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Abstract
We prove that the known formulae for computing the optimal number of maximally
entangled pairs required for entanglement-assisted quantum error-correcting codes
(EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We
also give a Gilbert–Varshamov bound for EAQECCs and constructions of EAQECCs
coming from punctured self-orthogonal linear codes which are valid for any finite
field.
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1 Introduction

The Shor’s proposal of using quantum error correction for reducing decoherence in
quantum computation [24] and his polynomial-time algorithms for prime factorization
and discrete logarithms on quantum computers [25] clearly illustrate the feasibility
and importance of quantum computation and quantum error correction.

Most of the quantum error-correcting codes (QECCs) come from classical codes.
The first known stabilizer quantum codes were binary [5,10]. Later, stabilizer codes
over any finite field were introduced and studied and they are of particular interest
because of their utility in fault-tolerant computation. Following [13], one can obtain
QECCs of length n over a finite field Fq from additive codes included in F2n

q which are
self-orthogonal with respect to a trace-symplectic form.Working on this construction,
QECCs of length n over Fq can be derived from classical self-orthogonal codes with
respect to the Hermitian inner product included in F

n
q2

and also from codes in F
n
q

which are self-orthogonal with respect to the Euclidean inner product.
The previously mentioned self-orthogonality conditions (or some similar require-

ments of inclusion of codes in the dual of others) prevent the usage of many common
classical codes for providing quantumcodes. Brun et al. [3] proposed to share entangle-
ment between encoder and decoder to simplify the theory of quantum error correction
and increase the communication capacity. With this new formalism, entanglement-
assisted quantum stabilizer codes can be constructed from any classical linear code
giving rise to entanglement-assisted quantum error-correcting codes (EAQECCs). A
formula to obtain the optimal number of ebits required for a binary entanglement-
assisted code of Calderbank–Shor–Steane (CSS) typewas shown in [12], and formulae
for more general constructions, including the consideration of duality with respect to
symplectic forms, were given in [26]. In fact, [26] proves that the optimal number
c of ebits required for a binary entanglement-assisted quantum error-correcting code
with generator matrix (HX |HZ ) is rank(HX HT

Z −HZ HT
X )/2, where the superindex T

means transpose. Remark 1 in that paper states, without a proof, that the same formula
holds when considering codes over finite fields Fp, p being a prime number; a proof
can be found in [18].

Recently, one can find in the literature some papers where the above formula (or
formulae derived from it) is used for determining the entanglement corresponding to
EAQECCs over arbitrary finite fields (see, for instance, [6,9,17,21]). Although it holds
for any finite field, we have found no proof in the literature and, thus, this work fills
this gap. Therefore, this paper is devoted to prove formulae for the minimum required
number c of pairs ofmaximally entangled quantum states, corresponding to EAQECCs
codes obtained from linear codes C over any finite field, by using symplectic forms,
or Hermitian or Euclidean inner products. We also show (see Sect. 2.4) that in the
Hermitian and Euclidean cases, c is easy to compute when one chooses, as a basis
of the linear code C of length n, a subset of those vectors giving rise to a geometric
decomposition of the coordinate space of dimension n that contains C [22].

In [15], a Gilbert–Varshamov-type formula for the existence of binary EAQECCs
was presented. Still with the idea of extending the binary case to the general one
and with the help of our study of entanglement-assisted codes, we give a Gilbert–
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Varshamov-type formula which is valid for any finite field. Furthermore, we will also
provide conditions of existence and parameters of EAQECCs coming from classical
self-orthogonal codes (say C) over any finite field. Since fewer qudits should be trans-
mitted through a noisy channel, they perform better. Constructions of this type have
been considered in the binary case for giving a coding scheme with imperfect ebits
[15].

Theorems 1, 3 and 4 contain our results about the entanglement required for
EAQECCs over arbitrary finite fields. Section 2 also explains how, in the Hermitian
and Euclidean cases, nice bases of the vector spaces that contain the supporting linear
codes allow us to get the corresponding required number c. Section 3 is devoted to state
the mentioned Gilbert–Varshamov-type bound, and Sect. 4 contains our results about
EAQECCs coming from QECC by considering symplectic, Hermitian or Euclidean
duality.

2 EAQECCs over Fq

The first three subsections of this section are devoted to prove formulae for computing
the optimal entanglement corresponding to EAQECCs over arbitrary finite fields when
considering symplectic forms, or Hermitian or Euclidean inner products.

2.1 The symplectic case

Let p be a prime number and q a positive power q = pm . Denote by Fq the finite field
with q elements. We also write C the field of complex numbers and C

r , r a positive
integer, the r -coordinate space over C.

Let n be a positive integer, it is known (see, for instance, [13, Theorem 13]) that an
((n, K , d))q stabilizer quantum code over Fq can be obtained from an additive code
C ⊆ F

2n
q of size qn/K such that C ⊆ C⊥ts , and swt(C⊥ts\C) = d when K ≥ 1 and

d = swt(C) otherwise. In the above result, we have considered the following notation
which will be used in this paper as well. The symbol ⊥ts means dual with respect to
the trace-symplectic form on F

2n
q :

(a|b) ·ts
(
a′|b′) = trq/p

(
a · b′ − a′ · b) ∈ Fp,

where (a|b) ,
(
a′|b′) ∈ F

2n
q , a ·b′ and a′ ·b are Euclidean products, and trq/p : Fq →

Fp,

trq/p(x) = x + x p + · · · + x pm−1
,

is the standard trace map. Also the symplectic weight is defined as

swt (a|b) = card {i | (ai , bi ) �= (0, 0), 1 ≤ i ≤ n} ,

where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn).

