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Abstract Studies analyzing sensory cortical processing or
trying to decode brain activity often rely on a combination
of different electrophysiological signals, such as local field
potentials (LFPs) and spiking activity. Understanding the
relation between these signals and sensory stimuli and
between different components of these signals is hence of
great interest. We here provide an analysis of LFPs and
spiking activity recorded from visual and auditory cortex
during stimulation with natural stimuli. In particular, we
focus on the time scales on which different components of
these signals are informative about the stimulus, and on the
dependencies between different components of these
signals. Addressing the first question, we find that stimulus
information in low frequency bands (<12 Hz) is high,
regardless of whether their energy is computed at the scale
of milliseconds or seconds. Stimulus information in higher
bands (>50 Hz), in contrast, is scale dependent, and is

larger when the energy is averaged over several hundreds of
milliseconds. Indeed, combined analysis of signal reliability
and information revealed that the energy of slow LFP
fluctuations is well related to the stimulus even when con-
sidering individual or few cycles, while the energy of fast
LFP oscillations carries information only when averaged
over many cycles. Addressing the second question, we find
that stimulus information in different LFP bands, and in
different LFP bands and spiking activity, is largely
independent regardless of time scale or sensory system.
Taken together, these findings suggest that different LFP
bands represent dynamic natural stimuli on distinct time
scales and together provide a potentially rich source of in-
formation for sensory processing or decoding brain activity.
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1 Introduction

The neural signals commonly measured with microelectr-
odes consist of action potentials and slow-wave activity
known as local field potentials. Spikes can be detected and
classified by analyzing the high-frequency range (typically
>5000 Hz) of the extracellular signal, whereas the local
field potential (LFP) is assessed by the power variation in
the low-frequency range (typically below 100 Hz). The
LFP is sensitive to subthreshold integrative processes and
carries information about the state of the cortical network,
which is difficult to capture using spiking activity from
only a few neurons (Buzsaki 2006; Logothetis 2002;
Mazzoni et al. 2008; Mitzdorf 1985). Field potentials
include population synaptic potentials (Juergens et al.
1999; Mitzdorf 1985) and various types of slow activity
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such as voltage-dependent membrane oscillations and
spike afterpotentials (Buzsaki 2002; Buzsaki et al. 1988;
Logothetis 2008; Ray et al. 2008a). LFPs are also thought
to reflect the degree of balance between excitation and
inhibition and the degree of engagement of excitatory-
inhibitory interactions (Bartos et al. 2007; Brunel and Wang
2003; Cardin et al. 2009; Logothetis 2008; Mazzoni et al.
2008). Although earlier studies on sensory function focused
mostly on spiking activity, more recent studies highlighted
the importance of considering the stimulus induced changes
in field potentials (Belitski et al. 2008; Berens et al. 2008;
Frien et al. 2000; Kayser and Konig 2004; Liu and
Newsome 2006; Pettersen and Einevoll 2008; Siegel and
Konig 2003). Since LFPs are sensitive to supra and sub-
threshold processes, investigating stimulus encoding by
LFPs can offer additional insights into sensory representa-
tions beyond those offered by only measuring neuronal
spike trains (Logothetis 2002; Nicolelis and Lebedev 2009;
Ray et al. 2008b).

Dynamic naturalistic stimuli evolve on multiple temporal
scales and are characterized by complex dynamics (Dong
and Atick 1995; Kayser et al. 2003a; Singh and Theunissen
2003). This begs the question of what time scales in neural
signals such as LFPs are related to the sensory stimulus and
provide information about this. In a previous study (Belitski
et al. 2008) we made a first step in this direction and
considered how LFPs and spikes recorded from visual
cortex encode information about slow changes in natural
movies occurring on the scale of seconds. In the present
study we address this question more systematically and
analyze LFPs and spiking activity (MUA) recorded from
visual and auditory cortices during stimulation with natural
stimuli. In particular, we focus on two questions: what are
the time scales on which different components (frequency
bands) of the LFP are informative about the stimulus, and
what are the dependencies between different LFP bands and
between LFP bands and MUA in representing sensory
stimuli.

2 Materials and methods

We analyzed sensory evoked LFPs and MUA recorded
from primary visual cortex (V1) of anaesthetized monkeys
and caudal auditory cortex of alert monkeys. The recording
procedures and stimulation paradigms for the different
datasets are described shortly in the following and have
been detailed previously (Belitski et al. 2008; Kayser et al.
2009; Montemurro et al. 2008). All experiments were
approved by the local authorities (Regierungspräsidium)
and were in full compliance with the guidelines of the
European Community (EUVD 86/609/EEC) for the care
and use of laboratory animals.

