
Quantum Information Processing (2019) 18:224
https://doi.org/10.1007/s11128-019-2340-4

Quantum trajectories for environment in superposition of
coherent states

Anita Magdalena Dąbrowska1
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Abstract
We derive stochastic master equations for a quantum system interacting with a Bose
field prepared in a superposition of continuous-mode coherent states. To determine
a conditional evolution of the quantum system, we use a collision model with an
environment given as an infinite chain of not interacting between themselves qubits
prepared initially in an entangled state being a discrete analogue of a superposition
of coherent states of the Bose field. The elements of the environment chain interact
with the quantum system in turn one by one, and they are subsequently measured.
We determine a conditional evolution of the quantum system for continuous in time
observations of the output field as a limit of discrete recurrence equations.We consider
the stochastic master equations for a counting as well as for a diffusive stochastic
process.

Keywords Quantum trajectories · Quantum filtering · Stochastic master equation ·
Quantum non-Markovian dynamics · Collision model · Quantum stochastic calculus

1 Introduction

Quantum filtering theory [1–8] formulated within the framework of quantum stochas-
tic Itô calculus (QSC) [9,10] gives the best state estimation of an open quantum
system on the basis of a continuous in time measurement preformed on the Bose field
interacting with the system. The filtering theory is formulated with making use of
input–output formalism [11] wherein the input field is interpreted as the field before
interaction with the system and the output field is interpreted as the field after this
interaction. Information about the quantum system is gained in an indirect way by
performing the measurements on the output field. In general, there are two types of
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the measurement considered in the filtering theory, namely the photon counting and
homodyne/heterodynemeasurements which corresponds, respectively, to the counting
and diffusion stochastic processes [6]. Evolution of an open quantum system condi-
tioned on the results of the continuous in time measurement of the output field is given
by the stochastic master equation called also in the literature the quantum filtering
equation. The conditional state, depending on all past results of the measurement,
creates quantum trajectory. By taking the average over all possible outcomes of the
measurements, we get from the a posteriori evolution the a priori evolution given by
the master equation. Clearly, the form of the filtering equation depends on the initial
state of the environment and on the type of measurement performed on the output
field. There exist many derivations of the filtering equations (see, for example, [1–
4,8,12–15]). One can find the rigorous derivations of the conditional evolution for the
case when the Bose field is prepared in the Gaussian state, for instance, in [16–21].
The standard methods of determination of the filtering equation stop working when
the Bose field is prepared in non-classical state. The initial temporal correlations in
the Bose field make then the evolution of open system non-Markovian. The system
becomes entangled with the environment, and its evolution is no longer given by one
equation but by a set of equations. In this case to determine the conditional evolu-
tion of the system, one can apply a cascaded approach [7] with an ancilla system
being a source of non-classical signal. The methods of determination of the filtering
equation based on the idea of enlarging the Hilbert space of the compound system by
the Hilbert space of ancilla were used for single-photon state in [22–25], for a Fock
state in [26–28], and for a superposition of coherent states in [22,24]. Note, however,
that ancilla system serves here only as a convenient theoretical mathematical device
allowing to solve the problem of determination of the conditional evolution. Unfortu-
nately, by introducing such auxiliary system we loose some physical intuition and the
interpretation of quantum trajectories becomes thereby more difficult.

In the paper, we present derivation of the filtering equations for the environment
prepared in a superposition of coherent states. Instead of the methods based on the
concept of ancilla and QSC, we use quantum repeating interactions andmeasurements
model [29–32], known also in the physical literature as a collision model [33]. We
consider the environment modeled by an infinite chain of qubits which interact in
turn one by one with a quantum system. After each interaction, the measurement
is preformed on the last qubit interacted with the system. The essential properties
of our model are that each qubit interacts with the system only once and that the
environment qubits do not interact between themselves. So in the paper we use the
toy Fock space as an approximation of the symmetrical Fock space [15,29,34,38–41].
The idea of obtaining the differential filtering equations from difference equations was
implemented for the Markovian case in [14,15,34,35]. As shown in [36,37], it can be
successfully applied also for the non-Markovian case.