123



116 Page 4 of 18 C. Galindo et al.

We will also use the symplectic form on F2n
q defined as

(a|b) ·s
(
a′|b′) = (

a · b′ − a′ · b) ∈ Fq ,

and the corresponding dual space for an Fq -linear code C ⊆ F
2n
q will be denoted by

C⊥s .
For the first part of this paper, we fix a trace orthogonal basis of Fq over Fp,

B = {γ1, γ2, . . . , γm}. Recall that B is a basis of Fq as a Fp-linear space satisfying
that the matrix

M = (
trq/p(γiγ j )

)
1≤i≤m; 1≤ j≤m

is an invertible and diagonal matrix of sizem with coefficients in Fp. The existence of
a basis as B is proved in [23]. We choose a basis as B by convenience, but our results
also hold if one considers any other basis. Now consider the Fp-linear map

h : Fm
p → Fq , h(x1, x2, . . . , xm) =

m∑

i=1

xiγi := x .

The map h is an isomorphism of Fp-linear spaces, and for x ∈ Fq , h−1(x) gives the
coordinates of x in the basis B.

Denote by Ω the inverse matrix of M , and Ω is a size m diagonal invertible matrix
with entries in Fp. Let ω1, ω2, . . . , ωm be its diagonal, and define the map:

φ : F2m
p = F

m
p × F

m
p −→ F

2
q ,

given by

φ ((x1, x2, . . . , xm)|(y1, y2, . . . , ym)) =
(

m∑

i=1

xiγi ,
m∑

i=1

yiωiγi

)

= (h(x1, x2, . . . , xm), h[(y1, y2, . . . , ym)Ω]) .

Taking into account that ωi ∈ Fp, B ′ = {ωiγi }mi=1 is also a trace orthogonal basis of
Fq over Fp whose matrix

(
trq/p(ωiγiω jγ j )

)
1≤i≤m; 1≤ j≤m is Ω .

In sum, φ is an isomorphism of Fp-linear spaces and for (x, y) ∈ F
2
q ,

φ−1(x, y) =
(
φ−1
1 (x, y), φ−1

2 (x, y)
)

∈ F
2m
p ,

where φ−1
1 (respectively, φ−1

2 ) is the first (respectively, second) projection of φ−1 over
the first (respectively, second) component of the Cartesian product Fm

p ×F
m
p . One has

that φ−1(x, y) simply gives a pair whose first components are the coordinates of x in
the basis B and the second ones are those of y in the basis B ′.
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The above map can be extended to products of n copies giving rise to the map

φE : F2mn
p = (Fm

p )n × (Fm
p )n −→ F

n
q × F

n
q = F

2n
q ,

defined by

φE [((a11, . . . , a1m), . . . , (an1, . . . , anm)|(b11, . . . , b1m), . . . , (bn1, . . . , bnm))]

= (h(a11, . . . , a1m), . . . , h(an1, . . . , anm)|h[(b11, . . . , b1m)Ω], . . . , h[(bn1, . . . , bnm)Ω]) .

Notice that φE is again an isomorphism of Fp-linear spaces and

(
φE

)−1
(a|b) =

((
φE

)−1

1
(a|b) |

(
φE

)−1

2
(a|b)

)
,

where
(
φE

)−1
1 (respectively,

(
φE

)−1
2 ) is the first (respectively, second) projection

of
(
φE

)−1
1 over the first (respectively, second) component of the Cartesian product

(Fm
p )n × (Fm

p )n . One has that
(
φE

)−1
(a|b) equals the vector of coordinates of the

element (a|b) ∈ F
2n
q in the basis of F2n

q over Fp given by ⊕n timesB
⊕⊕n timesB ′.

Keeping the above notation, it is easy to deduce the following result in [2].

Proposition 1 The following statements hold:

a) Let x, y ∈ Fq , then

trq/p(xy) =
(
φ−1
1 (x, y)

)
·
(
φ−1
2 (x, y)

)
,

where · denotes the Euclidean product in F
m
p .

b) Let (a|b) ,
(
a′|b′) ∈ F

2n
q , then

(a|b) ·st
(
a′|b′)

=
[(

φE
)−1

1
(a|b) |

(
φE

)−1

2
(a|b)

]
·s

[(
φE

)−1

1

(
a′|b′) |

(
φE

)−1

2

(
a′|b′)

]
,

where ·s denotes the symplectic form in F2mn
p .

Our purpose in this section is to determine the optimal required number of pairs of
maximally entangled states of the EAQECC over an arbitrary finite field Fq that can
be constructed from an Fq -linear code C ⊆ F

2n
q with dimension n − k. Assume that

(HX |HZ ) is an (n − k) × 2n generator matrix of C . The case when m = 1 (i.e., q is
prime) is known (see [18,26]), and the corresponding result is the following:

Theorem 1 Let C ⊆ F
2n
p be an (n − k)-dimensional Fp-linear space and H =

(HX |HZ ) an (n − k) × 2n matrix whose row space is C. Let C ′ ⊆ F
2(n+c)
p be an
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Fp-linear space such that the projection of C ′ to the 1, 2, . . . , n, n + c + 1, n + c +
2, . . . , 2n + c-th coordinates is equal to C and C ′ ⊆ (C ′)⊥s , where c is the minimum
required number of maximally entangled quantum states in Cp ⊗ C

p. Then,

2c = rank
(
HX H

T
Z − HZ H

T
X

)
.

