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Abstract

Many complex combinatorial problems arising from a range of scientific applications (such
as computer networks, mathematical chemistry and bioinformatics) involve searching for an
undirected graph satisfying a given property. Since for any possible solution there can be a
large number of isomorphic representations, these problems can quickly become intractable.
One way to mitigate this problem is to eliminate as many isomorphic copies as possible by
breaking symmetry during search - i.e. by introducing constraints that ensure that at least
one representative graph is generated for each equivalence class, but not the entire class.
The goal is to generate as few members of each class as possible - ideally exactly one:
the symmetry break is said to be complete in this case. In this paper we introduce novel,
effective and compact, symmetry breaking constraints for undirected graph search. While
incomplete, these prove highly beneficial in pruning the search for a graph. We illustrate the
application of symmetry breaking in graph representation to resolve several open instances
in extremal graph theory. We also illustrate the application of our approach to graph edge
coloring problems which exhibit additional symmetries due to the fact that the colors of the
edges in any solution can be permuted.
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1 Introduction

The canonical graph representation problem is pertinent to a wide range of scientific appli-
cations. It is closely related to the graph isomorphism problem, as two graphs are isomorphic
if and only if they have the same canonical representation. Examples of applications where
graphs (and their representations) have been used include data-mining [1], mathematical
chemistry [2, 3], computer vision [4], and bioinformatics [5]. The two problems are poly-
time equivalent, and are among the few that are known to be in NP but not known either to
be solvable in polynomial time, nor to be NP-complete. Recently Lasz16 Babai has claimed
to have produced a quasi-polynomial time algorithm for graph isomorphism. This result is
yet to be published.

There are a variety of software tools devoted to solving the two problems “in practice,’
one of which is nauty (No AUTomporphisms Yes?), due to McKay [6, 7]. Nauty is
sometimes referred to as the world’s fastest isomorphism testing program. It is also able
to produce a canonically-labeled isomorph of a graph to assist in isomorphism testing. The
nauty package includes a suite of programs called gt ools which are useful for processing
files of graphs stored in one of two compressed formats. In this paper we make use of the
shortg tool to remove isomorphs from a file of graphs stored in the graphé format.

This paper is about constraint problems which involve the search for either a single graph
that satisfies certain properties, or all graphs that do so. For example, consider the problem to
determine if there exists an undirected graph with 31 vertices, 81 edges, and which does not
contain cycles of length 4 or less. This question arises in “extremal graph theory” [8], and
its answer was unknown prior to the work described in this paper [9]. The search space for
problems of this type is enormous, and search may be optimized by restricting it to focus on
canonical representations, or to avoid isomorphic graphs as much as possible. The general
idea is to “break” symmetries in the search space that derive from the fact that the actual
names of the vertices in a solution do not matter. When searching for a graph coloring where
the edges of the graph are associated with colors, on top of graph isomorphism, solutions
are typically closed under permutations of the colors: the actual names of the colors do not
matter. However, it is not clear how to apply this idea when searching for a graph. In this
type of problem the graph is a variable, so graph algorithms for canonical representation
and isomorphism, as well as tools such as nauty, all of which operate on given graphs, do
not apply. This paper provides a solution to this problem.

We assume a setting where testing for the existence of a graph G satisfying a property P
is posed as a Boolean constraint P(Ag) on the variables of the Boolean adjacency matrix
Ag of G. We follow the approach advocated by Crawford et al. [10], where a predicate,
sb(Ag), is introduced to break symmetries in the search space. In this way the satisfiability
of P(Ag) is equivalent to that of P(Ag) A sb(Ag). Ideally, sb(Ag) is satisfied by a single
member of each equivalence class of A under graph isomorphism, thus drastically restrict-
ing the search space for P(Ag) A sb(Ag). However, this is not realistically possible as
such a predicate also determines a canonical representation. In practice, it is sufficient that
sb(Ag) is satisfied by at least one member of the equivalence class of Ag under isomor-
phism (typically by more than one) and in this case we say that sb is a symmetry breaking
predicate. Shlyakhter [11] notes that the difficulty is to identify a symmetry-breaking pred-
icate which is both effective (rules out a large portion of the search space) and compact (so
that checking the additional constraints does not prohibitively slow down the search).

The presentations in [10, 11] consider symmetry breaking in terms of isomorphism, but
focus on different structures such as acyclic digraphs, relations, permutations and func-
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tions. We introduce a novel, effective and compact predicate to break symmetries on graph
representation. We consider two different scenarios where an (unknown) graph G is repre-
sented by its adjacency matrix Ag and the elements at positions i, j in Ag are: Boolean
variables indicating the presence of an edge between vertices i and j; and (2) integer vari-
ables from a finite domain C = {0, 1, ..., k} indicating the presence of a colored edge
between vertices i and j where a value ¢ > 0 indicates a c-colored edge.

This paper extends preliminary results presented in [12], in which our symmetry break-
ing constraints were introduced and applied to solve several open instances of a problem in
extremal graph theory regarding the maximal number of edges in a graph with v vertices
and no cycles of length & or less (i.e. graphs with girth at least k + 1), fork =4 and k = 5.
We also use our approach to determine the number of non-isomorphic extremal graphs of
girth at least 5. Here, we exploit some properties of extremal graphs (presented and proved
in [13]) which then enable us to apply our approach to solve additional open instances of
maximal graphs with girth 5. We also extend the approach to apply to graph coloring prob-
lems and demonstrate its impact on the search for Ramsey numbers and colorings [14]. Note
that in [15] we apply the results of this paper to determine the precise value of R(4, 3, 3).
This was an open problem for over 30 years.

2 Graphs and their canonical representation

Throughout this paper we consider undirected simple graphs without loops or multiple
edges. We focus on finite graphs and typically name the n vertices of a graph in the set
{1, ..., n}. We denote the Boolean values true and false by 1 and 0 respectively.

Definition 1 (Graph) A graph G = (V, E) has vertices V = {1, ...,n} and edges E C
V x V where (x,y) € E = (y,x) € E. The Boolean adjacency matrix, Ag of G, is
the n x n symmetric matrix where Ag[x,y] < (x,y) € E. The i'h row of matrix A is
denoted by A[i], and A[i, j] denotes the j th element of A[i]. The degree of vertex u € V is
degree(u) = |{(u, v)|(u, v) € E}|. We denote the minimum and maximum degrees of the
vertices in G as §(G) and A(G), or § and A when the context is clear.

In Section 5, we extend Definition 1 to colored graphs where the edges are associated
with colors from a given finite domain of positive integers.

Example 1 Figure 1 illustrates three graphs with corresponding adjacency matrices.