The paper is organized as follows. In Sect. 2, we introduce a description of the envi-
ronment and its interactionwith the quantum system. Section 3 is devoted to derivation
of the conditional evolution of open system for the case when the environment is pre-
pared in a coherent state. In Sect. 4 the conditional evolution of open system for the
bath in a superposition of coherent states is investigated. As an example, we present
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the a priori and the a posteriori dynamics of a single mode cavity in Sect. 5. Our results
are briefly summarized in Sect. 6.

2 The unitary system and environment evolution

Let us consider a quantum system S of the Hilbert space HS interacting with an
environment consisting of a sequence of qubits. We assume that the environment
qubits do not interact between themselves, but they interact in a successivewaywith the
system S each during the time interval of the length τ . At a given moment S interacts
with only one of the environment qubits. The Hilbert space of the environment is

HE =
+∞⊗

k=0

HE,k, (1)

whereHE,k stands for the Hilbert space of the k-th qubit interacting with S in the time
interval [kτ, (k+1)τ ). We start from a discrete in time model of repeated interactions
(collisions) to show finally its limit with time treated as a continuous variable. We will
treat τ as a small time and work to linear order in τ (we neglect all higher order terms
in τ ).

We assume that the unitary evolution of the compound E + S system is governed
by [29,31]

Uj = V j−1V j−2 . . . V0 for j ≥ 1, U0 = 1, (2)

where Vk is the unitary operator acting non-trivially only in the Hilbert spaceHE,k ⊗
HS , that is,

Vk =
k−1⊗

i=0

1i ⊗ Vk, (3)

and

Vk = exp (−iτHk) , (4)

with

Hk =
+∞⊗

i=k

1i ⊗ HS + i√
τ

(
σ+
k ⊗

+∞⊗

i=k+1

1i ⊗ L − σ−
k ⊗

+∞⊗

i=k+1

1i ⊗ L†

)
, (5)

where HS is the Hamiltonian of S, L is a bounded operator of S, and σ+
k = |1〉k〈0|,

σ−
k = |0〉k〈1|, where by |0〉k and |1〉k we denoted, respectively, the ground and excited

states of the k-th qubit. The Hamiltonian Hk is written in the interaction picture elimi-
nating the free evolution of the bath. One can find a detailed discussion on the physical
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assumptions leading to (5), for instance, in [33,35,42]. For simplicity, we set the Planck
constant � = 1. Note thatUj describes the j-th first interactions and it has trivial action
on

⊗+∞
k= j HE,k .

Let us define inHE,k the vector |αk〉k by the formula [35]

|αk〉k = e
√

τ
(
αkσ

+
k −α∗

k σ−
k

)
|0〉k, (6)

where αk ∈ C. One can check that

|αk〉k =
(
1 − |αk |2

2
τ

)
|0〉k + αk

√
τ |1〉k + O(τ 3/2) (7)

and

〈αk |σ−
k |αk〉 = √

ταk + O(τ 3/2), 〈αk |σ+
k σ−

k |αk〉 = τ |αk |2 + O(τ 2). (8)

The coherent state inHE is defined as

|α〉 =
+∞⊗

k=0

|αk〉k (9)

with the condition
∑+∞

k=0 |αk |2τ < ∞.
Note that the vector state |α〉 is a discrete analogue of coherent state defined in

the symmetric Fock space considered in QSC. We will show that it allows in the
continuous time limit to reproduce all results for the coherent state received within
QSC.

3 Quantum trajectories for a coherent state

In this section we consider the case when the composed E + S system is prepared
initially in the pure product state

|α〉 ⊗ |ψ〉, (10)

where |α〉 is the coherent state of the environment.