The encoding quantum circuit is constructed from C ′, and it encodes k + c logical
qudits in C

p ⊗ · · · (k + c times) · · · ⊗ C
p into n physical qudits using c maximally

entangled pairs. The minimum distance is d := ds
(
C⊥s\(C ∩ C⊥s )

)
, where

ds
(
C⊥s\(C ∩ C⊥s )

)
= min

{
swt (a|b) | (a|b) ∈ C⊥s\(C ∩ C⊥s )

}
.

In sum, C provides an [[n, k + c, d; c]]p EAQECC over the field Fp.

Theorem 1 states that the required number of maximally entangled quantum states
is given by the rank of the matrix HX HT

Z − HZ HT
X . Our next result shows that even

in the case of codes over an arbitrary finite field Fq , the above number depends only
on the code C and its symplectic dual.

Proposition 2 Let C ⊆ F
2n
q be a linear code over Fq and (HX |HZ ) its (n − k) × 2n

generator matrix. Then,

rank
(
HX H

T
Z − HZ H

T
X

)
= dimFq C − dimFq (C ∩ C⊥s ).

Proof Consider the Fq -linear map f : F2n
q → F

n−k
q defined by f (a|b) = aHT

Z −
bHT

X . Set row(HX |HZ ) the row space of the matrix (HX |HZ ). Then, we have

rank
(
HX H

T
Z − HZ H

T
X

)
= dimFq f (row(HX |HZ ))

= dimFq C − dimFq C ∩ ker( f )

= dimFq C − dimFq (C ∩ C⊥s ),

which concludes the proof. 
�
Next, with the help of the above proposition, we prove that Theorem 1 can be

extended to codes over any finite field Fq .

Theorem 2 Let C ⊆ F
2n
q be an (n − k)-dimensional Fq -linear space and H =

(HX |HZ ) a matrix whose row space is C. Let C ′ ⊆ F
2(n+c)
q be an Fq -linear space

such that its projection to the coordinates 1, 2, . . . , n, n+c+1, n+c+2, . . . , 2n+c
equals C and C ′ ⊆ (C ′)⊥s , where c is the minimum required number of maximally
entangled quantum states in C

q ⊗ C
q . Then,

2c = rank
(
HX H

T
Z − HZ H

T
X

)
= dimFq C − dimFq

(
C ∩ C⊥s

)
.
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The encoding quantum circuit is constructed from C ′, and it encodes k + c logical
qudits in C

q ⊗ · · · (k + c times) · · · ⊗ C
q into n physical qudits using c maximally

entangled pairs. The minimum distance is d := ds
(
C⊥s\(C ∩ C⊥s )

)
, where ds is

defined as in Theorem 1. In sum, C provides an [[n, k + c, d; c]]q EAQECC over the
field Fq .

Proof One has that the inclusion C⊥s ⊆ C⊥ts holds since trq/p(0) = 0. In addi-
tion, C⊥ts ⊆ C⊥s . Indeed, following [2], if (a|b) ∈ C⊥ts , then (a|b) ·ts (x|y) = 0
for all (x|y) ∈ C . Taking into account that α (x|y) ∈ C for any α ∈ Fq , then
trq/p ((a|b) ·s α(x|y)) = 0 for all α. This means that trq/p (α ((a|b) ·s (x|y))) = 0 for
all α, which proves (a|b) ·s (x|y) = 0 and, therefore (a|b) ∈ C⊥s .

Now, using the same notation as at the beginning of this section, consider the code
over the field Fp, C0 := (φE )−1(C). It is clear that dimFp (C0) = m(n − k), and by
Proposition 1 and the equality C⊥s = C⊥ts , we have

dimFp C0 = m(n − k) = m dimFq C .

Thus,

dimFp C0 − dimFp C0 ∩ C⊥s
0 = m

(
dimFq C − dimFq (C ∩ C⊥s )

)
.

This shows that by Theorem 1, we have an entanglement-assisted quantum code
encoding m(k + c) qudits in C

p and consuming mc maximally entangled states in
C

p ⊗C
p. Using the map φE and the fact that C⊥s = C⊥ts , we have an entanglement-

assisted quantum code encoding (k + c) qudits in C
q and consuming c maximally

entangled states in C
q ⊗ C

q . In fact, one can construct C ′
0 ⊆ F

2m(n+c)
p in the same

way as constructed C ′ from C in Theorem 1. Applying φE to the code C ′
0, we get the

code C ′ in the statement with the claimed properties. The minimum distance follows
from [13, Section III]. 
�

2.2 The Hermitian case

In this subsection, we specialize the results in Sect. 2.1 by considering the Hermitian
inner product instead of a symplectic form. With the above notation, consider the
finite field Fq2 and a normal basis {w,wq} of Fq2 over Fq . Fix a positive integer n
and, following [13], define a trace-alternating form over Fn

q2
as

x ·a y = trq/p

(
x · yq − xq · y

w2q − w2

)
,

where zq , z ∈ F
n
q2
, means the componentwise q-power of z. The map ϕ : F2n

q → F
n
q2

given byϕ (a|b) = wa+wqb is bijective and isometric because the symplectic and the
Hamming weights of (a|b) and ϕ (a|b) coincide. In addition, for (a|b) ,

(
a′|b′) ∈ F

2n
q ,

it holds that

(a|b) ·ts
(
a′|b′) = ϕ (a|b) ·a ϕ

(
a′|b′) .
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Recall that the Hermitian inner product of two vectors x, y ∈ F
n
q2

is defined to be

x ·h y = xq · y, where · means Euclidean product, and that, in [13], it is proved that for
a Fq2 -linear code D, the dual codes with respect to the products ·a and ·h coincide.
With the above ingredients, we are ready to prove the next proposition which will
allow us to state and prove our theorem on EAQECCs over arbitrary finite fields by
considering Hermitian inner product.