We use cycle notation to represent permutations. For example, the permutation
(1,2,6)(3,4,5) on set {1,...,7} maps 1 t0 2,2to 6,6to 1,and 3to4,4to5, and 5to 3
(cycles of length 1 are not included in the representation).

Definition 2 (permuting vertices) Let G = (V, E) be a graph with n vertices, Ag
the adjacency matrix for G, and 7 a permutation on {1, ..., n}. Then 7 (G) is the graph
obtained by permuting the vertices of G using m. Formally, 7(G) = (V, E’) where
E' ={(z(x), 7(y))|(x,y) € E}and 7(Ag) is the adjacency matrix of 7 (G).

Definition 3 (graph isomorphism) G and G’ are isomorphic if there exists a permutation
7 such that Ag = n(Ag).
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Gq Gy Gs
1234567389 12345672829 123456789
1101 01 000O0O0 1f/000 000110 11000000011
2/1 01010000 2/0 00001 010 21000000101
3]0 1 0001 0O0O0 3]0 00010100 31000001 01O
41 0001 0100 40 0001 1 000O0 40 0 0 0O0O1 100
501 0101010 5001100001 50 00001111
6/0 01 01 0O0O0T1 6/0 1 01 00O0O0T1 6/0 01 1100O00O0
70 00100010 71101 000O0O0T1 7010110000
8000010101 811 00000O0T1 8101010000
9]0 00001 01O 90 0001 1110 911 001 00O0O0

Ag Ac Ag

—
N
w

Fig.1 Three example graphs and their adjacency matrices

Example 2 The graphs in Fig. 1 are isomorphic. We can permute G| to G, using 7| =
(2,8,5,9,4,7,3) and G to Gz using m» = (2,9,4,8,6,7, 3).

Because of the way they are presented, the graphs in Example 2 (Fig. 1) are very
obviously isomorphic. However isomorphism (particularly for large graphs) is not usu-
ally so easy to detect. For example, the graphs in Fig. 2 are isomorphic (using 7 =
(1,2,3)(4,5,6)(7, 10, 11)) but, because of the placement of the vertices, are not obviously
so. The fact that the two graphs are isomorphic can be ascertained from their adjacency
matrices using a graph-theoretic tool such as nauty [6, 7].

Definition 4 (sequences, lexicographic order) Let A be matrix and A[i]A[] the concate-
nation of rows i and j (viewed as sequences). The length of a sequence s is denoted |s|.

Fig.2 Isomorphic graphs presented with isomorphism concealed
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We use < to denote the usual lexicographic order on sequences. We extend this notation
in the obvious way: for matrices, with n and m rows respectively, A < B, if and only if
A[1]A[2]--- A[n] < B[1]1B[2] ... B[m]; and for graphs, G < G’ ifand only if Ag < Ag/.

One way to define a canonical representation of a graph is to take the smallest graph (i.e.
in the lexicographic order) which is isomorphic to G [16]. This is the definition which we
adopt throughout the paper.

Definition 5 (canonical form of a graph) The canonical form of a graph G is the
graph with can(G) = min<{7(G)|r is a permutation}. We say that G is canonical if
G = can(G).

Example 3 Consider the graphs of Fig. 1. The graph G3 is the canonical representation of
G1, Gy and G3.

Note that the canonical representation of a graph does not necessarily order the vertices
by degree. In Fig. 1, the vertices of G, are ordered by degree: vertices {1, 2, 3, 4} are of
degree 2, vertices {5, 6, 7, 8} are of degree 3 and vertex 9 is degree 4. But this is not the case
for the canonical form, G3.

3 Symmetry breaking on representation

We first consider a symmetry breaking predicate, introduced without proof in [17], which
constrains the rows of an adjacency matrix to be sorted lexicographically in non-decreasing
order.

Definition 6 (lexicographic symmetry break) Let A be an n x n adjacency matrix. We

define
n—1

sbe(A) = /\ ALl < Ali + 1]

i=1

Observe the graphs in Fig. 1. We have sb¢(Ag,) = false, sby(Ag,) = false, and
sby(Ag,) = true.

Definition 6 is more subtle than might first appear. It defines a symmetry breaking pred-
icate only because for every adjacency matrix A, sby(A’) is true for at least one of the
matrices A’ isomorphic to A. Reversing the order, i.e. insisting that A[i] > A[i + 1], would
not define a symmetry breaking constraint. Consider for example any representation of the
graph G with 2 vertices and a single edge. Then Ag[1] ¥ Ag[2]. The subtlety arises
because, in contrast to the case of breaking symmetries in matrix problems where rows and
columns can be reordered, such as in [18—-20], here we need to reorder rows and columns
simultaneously, both in the same way. To prove the correctness of Definition 6 it is sufficient
to show that sby(can(A)) holds.

Theorem 1 Let G be a graph. Then sbe(can(Ag)).

Proof Let A be canonical and assume to the contrary that A does not satisfy sby(A). Let i
be such that A[i] £ A[i + 1]. It follows that there is a j such that for every 1 < j' < j,
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) AL, AL #1]

Y o
//////// Ali+L]]

|—|

i+

Fig.3 Graph A, Theorem la, j < i. Similarly shaded sections of rows/columns i and i + 1 are identical

Ali, j'1=A[i+1, j]and A[i, j] > A[i +1, j]. Let B be the matrix obtained by swapping
rows i, i + 1 as well as columns i, i + 1. We show that B < A in contradiction to A being
canonical. Since A[i, j] > 0,i # j and there are two cases to consider.

(a)

(b)

j < i: Since j — 1 length prefixes of A[i] and A[i + 1] are equal (the diagonally
striped regions in Fig. 3), A[i, 1]--- A[i, j — 1] = BI[i, 1]--- BJ[i, j — 1]. Note also
that A[i’] = B[i’] for 1 < i’ < j. This is because the only elements to be swapped
in these rows are those in columns i and i + 1 (the dotted regions in Fig. 3). These
elements are equal because A is symmetric and A[i, i'] = A[i +1,i’] fori < j. Hence
the first cell to differ in A and B is at position [, i], and, since A[j, i] > A[j,i + 1],
Alj,i] > B[j,i]. So B < A. Contradiction.

j > i: By a similar argument to the above, the A[i,1]---A[i,j — 1] =
B[i,1]---B[i, j — 1] and A[i'] = B[i’] for 1 < i’ < i (so the similarly shaded sec-
tions of rows i and i + 1 and columns i and i + 1 in Fig. 4 are identical). It follows
that the first cell to differ in A and B is at position [, j] and that A[i, j] > B[i, j]. So
B < A. Contradiction. O

We now proceed to strengthen this notion of symmetry breaking. The following example

illustrates a symmetry not captured by sby(A).