3.1 Photon counting

Weassume that after each interaction themeasurement is performed on the last element
of the environment chain just after its interaction with S. A goal of this subsection is
providing a description of the state ofS conditioned on the results of themeasurements
of the observables

σ−
k σ+

k = |1〉k〈1|, k = 0, 1, 2, . . . . (11)
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Theorem 1 The conditional state of S and the part of the environment which has not
interacted with S up to jτ for the initial state (10) and the measurement of (11) at the
moment jτ is given by

|�̃ j 〉 = |� j 〉√〈� j |� j 〉
, (12)

where

|� j 〉 =
+∞⊗

k= j

|αk〉k ⊗ |ψ j 〉 (13)

and the conditional vector |ψ j 〉 from HS satisfies the recurrence formula

|ψ j+1〉 = M j
η j+1

|ψ j 〉, (14)

where η j+1 stands for a random variable describing the ( j +1)-th output of (11), and

M j
η j+1 has the form

M j
0 = 1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ + O(τ 2), (15)

M j
1 = (

L + α j
) √

τ + O(τ 3/2). (16)

Initially |ψ j=0〉 = |ψ〉 such that |�̃ j=0〉 = |α〉 ⊗ |ψ〉.

It is clear that |�̃ j 〉 is the product state vector belonging to the Hilbert space⊗+∞
k= j

HE,k ⊗ HS . Note also that the conditional vector |ψ j 〉 depends on all results

of the measurements performed on the bath qubits up to time jτ .

Proof We prove the above theorem by an induction technique. So we start from the
assumption that (13) holds and then check that

Vj |� j 〉 = |0〉 j ⊗
+∞⊗

k= j+1

|αk〉k ⊗
(
1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ

+ O(τ 2)
)

|ψ j 〉

+ |1〉 j ⊗
+∞⊗

k= j+1

|αk〉k ⊗
[(
L + α j

) √
τ + O(τ 3/2)

]
|ψ j 〉. (17)

Now using the fact that the conditional vector |� j+1〉 from the Hilbert space⊗+∞
k= j+1

HE,k ⊗ HS is defined by
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⎛

⎝� j
η j+1

⊗
+∞⊗

k= j+1

1k ⊗ 1S

⎞

⎠ Vj |� j 〉 = |η j+1〉 j ⊗ |� j+1〉, (18)

where

�
j
0 = |0〉 j 〈0|, �

j
1 = |1〉 j 〈1|, (19)

we readily find that |� j+1〉 has the form

|� j+1〉 =
+∞⊗

k= j+1

|αk〉k ⊗ |ψ j+1〉 (20)

with |ψ j+1〉 given by (14), which ends the proof. 
�

3.2 Homodyne detection

Now we describe the evolution conditioned on the results of the measurements of the
observables

σ x
k = σ+

k + σ−
k = |+〉k〈+| − |−〉k〈−|, k = 0, 1, 2, . . . , (21)

where

|+〉k = 1√
2

(|0〉k + |1〉k) , (22)

|−〉k = 1√
2

(|0〉k − |1〉k) , (23)

are vectors from the Hilbert space HE,k .

Theorem 2 The conditional state of S and the part of the environment which has not
interacted with S up to jτ for the initial state (10) and the measurement of (21) at the
moment jτ is given by

|�̃ j 〉 = |� j 〉√〈� j |� j 〉
, (24)

where

|� j 〉 =
+∞⊗

k= j

|αk〉k ⊗ |ψ j 〉 (25)

and the conditional vector |ψ j 〉 from HS satisfies the recurrence formula

|ψ j+1〉 = R j
ζ j+1

|ψ j 〉, (26)
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where ζ j+1 = ±1 stands for a random variable describing ( j + 1)-th output of (21),
and

R j
ζ j+1

= 1√
2

[
1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ

+ (L + α j )ζ j+1
√

τ + O(τ 3/2)
]
. (27)

Initially |ψ j=0〉 = |ψ〉 such that |�̃ j=0〉 = |α〉 ⊗ |ψ〉.
Proof Assuming that (25) holds we get