2.1 Recordings in primary visual cortex

Recordings (23 sites) from V1 of two adult rhesus monkeys
(Macaca mulatta) were obtained while the animals were
anaesthetized (remifentanyl, 1 µg/kg/min), muscle-relaxed
(mivacurium, 5 mg/kg/h) and ventilated (end-tidal CO2

33 mmHg, oxygen saturation >95%). Body temperature
was kept constant and lactated Ringer’s solution supplied
(10 ml/kg/h). Vital signs (SpO2, ECG, blood pressure, end-
tidal CO2) were continuously monitored. Neuronal activity
was recorded from opercular V1 (foval and para-foveal repre-
sentations) using microelectrodes (FHC Inc., Bowdoinham,
Maine, 300–800k Ohms), signals were high-pass filtered
(1 Hz, digital two pole Butterworth filter), amplified using an
Alpha Omega amplifier system (Alpha Omega Engineering)
and digitized at 20.83 kHz. Binocular visual stimuli were
presented at a resolution of 640×480 pixels (field of view:
30×23 degrees, 24 bit true color, 60 Hz refresh) using a fiber-
optic system (Avotec, Silent Vision, Florida). Stimuli con-
sisted of ‘naturalistic’ complex and commercially available
movies (30 Hz frame rate), from which 3.5–6 min long
sequences were presented and repeated 30–40 times (Star
Wars Episode 4 and The Last Samurai). We confirmed that
the receptive fields of all neurons were within area of visual
stimulation (Rasch et al. 2008).

2.2 Recordings in auditory cortex

Recordings (n=76 sites) were obtained from three adult
rhesus monkeys (Macaca mulatta) passively listening to
sounds in an anechoic booth. Microelectrodes (FHC Inc.,
Bowdoinham, Maine, 0.8 to 6 MOhms) were spaced at
750 μm, signals were amplified using a modified Alpha
Omega system (Alpha Omega Engineering), filtered between
4 Hz and 9 kHz (4-point Butterworth filter) and digitized at
20.83 kHz. Recording sites covered the auditory core
(primary auditory cortex) and caudal belt regions. Sounds
(average intensity 65 dB SPL) were delivered from two free
field speakers (JBL Professional) positioned 50 degrees to the
left and right at 70 cm distance from the head. A continuous
52 sec sequence of natural sounds was repeated at least 55
times for each site. This sequence was created by concatenat-
ing 21 each 1–4 sec long snippets of various naturalistic
sounds (including animal vocalizations, environmental
sounds and conspecific macaque vocalizations).

2.3 Signal extraction

Both datasets were processed using the same resampling
and filtering procedures. In detail, the LFP was extracted by
band-pass filtering the neural signal and resampling at a
rate of 250 Hz. Filtering was done using Kaiser filters with
sharp transition bandwidth (1 Hz), small passband ripple
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(0.01 db) and high stopband attenuation (60 dB). Amirroring
technique was used to reduce edge artifacts during filtering
and forwards and backwards filtering was used to eliminate
phase shifts. Individual frequency bands were spaced at 4 Hz
between 1–100 Hz, with the exact bands being 4–8 Hz, 8–
12 Hz,..., 96–100 Hz. For each band we first computed the
Hilbert transform and from this the instantaneous energy as
the square of the modulus of the transform (Fig. 1). The
amplitude of the Hilbert transform is also known as the
band’s envelope. Multi-unit spiking activity was extracted
by high-pass filtering the raw signal above 500 Hz and
extracting spike times by threshold crossing (with threshold
set to 3.5 SD) for the visual cortex data (see (Belitski et al.
2008) for full details) and using commercial spike-sorting
software (Plexon Offline Sorter) for the auditory data (see
(Kayser et al. 2009) for full details). For the present analysis
we did not separate single and multi-units.

2.4 Information theoretic analysis
and stimulus characterization

To determine whether the energy of a given LFP band is
related to the sensory stimulus we computed the mutual
Shannon information between stimulus and response
(Shannon 1948), which is defined as

I S;Rð Þ ¼
X

r;s

PðsÞP r sjð Þlog2
P r sjð Þ
PðrÞ ð1Þ

Here P(s) is the probability of presenting stimulus s, P(r|s)
is the probability of observing the response r given pre-
sentation of stimulus s, and P(r) is the probability of ob-
serving response r across all trials to any stimulus. I(S;R)
quantifies the reduction of uncertainty about the stimulus
that can be gained from observation of a single trial response
in units of bits. I(S;R) is zero only when the stimulus and the
response are statistically independent, indicating that no
knowledge about the stimulus can be gained by observing
the response.

In this study the neural responses r was defined in
four different ways, giving rise to slightly different
information calculations. In the first case, r was defined
as the energy of the LFP in a given frequency band f, and
the resulting information I(S;R) calculated in this way was
denoted as I(S,Rf). In the second case, when computing
the information I(S;Rf1Rf2) in the joint observation of LFP
energy at two different frequencies, r was a two-
dimensional array (Rf1, Rf2) containing the energy simul-
taneously observed at two different frequencies f1 and f2.
In the third case we computed the information carried by
the spike count, and r was the number of spikes observed
in a trial. In the fourth case, when computing the
information in the joint information carried by spike
counts and LFP energy at a given frequency, the response
r was a two-dimensional array containing the energy of
LFP at a given frequency f in one dimension and the spike
count in the other dimension.