Proposition 3 Let C ⊆ F
n
q2

be a code over Fq2 of dimension (n − k)/2 for some
positive integer k. Let H be its generator matrix. Then,

rank(HH∗) = dimFq2
C − dimFq2

(C ∩ C⊥h ),

where H∗ is the qth power of the transpose matrix of H.

Proof Define the Fq2 -linear map f : Fn
q2

→ F
(n−k)/2
q2

, given by f (a) = aH∗. Then,

rank(HH∗) = dimFq2
f (row(H))

= dimFq2
C − dimFq2

(C ∩ ker( f ))

= dimFq2
C − dimFq2

(C ∩ C⊥h ).


�
Theorem 3 Let C ⊆ F

n
q2

be an (n − k)/2-dimensional code over Fq2 , for suitable

integers n and k. Denote by H its generator matrix. Let C ′ ⊆ F
(n+c)
q2

be an Fq2 -linear

space whose projection to the coordinates 1, 2, . . . , n equals C and satisfies C ′ ⊆
(C ′)⊥h , where c is the minimum required number of maximally entangled quantum
states in C

q ⊗ C
q . Then,

c = rank
(
HH∗) = dimFq2

C − dimFq2

(
C ∩ C⊥h

)
.

The encoding quantum circuit is constructed from C ′, and it encodes k + c logical
qudits in C

q ⊗ · · · (k + c times) · · · ⊗ C
q into n physical qudits using c maximally

entangled pairs. The minimum distance is d := dH
(
C⊥h\(C ∩ C⊥h )

)
, where dH is

defined as the minimum Hamming weight of the vectors in the set C⊥h\ (
C ∩ C⊥h

)
.

In sum, C provides an [[n, k + c, d; c]]q EAQECC over the field Fq .

Proof With the above notation, consider the code C ′ in Fn
q2

of dimension n− k whose
generator matrix is

H =
(

ωH
ωq H

)

and setC0 = ϕ−1(C ′) the corresponding code in F2n
q . Since ϕ is an isometry, to obtain

the value 2c corresponding to C0, it suffices to compute the rank of the matrix given
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by the form ·a which is J = trq2/q
(
(HH∗ − HqHT )/λ

)
, where λ = ω2q − ω2 and

trq2/q the trace map from Fq2 to Fq . Now, setting

Z =
(

ωq+1 ω2

ω2q ωq+1

)
,

it holds that J = (2/λ)
(
ZHH∗ − ZT Hq HT

)
. Performing elementary operations,

we get that rank(J ) = 2 rank (HH∗). Finally, by our previous considerations,
dimFq C0 = n − k, dimFq (C0 ∩ C⊥s

0 ) = 2c, and

dH
(
C⊥h\C⊥h ∩ C

)
= ds

(
C⊥s
0 \(C⊥s ∩ C0)

)
,

which proves our statement by Theorem 2. 
�
The following corollary is an immediate consequence of the above result.

Corollary 1 Let C be an [n, k, d]q2 linear code over Fq2 , and set H a parity
check matrix of C. Then, there exists an [[n, 2k − n + c, d; c]]q EAQECC where
c = rank(HH∗), H∗ is the qth power of the transpose matrix HT .

2.3 The Euclidean case

In this section, we will show that EAQECCs over any finite field Fq can be obtained
through a CSS construction, where the Euclidean inner product is considered, and
carried out with two Fq -linear codes C1 and C2 of length n. Assume that C1 (respec-
tively,C2) has dimension k1 and generator matrix H1 (respectively, k2 and H2). Before
stating our result, we give the following proposition which will be used in its proof.

Proposition 4 With the above notations, it holds that

rank(H1H
T
2 ) = dimFq C1 − dimFq (C1 ∩ C⊥

2 ), (1)

and

rank(H2H
T
1 ) = dimFq C2 − dimFq (C2 ∩ C⊥

1 ), (2)

where ⊥ means Euclidean dual.

Proof To prove Equality (1), consider the Fq -linear map f : Fn
q → F

k2
q defined by the

matrix HT
2 , that is f (a) = aHT

2 . Then,

rank(H1H
T
2 ) = dimFq f (row(H1))

= dimFq C1 − dimFq (C1 ∩ ker( f ))

= dimFq C1 − dimFq (C1 ∩ C⊥
2 ).

Equality (2) follows analogously from the map given by HT
1 . 
�
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Next, we state the main result in this section.

Theorem 4 Let C1 and C2 be two linear codes over Fq included in Fn
q with respective

dimensions k1 and k2 and generator matrices H1 and H2. Then, the code C0 =
C1×C2 ⊆ F

2n
q gives rise to an EAQECC which encodes n−k1−k2+c logical qudits

into n physical qudits using the minimum required of maximally entangled pairs c,
which is

c = rank(H1H
T
2 ) = dimFq C1 − dimFq (C1 ∩ C⊥

2 ).