Example 4 Consider the adjacency matrix A depicted in Fig. 5 for which sby (A1) = true
as the rows are ordered lexicographically. Observe that A{[2] < A;[3] independent of
whether we swap the vertices (rows and columns) 2 and 3, or not. Adjacency matrix A;
depicted in Fig. 5 is the result of this swap and it too satisfies sby(A2) = true. However, it
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Y
i

;/ZZ/////A[.LJ] |
Q%/AA[HLJ]

\\s\

7

n

Fig.4 Graph A, Theorem 1(b), j > i. Similarly shaded sections of rows/columns i and i + 1 are identical

is “closer” to canonical as A, < A. Indeed A; is the canonical representative of this graph.
Figure 5 highlights that the first 3 elements of rows 2 and 3 are invariant under vertex swap.

In view of Example 4 we introduce the following definition and then introduce a stronger
symmetry breaking constraint.

Definition 7 (extended lexicographic order)

Let s be a sequence and I € {1, ..., |s|}. We denote by (s | 1) the sequence obtained
from s by simultaneously omitting the elements at positions /. For a set of natural numbers
I we denote by < the order on sequences of length at least max (/) defined by: s1 <; 572 <&

(s1 1D = (21 D).

Fig.5 Graphs and adjacency matrices for Example 4
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Definition 8 (improved lexicographic symmetry break) Let A be an n x n adjacency
matrix. We define
sbj(4) = /\ Alil =qi.j) Alj]

i<j

Theorem 2 If A is an n x n adjacency matrix and sbj (A) then sbg(A).

Proof Suppose that sbj(A) and that for some row i, A[i] Z A[i + 1]. Since A[i] <y i+1)
Ali + 1], we must have that A[{,1]---A[i,i — 1] = A[i +1,1]---A[i +1,i — 1] and
Ali,i +2]---Ali,n] < Ali +1,i +2]---Ali + 1, n]. Since A[i,i] =0and Ali,i + 1] =
Ali + 1,i] either A[i,i] < A[i + 1,i]or A[i,i + 1] = A[i + 1,i] = 0. In both cases
Ali] < A[i + 1], and we have a contradiction. O

Observe that Definition 8 introduces O (n2) constraints on lexicographic order whereas
Definition 6 introduces only O(n). This is needed because we lack a “transitivity” like
property stating that if s <{; j} s2 and s2 <{j x} s3 then also 51 <{; k) s3. The fact that no
such property holds is illustrated by the following example.

Example 5 Consider the adjacency matrix A shown in Fig. 6. While clearly A[1] <12
A[2] and A[2] <{2,4) A[4], itis not the case that A[1] <{1 4y A[4].

Interestingly, transitivity does hold for rows at a distance of two apart.

Theorem 3 A[i] < iv1y Ali +1IAA[+1] Zqit1,i42) Ali +2] = Ali] =4ii42) Ali +2]

Proof Assume the premise and adopt the following representation where the boxed
elements are at positions 7, i + 1 and i + 2 in the sequences.

il = 5[0 o]
Ali+1) = Sofz 0 2Ty
Ali+2] = S3y 2 O[T

From the premise and by definition of <, we have S1yT] < S2z77 and S>xTr < S3yT3.
We prove that S;x77 < S3zT3 which gives the result. There are two cases: either (a) S; <
S, and since S < S§3 we have S| < §3 and the result holds; or (b) S = S», then either
S> < 83, and the result follows, or S» = S3, and it remains to show that x77 < z73. Suppose
y < z then since x < y we have that x < z and the result holds. Otherwise, y = z. Suppose
x < y then clearly x < z and the result holds. So assume x = y = z. Then we have that
T) < T> and T, < T3 and hence the result holds. O

Intuitively, transitivity fails for the general case (for rows i, j and k) due to the possibility
that the position of the first element in row i that is not equal to the corresponding element in
row j may be between i and j or between j and k (or a similar scenario for rows j and k or
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[1 2 3 4 5 [1 2 3 4 5 [1 2 3 4 5
1o o 0o 1 1 o o0 0 1 1 1o 0 0o 1 1
210 0 1 0 0 20 0 1 0 0 200 0 1 0 o0
30 1. 0 0 0 310 1. 0 0 0 30 1 0 0 o0
41 0 0 0 0 41 0 0 0 0 41 0 0 0 0
5/1.0 0 0 0 501 0 0 0 0 501 0 0 0 0
A[l] =410y Af2] Al2] Zq2,4y Al4] A[1] A1,4y Al4]

Fig. 6 Extended lexicographic comparisons for Example 5 where only the highlighted entries are compared

rows i and k), which is clearly not possible for the case in Theorem 3. Using a representation
similar to the above, where the boxed elements are in positions i, j and k in the sequences:

Ali] = S o]n [z [y VA
Alj) = Sz 1[0 [Uo[Z]V2
Alk] = Ssfy [T5[zJUs[ 0 Vs
IS =85=8,T3<Ti <Th,x=0andy = 1then S{T1UyV| <X $2ToU»zV> and
SpxTUsVa X S3yT3U3 V3, ie. Ali] <y, 5y Alj] and A[j] <« Alk], but S;T1xU1Vy £
S$3T3zU3 V3, i.e Ali] Zqiky Alk

By removing the redundancy implied by Theorem 3 we can remove O(n) constraints
and refine Definition 8 thus:

Corollary 1
sbi(A) = /\ Alil =)y ALl

i<j

j—i#2
The following proves that sb is a symmetry-breaking predicate.

Theorem 4 Let A be a canonical adjacency matrix. Then sby (A) holds.

Proof Let A be the canonical adjacency matrix for a graph G and assume to the contrary
that A does not satisfy sby(A). That is, there exist i and j such that i < j and A[i] Ay, )
A[j]. Let = denote the permutation which swaps vertices i and j in G. We show that B =
AzG) < A.Letk # i, j be the first column at which A[i] and A[j] differ (except possibly
for columns i and/or j). It follows that for every 1 < k' < k, k # i, j, A[i, k'] = A[j, k']
and Al[i, k] > A[j, k]. There are 3 cases to consider, k < i,i < k < jand k > j. We
consider these cases below and illustrate them using Figs. 7, 8 and 9. In each case similarly
shaded sections of rows/columns i and j are identical, and the grey squares denote the
unknown (but identical) values A[i, j] and A[}, i].