Vj |� j 〉 = 1√
2
|+〉 j ⊗

+∞⊗

k= j+1

|αk〉k ⊗
{
1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ

+ (
L + α j

) √
τ + O(τ 3/2)

}
|ψ j 〉

+ 1√
2
|−〉 j ⊗

+∞⊗

k= j+1

|αk〉k ⊗
{
1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ

− (
L + α j

) √
τ + O(τ 3/2)

}
|ψ j 〉. (28)

The conditional vector |� j+1〉 from the Hilbert space
⊗+∞

k= j+1
HE,k ⊗ HS satisfies

for the measurement of (21) the equation
⎛

⎝�
j
ζ j+1

⊗
+∞⊗

k= j+1

1k ⊗ 1S

⎞

⎠ Vj |� j 〉 = |ζ j+1〉 j ⊗ |� j+1〉, (29)

where ζ j+1 has two possible values ±1, and

�
j
+1 = |+〉 j 〈+|, �

j
−1 = |−〉 j 〈−|. (30)

It is seen that |� j+1〉 has the form of (25) and the vector |ψ j 〉 from HS satisfies the
recurrence equation (27). 
�

4 Quantum trajectories for a superposition of coherent states

Let us assume that the initial state of the compound E + S system is given by

(
cα|α〉 + cβ |β〉) ⊗ |ψ〉, (31)

where |α〉 and |β〉 are coherent states of HE , and

|cα|2 + cαc
∗
β〈β|α〉 + c∗

αcβ〈α|β〉 + |cβ |2 = 1. (32)

Note that in this case the bath qubits are prepared in an entangled state.
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4.1 Photon counting

Theorem 3 The conditional state of S and the part of the environment which has not
interacted with S up to jτ for the initial state (31) and the measurement of (11) at the
moment jτ is given by

|�̃ j 〉 = |� j 〉√〈� j |� j 〉
, (33)

where

|� j 〉 = cα

+∞⊗

k= j

|αk〉k ⊗ |ψ j 〉 + cβ

+∞⊗

k= j

|βk〉k ⊗ |ϕ j 〉. (34)

The conditional vectors |ψ j 〉, |ϕ j 〉 from HS in (34) are given by the recurrence for-
mulas

|ψ j+1〉 = M
α j
η j+1 |ψ j 〉, (35)

|ϕ j+1〉 = M
β j
η j+1 |ϕ j 〉, (36)

where η j+1 = 0, 1 stands for a random variable describing the ( j + 1)-th output of
(11), and

M
α j
0 = 1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ + O(τ 2), (37)

M
β j
0 = 1S −

(
i HS + 1

2
L†L + L†β j + |β j |2

2

)
τ + O(τ 2), (38)

M
α j
1 = (

L + α j
) √

τ + O(τ 3/2), (39)

M
β j
1 = (

L + β j
) √

τ + O(τ 3/2), (40)

and initially we have |ψ0〉 = |ϕ0〉 = |ψ〉.
Proof The proof is straightforward. We simply refer to the results of the previous
Section and the linearity of the evolution of the total system. 
�

Let us notice that the form of |� j 〉 indicates that the system S becomes entangled
with this part of the environment which has not interacted with S yet. Taking the
partial trace of the operator |� j 〉〈� j | over S, we get the unnormalized state of the
environment of the form

ρfield
j = |cα|2

+∞⊗

k= j

|αk〉k〈αk |〈ψ j |ψ j 〉 + cαc
∗
β

+∞⊗

k= j

|αk〉k〈βk |〈ϕ j |ψ j 〉

+ c∗
αcβ

+∞⊗

k= j

|βk〉k〈αk |〈ψ j |ϕ j 〉+|cβ |2|
+∞⊗

k= j

|βk〉k〈βk |〈ϕ j |ϕ j 〉. (41)
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The operator ρfield
j describes the conditional state of this part of the environment which

has not interacted with S yet. It depends on all results of the measurements performed
on the bath qubits up to jτ . Therefore, we can say that the results of the measurements
change our knowledge about the state of the future part of the environment.

