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Abstract Inthe k-partition problem (k-PP), one is given an edge-weighted undirected
graph, and one must partition the node set into at most k subsets, in order to minimise
(or maximise) the total weight of the edges that have their end-nodes in the same
subset. Various hierarchical variants of this problem have been studied in the con-
text of data mining. We consider a ‘two-level’ variant that arises in mobile wireless
communications. We show that an exact algorithm based on intelligent preprocessing,
cutting planes and symmetry-breaking is capable of solving small- and medium-size
instances to proven optimality, and providing strong lower bounds for larger instances.
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1 Introduction

Telecommunications has proven to be a rich source of interesting optimisation prob-
lems [38]. In the case of wireless communications, the hardest (and most strategic)
problem is wireless network design, which involves the simultaneous determination of
cell locations and shapes, base station locations, power levels and frequency channels
(e.g., [32]). On a more tactical level, one finds various frequency assignment prob-
lems, which are concerned solely with the assignment of available frequency bands to
wireless devices (e.g., [1]).

A rather different optimisation problem arises in the context of mobile wireless
communications. The technology is the 4G (LTE) standard, and the essence of the
problem is as follows. There are a number of cells with known locations, and each cell
must be assigned a positive integer identifier before it can operate. In the LTE standard,
this is called a Physical Cell Identifier or PCI, but to keep the discussion general we
will simply use the term ID. If two cells are close to each other (according to some
measure of closeness), they are said to be neighbours. Two neighbouring cells must
not have the same ID. We are also given two small integers k, k’, both greater than two.
If the IDs of two neighbouring devices are the same modulo £, it causes interference.
Moreover, some additional interference occurs (but at a lesser level) if they are the
same modulo kk’. Typical values are k = 3 and k¥’ = 2, and the interferences arise
because of the way reference signals (containing the ID) are encoded into a channel
broadcast by the cells. The net effect is that devices wanting to connect to cells cannot
do this successfully if they cannot decode the reference signals because of interference.
The overall task is thus to assign IDs to cells in such a way as to minimise the total
interference.

The problem turns out to be a generalisation of a well-known N P-hard combina-
torial optimisation problem called the k-partition problem or k-PP. For reasons which
will become clear later, we call it the 2-level partition problem or 2L-PP. In real-
life LTE systems, the 2L-PP is typically solved approximately, via simple distributed
heuristics. These heuristics perform adequately at present, but they may prove inad-
equate in future, as devices proliferate. To test the quality of alternative heuristics, it
is necessary to have proven optimal solutions, or at least strong lower bounds, for a
collection of realistic instances. For this reason, we developed an exact algorithm for
the 2L-PP, based on integer programming. This algorithm turns out to be capable of
solving small- and medium-sized 2L-PP instances to proven optimality, and providing
strong lower bounds for larger instances.

The structure of the paper is as follows. In Sect. 2, the literature on the k-PP
is reviewed. In Sect. 3, we formulate our problem as an integer program (IP) and
derive some valid linear inequalities (i.e. cutting planes). In Sect. 4, we describe our
exact algorithm in detail. In Sect. 5, we describe some computational experiments and
analyse the results. Finally, some concluding remarks are made in Sect. 6.

2 Literature review

Since the 2L-PP is a generalisation of the k-PP, we now review the literature on the
k-PP. We define the k-PP in Sect. 2.1. The main IP formulations are presented in
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Sect. 2.2. The remaining two subsections cover cutting planes and algorithms for
generating them, respectively.

We remark that some other multilevel graph partitioning problems have been studied
in the data mining literature; see, e.g., [8,13,39,40]. In those problems, however,
neither the number of clusters nor the number of levels is fixed. For this reason, we
do not consider them further.

2.1 The k-partition problem

The k-PP was first defined in [7]. We are given a (simple, loopless) undirected graph
G, with vertex set V = {1, ..., n} and edge set E, a rational weight w, for each edge
e € E, and an integer k with 2 < k < n. The task is to partition V into k or fewer
subsets, such that the sum of the weights of the edges that have both end-vertices in the
same cluster is minimised. In the context of this work, it is more intuitive to interpret
this as a colouring problem: each node must be assigned one of k colours, two adjacent
nodes (i.e. two nodes linked by an edge) having the same colour constitutes a conflict,
and the aim is to minimize the weighted sum of conflicts.

The k-PP has applications in scheduling, statistical clustering, numerical linear
algebra, telecommunications, VLSI layout and statistical physics (see, e.g., [7,18,22,
37]). It is strongly AN/P-hard for any fixed k > 3, since it includes as a special case the
problem of testing whether a graph is k-colourable. It is also strongly A/P-hard when
k = 2, since it is then equivalent the well-known max-cut problem, and when k = n,
since it is then equivalent to the cliqgue partitioning problem [24,25].

2.2 Formulations of the k-PP

Chopra and Rao [9] present two different IP formulations for the k-PP. In the first
formulation, there are two sets of binary variables. For each v € V and for ¢ =
1,...,k, let x,. be a binary variable, taking the value 1 if and only if vertex v has
colour c. For each edge e € E, let y, be an additional binary variable, taking the value
1 if and only if both end-nodes of e have the same colour. Then we have the following
optimization problem:

min Y ecE WeYe

st Y xe=1 eV (1)
Yuv 2 Xue +Xpe — 1 {u,v} e E, c=1,...,k) 2)
Xye 2 Xpe+Yuo — 1 {u,v} € E, c=1,...,k) 3)
Xve 2 Xye + Yo — 1 {u,v} € E, c=1,...,k) 4

Xype € {0, 1} weV,c=1,...,k)
Yuv € {0, 1} ({u, v} € E).