(a) k < i:Since k — 1 length prefixes of A[i] and A[j] are equal (the diagonally striped
regions in Fig. 7), A[i, 1]--- A[i,k — 1] = B[j, 1]--- B[j, k — 1]. Note also that
A[i'] = B[i'] for 1 < i’ < k (the dotted regions in Fig. 7). The i and j elements in
A[i’] are equal because A is symmetric and A[i, '] = A[j,i’] for i’ < k . Hence the
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k Alk,] Alk,]

Y & O

n

Fig.7 Graph A, Theorem 4(a), k < i. Similarly shaded sections of rows/columns i and j are identical and
grey shaded squares are unknown but identical values

(b)

(©)

first cell to differ in A and B is at position [k, i], and A[k,i] > Bl[k,i]. So B < A.
Contradiction.

i < k < j: By a similar argument to the above, A[i,1]---A[i,k — 1] =
Alj, 1]--- A[J, k — 1], except possibly in column i (the diagonally striped regions
in Fig. 8). By symmetry A[l,i]---A[k — 1,i] = BI[j,1]---B[j, kK — 1], except
possibly in row i (the dotted regions in Fig. 8) and so, in particular, for i’ < i,
A[i'] = BJ[i’]. Since A[i,i] = 0 and A is canonical, A[j, i] must be 0. Hence, for
k' < k, Ali, k'] = Bli, k']. It follows that the first cell to differ in A and B is at
position [i, k] and that A[i, k] > B[i, k].

k > j: By asimilar argument to the above, A[i, 1]--- A[i, k—1] = A[j, 1]--- A[j, k—
1], except possibly in columns i and j (the diagonally striped regions in Fig. 9) and
A[l,i]---Alk — 1,i] = B[1, j]--- B[k — 1, j], except possibly in rows i and j (the
dotted regions in Fig. 9). In particular, for i’ < i, A[i"] = B[i’]. By a similar argument
to part (b), as A[i, i] = 0 and A is canonical, A[j, i] must be 0. Since A[j, i] = A[i, j]
(by symmetry) and A[j, j] = 0 and we already know that rows i and j are identical
up to column k — 1 otherwise, it follows that the first cell to differ in A and B is at
position [i, k] and that A[i, k] > B[i, k].

O

Another way to think about sbj (A) is that it prevents us from creating a form of the graph

where swapping any two rows will lead to a lexicographically smaller graph.

@ Springer



Constraints (2019) 24:1-24 11

I /////////////A ° %A[i,k]

K Alk,] Alk]

n

Fig.8 Graph A, Theorem 4(b), i < k < j. Similarly shaded sections of rows/columns i and j are identical
and grey shaded squares are unknown but identical values

Theorem 5 Let A be an adjacency matrix for graph G where sbj(A) holds. Let w be a
permutation that swaps vertices i and j in G. Then A < Az (G).

Proof Let B = Az (G). Assume w.l.o.g. that i < j. Suppose to the contrary that B < A we
show that sbj(A) does not hold.

Let Afi] = 51@52@53 and A[j] = Tl@T 2@T3 where the circled entries occur
at positions i and j in the sequences. Now we know that Bl[i] = Tl@TQ@Tg and
Blj] = S1(x)S2(0)Ss by the definition of B.

Arrays A and B are shown in Fig. 10. We also label the regions of columns A and B that
are (by symmetry) transpose of one of S, ---, Sz or 7y, --- , T3.

Suppose the first position where B and A differ is row k column /. Then B[k] < A[k].
By the nature of B, either k or / is i or j. Suppose that/ =i or/ = j then, since A[k, i] #
B[k, j]if and only if A[k, j] # B[k, j], we can assume that / = i. Similarly, if k is i or j
we can assume that k = i. Also, by symmetry, if elements in row i’ and column j’ differ
in A and B, so do the elements in row j’ and column i’. We can therefore assume that the
first element in A that differs from the corresponding element in B is one of: k < i, = i;
k=i,i <l < jork=1i,l> j,i.e.in one of the shaded areas in Fig. 10.

If k < i,] = i, then since B[k] < Alk], Blk,i] < Alk,i]. As Blk,i] = Alk, j] we
have Alk, j] < Alk, i] and, by symmetry, A[j, k] < Ali, k]. Since k is the first position in
which A[i] and A[j] differ, A[i] Ay, jy ALj].
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I W 0% %A[i,k]
J W % 0 %Au,kl

k Alk,i]

n
Fig.9 Graph A, Theorem 4(c), j < k. Similarly shaded sections of rows/columns i and j are identical and

grey shaded squares are unknown but identical values

Ifk =i,andi <l < jorl > j then since B[k] < Al[k], B[i,l] < A[i,l]. As
B[i,I] = A[j,I] we have A[j,!] < Ali,[]. Since [ is the first position in which A[i] and

Alj] differ, A[i] A4, jy AL O
1 2 I j n 1 2 i s wmw.a s j n

1 1
2 ST i 2 7 s,7
i Sy 0 S, X Sy i T, 0 T, X T,

S,T T, T, ST
j T, X T, 0 Ty j S, X S, 0 Sy

S,T T, LAY S,"
n n

(@) (b)

Fig. 10 Graphs A and B, Theorem 5. Shaded areas in (a) denote the possible position of the first element to
differ in (a) and (b)
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Note that often we may wish to separate vertices of the graph into equivalence classes
a priori, and generate a graph that satisfies those equivalence classes. We can still use
(extended) lexicographic ordering to help constrain the resulting adjacency matrices, since
we can extend Theorem 4 to this case.

Definition 9 (ordered partition)] Let G be a graph. Then P = {Py, ..., P,} is an ordered
partition of the vertices of Gif V1 <i < j < p,v; € P, Avj € Pj = v; <vj.

Definition 10 (partition preserving permutation) Let P = {Py, ..., P,} be an ordered
partition on the vertices of G. A permutation 7 on the vertices of G is partition preserving
for PifVl <i < p,Yv; € P,,n(v;) € P;.

Example 6 Consider the graph G, from Fig. 1 and the ordered partition P =
{{1,2,3,4}, {5, 6,7, 8}, {9}}, which partitions vertices by degree. Then the permutation
m = (2, 3,4) is partition preserving for P. It maps elements in P; to other elements in P;
and fixes elements in the other parts.

Definition 11 (canonical partitioned adjacency matrix) The canonical form of
a graph G with respect to an ordered partition P is the graph can(G,P) =
min< {7 (G)|m is a partition preserving permutation for P}. We say that G is canonical for
P if G = can(G, P).

We can define a symmetry breaking predicate for partitioned graphs as follows:

Definition 12 (partitioned lexicographic symmetry break) Let A be an n x n adjacency
matrix and P = {Py, P>, ..., P,} be an ordered partition. We define

P
sbj (A, P) = /\ /\ Ali] =y, jy AlJ]
k=1 (i.j)‘g‘P,;i<j
j—i#2

Theorem 6 Let G be a canonical partitioned graph for an ordered partition P. Then
sbj (A, P) holds.