In order to obtain the conditional state of S, one has to take the partial trace of
|�̃ j 〉〈�̃ j | over the environment. One can check that the a posteriori state of S at the
time jτ has the form

ρ̃ j = ρ j

Trρ j
, (42)

where

ρ j = |cα|2|ψ j 〉〈ψ j | + cαc
∗
β

+∞∏

k= j

〈βk |αk〉|ψ j 〉〈ϕ j | + c∗
αcβ

+∞∏

k= j

〈αk |βk〉|ϕ j 〉〈ψ j |

+ |cβ |2|ϕ j 〉〈ϕ j | (43)

and Trρ j is the probability of a particular trajectory.
To derive the set of recurrence equations describing the stochastic evolution of S,

it is convenient to write down the conditional state of S at jτ in the form

ρ̃ j = |cα|2ρ̃αα
j + cαc

∗
βρ̃

αβ
j + c∗

αcβρ̃
βα
j + |cβ |2ρ̃ββ

j , (44)

where

ρ̃αα
j = 1

Trρ j
|ψ j 〉〈ψ j |, (45)

ρ̃
αβ
j =

∏+∞
k= j

k〈βk |αk〉k
Trρ j

|ψ j 〉〈ϕ j |, (46)

ρ̃
βα
j =

∏+∞
k= j

k〈αk |βk〉k
Trρ j

|ϕ j 〉〈ψ j |, (47)

ρ̃
ββ
j = 1

Trρ j
|ϕ j 〉〈ϕ j |. (48)

In our derivation, we will use several times the formula

+∞∏

k= j

k〈βk |αk〉k =
+∞∏

k= j+1

k〈βk |αk〉k
(
1 − 1

2

(
|α j |2 + |β j |2 − 2α jβ

∗
j

)
τ + O(τ 2)

)

(49)
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following from

k〈βk |αk〉k = 1 − 1

2

(
|αk |2 + |βk |2 − 2αkβ

∗
k

)
τ + O(τ 2). (50)

Let us notice first that the conditional operator ρ j+1 is given by the recurrence
formula

ρ j+1 = |cα|2Mα j
η j+1 |ψ j 〉〈ψ j |Mα j†

η j+1 + cαc
∗
β

+∞∏

k= j+1

〈βk |αk〉Mα j
η j+1 |ψ j 〉〈ϕ j |Mβ j†

η j+1

+ c∗
αcβ

+∞∏

k= j+1

〈αk |βk〉Mβ j
η j+1 |ϕ j 〉〈ψ j |Mα j†

η j+1 + |cβ |2Mβ j
η j+1 |ϕ j 〉〈ϕ j |Mβ j†

η j+1 ,

(51)

where η j+1 stands for the random variable having two possible values: 0, 1. Let us note
that in order to determine ρ̃ j+1 we need to know the operators (45)–(48) at themoment
jτ and the result of the next measurement. When the result of the measurement is 0,
then we obtain from Eqs. (35) and (36) the following set of discrete equations

|ψ j+1〉〈ψ j+1| = |ψ j 〉〈ψ j | − i[HS , |ψ j 〉〈ψ j |]τ − 1

2

{
L†L, |ψ j 〉〈ψ j |

}
τ

− |ψ j 〉〈ψ j |Lα∗
j τ − L†|ψ j 〉〈ψ j |α jτ − |ψ j 〉〈ψ j ||α j |2τ + O(τ 2),

(52)

|ψ j+1〉〈ϕ j+1| = |ψ j 〉〈ϕ j |
(
1 − 1

2

(
|α j |2 + |β j |2

)
τ

)

− i[HS , |ψ j 〉〈ϕ j |]τ − 1

2

{
L†L, |ψ j 〉〈ϕ j |

}
τ

− |ψ j 〉〈ϕ j |Lβ∗
j τ − L†|ψ j 〉〈ϕ j |α jτ + O(τ 2), (53)

|ϕ j+1〉〈ϕ j+1| = |ϕ j 〉〈ϕ j | − i[HS , |ϕ j 〉〈ϕ j |]τ − 1

2

{
L†L, |ϕ j 〉〈ϕ j |

}
τ

− |ϕ j 〉〈ϕ j |Lβ∗
j τ − L†|ϕ j 〉〈ϕ j |β jτ − |ϕ j 〉〈ϕ j ||β j |2τ + O(τ 2).