The Eq. (1) force each node to be given exactly one colour, and the constraints (2)—
(4) ensure that the y variables take the value 1 when they are supposed to. Note that
constraints (3) and (4) can be dropped in the case where w, > 0 forall e € E.
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This IP has O(m + nk) variables and constraints, where m = |E|. It therefore
seems suitable when k is small and G is sparse. Unfortunately, it has a very weak
linear programming (LP) relaxation. Indeed, if we set all x variables to 1/k and all
y variables to 0, we obtain the trivial lower bound of 0. Moreover, it suffers from
symmetry, in the sense that given any feasible solution, there exist k! solutions of the
same cost. (See Margot [33] for a tutorial and survey on symmetry issues in integer
programming.)

The second IP formulation is obtained by dropping the x variables, but having a y
variable for every pair of nodes, setting w,, to zero if {u, v} ¢ E. Then:

min Y eck WeVe
St YpecYw =1 (CCV:iCl=k+1) 5)
Yuv 2 Yuw + Yow — 1 ({u, v, w} C V) (6)

yuv € {0, 1} ({u, v} C V).

The constraints (5), called cligue inequalities, ensure that, in any set of k 4+ 1 nodes,
at least two receive the same colour. The constraints (6) enforce transitivity; that is, if
nodes u and w have the same colour, and nodes v and w have the same colour, then
nodes u and v must also have the same colour.

A drawback of the second IP formulation is that it has O (n?) variables and O (n¥*1)
constraints, and it cannot exploit any special structure that G may have (such as
sparsity).

A third IP formulation, based on so-called representatives, is studied in [2]. There
also exist several semidefinite programming relaxations of the k-PP (see, e.g., [3,18,
20-22,37,42]). For the sake of brevity we do not go into details.

2.3 Cutting planes

Chopra & Rao [9] present several families of valid linear inequalities (i.e. cutting
planes), which can be used to strengthen the LP relaxation of the above formulations.
For our purposes, the most important turned out to be the generalised clique inequali-
ties, which provide a lower bound on the number of conflicts for any clique with more
than k nodes. In the case of the first IP formulation, they take the form

> oy > (”gl)m (;)(k—r), )

where C C V is a clique (set of pairwise adjacent nodes) in G with |C| > k, and
t and r denote L|C| /kJ and r = |C| mod k, respectively. In the case of the second
IP formulation, they must be defined for any C C V with |C| > k (since every set
of nodes forms a clique in a complete graph). In either case, they define facets of
the associated polytope when k > 3 and r # 0. Note that they reduce to the clique
inequalities (5) when |C| =k + 1.
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Further inequalities for the first IP formulation can be found in [9,20]. Further
inequalities for the second formulation can be found in, e.g., [9,10,15,16,25,36].

2.4 Separation algorithms

For a given family of valid inequalities, a separation algorithm is an algorithm which
takes an LP solution and searches for violated inequalities in that family [23].

By brute-force enumeration, one can solve the separation problem for the inequal-
ities (2)—(4) in O(km) time, for the transitivity inequalities (6) in (’)(n3) time, and for
the clique inequalities (5) in O(nkH) time. It is stated in [9] that separation of the
generalised clique inequalities (7) is NP-hard. An explicit proof, using a reduction
from the max-clique problem, is given in [17]. Heuristics for clique and generalised
clique separation are presented in [17,29].

Separation results for other inequalities for the first IP formulation can be found
in [9,20]. Separation results for the second formulation can be found in, e.g.,[4,6,16,
24,30,35,36]. For some computational results with various separation algorithms, see
[14].

3 Formulation and valid inequalities

In this section, we give an IP formulation of the 2L-PP (Sect. 3.1) and derive some
valid inequalities (3.2). We also show how to modify the formulation to address issues
of symmetry (3.3).

3.1 Integer programming formulation

In order to demonstrate that the 2L-PP is a generalisation of the k-PP, we present
the problem in its most general form, before describing how this is used to model
our telecommunications problem. An instance of the 2L-PP is given by an undirected
graph G = (V, E), integers k, k' > 2, and two sets of edge weights w,, w, € R for
e € E. The 2L-PP is a type of node colouring problem with colours {0, ..., kk’ — 1}
and where two types of conflicts may occur: a modulo k conflict occurs if two adjacent
nodes are assigned the same colour up to modulo k, and a modulo kk' conflict occurs
if two adjacent nodes use exactly the same colour. The aim of the 2L-PP is to find a
colouring which minimizes the sum of modulo & conflicts weighted by (we )<, plus
the sum of modulo kk’ conflicts weighted by (w))eck.

To formulate the 2L-PP as an IP, we modify the first formulation mentioned
in Sect. 2.2. We have three sets of binary variables. For each v € V and for
¢ =0,...,kk' — 1, let x,. be a binary variable, taking the value 1 if and only if
vertex v has colour c. For each edge e € E, define two binary variables y, and z,,
taking the value 1 if and only if both end-nodes of e have the same colour modulo %,
or the same colour, respectively. Then we have:
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min Y tuvyer (Weyuw + wlzu) ®)
s.t. SR e = 1 wevV) )
oo = XX tweirt + XX ek — 1 (v} € E, ¢ =0, ... k— 1)
(10)
S Xtk = Yo + ) Xverrk — 1 (v} € E, e =0, k—1)
(11
S Xucark = Vaw + 25 Xk — 1 (v} € E, e =0, k— 1)
(12)
Zuv = Xue + Xpe — 1 ({u,v} € E, c=0,...,kk' = 1)
(13)
Xue = Zuy + Xpe — 1 {u, v} e E, c=0,...,kk' = 1)
(14)
Xoe = Zuy + Xue — 1 (u, v} € E, c=0,...,kk' — 1)
(15)
Xye € {0, 1} (weV,c=0,...,kk = 1)
(16)
Yuvs Zuv € {0, 1} ({u, v} € E). (17

The objective function (8) is just a weighted sum of the two kinds of colour conflicts.
The constraints (9) state that each node must have a unique colour. The constraints
(10)—(12) ensure (y,).cr indicate modulo k colour conflicts while (13)—(15) ensure
(ze)ec indicate modulo kk’ conflicts. The remaining constraints are just binary con-
ditions. In the above formulation, when kX’ = 1 the constraints (10)—(15) force the
variables y, and z, to be equal for all e € E, and so the problem becomes a k-PP.

