × |S| = 20 × 10 × 15 × 6 × 3
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Fig. 7 Case study: comparing the optimal values of the first objective function for each model and penalty
cost

0

1000000

2000000

3000000

4000000

5000000

6000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OO
BJ
2

Robust optimization penalty cost

MINLP MILP HMINLP

Fig. 8 Case study: comparing the optimal values of the second objective function for each model and penalty
cost

capture constraint (Eq. 7) is a fundamental limitation for the optimization model and hence
directly manipulates the trends shown in Fig. 9. We also can perceive that by reducing carbon
capacity from 47 to 42 tons, carbon emissions will decrease by 8%, resulting in an overall
cost increase of 0.2%. This affirms that a slight increase in inventory and transportation costs
would result in a greater decline in carbon emissions. This would be a beneficial strategy for
companies that are under governmental and environmental pressure for their gas emissions
pollution.
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Fig. 9 Case study: impact of carbon capacity on total cost and carbon emissions under certainty condition and
carbon-tax policy

It can be seen in Fig. 9 that the values of total cost are changing in a limited range (between
7.16 and 7.30). This may occur because the source of uncertainty of all parameters has been
assumed as a uniform normal distribution (see Tables 4 to 6). It is possible considering
different types of distributions for generating the value of the parameters that would lead to
significantly different results.

Under conditions of uncertainty, Figs. 10 and 11 illustrate similar behaviors as per certain
conditions, shown in Fig. 9. By exploring these two charts, we see that while the levels of
uncertainty increase (decreasing the penalty cost P), the amount of the total cost increase is
negligible for the decision-makers. For instance, in the lowest carbon capacity of 42 tons,
by increasing the level of uncertainty by 400% (from P = 0.8 to P = 0.2) the total cost
is only boosted by 5% (from 4.55 to 4.77 MIRR), which concludes that the robust strategy
outperforms at higher uncertainty levels than at its definitive state. The same justification can
be represented for the negligible decrease in carbon emissions, shown in Fig. 11.

Figures 12 and 13 demonstrate the relationship between the carbon capacity and total cost
in both the definite and non-deterministic (in penalty cost 0.5) conditions, respectively. Each
line in Fig. 12 determines the total cost of the chain per different carbon price and carbon
capacity. For a fixed carbon price per ton, cp, increasing carbon capacity allows the company
to pay less carbon tax, and hence the overall cost decreases. Similar to Fig. 10, these trends
indicate that carbon capacity has a reverse relationship with the total cost. As far as the effect
of carbon prices on total cost is concerned, we see a specific point for carbon capacity (43
tons). With carbon capacities below this point, any increase in the carbon price leads to an
increase in the total cost of the chain; with carbon capacities above this point, the trend is in
contrast. This is a noteworthy point that decision-makers can compare with the governmental
“cap” on emissions, and if the determined cap is greater (> 43 ton), the company is a potential
carbon trader. Consequently, the total cost will decrease more with the help of higher carbon
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Fig. 10 Case study: effect of carbon capacity on total cost at different levels of uncertainty under carbon-tax
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Fig. 11 Case study: effect of carbon capacity on carbon emissions at different levels of uncertainty under
carbon-tax policy

prices. However, once the governmental cap is below this point (< 43 ton), the company will
pay taxes. Increasing the carbon price leads to paying more taxes and, consequently, total
cost. In this situation, it is recommended to buy permits to extend the cap to more than 43
tons.

Comparing Figs. 12 with 13 demonstrates the fact that under uncertainty conditions,
shown in Fig. 13, the trends are similar to the certainty condition, but the specific point
for comparing the governmental cap is lower (29 tons compared to 43 tons). This is also
intuitive because decision-makers consider lower carbon capacities in their plans under the
cap-and-trade policy and uncertainty conditions.

Ifwe compare the total cost calculated in the carbon-tax policywith the total cost of the cap-
and-trade policy in certainty conditions (comparing Fig. 9 with Fig. 12) and in the uncertainty
situations (comparing Figs. 10 with 13), we realize that the total cost is lower in the cap-and-
trade policy. This suggests that the company should select the cap-and-trade policy if both
policies are available. Moreover, in the case of carbon emissions, we calculated emissions
in the cap-and-trade policy under uncertainty conditions (P = 0.5) and demonstrated the
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Fig. 12 Case study: effect of carbon capacity on total cost at different carbon prices under the cap-and-trade
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Fig. 13 Case study: effect of carbon capacity on total cost at different carbon prices under the cap-and-trade
policy and uncertainty conditions

results in Fig. 14. The figure illustrates that, although the company can take the advantage of
the price increase for trading and consequently lower emissions in the cap-and-trade policy,
it cannot decrease carbon emissions at the same increasing rate assumed for the carbon price.
For instance, when the carbon price is doubled (from cp = 5 to cp = 10), carbon emissions
decrease by only 1.7% (from 23.35 to 22.95).