Proof Let A be the canonical adjacency matrix for graph G and assume to the contrary that
A does not satisfy sbj (A, P). That is, there exists a partition Py and {i, j} C P, withi < j
where A[i] Ay jy Alj]l. Let B = Ay () where 7 swaps i and j. Note that 7 is a partition
preserving permutation for P. Using a proof similar to that of Theorem 4 we can show that
B < A. (]

Example 7 Let G be the graph G, from Fig. 1 and the ordered partition P =
{{1, 2, 3,4}, {5, 6,7, 8}, {9}}, which partitions vertices by degree. Then G is canonical for
P (even though, as shown in Example 3, G is not canonical). Clearly Sb,’; (Ag, P) holds,
although sbj (Ag) does not.

Note that we exploit the fact that symmetry breaking can be applied without disturbing

a defined partitioning in Section 4 when enforcing the existence of embedded stars (but not
otherwise).
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14 Constraints (2019) 24:1-24

4 Extremal graph problems

Extremal graph theory [8] is the study of graphs that are maximal (or minimal) in some way
(for example in terms of number of edges) and which satisfy a given property. Extremal
graph theory has many applications both in other areas of mathematics and fields including,
for example, chemistry [21], biology [22] and cryptography [23].

We apply a constraint-based approach to some extremal graph problems and illustrate
the advantage of symmetry breaking on the graph representation.

The girth of a graph is the size of the smallest cycle contained in it. Let 4 (v) denote
the set of graphs with v vertices and girth at least k + 1. Let f;(v) denote the maximum
number of edges in a graph in Fy (v). A graph in Fi (v) with fi(v) edges is called extremal.
The number of non-isomorphic extremal graphs in F (v) is denoted F (v). Extremal graph
problems involve discovering values of f;(v) and Fi(v) and finding witnesses. In [24] the
authors attribute the discovery of values f4(v) for v < 24 to [9] and for 25 < v < 30 to
[25]. Hand proofs for f4(v) for 40 < v < 49 are presented in [26]. In [9] the authors report
values of F4(v) for v < 21.In[9] and [27] algorithms are applied to compute lower bounds
on f4(v) for 31 < v < 200. Some of these lower bounds are improved in [28] and improved
upper bounds for 33 < v < 42 are proved in [29]. Currently available values of f4(v) and
of F4(v) are available as sequences 2006856 and A15984 7 of the On-Line Encyclopedia
of Integer Sequences [30].

Our basic constraint model is shown in Fig. 11 where we assume given values of v
(number of vertices) and e (number of edges) and that A is a v X v matrix of Boolean
variables. Constraint (1) states that the graph is simple (symmetric with no self loops),
Constraints (2) and (3) express that there are no cycles of length 3 or 4, and Constraint (4),
that the number of edges is e. Constraints (2) and (3) are implemented more efficiently.
We introduce additional Boolean variables for each triplet of (distinct) vertices i, j, k with
i < k:xijr ¢ Ali, jl A Alj, k] represents a length 2 path between i and k via j; and
Xik < V{x;i jklj # i, j # k} represents the existence of any length 2 path between i and
k. We then express Constraints (2) and (3) as V; ¢ . A[i, k] +x; x <2 and V; . Zj Xijk <2.

Vicicj<o- (Ali,j] = Alj,i] and  Ali,i] = 0)

Vi ki Ald, 5]+ Al k] + A[k, 1] + A[l, 1] < 4

Z A[Zaj] =e

1<i<j<v
Vicicod < > A[i] < A,
6= miin(z Ali])
A= m?x(z Ali])

Fig. 11 Basic constraint model for extremal graph problems (no cycles of length 4 or less) with v vertices
and e edges
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To explain Constraints (5)—(7) we recall Propositions 2.6 and 2.7 from [9] which state
that for every graph in F4(v) with e edges the minimum and maximum vertex degrees,
denoted § and A, satisfy the following equations (assuming v > 1):

v>14+A8>1+682 and
§>e— fa(v—1),and A > [2¢/v] (@)

Given values for v and e we model the problem separately for each potential pair (5§, A)
introducing constraints (5) to (7). In addition to the above constraints we introduce
symmetry breaking constraints sb, or sby.

Example 8 For v = 31 and e = 80 the possible (§, A) pairs satisfying Eq. 1 are
{(4,6), (4,7), (5,6)}. Similarly, for v = 31 and e = 81 there is a single pair, (5, 6).

We describe three experiments to evaluate the impact of different symmetry breaking
strategies. Experiments were run using the BEE [31] constraint solver.

Note that for v < 20 our experiments often take longer to run (even with sb}) than using
nauty’s geng tool [6] — for example we take 4.7 seconds to find Fy4(15), whereas geng
takes only 1.8 seconds. However, for larger values of v, geng can not find a solution within

Table 1 Computing f4(v) (time in seconds; timeout 4hrs)

No symmetry break sby sbj sby + star
v f4(v) sat unsat sat unsat sat unsat sat unsat
11 16 0.22 00 0.15 0.30 0.10 0.22 0.07 0.04
12 18 0.11 0.00 0.10 0.00 0.11 0.00 0.05 0.00
13 21 0.09 0.00 0.13 0.00 0.15 0.00 0.04 0.00
14 23 0.13 o] 0.23 1.14 0.20 0.58 0.13 0.08
15 26 0.16 0.00 0.27 0.00 0.30 0.00 0.11 0.00
16 28 0.18 (o] 0.30 87.18 0.61 32.20 0.25 3.63
17 31 0.28 0.00 0.31 0.00 0.48 0.00 0.19 0.00
18 34 0.29 0.00 0.40 0.00 0.60 0.00 0.27 0.00
19 38 0.34 0.00 0.41 0.00 0.57 0.00 0.21 0.00
20 41 1249  0.00 70.93 0.00 161.41 0.00 8.51 0.00
21 44 6.04 oo 16.42 4805.93 151.84  1019.41 15.57  0.56
22 47 18.03 o0 107.73 o0 16.69 00 23.72 2431
23 50 4763 oo 154.47 o0 36783 oo 6.94 2269.73
24 54 5545  0.00 54.28 0.00 80.74 0.00 12.47  0.00
25 57 8.04 (o] 96.56 o) 655.66 oo 59.70 oo
26 61 13.79  0.00 62.72 0.00 168.90  0.00 24.41 0.00
27 65 42.04  0.00 5590.12  0.00 193.44  0.00 23.62  0.00
28 68 oo oo oo o0 [e9) [e9) 54.81 oo
29 72 oo 0.00 00 0.00 oo 0.00 o0 0.00
30 76 oo 0.00 o] 0.00 00 0.00 oo 0.00
31 80 00 00 00 00 oo oo 21.95  1999.14
32 85 o0 0.00 5170.12  0.00 o8] 0.00 80.52  0.00
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the timeout period — for example geng takes over 60 hours to find F4(20). We stress though
that the goal of our experiments is to demonstrate the benefit of our symmetry breaks, not
to compare the speed of our approach to other algorithms.