Our telecommunications application is modelled by the 2L-PP as follows: each
node in V corresponds to a device, and a pair of nodes is connected by an edge if
and only if the corresponding devices are neighbours; assigning the colour ¢ to a node
corresponds to giving the corresponding device an ID that is congruent to ¢ modulo kk';
the weights of each type of conflict constant and are given by positive numbers w and
w’ which specify the relative importance given to interference modulo k and modulo
kk’, respectively; finally the aim of the problem is to minimize the weighted sum of the
two kinds of interference. As in the case of the k-PP, the positive edge weights render
some of the constraints of the above formulation redundant, in particular (11), (12),
(14) and (15). Note that the above IP has kk’n+2m variables and n -+ 3k (k' +1)m linear
constraints and so for sparse graphs and small values k and k', which characterise our
application, this formulation is manageable.

An intuitive approach to solving the 2L-PP would be to first solve the k-PP, and
then solve the k’-PP for each of the k subgraphs induced by nodes of the same colour,
using appropriate weights at each stage. However, this method does not necessarily
yield an optimal solution with respect to the above formulation even in the case where
we have constant positive edge weights as in our application. This is because there
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may exist substantial flexibility in the topologies of the k induced subgraphs which
minimize the number of modulo k conflicts, and these different topologies may have
different optimal numbers of k’ conflicts. Therefore, optimizing modulo k conflicts
first will not necessarily yield subgraphs which produce an optimal weighted sum of
modulo k and kk’ conflicts. In the case where edge weights vary independently for
each type of conflict, this heuristic may perform even worse as a subgraph induced
by nodes of the same colour modulo k& which has small modulo k& weights, may have
large modulo kk” weights.

3.2 Valid inequalities

Unfortunately, our IP formulation of the 2L-PP shares the same drawbacks as the
first formulation of the k-PP mentioned in Sect. 2.2: it has a very weak LP relaxation
(giving a trivial lower bound of zero), and it suffers from a high degree of symmetry.

To strengthen the LP relaxation, we add valid linear inequalities from three families.
For a clique C C V, let y(C) and z(C) denote Z{u,v}CC Yuy and Z{u,v}CC Zuvs
respectively. The first two families of inequalities are straightforward adaptations of
the generalised clique inequalities (7) for the k-PP. Specifically, given a clique C, the
inequalities (18) and (19) give lower bounds on the number of modulo k and modulo
kk’ conflicts which any colouring must induce.

Proposition 1 The following inequalities are satisfied by all feasible solutions of the
2L-PP:

— “y-clique” inequalities, which take the form:

© = (" (Dw=n., (18)
Y 2 2

where C C V is a clique with |C| > k, t = ||C|/k] and r = |C| mod k;
— “z-clique” inequalities, which take the form:

T+1 T\ |
z(C)>< X >R+<2)(kk —R), (19)

where C C 'V is a clique with |C| > kk/, T = L%J and R = |C| mod kk'.

Proof This follows from the result of Chopra & Rao [9] mentioned in Sect. 2.3,
together with the fact that, in a feasible IP solution, the y and z vectors are the incidence
vectors of a k-partition and a kk’-partition, respectively. O

The third family of inequalities, which is completely new, is described in the fol-
lowing theorem. These inequalities follow from the fact that a kk” colouring induces a
partition of a clique into k subcliques of the same colours modulo k, and each of these
subcliques must have at least a given number of modulo k" conflicts.
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Theorem 1 For all cliqgues C C V with |C| > k/, the following “(y, z)-clique”

inequalities are valid:
k/ l"/
K'z(C) = y(C)—t'<2> - <2> (20)

wheret' = ||C|/k'| and r' = |C| mod k.
Proof See the “Appendix”. O

The following two lemmas and theorem give necessary conditions for the inequal-
ities presented so far to be facets (i.e., not implied by other inequalities).

Lemma 1 A necessary condition for the y-clique inequality (18) to be a facet is that

r # 0.
Proof This was already shown by Chopra and Rao [9]. O

Lemma 2 A necessary condition for the (y, z)-clique inequality (20) to be facet is
that r’" # 0.

Proof Suppose that r’ = 0. The (y, z)-clique inequality for C can be written as:
K'z(C) = y(O) = ICI(K' = 1)/2. 2

Now let v be an arbitrary node in C. The (y, z)-clique inequality for the set C \ {v}
can be written as:

Kz(C\{v) = y(C\{v}) = (IC] =2k —1)/2.
Summing this up over all v € C yields
K(C1=2)z(C) = (CI=2)y(C) — [CI(IC] = 2)(k = 1)/2.
Dividing this by |C| — 2 yields the inequality (21). O

Theorem 2 A necessary condition for the z-clique inequality (19) to be a facet is that
1 <R <kk —1.