Fig. 1 Information theoretic
analysis of field potentials (a) For
the information analysis the time
axis during stimulus (movie or
sound) presentation was divided
into non-overlapping windows
(Si) of length T, within which the
responses were characterized. In
this formalism, a given response
can be elicited by any sensory
feature either occurring in the
respective time window i, or in
any previous time window. The
window length T was varied
systematically from 4 to
2048 ms. (b) Example data from
auditory cortex illustrating the
raw LFP from a single trial,
together with the band-pass fil-
tered signal in the 4–8 Hz band.
The red line denotes the energy
of the signal, extracted by the
Hilbert transform. The lower
panel displays the binned (n=4)
energy in several subsequent
trials. Arrows indicate instances
where the energy is highly con-
sistent across trials
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To compute the mutual information between LFP and
sensory stimulus S, we used a feature independent
definition of stimulus, described next (de Ruyter van
Steveninck et al. 1997; Strong et al. 1998). The stimulation
time was divided into non-overlapping time windows T,
and the LFP or spiking response was collected separately in
each of these windows. Each window was labeled with a
stimulus identification number (s=1,2...), and we computed
the information between the response and the identity of the
window in which it was elicited (i.e. the section of the
dynamic stimulus that provoked the response). It is
important to note that the response collected in the s-th
window is potentially elicited by the whole temporal
stimulation pattern up to the time point of window s. The
stimulation history is (by experimental design) exactly the
same from trial to trial. Therefore this definition of stimulus
information from the response in a given window takes into
account the potential contributions of all stimulus features
at all previous times windows in that trial. As such, and
although for simplicity we will denote the windows in
which the response in collected as “stimulus windows”, the
information calculation does not assume an instantaneous
relationship between LFPs and stimuli, and takes into
account the effects of all time lags between neural response
and any stimulus feature that provoked it. This definition of
stimulus space has the advantage that it does not make any
assumptions about which stimulus features or combinations
thereof provokes a neuronal response (either presented at
the current time or in the period prior to the considered
neural response). This also makes the information value
formally invariant to any rigid time shift between stimulus
windows and neural response corresponding to any as-
sumption of a given latency value between stimuli and
responses. A schematic of this procedure is provided in
Fig. 1(a). The length of the time window T is a parameter
which (as detailed in the Results) was varied parametrically
in the range from 4 to 2048 ms, in order to evaluate the
temporal precision with which the neural signal can
segment the natural dynamic stimulus.

The information synergy between the LFP energies at
two different frequencies was defined as the percent
difference between the information provided by the joint
signals (f1, f2) and the sum of the independent information
values (Belitski et al. 2008; Hatsopoulos et al. 1998):
Synergy=100* [ I(S,f1,f2) – (I(S,f1) + I(S,f2)) ] / (I(S,f1) + I
(S,f2)). Negative values of this index indicate redundancy.
The information synergy between the information carried
by spike counts and that carried by LFPs energy at a given
frequency was defined by a straightforward extension of the
above.

The computation of the above information quantities
requires the estimation of stimulus-conditional response
probabilities P(r|s). These probabilities are not known a

priori and must be measured experimentally from a finite
number of trials. Even when each stimulus is repeated
many times, as was the case here, the estimated probabil-
ities suffer from finite sampling errors, which induce a
systematic error (bias) in information estimates (Panzeri et
al. 2007). We used the following procedure to correct for
the bias. To facilitate the sampling of its probability, we
discretized the response space by binning the response
power into n=4 equipopulated bins. We then computed the
information by simply “plugging” the empirical binned
probabilities into the information equations and corrected
for the bias as follows. First, we used a quadratic
extrapolation procedure (Strong et al. 1998) to estimate
and subtract out the bias of each information quantity.
When computing the information conveyed by the joint
observation of two responses (such as LFP energies at
different frequencies) we also applied the “shuffling
procedure” described in (Montemurro et al. 2007; Panzeri
et al. 2007), which greatly reduces the bias of multi-
dimensional information estimates and typically makes the
residual bias negative. This implies that our estimates of the
joint information carried by two signals (and thus of
synergy) are slightly biased downward. We then checked
for residual bias by a “bootstrap procedure”: stimuli and
responses were paired at random, and the information for
these random pairings was computed. Since in this random
case the information should be zero, the resulting value is
an indication of a residual error. For all data reported here,
the residual information in randomized data was minimal,
demonstrating that the statistical biases were well con-
trolled, and it was anyway subtracted out of the final
information estimate.

We implemented the information calculations using
routines from the Information Breakdown Toolbox (Magri
et al. 2009). We tested, by means of simulated LFP power
responses with statistics matching that of the LFP responses
in the visual dataset (see Supplemental Material, section
“Simulated LFP data”), and we found that the estimates of
both single and double frequency mutual information I(S,f)
and I(S,f1,f2) obtained with this procedure were unbiased
even down to 16 trials per stimulus, a value smaller than the
number of trials per stimulus obtained in the experiments
considered here (Suppl. Fig 1). Therefore, this conservative
binning and bias subtraction procedure gave robustly
unbiased estimates of estimates I(S,f) and I(S,f1,f2) that
did not artificially affect redundancy calculations due to
sampling bias effects, although binning into only n=4 bins
underestimated the total information in the LFP responses,
by approximately 20% (see Supplemental Material, section
“Simulated LFP data”). We however verified (data not
shown) that increasing the number of bins up to six (the
maximum that lead to relatively unbiased calculations of I
(S,f1,f2) with the current number of trials, see(Magri et al.
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2009)) gave almost identical results and did not change any
of the conclusions about which bands are informative and
whether they are redundant. We refer to (Belitski et al.
2008; Kayser et al. 2009; Montemurro et al. 2008) for
further details and tests of the analysis procedures.