The minimum distance of the entanglement-assisted quantum code is larger than or
equal to

d := min
{
dH

(
C⊥
1 \(C2 ∩ C⊥

1 )
)

, dH
(
C⊥
2 \(C1 ∩ C⊥

2 )
)}

.

In sum, one gets an [[n, n − k1 − k2 + c, d; c]]q EAQECC.

Proof It suffices to notice that dimFq C0 = k1 + k2, C
⊥s
0 = C⊥

2 × C⊥
1 , and

dimFq C0 − dimFq (C
⊥s
0 ∩ C0)

= dimFq (C1 × C2) − dimFq

(
(C⊥

2 ∩ C1) × (C⊥
1 ∩ C2)

)

=
(
dimFq C1 − dimFq (C

⊥
2 ∩ C1)

)
+

(
dimFq C2 − dimFq (C

⊥
1 ∩ C2)

)

= 2c.

By construction, we have that

ds(C0\C⊥s
0 ) ≥ min

{
dH

(
C⊥
1 \(C2 ∩ C⊥

1 )
)

, dH
(
C⊥
2 \(C1 ∩ C⊥

2 )
)}

,

and then our statement follows from Theorem 2. 
�

2.4 Geometric decomposition of the coordinate space

In this subsection, we consider only the Hermitian and Euclidean cases, and we will
explain that the required number of maximally entangled pairs is easy to compute
when the generators of the supporting Fq -linear code C in F

n
q are a subset of a basis

of Fn
q with a special metric structure which is said to be compatible with a geometric

decomposition of Fn
q (see [22]). Notice that in the Hermitian case, q should be q2;

however, for simplicity’s sake and only in this subsection, we will use q as a generic
symbol which means a power of a prime in the Euclidean case or an even power
of a prime in the Hermitian case. For avoiding to repeat notation, again only in this
subsection, 〈a,b〉 will mean either the Hermitian inner product a ·h b or the Euclidean
one a · b.
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Let us introduce some notation, we say that {v1, v2} are geometric generators of a
hyperbolic plane if 〈v1, v1〉 = 〈v2, v2〉 = 0 and 〈v1, v2〉 = 1. We say that {v1, v2} are
geometric generators of an elliptic plane if 〈v1, v1〉 = 0 and 〈v2, v2〉 = 〈v1, v2〉 = 1.
Finally, we say that v generates a non-singular space if 〈v, v〉 �= 0.

LetC ⊆ F
n
q and set {v1, v2, . . . , vn} a basis ofFn

q such thatC is generated by {vi }i∈I
for I ⊆ {1, 2, . . . , n}. We say that C is compatible with a geometric decomposition
of Fn

q if

F
n
q = H1 ⊕ · · · ⊕ Hr ⊕ L1 ⊕ · · · ⊕ Ls,

where the linear spaces from H1, generated by {v1, v2}, to Hr , generated by {v2r−1, vr },
are hyperbolic planes, being the vi geometric generators, and from L1, generated by
v2r+1, to Ls , generated by v2r+s = vn , are non-singular spaces. Then, we say that
the vectors v1, v2, . . . , vr (and the indexes 1, 2, . . . r ) are asymmetric and the vectors
vr+1, vr+2, . . . , vn (and the indexes r + 1, r + 2, . . . , n) are symmetric. Moreover,
we also say that (1, 2), . . ., (r − 1, r) are symmetric pairs.

In [22], for theEuclidean inner product, itwas proved that for characteristic different
from 2, we can always obtain a basis {v1, v2, . . . , vn} of Fn

q such that

F
n
q = H1 ⊕ · · · ⊕ Hr ⊕ L1 ⊕ · · · ⊕ Ls,

with s ≤ 4. For characteristic equal to 2, we may have a decomposition as in the case
with characteristic different from 2, excepting when the vector (1, 1, . . . , 1) belongs
to the radical (or hull) of C , C ∩ C⊥ . In that particular case, it was given in [22] the
following decomposition

F
n
q = H1 ⊕ · · · ⊕ Hr ⊕ L1 ⊕ · · · ⊕ Ls ⊕ E,

with s ≤ 2 and where E is an elliptic plane.
Let M = (〈vi , v j 〉)1≤i, j≤n , one has that M has the form

M =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0

. . .

0 1
1 0

g1
. . .

gs

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

where g1, . . . , gs are nonzero, except for the case when the characteristic is 2 and
(1, 1, . . . , 1) belongs to the radical of C ; then, we have that M is equal to
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M =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 1
1 0

. . .

0 1
1 0

g1
gs

0 1
1 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Now, let i ∈ {1, 2, . . . , n}. We define i ′ as

– i + 1 if vi is the first generator of a hyperbolic plane H ,
– i − 1 if vi is the second generator of a hyperbolic plane H ,
– i if vi generates a one-dimensional linear space L ,
– i + 1 if vi is the first generator of an elliptic plane E .