Proof See the “Appendix”. O

Our experiments with the polyhedron transformation software package PORTA [11]
lead us to make the following conjecture:

Conjecture 1 The following results hold for the convex hull of 2L-PP solutions:

— y-clique inequalities (7) define facets if and only if r #~ O.
— z-clique inequalities (19) define facets if and only if 1 < R < kk’ — 1.
— (y, 2)-clique inequalities (20) define facets if and only if r’ # 0.
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In any case, we have found that all three families of inequalities work very well in
practice as cutting planes. Moreover, in our preliminary experiments, we found that
the y-clique inequalities were the most effective at improving the lower bound, with
the yz-clique inequalities being the second most effective.

Remark The trivial inequality y, > z. is also valid for all ¢ € E. In our preliminary
experiments, however, these inequalities proved to be of no value as cutting planes.

3.3 Symmetry

Another issue to address is symmetry. Note that any permutation o on the set of
colours {0, ..., kk’ — 1} such that o (c¢) mod k = ¢ mod k will preserve all k and kk’
conflicts. Since there are k’! such permutations, for any colouring (which makes use
of all available colours) there are at least k’! other colourings which yield the same
cost.

One easy way to address this problem, at least partially, is given in the following
theorem:

Theorem 3 For any colour c € {0, ..., kk" — 1}, let ¢ (c) denote |c/ k]| + (c mod k).
Then, one can fix to zero all variables x,c for which ¢(c) > v, while preserving at
least one optimal 2L-PP solution.

Proof See the “Appendix”. O
Example Suppose thatn > 4 and k = k' = 3. Then ¢(0), ..., ¢(8) are 0, 1,2, 1, 2,
3,2, 3 and 4, respectively. So we can fix the following variables to zero: xyy, ..., X18;
X223 X245 - . ., X283 X35, X37, X33 and x4g. a

4 Exact algorithm

We now describe an exact solution algorithm for the 2L-PP. The algorithm consists
of two main stages: preprocessing and cut-and-branch. Preprocessing is described in
Sect. 4.1, while the cut-and-branch algorithm is described in Sect. 4.2. Throughout
this section, for a given set of nodes V' C V, we let G[V'] denote the subgraph of G
induced by the nodes in V',

4.1 Preprocessing

In the first stage, an attempt is made to simplify the input graph G and, if possible,
decompose it into smaller and simpler subgraphs. This is via two operations, which
we call k-core reduction and block decomposition. Although we focus on the 2L-PP
the following results also apply to the k-PP.

A k-core of a graph G is a maximal connected subgraph whose nodes all have
degree of at least k. The concept was first introduced in [41], as a tool to measure
cohesion in social networks. An example is given in Fig. 1, but it should be borne in
mind that, in general, a graph may have several (node-disjoint) k-cores. The k-cores
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Fig. 1 A graph (left) and its (unique) 3-core (right)

of a graph can be found easily, in O(nz) time, via a minor adaptation of an algorithm
given in [43]. Details are given in Algorithm 1.

Algorithm 1: Algorithm for finding k-cores of a graph
input : graph G = (V, E)
output: k-cores of G
V=V,
do

Let V™~ equal {v € V' : deggy/ (v) < k};
if V= # () then
| Vi=V\V~;
end
while V™ # 0,
Output the connected components of G[V’]

The reason that k-cores are of interest is given in the following proposition:

Proposition 2 For any graph G, and non-negative edge weights w, and w,, fore € E,
the cost of the optimal 2L-PP solution is equal to the sum of the costs of the optimal
solutions of the 2L-PP instances given by its k-cores.

Proof (sketch) Let v € V be any node whose degree in G is less than k. Suppose
we solve the 2L-PP on the induced subgraph G[V \ {v}]. Then we can extend the
2L-PP solution to the original graph G, without increasing its cost, by giving node v
a colour that is not congruent modulo & to the colour of any of its neighbours. The
result follows by induction. O

We refer to the process of the replacement of G with its k-core(s) as k-core reduction.
We will say that a graph is k-core reducible if it is not equal to the union of its k-cores.

Now, a vertex of a graph is said to be an articulation point if its removal causes
the graph to become disconnected. A connected graph with no articulation points is
said to be biconnected. The biconnected components of a graph, also called blocks,
are maximal induced biconnected subgraphs. For example, the graph on the right of
Fig. 1 has two blocks, which are displayed on the left of Fig. 2. The blocks of a graph
G = (V, E) can be computed in O(|V| + | E|) time [28].

It has been noted that many optimisation problems on graphs can be simplified by
working on the blocks of the graph instead of the original graph; see, e.g., [27]. The
following proposition shows that this is also the case for the 2L-PP.
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Fig. 2 Blocks of the 3-core (left) and 3-cores of the blocks (right)

Proposition 3 For any graph G, the cost of the optimal 2L-PP solution is equal to the
sum of the costs of the optimal solutions of the 2L-PP instances given by its blocks.

Proof (sketch) If G is disconnected, then the 2L-PP trivially decomposes into one
2L-PP instance for each connected component. So assume that G is connected but not
biconnected. Let v € V be an articulation point, and let V7, ..., V; be the vertex sets
of the connected components of G[V \ {v}]. Now consider the subgraphs G[V; U {v}]
fori =1,...,t. LetS(i) be the optimal solution to the 2L-PP instance on G[V; U{v}],
represented as a proper kk’-colouring of V; U {v}, and let ¢(i) be its cost. Since each
edge of E appears in exactly one of the given subgraphs, the quantity Zf-zl c(i)isa
lower bound on the cost of the optimal 2L-PP solution on G. Moreover, by symmetry,
we can assume that node v receives colour 1 in S(1),..., S(#). Now, for a given
ue V\{v},leti(u) € {1,...,1t} be the unique integer such that u € V;(,). We can
now construct a feasible solution to the 2L-PP on G by giving node v colour 1, and
giving each other node u € V \ {v} the colour that it has in S(i(x)). The resulting
2L-PP solution has cost equal to Zle c(i), and is therefore optimal. O

We call the replacement of a graph with its blocks block decomposition. Interest-
ingly, a graph which is not k-core reducible may have blocks which are; see again
Fig. 2. This leads us to apply k-core reduction and block decomposition recursively,
until no more reduction or decomposition is possible.