2.5 Coefficient of variation

To quantify the trial to trial variability of the LFP energy we
computed the coefficient of variation (CV). This is defined
as the ratio of the variance to the mean, both computed
across trials and provides a normalized measure of
variability. Large values indicate more variable signals.

2.6 Signal and noise correlations across frequency bands

The information analysis tells which frequency ranges
allow better discrimination among stimuli on a single trial,
but it does not tell whether the information increase at
certain frequencies is due to greater reliability across trials
of the responses at these frequencies, or due to improved
stimulus differentiation by the mean responses. To separate
out the contribution of stimulus modulation and of response
variability, it is useful to characterize the response rf in each
stimulus window as ‘signal plus noise’ (Averbeck et al.
2006; Gawne and Richmond 1993; Panzeri et al. 1999):

rf ¼ rf þ nf ð2Þ

where the “signal” rf is defined by the trial-averaged power
(the bar denotes the average across trials at fixed stimulus),
and the “noise” is defined by the trial-by-trial fluctuations
nf of the response around their mean value across trials.
Importantly, “noise” here reflects different possible re-
sponse variations at fixed stimulus, whatever their origin
(for example, variations induced by the effect of ongoing
activity, by stimulus-independent neuromodulation or by
the activity of other neurons projecting to this area and not
driven by the considered stimuli, and others).

To determine which frequencies have related stimulus
selectivity and which have shared sources of variability, we
analyzed signal and noise correlations was follows: The
“signal” correlation between two frequency bands is
defined as the correlation of the mean (i.e. trial-averaged)
responses across different stimuli. Positive values indicate
that the two frequencies have similar stimulus preference,
whereas small values indicate that two frequencies prefer
uncorrelated stimuli. Correlations that manifest as covaria-
tions of the trial-by-trial fluctuation around the mean
response are traditionally called “noise correlations”. Since
these noise covariations are measured at fixed stimulus,
they ignore all effects attributable to shared stimulation or
shared stimulus preferences. To quantify the strength of

noise correlations, we computed the Pearson correlation
coefficient (across trials at fixed stimulus) of the trial-
average-subtracted powers nf1 and nf2, and then we
averaged this over all stimulus windows. This quantifies
the correlations of the variations around the mean at each
trial and stimulus window. Positive values of noise
correlation indicate that when the power of one frequency
fluctuates over its mean values, the power in the other
frequency is also more likely to do so.

3 Results

3.1 LFP responses to dynamic naturalistic stimuli

The amplitude of field potentials in sensory cortices is
modulated by time varying naturalistic stimuli. This has
been recognized in previous studies (Belitski et al. 2008;
Kayser et al. 2009; Kayser et al. 2003b; Montemurro et al.
2008) and is exemplified in Fig. 1(b) for one electrode in
auditory cortex. The example trace illustrates the raw LFP
together with the band-pass filtered signal (4–8 Hz) and the
envelope for a single repeat of the stimulus. That the
sensory stimulus reliably modulates the LFP can be seen in
the lowest panel, were the same energy value consistently
lines up over trials (rows) at several instances (see arrows).
Such reliable LFP responses were frequent in the entire
dataset and demonstrate the ‘driving’ influence of sensory
stimuli on LFPs in sensory cortices.

3.2 Stimulus information in LFPs

We used information theory to systematically quantify
which LFP bands are reliably related to naturalistic stimuli.
Following previous studies (de Ruyter van Steveninck et al.
1997; Strong et al. 1998) we used a general stimulus
definition, which captures the information carried about all
possible features appearing in the stimulus preceding the
response, without making specific assumptions about the
nature of these features and the specific ‘latency’ between
stimulus and response (see Materials and Methods for
details). The stimulus presentation time was divided into non-
overlapping windows of length T, each window was assigned
a different stimulus number si (Fig. 1a). This formulation has
the advantage that it can be applied in the very same form to
different neural signals and sensory stimuli, and hence
provides a principled assessment of the stimulus relatedness
of LFPs in different systems. The stimulus window length T
is a free parameter of the analysis. Choosing its value and
computing the corresponding information corresponds to
formulating and evaluating a hypothesis about the time
precision with which the neural signals can tell apart
different sections of the dynamic stimulus. In visual cortex,
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we previously concentrated only on encoding of visual
features by LFP energy at slow time scales (2 s, (Belitski et
al. 2008)), whereas in auditory cortex we focused only on
encoding of natural sounds by LFP energy on very fast time
scales (few milliseconds (Kayser et al. 2009)). In the
following, we extend these studies by performing a
parametric analysis of how information carried by different
LFP frequencies depends on the time scale T. Such analysis
not only provides insights into the relevant time scales of the
neural signal, but also about the time scales at which the
sensory features reflected in the LFPs might vary.