For a better understanding of the comparison of the two policies in the uncertainty con-
ditions (P = 0.5), we ran the HMINLP model by a fixed carbon capacity at 45 tons and the
carbon price at 10 MIRR per ton for both the deterministic and robust-heuristic approaches,
as shown in Table 8. A comparison of the total cost and total carbon emissions in Table 8
confirms that the cap-and-trade policy has the lowest total cost and carbon emissions as com-
pared with the carbon-tax policy in both the definitive and complex robust-heuristic solutions
approaches. Although the cap-and-trade policy presents more flexibility to buy and sell car-
bon in the carbon market than the other policy, decision-makers can decide if their priority is
to minimize total costs or minimize overall carbon emissions. Table 8 illustrates that in case
of both cost and carbon emission minimization, the cap-and-trade policy is the best option.
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Fig. 14 Case study: effect of different carbon prices on carbon emissions under the cap-and-trade policy

Table 8 Case study: total cost versus carbon emissions under different carbon policies using various models

Carbon policy Deterministic Robust-heuristics

Total cost (MIRR) Carbon emissions (ton) Total cost (MIRR) Carbon emissions (ton)

Carbon-tax 7.18 45 4.23 27.36

Cap-and-trade 7.14 44.65 4.02 22.94

6.2 Consideration of different vehicle types

For highlighting the contribution of this study regarding the consideration of assorted vehicle
types, we compare the result of the proposed MINLP, MILP, and HMINLP models, consid-
ering all three types of vehicles (large, medium, and small trucks), with the models using
only one of the types. As it can be seen in Fig. 15, in the “base case” model which employs
all vehicle types, we achieved the minimum values for both total cost (the first objective
function) and total carbon emissions (the second objective function). This result confirms
the importance of considering various types of vehicles in any GSC and SSC, regardless
of uncertainty in input data or the selection of another solution approach. Given that both
total costs and total carbon emissions are the main factors of sustainability in the SC, the
consideration of assorted vehicle types will ensure organizers to obtain higher sustainability
performance using the proposed model.

6.3 Sensitivity analysis on the objective functions

As mentioned in Sect. 5.1, the important parameters of our proposed IMCGP approach are
the normalized distances between the k-th value of the objective function ( fk(X)) and the
fk,max . Table 9 demonstrates the effects of changes in the critical parameters of our proposed
model, (i.e. demand, transportation cost, and carbon emissions factor) on the normalized dis-
tances defined for our two objective functions. The “base case” stands for the original values
employed in the case study. As shown in the table, any increase in demand, transportation
cost, and carbon emissions factor leads to an increase in the alpha parameter and a decrease
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Fig. 15 Case study: comparison of total cost and total carbon emissions considering types of vehicles

in the beta parameter. Since the goal of the optimization model is to maximize alpha and
minimize beta (according to the definitions of αk and βk in Sect. 5.1), the result of the table
illustrates the positive effect of demand and negative effect of transportation cost and carbon
emissions factors on the goals of the problem. Moreover, by considering the total cost as the
more important objective function optimized in the MDR range (see Fig. 5), we obtained
β1 = 0, and accordingly, for the less important objective function optimized in the LDR
range, α2 = 0. The table also illustrates that the changes in the parameters influence the β

more than α (see the normalized distance ranges for each parameter), which means that the
proposed IMCGP approach tries to arrange the second objective function in the LDR range
in farther distances, aimed at finding optimal solutions.

6.4 Deviation variation from ideal objectives

Regarding our proposed IMCGP approach, we calculated the deviation of the objective
functions from the lower limit of the ideal objective function ( f −

k in Eq. (27)). Figure 16
illustrates the results of the deviations from the ideal values. As can be seen, once the problem
size increases, the deviations, which are unpleasant in our IMCGPmodel, will increase. Since
the deviations intuitively determine the situation of achieving ideal objectives, the result of
the test on deviations specifies that in the case of larger problem sizes, the goal programming
approachwould takemore distance from the ideal objectives defined in themodel, particularly
from the greenness goal (less total carbon emissions (Obj2)).Moreover, the scale of the values
gained for the deviations demonstrates low variations from the ideal objectives; however, as
the deviations increase with problem size, it is suggested that for much larger problem sizes,
the company should check the deviations to determine the divergence from the greenness
objective.
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Table 9 Case study: sensitivity analysis of the critical parameters of the model concerning the normalized
distances of objective functions