At the end of this procedure, we have a collection of induced subgraphs of G which
are biconnected and not k-core reducible, and we can solve the 2L-PP on each subgraph
independently. Given the optimal solutions for each subgraph, we can reconstruct an
optimal solution for the original graph by recursively constructing solutions for the
predecessor graph of a reduction or decomposition.

4.2 Cut-and-branch algorithm

For each remaining subgraph, we now run our cut-and-branch algorithm. Let G’ =
(V', E’) be the given subgraph. We set up an initial trivial LP, with only one variable y,
for eachedge e € E’, and run a cutting-plane algorithm based on y-clique inequalities.
Next, we add the z variables and run another cutting-plane algorithm based on z-clique
and yz-clique inequalities. Finally, we add the x-variables and run branch-and-bound.
The full procedure is detailed in Algorithm 2.
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Algorithm 2: Cut-and-branch algorithm to solve 2L-PP

input : subgraph G’, 2L-PP problem parameters k, k’, continuous parameter € > 0, integer
parameter t > 0

Enumerate all cliques in G’ of size greater than k;

Construct the (trivial) LP relaxation min )", cE' Ye S.t. y non-negative;

do

Solve LP relaxation;

Search for violated y-clique inequalities (18);

If any are found, add the r most violated ones to the LP;

while Violated inequalities found;

Delete all y-clique inequalities with slack greater than €;

Change objective function to (8) and add one non-negative variable z, for all e € E’;
do

Solve LP relaxation;

Search for violated z-clique inequalities (19) and yz-clique inequalities (20);
If any are found, add the ¢ most violated ones to the LP;

while Violated inequalities found;

Delete all inequalities with slack greater than €;

Add x variables and constraints (9)—(17), and apply symmetry-breaking;

Solve resulting 0-1 LP with branch-and-bound;

The key feature of this approach is that the LP is kept as small as possible throughout
the course of the algorithm. Indeed, (a) the z and x variables are added to the problem
only when they are needed, (b) only a limited number of constraints are added in
each cutting-plane iteration, and (c) slack constraints are deleted after each of the
two cutting-plane algorithms has terminated. The net result is that both cutting-plane
algorithms run very efficiently, and so does the branch-and-bound algorithm at the end.

We now make some remarks about the separation problems for the three kinds of
clique inequalities. Since all three separation problems seem likely to be NP-hard,
we initially planned to use greedy separation heuristics, in which the set C is enlarged
one node at a time. We were surprised to find, however, that it was feasible to solve the
separation problems exactly, by brute-force enumeration, for typical 2L-PP instances
encountered in our application. The reason is that the original graph G tends to be
fairly sparse in practice, and each subgraph G’ generated by our preprocessor tends to
be fairly small. Accordingly, after the preprocessing stage, we use the Bron—Kerbosch
algorithm [5] to enumerate all maximal cliques in each subgraph G’. It is then fairly
easy to solve the separation problems by enumeration, provided that one takes care
not to examine the same clique twice in a given separation call. We omit details, for
brevity.

We remark that, although an arbitrary graph with n nodes can have as many as 3%
maximal cliques [34], a graph in which all nodes have degree at most d can have at

most (n — d)3%1 of them [19].

5 Computational experiments

We now present the results of some computational experiments. In Sect. 5.1, we
describe how we constructed the graphs used in our experiments. In Sect. 5.2, we test
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the preprocessing algorithm for different values of k. In Sect. 5.3 we study the effect
of our symmetry-breaking constraints on the required solution time. In Sect. 5.4, we
present results on our the cut-and-branch algorithms.

Throughout these experiments, the value of k varies between 2 and 5, while for
simplicity, we fix k" = 2, since the value of k" does not affect the performance of the
graph preprocessing algorithm. All experiments have been run on a high performance
computer with an Intel 2.6 GHz processor and using 16 cores. Graph preprocessing and
clique enumeration was done using igraph [12] and the linear and integer programs
were solved using Gurobi v.7.5 [26]. All ILP instances are given a time limit of 3
h to be solved. Unless otherwise stated we use the default for all other of Gurobi’s
settings.

5.1 Graph construction

The strength of a signal at areceiver decays in free space at arate inversely proportional
to the square of the distance from the transmitter, but in real systems often at a faster
rate due to the presence of objects blocking or scattering the waves. Therefore, beyond
a certain distance, two transceivers can no longer hear each other, and therefore there
cannot be a direct conflict between their IDs. In our application, however, a conflict
also occurs if a pair of devices have a neighbour in common. Essentially, this is because
each device needs to be able to tell its neighbours apart.

Accordingly, we initially constructed our graphs as follows. We first sample a
specified number of points uniformly on the unit square. Edges are created between
pairs of points if they are within a specified radius of each other. This yields a so-called
disk graph; see, e.g., [31]. The graph is then augmented with edges between pairs of
nodes which have a neighbour in common. (In other words, we take the square of the
disk graph.) This construction is illustrated in Fig. 3.