Figure 2(a) displays the stimulus information in the LFP
energy as a function of frequency band f and stimulus
window T. Several common properties of both datasets
become apparent. First, the lowest frequencies provide the
highest stimulus information for many of the tested window
lengths, demonstrating that slow field potentials are
strongly stimulus driven. Second, the overall information
increases with increasing window length, showing that the
time-averaged LFP energy is more informative than the
same signal considered on a very short time scale. And
third, additional peaks of high information become evident
in higher frequency bands at the longest windows investi-
gated: in both datasets information in the gamma band
(>50 Hz) is most apparent in the longest (2048 ms)
window, demonstrating that especially the high frequency
bands gain information when considered on longer time
scales (c.f. also Fig. 2b). However, stimulus information in
gamma frequency bands (>50 Hz) was considerably higher
in the visual compared to the auditory dataset, when
compared to stimulus information in low frequency bands.
For the longest time window considered (T=2048 ms),
information in gamma bands reached only about 40% of the
information in the lowest frequency bands for the auditory
dataset, but nearly 110% for the visual data.

To provide a more intuitive understanding of the time
scales on which the LFP energy was computed for the
above analysis, we indicated the number of cycles of each
LFP band that fit within one time window in the lower
panel of Fig. 2(a). For low frequency bands and short time
windows only a fraction of a cycle was considered for
estimating the energy, while for long windows and high
frequency bands a large number of cycles was averaged. It
should be noted that by virtue of filtering and envelope
extraction, the energy of a particular frequency band f can
only vary on time scales slower than this frequency (i.e.
time windows longer than one oscillation cycle). That the
stimulus information does not depend much on the time
window is hence not surprising for the lowest frequency
bands (e.g. 0–4 Hz). For higher frequency bands however,
energy and stimulus information could readily depend on
the length of the time window. For the 50–54 Hz band, as
an example, energy (and stimulus information) could vary

on time scales longer than 20 ms. That stimulus information
increases with increasing time windows for most of the
frequency bands is hence a genuine result and demonstrates
that the LFP is most informative when the energy of several
oscillation cycles is averaged.

3.3 Trial to trial reliability and time scales

To elucidate why stimulus information increases with
increasing window length we quantified the trial to trial
reliability of the LFP energy by computing its coefficient of
variation. The coefficient of variation is defined as the ratio
of the standard deviation of the LFP energy across trials
divided by the mean and provides a scale-free measure of
variability. In general, high information values result from
good separability of the different stimuli, which profits
from both, distinct mean responses and high trial by trial
reliability. Of these, the coefficient of variation assesses the
latter. The result in Fig. 2(c) reveals a drop in variability
with increasing time window, in good agreement with those
bands gaining most information. This suggests that the
increasing information in the LFP on long time scales
results from increased reliability of the LFP energy when
pooled over several cycles of the respective oscillation. In
addition, the results also reveal high variability at low
frequency bands. That these bands carry large amounts of
information hence suggests that different time epochs elicit
slow LFPs with largely varying amplitudes.

The increase in reliability of different frequency bands
with increasing time scale is exemplified in Fig. 2(d,e). The
low frequency example (4–8 Hz band) reveals high trial to
trial consistency (Fig. 2d, panel b) and when quantified on
short (panel c, T=4 ms) and long (panel d, T=1024 ms)
time scales the envelope of several trials shows good
overlap. The high frequency example (56–60 Hz band), in
contrast, shows little consistency between the two example
trials (panels a,b). When quantified in short windows (T=
4 ms) this band reveals little overlap of the envelope
extracted from different trials (panel c). However, when
quantified in longer windows (T=1024 ms) many instances
of high trial to trial reliability become apparent (panel d).
Supplemental Figure 2 illustrates the same point using
histograms. This lets us conclude that the increasing
stimulus information in the LFP energy reflects increased
reliability of the LFP energy when considered on longer
time scales.

3.4 LFP modulation and stimulus information

The above reveals that the spectral structure of stimulus
information differs between the visual and auditory data-
sets, especially in the high frequency (>50 Hz) regime. On
investigating the source of this, we asked whether there is a

538 J Comput Neurosci (2010) 29:533–545



Fig. 2 Stimulus information on different time scales. (a) Stimulus
information (units of bits) in the LFP energy of different frequency
bands and for time windows T of different length. Each row displays
the mean value for the respective dataset. White numbers in the lower
panel indicate the number of cycles of the respective band included in
one time window. Note that the scales for auditory and visual data
differ. (b) Information for intermediate time windows (T=128 msec).
Red lines denote the mean, shading the s.e.m across recording sites.
Blue lines show the power of the LFP signal as a function of
frequency, averaged for the stimulation period (dark) and a pre-