Notice that we do not define i ′ when vi is the second geometric generator of an
elliptic plane, because in this case, (1, 1, . . . , 1) is not in the radical of C [22]. For
I ⊆ {1, 2, . . . , n}, we set I ′ = {i ′ : i ∈ I } and I⊥ = {1, 2, . . . , n}\I ′. In this way, we
can compute the dual code C⊥ of a linear code C generated by {vi }i∈I easily since it
is generated by {vi }i∈I⊥ . Moreover, it can also be used to construct QECCs using the
CSS construction since C ⊆ C⊥ if and only if I ⊆ I⊥. These kinds of decomposition
arise naturally (i.e., for the usual generators) in some families of evaluation codes as
BCH codes, toric codes, J -affine variety codes, negacyclic codes, constacylic codes,
etc., and the previous approach has been exploited for constructing stabilizer quantum
codes, EAQECCs and LCD codes (see [7–9,14,17] for instance).

The above paragraphs allow us to give a practical procedure for computing the
value c given in Theorem 3, for the Hermitian product, and in Theorem 4, for the
Euclidean product (C1 = C2 = C). Assume that C is a code generated by {vi }i∈I
compatible with a geometric decomposition of the corresponding coordinate space
and write I = IR � IL (i.e., I = IR ∪ IL and IR ∩ IL = ∅), where the radical of
C , C ∩ C⊥, ⊥ meaning dual with respect to the inner product 〈 , 〉, is generated by
{vi }i∈IR . The radical of C can be easily computed in this case: Indeed, given i ∈ I ,
one has that i ∈ IR if it holds that vi is the first generator of a hyperbolic plane H and
i + 1 /∈ I , vi is the second generator of a hyperbolic plane H and i − 1 /∈ I , or vi
is the first generator of an elliptic plane E . Otherwise, i ∈ IL . An equivalent way to
characterize IR is the following: IR consists of asymmetric indexes whose pair does
not belong to I and IL consists of symmetric indexes and pairs of asymmetric indexes
that belong to I . Summarizing, one has that when one considers a suitable basis as
above, then

c = dimFq C − dimFq

(
C ∩ C⊥)

= card(I ) − card(I ∩ I⊥)

= card(I ) − card(IR) = card(IL).
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Note that we have an EAQECC with maximal entanglement when I = IL , i.e.,
when IR = ∅. This fact was used, for instance, in [9].

3 Gilbert–Varshamov-type sufficient condition of existence of
entanglement-assisted codes

In this section, we give a Gilbert–Varshamov-type bound which is valid for EAQECCs
over arbitrary finite fields. A similar bound was stated in [16] for the binary case.

Theorem 5 Assume the existence of positive integers n, k ≤ n, δ, c ≤ (n − k)/2 such
that

qn+k − qn−k−2c

q2n − 1

δ−1∑

i=1

(
n

i

)
(q2 − 1)i < 1. (3)

Then, there exists an Fq-linear code C ⊆ F
2n
q such that dimFq C = n − k,

ds(C⊥s\(C⊥s ∩ C)) ≥ δ and dimFq C − dimFq (C
⊥s ∩ C) = 2c.

Proof We will use a close argument to the proof of the Gilbert–Varshamov bound for
stabilizer codes [4,13]. Let Sp(q, n) be the symplectic group over F2n

q [11, Section 3]
and A(k, c) the set of Fq -linear spaces V ⊆ F

2n
q such that dimFq V = n − k and

dimFq V − dimFq

(
V⊥s ∩ V

)
= 2c.

For 0 �= e ∈ F
2n
q , define

B(k, c, e) =
{
V ∈ A(k, c) | e ∈ V⊥s\(V⊥s ∩ V )

}
.

Taking into account that the symplectic group acts transitively on F
2n
q \{0} [1,11], it

holds that for nonzero e1, e2 ∈ F
2n
q , there exists M ∈ Sp(q, n) such that e1M = e2,

and, for V1, V2 ∈ A(k, c), there exists M ∈ Sp(q, n) such that V1M = V2.
Therefore, for nonzero elements e1, e2 ∈ F

2n
q with e1M1 = e2 (M1 ∈ Sp(q, n))

and some fixed linear space V1 ∈ A(k, c), we have the following chain of equalities:

card (B(k, c, e1))

= card
(
{V ∈ A(k, c) | e1 ∈ V⊥s\(V⊥s ∩ V )}

)

= card
(
{V1M | e1 ∈ V⊥s M\(V⊥s M ∩ V M), M ∈ Sp(q, n)}

)

= card
(
{V1MM−1

1 | e1 ∈ V⊥s MM−1
1 \(V⊥s MM−1

1 ∩ V MM−1
1 ), M ∈ Sp(q, n)}

)

= card
(
{V1M | e1M1 ∈ V⊥s M\(V⊥s M ∩ V M), M ∈ Sp(q, n)}

)
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= card
(
{V1M | e2 ∈ V⊥s M\(V⊥s M ∩ V M), M ∈ Sp(q, n)}

)

= card
(
{V ∈ A(k, c) | e2 ∈ V⊥s\(V⊥s ∩ V )}

)

= card (B(k, c, e2)) .

For each V ∈ A(k, c), the number of vectors e in F2n
q such that e ∈ V⊥s\(V⊥s ∩V )

is

card(V⊥s ) − card
(
V⊥s ∩ V

)
= qn+k − qn−k−2c.