It turned out, however, that neighbourhood graphs constructed in this way yielded
extremely easy 2L-PP instances. The reason is that nodes near to the boundary of

/1NN
NZZAN\
/

(b)

Fig. 3 Construction of neighbourhood graph. a Edges are created between nodes within a given radius of
each other. b Graph is augmented with edges between nodes which have a neighbour in common
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Fig. 4 Preprocessing of random neighbourhood graphs

the square tend to have small degree, which causes them to be removed during the
preprocessing stage. This in turn causes their neighbours to have small degree, and so
on. In order to create more challenging instances, and to avoid this “boundary effect”,
we decided to use a torus topology to calculate distances between points in the unit
square before constructing the graphs.

5.2 Preprocessing

In order to understand the potential benefits of the preprocessing stage, we have cal-
culated the effect of preprocessing on our random neighbourhood graphs for different
values of k and disk radius, while fixing n = 100. In particular, for radius 0.01, ..., 0.2
and k = 3,4, 5, we calculate the mean proportion of edges eliminated and the mean
proportion of vertices in the largest remaining component. The results are shown in
Fig. 4. The means were estimated by simulating 1000 random graphs for each pair of
parameters.

The results show that, for all values of &, the proportion of edges eliminated decays
to zero rather quickly as the disk radius is increased. The proportion of nodes in the
largest component also tends to one as the radius is increased, but at a slower rate than
the convergence for edge reduction.

In order to gain further insight, we also explored how the average degree in our
random neighbourhood graphs depends on the number of nodes and the disk radius.
The results are shown in Fig. 5. A comparison of this figure and the preceding one
indicates that, as one might expect, preprocessing works best when the average degree
is not much larger than k.

5.3 Symmetry constraints

In this numerical experiment we gauge the utility of our symmetry-breaking constraints
by looking at the branch-and-bound time required to solve the 2L-PP. In particular,
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Table 1 Comparison of average branch-and-bound times (seconds) using Gurobi’s symmetry detection
capabilities (SymDet), our symmetry-breaking constraints (SymCons) and neither (NoSym)

Radius k=2 k=3

SymDet SymCons NoSym SymDet SymCons NoSym
0.08 0.07 0.10 0.11 0.05 0.06 0.07
0.09 0.14 0.21 0.20 0.11 0.14 0.14
0.10 0.46 0.78 0.78 0.38 0.56 2.00
0.11 2.07 5.07 7.16 2.07 4.46 143.55
0.12 25.96 46.35 105.63 50.97 - -

we compare the times required for solution using our symmetry-breaking constraints,
using Gurobi’s symmetry detection capabilities, and using neither symmetry detection
nor symmetry-breaking constraints.

For n = 100, and for disk radii ranging from 0.08 to 0.12, we construct 30 random
neighbourhood graphs. The same sets of points were used to construct the graphs for
each disk radius. We also considered two values of k, namely 2 and 3. The weights
w, w’ were both set to 1 for simplicity. For each of the resulting 300 2L-PP instances,
we run branch-and-bound with preprocessing but no cutting planes. When solving the
problems using our symmetry-breaking constraints, we disable Gurobi’s symmetry
detection capabilities.

The results are shown in Table 1. A dash means that at least one instance failed to
solve for that radius and value of k. In this experiment one instance out of the thirty
failed to solve within the given time limit for » = 0.12 and k = 3 when we used our
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symmetry-breaking constraints, and four failed to solve for the same radius when nei-
ther symmetry-breaking constraint nor symmetry detection were used. These results
demonstrate that using our symmetry-breaking constraints, in general, significantly
reduces the solution time required to solve the problem compared to using the Gurobi
solver with symmetry detection capabilities switched off, and this benefit increases
as the graphs become dense. However, Gurobi’s symmetry detection capabilities gen-
erally outperform just using our symmetry-breaking constraints. This indicates that
these constraints will generally only be useful for MIP solvers which do not have
sophisticated symmetry-detection algorithms. In order to test our methodology for
more dense graphs, we will therefore use Gurobi’s symmetry detection capabilities
rather than our symmetry-breaking constraints.

5.4 Cutting planes

Next, we present two numerical experiments on the effectiveness of using our cutting
planes. In first experiment, we compare the branch-and-bound time required to solve
the 2L-PP problems using and not using our cutting plane algorithm beforehand. We
solve the exact same 300 problems as were used in the previous experiment, and
preprocess the graphs before solving the problem. Note that we do not include the
time of the cutting plane algorithm in this comparison. As the next experiment shows,
the cutting plane time is negligible compared to the branch-and-bound time.

The results for this first experiment are shown in Table 2. These demonstrate that
using our cutting planes reduces the solution time required dramatically, and by an
order of magnitude for harder problems.

In the final experiment, we study the lower bounds yielded by each phase of the
cutting plane algorithm, and the times these take to run. In this experiment, we use the
previously constructed problems, and in addition construct more difficult problems,
which may not have been solvable in the previous experiments. For the disk radii
0.13 and 0.14 we construct another 30 problems. In addition, we also solve the 2L-PP
for k = 4 for all constructed graphs, as this problem will be non-trivial for the new
denser graphs. For each of the resulting 630 2L-PP instances, we run the preprocessing
algorithm, followed by the cut-and-branch algorithm.