Parameter Parameter change Normalized distance

α1 α2 β1 β2

Demand − 30% 0.7436 0 0 0.4656

− 20% 0.8034 0 0 0.4199

− 10% 0.8736 0 0 0.3630

Base case 0.9106 0 0 0.3001

10% 0.9295 0 0 0.2601

20% 0.9589 0 0 0.2034

30% 0.9769 0 0 0.1774

Transportation cost − 30% 0.7098 0 0 0.5652

− 20% 0.7831 0 0 0.4891

− 10% 0.8133 0 0 0.3333

Base case 0.9106 0 0 0.3001

10% 0.9693 0 0 0.2803

20% 0.9903 0 0 0.2334

30% 0.9997 0 0 0.1398

Carbon emissions factor − 30% 0.8076 0 0 0.5710

− 20% 0.8708 0 0 0.4736

− 10% 0.9087 0 0 0.3612

Base case 0.9106 0 0 0.3001

10% 0.9736 0 0 0.2723

20% 0.9992 0 0 0.2400

30% 0.9998 0 0 0.1886

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 2 3 4

D
ev

ia
to

n

Poblem #

Obj2

Obj1

Fig. 16 Normalized deviation values from the lower limit of the ideal objective functions
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Fig. 17 LSD diagram for the objective functions per different models (confidence level = 95% and the pooled
standard deviation is used to calculate the intervals)

6.5 Statistical evaluation of the proposedmoles

In order to investigate the efficiency of the proposed approach, the ANOVA test has been
conducted based on the results of Table 10. To compare and evaluate the obtained results, the
least significant deviation (LSD) at the confidence level of 95% is considered as the statistical
measure. Figure 17a, b show the LSD charts for the first and the second objective functions,
respectively. It can be observed that there is not significant difference between the results of
traditional (i.e MILP and MINLP) and heuristic approaches that confirms the efficiency of
the proposed approaches to obtain optimal/near-optimal solutions.

7 Managerial implications

This research provides a roadmap for decision-makers to compare carbon emission policies
in SCs (carbon-tax and cap-and-trade) and select the most appropriate policy for their design.
Although governments still encourage companies by presenting incentives on pricing carbon
emissions through the carbon tax, according to our comparison of total costs and carbon
emissions in two different policies, both costs and emissions were lower in the cap-and-
trade policy. In general, and confirmed by our case study analysis, it seems that in any
SC, governmental incentives for the cap-and-trade policy would be more effective for the
organization in lowering pollution by investing in cleaner technologies and adopting greener
practices (Theguardian 2013; Banik et al. 2020).

In practice, key environmental merit exists for the cap-and-trade over the other policy; it
gives more confidence to managers about the level of emissions reductions they can achieve
by implementing this policy. However, managers have little certainty about the price of
emissions by selecting this policy (related to the emissions trading market). In contrast, the
carbon-tax policy gives confidence about the monetary gain of the plan but little certainty
about the level of emissions reductions. Today, environmental concerns are prominent in
any country; therefore, from this point of view, we can also conclude that the cap-and-trade
policy is more effective. As this policy is very simple, it can be implemented in just a few
months. In theory, the adoption of the cap-and-trade system seems to be more complex for
governments, as it requires the establishment of an emissions trading market. This means that
if the trading market is implemented efficiently, the SCs will be more likely to implement
the cap-and-trade than carbon-tax policy.
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An application of assorted vehicle types in our GSC model demonstrated an appropri-
ate effect on both costs and emissions. In general, governments and related organizations
should provide the infrastructure required to employ different modes of transport or vehicle
types. Our results confirmed that the usage of multi-mode transportation leads to a substantial
decrease in the environmental damage caused by the SC. Reduction of costs per vehicle and
products handling times for the SC results in a decrease in customs controls for governments
and even low rates of theft or damage to the cargo for the insurer companies. Generally, it is
suggested that governments define some incentives for SCs to apply multi-mode transporta-
tion in their networks.

The results of this study regarding the impact of the carbon emissions capacity parameter
on both profitability and environmental impacts affirm that the bargaining power of both
companies and governments is an important issue in determining the value of this parameter.
Our case study was an example for one country; however, in countries with high levels of air
pollution, the governments should consider lower values for the carbon emissions capacity
because lower values of this parameter lead to a greater decrease in environmental damage
caused by the SC. On the other hand, if countries require more production and supply for
the products, increasing the value of the carbon cap parameter can be on the government’s
agenda (NYT 2019).