We present the results obtained using BEE which compiles finite domain constraints
to CNF and solves them using an underlying SAT solver. Our configuration uses Cryp-
toMiniSat v2.5.1 [32]. BEE performs CNF simplification by applying a constraint-driven
technique called equi-propagation [33] and partial evaluation. All experiments are per-
formed on a single core of an Intel(R) Core(TM) i5-2400 3.10GHz CPU with 4GB memory
under Linux (Ubuntu lucid, kernel 2.6.32-24-generic). BEE is written in Prolog and run
using SWI Prolog v6.0.2 64-bits. All experiments were replicated and verified using the
Choco constraint programming toolkit. As run times were considerably higher in this case
we only give results for the BEE experiments.

4.1 Experiment 1: computing f4(v)

Table 1 summarizes the results for a constraint-based approach to compute values of f41(v).
We compare the computation time for four configurations: (1) “no symmetry break” break,
(2) breaking symmetries using sby, (3) breaking symmetries using sb?, and (4) breaking
symmetries using sb, with an embedded star. The columns in Table 1 specify (from left to
right): The number of vertices, v, and the value f4(v). Then, for each of the four config-
urations, we specify the computation time to compute a graph with f4(v) edges (columns
labeled “sat”), and show the non-existence of a graph with f4(v) + 1 edges (columns labeled
“unsat’).

For the first three configurations, we apply the constraint model from Fig. 11. For the
fourth configuration, we add an additional constraint to the model. To this end we follow [9]
where it is noted that every graph in F (v) with at least 5 vertices and minimum/maximum
vertex degrees (5§, A) contains a (A, § — 1)-star. In general, an (m, n)-star is a rooted tree,
denoted S, ,, where the root has m children, each of which has n > 1 children, all of
which are leaves. The existence of a Sa s—; in any extremal graph (with at least 5 vertices)
follows from the fact that the children and grandchildren of any vertex are distinct (as there
are no 3— or 4—cycles). So, we add constraints to explicitly embed Sa s—1 in the adjacency
matrix. In Section 4.2, in order to distinguish Sa s—1 stars from new stars that we introduce,
we refer to a simple Garnick star. In this setting, based on Theorem 6 we impose symmetry
breaking on the A clusters of § — 1 leaves of Sa s—; as well as to the cluster of vertices not

T 1

T
T
T

I
NN
NN
T
T
T

T

(b) (c)

Fig. 12 a the star S¢ 4, b its adjacency matrix, and ¢ a member of F4(31) with 80 edges (O=white, 1=black,
not determined = gray)
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in the star (and use the partition preserving symmetry break as described in Theorem 6).
Figure 12a illustrates the star Sg 4.

A 31 x 31 adjacency matrix with an embedded S¢ 4 is depicted as Fig. 12b. Black and
white cells indicate values 1 and O respectively, and gray cells indicate unassigned Boolean
variables. The last row of the matrix corresponds to the root. Moving up we find the 6 chil-
dren of the root, and then its 24 grandchildren. Note that although in this particular example
all vertices are in the star, this is not generally true. We will later return to explain Fig. 12c.

Examining the first three columns labeled “sat” it appears that there is no significant
gain in symmetry breaking when the instance is satisfiable and we need only find a sin-
gle witness. In fact for many of the instances, the computation with no symmetry break is
faster. When instances are unsatisfiable (the “unsat” columns), we encounter two types of
instances: those which involve search and those which do not. For the later type, unsatisfia-
bility derives from the propagation of the constraints in Eq. 1 and the computation is fast for
all configurations. For the other instances, the solver must explore the entire search space
and the first three “unsat” columns indicate that symmetry breaking is then useful.

The bottom two rows in Table 1 describe our results for two open instances, computing
fa(31) and f4(32). A lower bound of f4(31) > 80 is given in [9] and a witness (discovered
using our model in less than 22 seconds) is depicted as Fig. 12c¢. It is canonical with respect
to a partitioning where the first 24 rows form 6 clusters of size 4 each (the grandchildren),
the next 6 rows form a cluster (the children), and the last row is a singleton cluster (the
root). With the proof that there is no witness with 81 edges (determined using our model
in 33 minutes of CPU time) we conclude that f4(31) = 80. Given that f4(31) = 80, Eq. 1
implies that f4(32) < 85 and hence that the lower bound f4(32) > 85 reported in [9] is the
precise value, consequently f4(32) = 85. These are both new results.

A comparison between the configuration sb, and sby with an embedded star demon-
strates that the search times when considering the embedded stars are much faster.

4.2 Experiment 2: computing F4(v)

In this experiment we apply a constraint-based approach to compute the number of non-
isomorphic extremal graphs with v vertices. We apply a constraint solver to generate all
graphs satisfying the constraint model for v vertices and e = f4(v) edges with corre-
sponding symmetry breaking constraints. We then apply nauty to determine the number
of non-isomorphic graphs within this set. The time required to run nauty is negligible and
not detailed in our results.

For smaller values, v < 15, we consider the constraint model of Fig. 11. Table 2 shows
for each value of v the maximum number of edges f4(v), the number of non-isomorphs
F4(v), and the number of graphs generated (columns sols) and computation time (time,
in seconds), for each of the three configurations. Our results are as expected: improving
symmetry breaking makes a significant difference.

For 16 < v < 19, for all configurations we again follow [9] and apply an additional
constraint to embed a (A, § — 1) star (as we did for the final configuration in Table 1). An
interesting observation is that for 17 < v < 19 the number of graphs generated is the same
for sb, and sb}‘. This is due to the structure of the solutions in these cases. Note that for
sbj to generate fewer graphs than sby, for some partition Py and {i, j} € Px withi < j,
Ali] < A[j]but A[i] A,y ALj]. This can only happen if (i, j) is an edge, and so can only
occur in the partition containing the vertices that are not in the star. For the case v = 17 and
(8, A) = (4, 5) there is only one vertex not contained in the star and so this is not possible.
The other cases require further analysis but can be explained in a similar way.
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18 Constraints (2019) 24:1-24