In order to measure the effects of the yz-clique and the z-clique inequalities, we
have divided the second cutting-plane phase into two sub-phases, whereby yz-clique

Table 2 Comparison of average

branch-and-bound times (in Radius k=2 k=3

seconds) required to solve Cuts No cuts Cuts No cuts

problem using our cutting plane

algorithm beforehand (Cuts) and (.08 0.02 0.07 0.01 0.05

not using cuts (NoCuts) 0.09 0.04 0.15 0.02 0.11
0.10 0.09 0.46 0.03 0.38
0.11 0.19 2.07 0.16 2.09
0.12 0.93 25.50 0.37 51.69
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Table 3 Average relative optimality gap at the end of each cutting-plane phase

Radius k=2 k=3 k=4

y-cut gap yz-cut gap z-cut gap y-cut gap yz-cut gap z-cut gap y-cut gap yz-cut gap z-cut gap

0.08  0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.09  0.05 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
0.10  0.07 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00
0.11  0.09 0.02 0.01 0.05 0.04 0.04 0.04 0.04 0.04
0.12  0.11 0.02 0.01 0.05 0.03 0.03 0.02 0.02 0.02
0.13  0.15 0.04 0.03 0.07 0.04 0.04 0.03 0.03 0.03
0.14  0.16 0.04 0.03 - - - 0.04 0.04 0.04

Table 4 Average number of cuts added to linear relaxation during each cutting-plane phase

Radius k=2 k=3 k=4

#y-cuts #yz-cuts #z-cuts #y-cuts #yz-cuts #z-cuts #y-cuts #yz-cuts # z-cuts

0.08 45.4 1.2 0.4 9.3 0.0 0.0 1.2 0.0 0.0
0.09 73.9 3.0 0.8 18.4 0.0 0.0 2.9 0.0 0.0
0.10 108.1 7.8 2.9 32.7 0.1 0.0 7.5 0.0 0.0
0.11 159.5 16.8 7.1 57.9 0.4 0.1 15.1 0.0 0.0
0.12 203.3 29.6 13.7 84.5 1.3 0.2 25.3 0.0 0.0
0.13 274.2 53.7 21.2 119.8 2.8 0.7 39.5 0.0 0.0
0.14 373.8 86.5 30.6 178.2 6.4 2.5 61.4 0.1 0.0

inequalities are added in the first subphase and z-clique inequalities are added in the
second subphase.

In Table 3, we present the average gap between the lower bound and optimum,
expressed as a proportion of the optimum, after each of the three kinds of cuts have
been added. Note that for » = 0.14 and k = 3 one instance of the thirty failed to
solve. From these results we see that, for each value of k, the gap increases as we
enlarge the disk radius. Nevertheless, the gap always remains below 5% for the radii
considered. Note that the z-clique inequalities help only when & = 2. This may be
because z-clique inequalities are defined only for cliques containing more than kk’
nodes, and not many such cliques are present when k > 2.

In Table 4 we present the average number of cuts added during each cutting-plane
phase. We see that the number of cuts increases with the disk radius. This is to be
expected, since, when the radius is large, there are more large cliques present. On the
other hand, the number of cuts decreases as the value of k increases. The explanation
for this is that y-clique inequalities are defined only for cliques containing more than
k nodes, and the number of such cliques decreases as k increases.

Finally, Table 5 presents the running times of the cutting plane and branch-and-
bound phases of the algorithm. As expected, the running time increases as the disk
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Table 5 Average cutting plane (CP) and branch-and-bound (BB) times

Radius k=2 k=3 k=4

CP time (s) BB time (s) CP time (s) BB time (s) CP time (s) BB time (s)

0.08 0.01 0.02 0.00 0.01 0.00 0.00
0.09 0.01 0.04 0.00 0.02 0.00 0.00
0.10 0.02 0.09 0.00 0.03 0.00 0.01
0.11 0.02 0.19 0.01 0.16 0.00 0.04
0.12 0.04 0.93 0.01 0.37 0.00 0.10
0.13 0.07 5.91 0.02 13.64 0.01 0.36
0.14 0.15 74.28 0.04 - 0.01 4.47

radius increases and the graph becomes more dense. On the other hand, perhaps
surprisingly, it decreases as k increases. This is partly because the preprocessing stage
removes more nodes and edges when k is larger but also because fewer edge conflicts
occur when we use more colours. We also see that, for all values of k and disk radii, the
running time of the cutting-plane stage is negligible compared with the running time of
the branch-and-bound stage. This is so, despite the fact that we are using enumeration
to solve the separation problems exactly.

6 Conclusions

In this paper we have defined and tackled the 2-level graph partitioning problem
which, as far as we are aware, has not previously been addressed in the optimiza-
tion or data-mining literature. Although this model was motivated by a problem in
telecommunications it may have other applications, such as in hierarchical clustering.

The instances encountered in our application were characterised by small values of
k and k’, and large, sparse graphs. For instances of this kind, we proposed a solution
approach based on aggressive preprocessing of the original graph, followed by a novel
multi-layered cut-and-branch scheme, which is designed to keep the LP as small as
possible at each stage. Along the way, we also derived new valid inequalities and
symmetry-breaking constraints.

One possible topic for future research is the derivation of additional families of
valid inequalities, along with accompanying separation algorithms (either exact or
heuristic). Another interesting topic is the “dynamic” version of our problem, in which
devices are switched on or off from time to time.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix

Proof of Theorem 1 ForacliqueC C VletC: C — {0, ..., kk'—1}beakk’-coloring
of C.Forc =0, ...,k—1,letS. denote {v eC:Clw)efc,c+k, ..., c—i—(k/—l)k}}
and for c = 0,...,kk’ — 1 let W, denote {v € C : C(v) = c}. Note that, for
c=0,...,k—1,

k-1

U Wesne = Se. (22)

t=0

Fix ¢ € {0, ..., k — 1}. By definition we have

o= (%)
Y(Oc 2 )

k-1
Z(Sc) _ Z <|Wcz+tk|>.

t=0

and

Suppose | S| = pck’+r. where 0 < r. < k’. Then the second summation is minimized
when

[Wegtk| = pe + 1 fortr=0,...,r—1
= pe fort=r,...,k —1.