stimulus baseline period (light). (c) Coefficient of variation of the LFP
energy across trials. The coefficient is defined as the ratio of the
standard deviation (across trials) to the mean, and lower values
indicate a lower variability. Graphs display the mean for each dataset.
(d) Example data from visual cortex the 4–8 Hz band. a) Single trial
band-pass filtered signal together with envelope. b) Two single trials.
c) Envelope of multiple trials computed in 4 ms time windows. d)
Envelope of multiple trials computed in 1024 ms windows. (e) Same
as in D, but for the 56–60 Hz band
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relation between the spectral structure of stimulus informa-
tion and the spectral structure of the stimulus induced LFP
energy modulation. Previous studies have shown that the
LFP energy is modulated by sensory stimuli to varying
degrees in different bands, and have used this energy
modulation as a index characterizing the tuning of LFPs to
different sensory features (Kayser et al. 2007; Kayser et al.
2003b; Siegel and Konig 2003). Figure 2(b) displays the
average power of the LFP signal during sensory stimulation
(dark blue) and during pre-stimulus baseline periods (light
blue, absence of the specific sensory stimulus). In the
auditory data, the LFP power modulation (difference
between power during stimulus and baseline periods) was
highest at the lowest frequencies and decreased in higher
bands. In the visual data, the power modulation was
strongest at frequencies around 30 Hz (the frame rate of
the visual stimulus), but in general the power was increased
for all frequencies above about 20 Hz.

To quantify the relation between the spectral structure of
stimulus information and the modulation of the LFP power
by the sensory stimulus, we used correlation analysis. In
detail, for each electrode we computed the Pearson
correlation of the energy modulation and the stimulus
information across frequencies (n=25 bins), and averaged
the correlations across electrodes. The resulting values were
small for both datasets (visual cortex: r=−0.2±0.08;
auditory cortex: r=0.1±0.02, mean and s.e.m.), demon-
strating that the frequency dependence of the stimulus
information cannot be explained by the frequency depen-
dence of the energy modulation. As a result, the difference
between the spectral distribution of stimulus information in
the visual and auditory datasets is not the immediate result
of distinct power modulation induced by the stimulus, but
must rather reflect distinct mechanisms of how stimulus
drive is converted into reliably stimulus associated field
potential modulations.

3.5 Synergy between LFP bands

An important question with regard to exploiting LFPs in
applications such as brain decoding is whether different
LFP bands, or LFPs and multi-unit activity (MUA), provide
similar or redundant information about sensory stimuli
(Donoghue 2008; Nicolelis and Lebedev 2009). To quantify
the similarity of different bands in encoding stimulus
information, we computed the synergy between pairs of
frequency bands. For the visual data, such an analysis has
already been presented in a previous study (Belitski et al.
2008), but not so for the auditory data.

Figure 3(a) displays the joint information in pairs of
frequency bands for both datasets (using T=2048 ms
windows), which mostly replicated the pattern found for
individual bands before: High information in low frequency

bands for both datasets and an additional informative peak
above 50 Hz in the visual data. The overall synergy
between bands was small (Fig. 3b), suggesting that most
frequencies carried independent information about the
stimulus. The strongest deviation from independence was
found for directly neighboring, and for high frequency
bands. For bands above 50 Hz, we found negative synergy
(i.e. redundancy) between frequencies, which was on the
order of up to 20% of the total information. Noteworthy,
when computed in shorter time windows, redundancy was
even smaller. This information independence between
frequency bands is compatible with previous results
(Belitski et al. 2008) and implies that a separation of the
LFP into smaller frequency bands is indeed useful, because
each band adds almost independent information about the
sensory stimulus.

Inspecting example data again provides an intuitive basis
of this result. Figure 3(c) displays the (trial averaged) LFP
energy for different frequency bands for one recording site
in auditory cortex. While both high frequency bands (red,
orange traces) show very similar dynamics, the low
frequency band (black trace) deviates from this pattern
and exhibits a more distinct time course. Overall, this
suggests that high frequency bands are redundant because
they share a very similar temporal dynamics (stimulus
drive), which differs from that outlined by much slower
bands.

Further insight into why different frequency bands are
largely independent is provided by analysis of signal and
noise correlations. Signal correlations characterize the
similarity in stimulus preference between two signals, while
noise correlations characterize shared covariations on a trial
by trial basis around the mean response. The results
displayed in Fig. 4 reveal that while neighboring frequency
bands share similarities in stimulus preference (signal
correlations), separated bands are independent in their
preferences. A similar result holds for noise correlations:
shared trial by trial variability is strongest for neighboring
frequency bands, although the noise correlations were much
weaker than signal correlations. These findings suggest that
the information independence between low and high
frequency bands is a result of the different stimulus
preferences; the rather small redundancy between different
high frequency bands results from small differences in
tuning and small noise correlations.

3.6 Synergy between LFP bands and spikes

Combining different LFP bands with MUA recorded on the
same electrode also provided largely independent informa-
tion (Fig. 5). Synergy was minimal especially for short time
windows and in low frequency bands, while for longer time
windows and high frequency bands (>50 Hz) there was
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some redundancy. Still, this redundancy was small and
accounted for less than 10% of the information. This
differing dependency between low and high frequency LFP
bands and spiking activity is also exemplified in Fig. 5(c)
by example data from visual cortex. The time courses of the
4–8 Hz band and MUA differ more than those of the 68–
72 Hz band and MUA. Overall this demonstrates that
spiking activity is more related to high frequency bands
(>50 Hz), but overall provides largely complementary
stimulus information than the LFP energy.