Table2 Computing F4(v) (time in seconds; timeout 4hrs)

v f4(v) Fu(v) no sym break sby sbj

# sols time # sols time # sols time
4 3 2 9 0.01 3 0.03 2 0.01
5 5 1 12 0.01 1 0.01 1 0.01
6 6 2 120 0.05 4 0.03 2 0.03
7 8 1 900 0.25 6 0.01 3 0.01
8 10 1 2520 1.95 4 0.02 1 0.02
9 12 1 10080 16.48 6 0.06 3 0.06
10 15 1 30240 48.96 2 0.03 1 0.04
11 16 3 — 00 48 0.91 16 0.74
12 18 7 — 00 469 1.93 192 0.75
13 21 1 — 00 66 0.21 27 0.15
14 23 4 — 00 2888 81.67 1021 16.02
15 26 1 — 00 812 51.72 268 4.70
16 28 22 — o0 — 00 — [ee)
17 31 14 — 00 29289 1249.66 29289 981.92
18 34 15 — 47811 11321.10 47811 7469.56
19 38 1 49248 430.58 70 0.14 70 0.14
20 41 1 — 00 14 2.57
21 44 3 — 00 438 1.90
22 47 3 — 00 372 302.42
23 50 7 — 00 2220 791.42
24 54 1 — 00 144 28.48
25 57 6 — 00 7740 10791.31
32 85 1 — 00 240 765.16

For the larger instances where v > 20, we first extend the approach regarding embedding
a star in extremal graphs. We denote by Sy, [4,,....n,,]» @ TOOted tree with m children, which
respectively have ny, ..., n, children (grandchildren of the root). In [13], for each v > 21
and feasible pair (§, A) we have identified stars which must be contained in any extremal
graph (see Proposition 1). We embed the indicated structure in the adjacency matrix when
performing the encoding using clusters in a similar way to that used previously using sim-
ple Garnick embedded stars (and again use the partition preserving symmetry break as
described in Theorem 6). Note that we have identified stars containing as many vertices as
possible, so that our “not in the star” cluster is a small as possible.

The bottom rows in Table 2 describe our results for four open instances, computing
F4(22), F4(23), F4(24), F4(25) and F4(32). These are new results and we did not rely on
any previous known bounds to reduce the search space. Because of the embedded star, there
is no noticeable difference between the symmetry break using sbj or when using sby (and
so we only present the results for sbj in the table). However, as indicated by the table, not
applying either is catastrophic. The single element of F4(32) is shown in Fig. 13.

Note that values of F4(v) for 26 < v < 31 have also been calculated (and presented
in [13]). In this case, although our approach was used to eliminate some sub-cases, the
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Fig. 13 Unique girth 5 graph of
order 32 with 85 edges

B

graphs were largely constructed by hand from graphs in F4(v — 1), so we do not include
experimental results here. Note that the values of F4(v) in these cases are however included
in Table 3.

Table 3 Embedded stars for 20 < v < 25, and v = 32

N fa(v) 8, A) Form of the embedded star
20 41 (3,5) S$5.03.3.3.3.2]
21 44 @3,5) S$5.,03,3.3,3.3]
4,5) S$5,13,3,3,3.3]
22 47 3,5 S$5,4,3,3,3,3]
4,5) S$5,4,3,3,3,3]
23 50 3,5) §5.14,4,3,3,3]
4,5) §5.14.4,3,3,3] OF S5,14,3,3,3,3]
24 54 (4,5) S$5.,4,4,4,3.3]
25 57 3,5 S$5.,14,4,4,4,3] O S5,[4,4.4,3.3]
“4,5) S$5,4,4,4,4,3] O S5,[4,4.4,3 3]
4,6) 86.13.3.3.3,3.3]
26 61 4,5) S5.14,4,4,4,4]
27 65 “4.5) S5,14,4,4,4,4]
28 68 (3,6) S6.[4,4,4,4,3.2]
4.,5) S5.14,4,4,4,4]
4,6) 86.14.4,4.3,3.3]
29 72 4,6) 56.4.4,4,4,3.3]
30 76 (4,6) S6.(4,4,4,4,4,3] and Se,[5,4,4,4,3 3]
31 80 (4,6) S6.14.4,4,4,4,4) and S¢ (5 4.4.4.4.3]
(5,6) S6.[4,4,4,4,4,4]
32 85 (5,6) S6.[5.,4,4,4,4,4]
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Proposition 1 Let G be an extremal graph with v vertices where 20 < v < 27 or v =
32. Then, the minimal and maximal degrees, (5, A) of a vertex in G correspond to one of
the cases indicated in Table 3. Furthermore, G has an embedded star of one of the forms
indicated in Table 3 for the respective values of (5, A). Note that if more than one star is
indicated then either all graphs have embedded stars of at least one of the indicated types
(where the form is given as Sp [n,...n,] OF Sm/’[n/l’_“’n;ﬂ]), or all graphs have both of the
indicated types (where the form is given as Sy [n,,...,n,,] and Sm/’[”/] ,_._,n;n]).

The full proof of Proposition 1 is presented in [13].
4.3 Experiment 3: computing f5(v)

For our final experiment regarding girth we consider the extremal graphs which contain no
cycles of length 5 or less. To this end we extend the basic constraint model of Fig. 11 with
an additional constraint that states that every sequence of five vertices does not form a cycle,
and we consider the optimization problem which computes values of f5(v). Table 4 shows
our results. To better illustrate the impact of improved lexicographic symmetry breaking
we consider also a predicate sb;|r which is like sbj but only compares consecutive rows of
the matrix. The reason we did this was to satisfy our curiosity as to whether the additional
work required for sbj (0(n?) compared to O (n)) is worth it. It is clear that the much larger
sby pays off. The stricter conditions force partial solutions to be rejected quicker, reducing
computation time considerably for the larger instances.

5 Symmetry breaking for graph colorings
In this section we show that all of our results carry over to the search for graph edge col-

orings where the adjacency matrix contains integer values representing the color of edges
instead of Boolean values representing the presence of edges. A graph coloring, in k colors,

Table 4 Computing f5(v) (time in seconds; timeout 4hrs)

v f5(v) No sym break sby st’ sby

4 3 0.00 0.00 0.01 0.02

5 4 0.01 0.01 0.01 0.01

6 6 0.01 0.01 0.01 0.01

7 7 0.14 0.03 0.03 0.02

8 9 2.01 0.06 0.04 0.04

9 10 76.07 0.13 0.08 0.07

10 12 2224.65 0.30 0.02 0.15

11 14 o0 1.29 0.61 0.41

12 16 o0 4.97 3.49 1.30

13 18 o0 21.18 11.19 7.93

14 21 o0 85.73 43.78 20.29
15 22 o0 801.03 418.05 203.08
16 24 oo oo 6076.86 1613.60
17 26 00 oo o] 13903.10
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Vi<icj<n- (1 < A[i, 5] <3AA[L, 5] = Alj,4]) A Vi<i<n. (Ali, 1] =0)

Vi<i<j<k<n- ﬂ(Ai,j = Aj,k = Akﬂ')

Fig. 14 Constraint model for Ramsey colorings (3, 3, 3; n)

is a pair (G, k) consisting of a simple graph G = (V, E) and amapping«: E — {1, ..., k}.
We typically represent (G, k) with |V| = {1,...,n}, as an n x n adjacency matrix, A,
defined such that
oo kG ) ifG, j)eE
AlL, j1= { 0 otherwise

A graph coloring problem is a formula ¢(A) where A is an n x n adjacency matrix of
integer variables (represented edge colors) together with a set (conjunction) of constraints ¢
on these variables. A solution is an assignment of integer values to the variables in A which
satisfy ¢ and determine both the graph edges and their colors.