2(Se) =2 7e (Pc;‘ 1> + (k/ —7e) (ZL)

= 3 (¥r2 20— K'pe)

Hence,

\) |

1
~ (k/z + 2k pere —k/2Pc>
’ / _ / _ 2 2
2/(/ (kpc+r)(kpc r 1)+kpc+rc r. +k Pc
ISl | 1 n 2
k( ) 5o (15 = @ pe+r2)
TS0+ 55 (1800 = (K0Sl = o +2))

1
= Py(Sc) (K" = D)ISe] = re(k = re)) .

2k/ (
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Now,

k—1

20) =Y z(Se)
c=0
k—1

1 1
>y (wac) = 5 (K = DISe] = re(®' = m))

c=0

k—1
1 1 , ,
> 530 = 05 ((k —DIC| =) rek - n)) :

c=0

The last expression is minimized when ZIZ;(I) re(k'" — r.) is minimized. Noting that
Zf;(l) re mod k* > |C| mod k" = R, we see that this expression is minimized when
ro=Randr.=0forc=1,...,k— 1. Hence,

1 1, )
z2(C) = Py(c) ~ 5 (' = DIC| — R(K - R)),

which is equivalent to the (y, z)-clique inequality (20). O

Proof of Theorem 2 Let R = |C| mod kk'. For the case R = 0, the z-clique inequality
is implied by other z-clique inequalities (see [9]). For the cases R = 1 and R = kk'—1,
we show that the associated z-clique inequality is implied by y-clique and (y, z)-clique
inequalities.

First, suppose that R = 1, i.e., that |C| = Tkk’ 4 1 for some positive integer 7. In
this case, the z-clique inequality takes the form:

T+1

Z(C)>( 5

) + (Z) k' —1) = K'(k/2)(T*—=T)+T. (23)

The y-clique inequality on C takes the form:

KT+ 1

y(0) 2( )

K'T ’ I /
+ ) k—1) = kK'(k/2)(kT-—-T)+k'T, (24)
and the (y, z)-clique inequality on C takes the form:
/! k/ / /!
kK'z(C) —y(C) > -Tk ) =k'(k/2)(T —k'T). (25)

Adding inequalities (24) and (25), and dividing the resulting inequality by k’ yields
the z-clique inequality (23).

Second, suppose that R = kk’ — 1, i.e., that |C| = kk'T + (kk’ — 1) for some
positive integer 7. In this case, the z-clique inequality takes the form:

T+1

z(C) >< )

)(kk’ -1+ (Z) = K'(k/2)(T + DT —T. (26)
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The y-clique inequality on C takes the form:

W(C) > (Tk 2+k>(k s (Tk +2k — 1)

= Kk/2/(T + \)(TK +k — 1) — (TK + k' —1). Q7

and the (y, z)-clique inequality on C can be written as follows:

K'z(C) — y(C) > —(Tk +k — 1)(’2) - <k 2_ 1)

= K(k/2(T + D)1 = k') + (K —1). (28)

Adding inequalities (27) and (28), and dividing the resulting inequality by &’ yields
the z-clique inequality (26). O

Proof of Theorem 3 1t is sufficient to show that for any colouring C : V —
{0, ..., kk’—1} there exists a objective-preserving permutationo : {0, ..., kk'—1} —
{0, ..., kk’ — 1} such that

¢p(ooC() >v forv=1,...,n. (29)
By objective-preserving we mean that:
c1 mod k = ¢y mod k < o(c;) mod k = o(c2) mod k forall0 < c1, ¢z < kk'.

We prove that such a permutation exists by induction on the number of nodes in V.
For the case n = 1, the result holds trivially.

Suppose that the result holds n < /, and let us now consider the case n = [+ 1. Using
our induction hypothesis, we suppose, for notational convenience, that ¢ (C(v)) < v
forv=1,...[.Now,letC(l+ 1) = pk+r.If¢p(C(l + 1)) = p+r <[+ 1 then the
colouring already satisfies the required condition so we assume that this is not true.

We consider two cases. In the first case, suppose that C(v) mod k # r for all
v = 1,...,1. This can be split into two further subcases. In the first subcase, we
assume that / + 1 < k. We now define an objective-preserving permutation which
assigns the colour / to node / 4 1. Note that by induction hypothesis, none of the nodes

v=1,...,[ are assigned to colour /. Define permutations o1 and o7 as follows:
thk+rvw— thk+1
oy :{thk+l—tk+r fort=0,....,k -1
cHc otherwise,
pk+1+—1
oyl pk+1
cHc otherwise,
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then 0p o0y o C(I + 1) = [ and so we have ¢ (ohb o010 C(I+1)) =1 <[+ 1 as
required.

In the second subcase we assume that/+1 > k. In this case, the following objective-
preserving permutation can be used:

pk+ri—r
o:\rt— pk+r
cHc otherwise.

Then, ¢p(c o C(l + 1)) =r < k <[+ 1 as required.

In the second case, we suppose that the set C,; := {1 <v <[ :C(v) mod k = r}is
non-empty, and let u = max C,;. Then, for some 0 < s < p we have C(u) = sk +r.
We now define the required permutation:

pk+r—= (s+Dk+r
oy +Dk+r+— pk+r
cHc otherwise.

Then, ¢ (0 oC(l+1)) = (s+1)4+r <u+1 <141 as required, where the first
inequality follows from our induction hypothesis. O
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