4 Discussion

The cortical LFP is a mesoscopic signal of neural activity,
which reflects aspects of sensory processing and higher
cognitive functions. Despite great interest in this signal in
the context of ‘brain decoding’, only few studies have
systematically investigated stimulus information in sensory

cortical LFPs. As a result, the origin of the LFP, its relation
to neuronal spiking activity, and the degree to which
different frequency bands are stimulus related are still a
matter of debate. To shed light on these questions, we
extended approaches developed in previous studies
(Belitski et al. 2008; Kayser et al. 2009) and performed
a systematic analysis of stimulus information in LFPs re-
corded from visual and auditory cortices. For our analysis
we relied on information theoretic methods, which provide
a principled approach to quantify the relation between
indices of neural activity and external stimuli (Borst and
Theunissen 1999; Jacobs et al. 2009; Quian Quiroga and
Panzeri 2009).

4.1 Spectral structure of informative frequency bands

Analyzing the spectral distribution of stimulus information
revealed that low frequency bands (10 Hz) were strongly
stimulus related, while intermediate frequency bands (10 to

Fig. 3 Information synergy be-
tween LFP bands. (a) Joint
information provided by the
energy of pairs of LFP bands
(mean values across sites). (b)
Synergy between pairs of bands,
expressed as percent of the
sum of the information of both
bands considered independently.
Negative values (blue) indicate
redundancy. (c) Example data
from auditory cortex, displaying
the mean LFP energy from one
recording site and three different
bands (sampled at T=2048 ms)
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50 Hz) were so to a much smaller degree. This fits well
with the notion that slow oscillations in sensory cortices are
reliably entrained by dynamic stimuli, a mechanism that is
likely to play an important role for the processing of
dynamic naturalistic stimuli (Kayser et al. 2009; Lakatos et
al. 2008; Luo and Poeppel 2007; Schroeder and Lakatos
2009). Stimulus information in higher (gamma, >50 Hz)
frequency bands revealed a second peak, which was
considerably more prominent in the visual dataset. Whether
this difference between datasets arises from the different
preparations (alert vs. anaesthetized animals) or reflects a
more basic difference between sensory systems cannot be
determined with the present dataset and remains to be
elucidated in future studies. Nonetheless, this stimulus
related gamma band conforms to the notion that gamma
oscillations participate in sensory coding, especially in the
visual system (Berens et al. 2008; Fries et al. 2007; Kayser
and Konig 2004; Siegel and Konig 2003).

Stimulus information depends more on the reliability of
a signal associated with a particular stimulus, and much less
on the overall signal amplitude. In concordance with this,
our results demonstrate that the amount of information

Fig. 4 Signal and noise correlations. This figure displays the signal
and noise correlations between pairs of frequency bands for both
datasets (2048 ms time windows). Each panel shows the average
across sites. Please refer to the Main Text or the Methods for a
definition of signal and noise correlations

Fig. 5 Information synergy be-
tween LFP bands and MUA. (a)
Synergy between LFP and
MUA as a function of frequency
band and time scale. Synergy is
expressed as percent of the sum
of the information of both bands
considered independently. Neg-
ative values (blue) indicate re-
dundancy. (b) Synergy between
LFP bands and MUAwhen both
are computed in 2048 ms win-
dows. (c) Example data from
visual cortex showing the simi-
lar (trial averaged) time courses
of MUA and high frequency
LFPs (60–64 Hz) and the dif-
ferent time course of a low
frequency band (4–8 Hz, sam-
pled at T=1024 ms)
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carried by a particular frequency band cannot be predicted
from the LFP power in the considered band. Analyzing
LFPs just in terms of signal strength can hence be
misleading when used to draw conclusions about the ability
of different bands to represent sensory stimuli. More
principled methods such as stimulus decoding or informa-
tion theory provide a more suitable approach to elucidate
this.

4.2 Time scales of stimulus information

A major focus of our analysis was to elucidate the time
scales on which different LFP bands are informative. We
found that for all frequency bands stimulus information
increased with increasing length of the time window T. The
increase was small for slow oscillations that vary on a time
scale similar to the time windows considered (e.g. the 1–
4 Hz band), and was much larger for higher frequency
bands (>50 Hz). This finding demonstrates that the slow
envelope of fast oscillations, i.e. the average amplitude of
many (hundreds of) cycles of the respective oscillation, is
much more stimulus related than the instantaneous ampli-
tude of individual cycles. Hence, for higher frequency
bands the individual cycle of the oscillation plays a much
smaller role in representing the sensory stimulus than for
lower frequency bands, for which even the amplitude of a
single cycle (or less) is stimulus informative.

Our results demonstrate that the increased information
on longer time scales results from increased trial to trial
reliability of the LFP energy in longer time windows. This
suggests that the energy (amplitude) of individual oscilla-
tion cycles is much less reliably affected by the stimulus
than the signal obtained by pooling the energy of multiple
oscillation cycles. That LFPs become more informative on
longer time scales might hence be a consequence of the
biophysical processes generating the amplitude of individ-
ual LFP cycles. Yet, it should be noted that the finding of
individual gamma cycles carrying little stimulus informa-
tion does not preclude individual gamma cycles from
playing a role in ‘grouping’ the responses of different
neurons or in routing information from one area to another
(Fries et al. 2007; Womelsdorf and Fries 2007; Womelsdorf
et al. 2006). In fact, to be able to dynamically group or
route information, it seems rather advantageous if the
timing or amplitude of individual cycles is more controlled
by intrinsic mechanisms of the brain than by the external
stimulus.