Suppose we are looking for a graph coloring A that satisfies a given property P. Here,
solutions are typically closed under permutations both of vertices and of colors. Restricting
the search space for a solution modulo such permutations is crucial when trying to solve
hard graph coloring problems.

We observe that the notion of a canonical form given as Definition 5 and the lexico-
graphic symmetry breaking predicates sby and sbj of Definitions 6 and 8 are well-defined
also for graph colorings where the non-zero entries in an adjacency matrix have values other
than 1. Moreover, the proofs of Theorems 1 and 4 do not rely on the non-zero entries in an
adjacency matrix having only value 1. Therefore our symmetry breaking constraints can be
applied also in the search for graph colorings. We illustrate the impact of our approach on
the search for Ramsey colorings (3, 3, 3; n) of the complete graph K,.

An (rq, ..., ry; n) Ramsey coloring is an assignment of one of k colors to each edge
in the complete graph K, such that it does not contain a monochromatic complete sub-
graph K,, in color i for 1 < i < k. The Ramsey number R(r1, ..., ry) is the least n > 0
such thatno (71, ..., r¢; n) coloring exists. The only known value of a nontrivial multicolor
classical Ramsey number is R(3, 3,3) = 17. The number of (3, 3, 3; n) colorings of the
complete graph K, on n vertices is known for 14 < n < 16 [14]. We illustrate here that
we can reproduce these numbers using the symmetry break techniques proposed in this
paper. Unfortunately, our technique does not suffice to compute the number of (3, 3, 3; 13)
colorings.

Figure 14 illustrates the constraints of the Ramsey coloring problem (3, 3, 3; n). Con-
straint (8) states that the graph has n vertices, is 3 colored, and is simple (symmetric,
and with no self loops). Constraint (9) states that the n vertex graph has no embedded
monochromatic sub-graph K3.

Table 5 illustrates the impact of the symmetry breaking predicate sb* on the search for
(3, 3, 3; n) Ramsey colorings. The column headed by “#\ .”” specifies the known number of
colorings modulo weak isomorphism [14].

Definition 13 ((weak) isomorphism of graph colorings) Let (G, 1) and (H, k2) be k-
color graph colorings with G = ([n], E1) and H = ([n], E2). We say that (G, k1) and
(H, k) are weakly isomorphic, denoted (G, k1) =~ (H, k) if there exist permutations
w:[n] — [n] and o: [k] — [k] such that (u,v) € E; <= (w(u),7(v)) € E; and
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Table 5 The search for (3, 3, 3; n) Ramsey colorings with and without the symmetry break sb* (time in
seconds with 24 hr. timeout)

n #\~ No sym break With sym break
#vars #clauses time #vars #clauses time #
17 0 408 2584 3042.10 4038 20734 0.15
16 2 360 2160 00 3328 17000 0.14
15 2 315 1785 00 2707 13745 0.37 66
14 115 273 1456 00 2169 10936 259.560 24635
13 — 234 1170 00 1708 8540 00 —

k1((u, v)) = o (k2 ((w(u), w(v)))). When o is the identity permutation, we say that (G, k1)
and (H, k) are isomorphic.

The columns headed by “#vars” and “#clauses” indicate, respectively, the number of
variables and clauses in the corresponding CNF encodings of the coloring problems with
and without the symmetry breaking constraint. The columns headed by “time” indicate the
time (in seconds) to find all colorings iterating with a SAT solver. The timeout assumed
here is 24 hours. The column headed by “#” specifies the number of colorings found when
solving with the symmetry break. These include colorings which are weakly isomorphic,
but far less than the hundreds of thousands generated without the symmetry break (until the
timeout). We have verified using nauty that the colorings obtained using the symmetry
break (the last column) reduce modulo isomorphism to the known numbers (the second
column).

Figure 15 presents the two non-isomorphic colorings (3, 3, 3; 16) represented as adja-
cency graphs in the form found using our encoding. Note the lexicographic order on the
rows in both matrices. These graphs are isomorphic to the two colorings reported in 1968 by
Kalbfleish and Stanton [34] where it is also proven that there are no others (modulo weak
isomorphism).

There are many papers that consider ways to exploit symmetries in the search for Ram-
sey numbers and colorings. In particular: Gent and Smith [35], building on the work of
Puget [36], study symmetries in graph coloring problems and recognize the importance
of breaking symmetries during search. Meseguer and Torras [37] present a framework for
exploiting symmetries to heuristically guide a depth first search, and also show results for
(3, 3, 3; n) Ramsey colorings with 14 < n < 17. An advantage of our approach is that it is

rol1111122222333337 rol1111122222333337
1022331122311233 1022331122311233
1203232311212313 1203231213223113
1230321213223131 1230322231131132
1323023221131321 1323022312113321
1332202132133112 1332203121232311
2121320331123213 2112230331123231
2132213011332231 2122313013132123
2211233103121332 2213123101321323
2213121130332123 2231211310312332
2322111313013322 2321121133033212
3112332323102121 3123132321302112
3123133212320112 3131323212320211
3231312231311022 3211332133212021
3313211332221201 3313213223111202
L3331123123212210- L3332111332221120-
Fig.15 R(3, 3, 3; 16) graphs
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not specialized. We simply require the rows of the adjacency matrix to be lexicographically
ordered.

In [15] we apply the results of this paper to show that the precise value of R(4, 3, 3) is
30. This was an open problem for over 30 years.

6 Conclusion

We have considered the problem of breaking symmetries during search when identifying
undirected graphs satisfying a given property P, assuming a setting where testing for the
existence of a graph G satisfying P is posed as a Boolean constraint P(Ag) on the variables
of the Boolean adjacency matrix Ag of G. We have presented two symmetry breaking
constraints (sby and sbj) and formally proved their correctness. We have demonstrated the
benefit of our approach by applying it to solve a variety of problems related to extremal
graphs of girth at least k+ 1, for k = 4 and k = 5, solving some open instances. In particular
we have shown how combining our technique with known properties of extremal graphs
(in our case, the existence of embedded stars) can increase its effectiveness. We have also
extended the approach to apply to graph coloring problems and demonstrated its impact on
the search for Ramsey numbers and coloring.
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