Despite an examination of our approach by a case study with three scenarios, there are
various ways for designing scenarios that can be addressed and compared with this paper.
For instance, Fattahi et al. (2017) apply a scenario tree to generate scenarios for stochastic
parameters. In their method, in the outset, they consider 200 scenarios and then the scenarios
are converted into a scenario tree by reducing the number of scenarios. Given that managers
usually develop a limited number of strategies/scenarios to navigate the kinds of extreme
events they have recently seen in the real cases, it is suggested to keep the number of scenarios
as least as possible. This will also decrease the level of complexity in the understanding of
the model’s behaviour in different scenarios.

8 Conclusion

In this study, an environmentally-friendly GSC model was introduced to integrate the min-
imization of economic features with the minimization of environmental impacts of carbon
emissions. A framework for planning sustainable logistics was presented in which various
vehicle types and gas emissions in transportation, and other SC operations, were considered.
Uncertainty was considered in demand and most of the costs related to the operations of
the GSC, as well as for the carbon emissions factor caused by every vehicle. The proposed
bi-objective multi-supplier, multi-product, multi-carrier, and multi-period model was solved
by an improved algorithm for the multi-choice goal programming solution approach. A novel
robust-heuristic optimization approach, HMINLP, was also developed to deal with demand
and economic uncertainty, especially in larger problem sizes.

A real case study of an SC company was introduced to implement the model and test
the efficiency of the proposed solution methodology. The results of the numerical tests in
the case study demonstrated that the robust-heuristic approach could efficiently mitigate
demand and economic uncertainty, and the heuristic solution could decrease computational
times substantially for large-scale problems, despite the slight change in the objectives.
To achieve environmental sustainability, we compared the carbon-tax policy with the cap-
and-trade policy as they pertain to changing carbon capacity and concluded that, under the
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carbon-tax policy, an increase in the levels of uncertainty would lead to a negligible increase
in total cost. This confirmed that the robust strategy outperformed at higher uncertainty levels
than the definitive state. An examination of the cap-and-trade policy demonstrated a lower
total cost compared to the other policy and affirmed that decision-makers should select the
cap-and-trade policy if both policies are available. The tests on the consideration of various
vehicle types confirmed the importance of this assumption in designing the GSC and SSC,
regardless of uncertainty or the selection of another solution approach.

As for the limitations of our study, we assumed a fixed carbon capacity and price during
the time horizon for avoiding further complexity in the model; however, the government can
lower the carbon capacity each year to encourage companies through incentives to invest in
clean technologies. In such situations, then, the model can be developed with consideration
to various carbon capacities and prices for the defined periods. As we pointed out in the
Introduction Section, improving service levels beyond reducing operating costs would be
a competitive strategy for the GSC and SSC. In our study, we only focused on the costs
associated with the SC, however, the trade-off between supply and demand—namely service
levels of the SC—in all customer zones could be maximized in one of the objective functions
beyond other cost minimization. Several other resilience factors, e.g. capacity disruption, can
be included in the problem to configure a more resilient GSC (Ivanov 2018). Incorporating
features of responsiveness for an SC, e.g. minimizing the lead-time or total transportation
time, would be another direction for future research. In case of the solution approach, a sug-
gestion for future research is the use of meta-heuristic methods and the development of new
approaches to refine non-linear, mixed-binary models. Finally, an integration of sustainabil-
ity with digital supply chains and Industry 4.0 systems can be considered a crucial future
research avenue (Mrugalska and Stasiuk-Piekarska 2020; Dolgui et al. 2020; Ivanov et al.
2020).
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Appendix B: Pseudo code of the proposed approach

Algorithm 1: The improved multi-choice goal programming algorithm
Input the parameters of the model
Cope with uncertainty applying the robust optimization method
while All the binary variables (Ui jvt ) get value of zero or one do

for each objective function k do
calculate f −

k , f(k,min) and f(k,max) using the following procedure

Relax the binary constraint (Ui jvt ∈ {0, 1} ← Ui jvt ≥ 0)
Solve the relaxed problem
if Ui jvt = 1 then

Set is equal 1
else

if Ui jvt = 0 then
Set is equal 0

else
Hold Ui jvt as a continuous variable and solve the new model

Report f −
k , f(k,min) and f(k,max)

Report the solution (π, Xi jvts , Sits , Ii ts ,Ui jvs , Y jvts , OBJ1, OBJ2)
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