The number of pairs (e, V ) such that 0 �= e ∈ V⊥s\(V⊥s ∩ V ) is

∑

0 �=e∈F2nq
card (B(k, c, e)) = card (A(k, c))

(
qn+k − qn−k−2c

)
,

which implies

card (B(k, c, e))
card (A(k, c))

= qn+k − qn−k−2c

q2n − 1
. (4)

If there exists V ∈ A(k, c) such that V /∈ B(k, c, e) for all 1 ≤ swt(e) ≤ δ − 1,
then there will exist V with the desired properties. The number of vectors e such that
1 ≤ swt(e) ≤ δ − 1 is given by

δ−1∑

i=1

(
n

i

)
(q2 − 1)i . (5)

By combining Equalities (4) and (5), we see that Inequality (3) is a sufficient condition
for ensuring the existence of a code C as in our statement. This ends the proof. 
�

To finish this section, we derive an asymptotic form of Theorem 5.

Theorem 6 Let R, ε and λ be nonnegative real numbers such that R ≤ 1, ε < 1/2
and λ ≤ (1− R)/2. Let h(x) := −x logq x − (1− x) logq(x −1) be the q-ary entropy
function. For n sufficiently large, the inequality

h(ε) + ε logq(q
2 − 1) < 1 − R, (6)

implies the existence of a code C ⊆ F
2n
q over Fq such that

dimFq C = �n(1 − R)�, ds(C
⊥s\(C⊥s ∩ C)) ≥ �nε�

and

dimFq C − dimFq (C
⊥s ∩ C) = �2nλ�.
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Proof It follows from Theorem 5 using a similar reasoning to that in [19, Section
III.C]. 
�

4 EAQECCs coming from punctured QECCs

Our final section gives parameters of EAQECCs obtained from punctured codes com-
ing from self-orthogonal codes with respect to symplectic forms, or Hermitian or
Euclidean inner products. Since fewer qudits should be transmitted through a noisy
channel, they perform better. Let us start with the symplectic case.

4.1 Symplectic form

Let C ⊆ F
2n
q be an Fq -linear code. The puncturing of C to the coordinate set

{1, . . . , n − c} is defined as the code of length 2(n − c) given by

P(C) = {
(a1, . . . , an−c|b1, . . . , bn−c) | (a1, . . . , an|b1, . . . , bn) ∈ C

for some an−c+1, . . . , an, bn−c+1, . . . , bn ∈ Fq
}
.

In addition, the shortening of C to the coordinate set {1, …, n− c} is defined as the
code

S(C) = {(a1, . . . , an−c|b1, . . . , bn−c) |
(a1, . . . , an−c, 0, . . . , 0|b1, . . . , bn−c, 0, . . . , 0) ∈ C}.

When we have a stabilizer code given by an Fq -linear codeC such thatC ⊆ C⊥s ⊆
F
2n
q , we can construct an entanglement-assisted code from P(C) ⊆ F

2(n−c)
q . By [20],

P(C)⊥s = S(C⊥s ) and we deduce

P(C) ∩ P(C)⊥s = P(C) ∩ S(C⊥s ) = S(C ∩ C⊥s ) = S(C).

Theminimumdistanceof the constructed entanglement-assisted code isds(S(C⊥s )\
S(C)) which is larger than or equal to ds(C⊥s\C). Following [20], one can prove the
following result.

Proposition 5 Assume that a positive integer c satisfies 2c ≤ dH (C\{0}) − 1, then

dimFq P(C) = dimFq C, and

dimFq P(C) ∩ P(C)⊥s = dimFq S(C) = dimFq C − 2c.

Summarizing these observations, we have the following theorem. Notice that a
close result has been given in [15] for binary codes.
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Theorem 7 Let C ⊆ F
2n
q be an Fq-linear code with dimFq C = n − k and C ⊆ C⊥s .

Assume that a positive integer c satisfies 2c ≤ dH (C\{0}) − 1; then, the punctured
code P(C) provides an

[[n − c, k + c,≥ ds(C
⊥s\C); c]]q

entanglement-assisted code.

Our next two sections are devoted to give similar results but considering Hermitian
or Euclidean inner product.

4.2 Hermitian inner product

Let C ⊆ F
n
q2

be an Fq -linear code. The h-puncturing of C to the coordinate set
{1, 2, . . . , n − c} is the code of length n − c defined as

Ph(C)

= {
(a1, a2, . . . , an−c) | (a1, a2, . . . , an) ∈ C for some an−c+1, . . . , an ∈ Fq2

}
.

The h-shortening of C to the coordinate set {1, 2, . . . , n − c} is the code of length
n − c defined as

Sh(C) = {(a1, a2, . . . , an−c) | (a1, a2, . . . , an−c, 0, . . . , 0) ∈ C} .

The above concepts allow us to state the following theorem.

Theorem 8 Let C ⊆ F
n
q2

be an Fq2 -linear code with dimFq2
C = (n − k)/2 and

suppose that C ⊆ C⊥h . Let c be a positive integer such that c ≤ dH (C\{0}) − 1, then
the punctured code Ph(C) provides an

[[n − c, k + c,≥ dH (C⊥h\C); c]]q

entanglement-assisted code.

Proof By the assumption, dimFq2
Ph(C) = dimFq2

C . By a similar argument to that

used in Sect. 4.1, we also see that Ph(C) ∩ Ph(C)⊥h = Sh(C). Now we have that
c ≤ dH (C\{0})−1, so dimFq2

Ph(C) = dimFq2
C and dimFq2

Sh(C) = dimFq2
C−c

[20]. It also holds that dH (Ph(C)⊥h\Sh(C)) ≥ dH (C⊥h\C), and this concludes the
proof by Theorem 3. 
�

4.3 Euclidean inner product

Our result concerning Euclidean duality is the following:
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Theorem 9 Let C2 ⊆ C1 ⊆ F
n
q be two Fq-linear codes such that dimCi = ki ,

1 ≤ i ≤ 2. The standard construction of CSS codes uses C2 × C⊥
1 as the stabilizer.