In addition, our result also suggests that the LFP likely
reflects slow features in the sensory stimulus. If the LFP
energy in a particular band was to reflect fast stimulus
properties that change on the scale of a few (tens of)
milliseconds, then averaging the neural signal over consid-
erably longer time scales would likely diminish the

representation of this particular stimulus property. That
stimulus information increases on longer time scales rather
suggests that the LFP energy reflects more slowly changing
stimulus attributes, which are very prominent in natural
stimuli (Dong and Atick 1995; Kayser et al. 2003a; Singh
and Theunissen 2003).

4.3 Relation between LFP bands and spiking activity

Our analysis revealed that individual (4 Hz spaced)
frequency bands carry largely independent information
about natural stimuli and also carry information largely
independent to that provided by neuronal spiking activity
(MUA). This information independence of different bands
justifies the partitioning of the frequency axis into distinct
and functionally independent bands (Buzsaki 2006; Roopun
et al. 2008; Steriade 2006). Often a division of the
frequency axis follows the prominent frequencies found in
the human EEG, or a specific division related to the
particular features or variables of interest. Our results
support the notation that this division is not only empirical,
but reflects a true functional decoupling of different
frequency regimes which is conserved across sensory
systems. While such an independence of different LFP
bands has been reported previously for visual cortical LFPs
(Belitski et al. 2008), the present study demonstrates that
this result also holds on different time scales and in another
sensory modality.

Our study of linear correlation of stimulus preference
(“signal correlation”) between the energy of different bands
is in agreement with previous studies based on linear
correlation analysis reporting that the energy in neighboring
LFP bands tends to respond to similar (but not equal)
values of a stimulus feature (Berens et al. 2008; Kayser and
Konig 2004; Siegel and Konig 2003). At first, this might
seem at odds with the small or negligible amount of
redundancy that we found using an information theoretic
measure rather than a liner correlation of trial-averaged
responses. To reconcile these different views, one should
note that information based analysis not only considers
preferred stimuli, but also other aspects such as response
reliability or signal and noise correlations (Averbeck et al.
2006; Panzeri et al. 2003), which are not taken into account
by linear correlations. In fact, our correlation analysis
directly demonstrates that nearby frequency bands share
similar stimulus preferences and exhibit strong signal
correlations. However, noise correlations, which can either
enhance or reduce the redundancy between frequency
bands, are weak, implying that while different bands prefer
related stimuli on average, they exhibit decoupled trial by
trial variability. Considering the present findings, we hence
conclude that separate LFP bands provide largely indepen-
dent information channels, which when combined, can
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greatly enhance the capacities in practical applications such
as brain machine interfaces (Donoghue 2008).

4.4 Potential mechanisms generating the spectral
dependence of LFP information

Our results demonstrate that the low frequency LFPs are
especially reliable in response to naturalistic stimuli and
their energy is well informative about them. Understanding
the mechanisms generating such stimulus representations in
low frequency LFPs is hence of great interest, and a recent
modeling study can provide important insights. Studying
the dynamics of recurrent network models of inhibitory and
excitatory neurons, Mazzoni and colleagues (Mazzoni et al.
2008) found that slow components of network LFPs arise
from stimulus to neural interactions, i.e. from the direct
drive of slow fluctuations in the input to the principal
neurons. Since changes in sensory features within natural-
istic stimuli (such as the ones used in our experiments) are
known to vary slowly and are characterized by temporal
regularities with maximal power in the lowest frequencies
(Dong and Atick 1995; Kayser et al. 2003a; Singh and
Theunissen 2003), this hypothesis would predict that LFPs
would follow stimulus dynamics principally at the
corresponding slow frequencies. In other words, prominent
slow changes in the stimulus may elicit corresponding slow
shifts in network excitability. This hypothesis could not
only explain why low frequency LFPs are informative
about naturalistic stimuli, but is also consistent with other
findings reporting the entrainment of low-frequency cortical
LFPs to stimuli with strong temporal regularities
(Schroeder and Lakatos 2009; Schroeder et al. 2008).
Studying the dynamics of recurrent network models of
inhibitory and excitatory neurons also revealed that faster
components of network LFPs are determined by neural to
neural interactions, i.e. by the coupling of different
populations of (excitatory and inhibitory) neurons (Brunel
and Wang 2003; Mazzoni et al. 2008). Importantly, in this
modeling study the strength of these faster LFPs was not
modulated by the stimulus dynamics, but by the overall
strength of the stimulus, hence a static property. These
theoretical results hence suggest that stationary properties
are more likely to impact on fast oscillations, while slow
naturalistic dynamic stimulus properties are more likely
reflected in low frequency LFPs. This conclusion seems
well compatible with our experimental findings.
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