Assume that c is a positive integer such that

c ≤ min
{
dH (C2\{0}), dH (C⊥

1 \{0})
}

− 1,

then the punctured code Ph(C2) × Ph(C⊥
1 ) provides an

[[n − c, k1 − k2 + c,≥ min
{
dH (C1\C2), dH (C⊥

2 \C⊥
1 )

}
; c]]q

entanglement-assisted code.

Proof The assumption c ≤ min{dH (C2\{0}), dH (C⊥
1 \{0})}−1 implies the following

two equalities: dimFq Ph(C2) = dimFq C2 and dimFq Ph(C
⊥
1 ) = dimFq C

⊥
1 . There-

fore,

dimFq P(C2 × C⊥
1 ) = dimFq Ph(C2) + dimFq Ph(C

⊥
1 ) = n − (k1 − k2).

Furthermore, it holds that

dimFq P(C2 × C⊥
1 ) ∩ P(C2 × C⊥

1 )⊥s = dimFq S(C2 × C⊥
1 )

= dimFq [Sh(C2) × Sh(C
⊥
1 )] = dimFq Sh(C2) + dimFq Sh(C

⊥
1 )

= (
dimFq Sh(C2) − c

) +
(
dimFq Sh(C

⊥
1 )

)
= n − (k1 − k2) − 2c.

Applying Theorem 7 to the code C2 × C⊥
1 , the proof is completed. 
�

Acknowledgements We thank Francisco R. Fernandes and Ruud Pellikaan for pointing out a mistake in
Theorem 6 on an earlier version of this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aschbacher, M.: Finite Group Theory, Cambridge Studies in AdvancedMathematics, vol. 10, 2nd edn.
Cambridge University Press, Cambridge (2000)

2. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–
3072 (2001)

3. Brun, T., Dvetak, I., Hsieh, M.H.: Correcting quantum codes with entanglement. Science 314(5798),
436–439 (2006)

4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal
geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)

5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over
GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

123

http://creativecommons.org/licenses/by/4.0/


116 Page 18 of 18 C. Galindo et al.

6. Chen, X., et al.: Entanglement-assisted quantumMDS codes constructed from negacyclic codes. Quan-
tum Inf. Process. 16, 303 (2017)

7. Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from J -affine variety codes and a new
Steane-like enlargement. Quantum Inf. Process. 14, 3211–3231 (2015)

8. Galindo, C., Geil, O., Hernando, F., Ruano, D.: New binary and ternary LCD codes. IEEE Trans. Inf.
Theory 65(2), 1008–1016 (2019)

9. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error
correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

10. Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound.
Phys. Rev. A 54, 1862–1868 (1996)

11. Grove, L.C.: Classical Groups and Geometric Algebra, Graduate Studies in Mathematics, vol. 39.
American Mathematical Society, Providence (2002)

12. Hsieh, M.H., Dvetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes.
Phys. Rev. A 76, 062313 (2007)

13. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields.
IEEE Trans. Inf. Theory 52, 4892–4924 (2006)

14. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory
60, 1528–1535 (2014)

15. Lai, C.-Y., Brun, T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits.
Phys. Rev. A 86, 032319 (2012)

16. Lai, C.-Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes.
Quantum Inf. Process. 13, 957–990 (2014)

17. Liu, Y., Li, R., Lv, L., Ma, Y.: Application of constacyclic codes to entanglement-assisted quantum
maximum distance separable codes. Quantum Inf. Process. 17, 210 (2018)

18. Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary entanglement-assisted quantum stabilizer codes. Sci.
China Inf. Sci. 60, 42501 (2017)

19. Matsumoto,R.,Uyematsu, T.: Lower bound for the quantumcapacity of a discretememoryless quantum
channel. J. Math. Phys. 43(9), 4391–4403 (2002)

20. Pless, V.S., Huffman,W.C., Brualdi, R.A.: An introduction to algebraic codes. In: Pless, V.S., Huffman,
W.C. (eds.) Handbook of Coding Theory, pp. 3–139. Elsevier, Amsterdam (1998)

21. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum
codes. Des. Codes Cryptogr. 87, 1565–1572 (2018)

22. Ruano, D.: The metric structure of linear codes. In: Singularities, Algebraic Geometry, Commutative
Algebra, and Related Topics, pp. 537–561. Springer, Berlin (2018)

23. Seroussi, G., Lempel, A.: Factorization of symmetric matrices and trace-orthogonal bases in finite
fields. SIAM J. Comput. 9, 758–767 (1980)

24. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–
2496 (1995)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, pp. 124–134 (1994)

26. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding.
Phys. Rev. A 77, 064302 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Entanglement-assisted quantum error-correcting codes over arbitrary finite fields
	Abstract
	1 Introduction
	2 EAQECCs over mathbbFq
	2.1 The symplectic case
	2.2 The Hermitian case
	2.3 The Euclidean case
	2.4 Geometric decomposition of the coordinate space

	3 Gilbert–Varshamov-type sufficient condition of existence of entanglement-assisted codes
	4 EAQECCs coming from punctured QECCs
	4.1 Symplectic form
	4.2 Hermitian inner product
	4.3 Euclidean inner product

	Acknowledgements
	References