(54)

The conditional probability of the outcome 0 at the moment ( j + 1)τ when the a
posteriori state of S at jτ was ρ̃ j is defined as

p j+1(0|ρ̃ j ) = Trρ j+1

Trρ j
, (55)

where ρ j+1 is given by (51) for η j = 0. Hence, we obtain the formula

p j+1(0|ρ̃ j ) = 1 − ν jτ + O(τ 2), (56)
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where

ν j = |cα|2ναα
j + cαc

∗
βν

αβ
j + c∗

αcβν
βα
j + |cβ |2νββ

j , (57)

ναα
j = Tr

[(
L†L + Lα∗

j + L†α j + |α j |2
)

ρ̃αα
j

]
, (58)

ν
αβ
j = Tr

[(
L†L + Lβ∗

j + L†α j + α jβ
∗
j

)
ρ̃

αβ
j

]
, (59)

ν
βα
j = Tr

[(
L†L + Lα∗

j + L†β j + α∗
jβ j

)
ρ̃

βα
j

]
, (60)

ν
ββ
j = Tr

[(
L†L + Lβ∗

j + L†β j + |β j |2
)

ρ̃
ββ
j

]
. (61)

Now, making use of the fact that

1

Trρ j+1
= 1

Trρ j

(
1 + ν jτ + O(τ 2)

)
, (62)

we obtain the set of difference equations

ρ̃αα
j+1 − ρ̃αα

j = ρ̃αα
j ν jτ − i[HS , ρ̃αα

j ]τ − 1

2

{
L†L, ρ̃αα

j

}
τ − ρ̃αα

j Lα∗
j τ

−L†ρ̃αα
j α jτ − ρ̃αα

j |α j |2τ + O(τ 2), (63)

ρ̃
αβ
j+1 − ρ̃

αβ
j = ρ̃

αβ
j ν jτ − i[HS , ρ̃

αβ
j ]τ − 1

2

{
L†L, ρ̃

αβ
j

}
τ − ρ̃

αβ
j Lβ∗

j τ

− L†ρ̃
αβ
j α jτ − ρ̃

αβ
j β∗

j α jτ + O(τ 2), (64)

ρ̃
ββ
j+1 − ρ̃

ββ
j = ρ̃

ββ
j ν jτ − i[HS , ρ̃

ββ
j ]τ − 1

2

{
L†L, ρ̃

ββ
j

}
τ − ρ̃

ββ
j Lβ∗

j τ

− L†ρ̃
ββ
j β jτ − ρ̃

ββ
j |β j |2τ + O(τ 2). (65)

One can get the equation for the operator ρ̃
βα
j using the fact that ρ̃βα

j =
(
ρ̃

αβ
j

)†
.

When the result of the measurement at the moment ( j + 1)τ is 1, we get the
following recurrence formulas

|ψ j+1〉〈ψ j+1| =
(
L|ψ j 〉〈ψ j |L† + L|ψ j 〉〈ψ j |α∗

j

+ |ψ j 〉〈ψ j |L†α j + |ψ j 〉〈ψ j ||α j |2
)

τ + O(τ 2), (66)

|ψ j+1〉〈ϕ j+1| =
(
L|ψ j 〉〈ϕ j |L† + L|ψ j 〉〈ϕ j |β∗

j

+ |ψ j 〉〈ϕ j |L†α j + |ψ j 〉〈ϕ j |α jβ
∗
j

)
τ + O(τ 2), (67)

|ϕ j+1〉〈ϕ j+1| =
(
L|ϕ j 〉〈ϕ j |L† + L|ϕ j 〉〈ϕ j |β∗

j

+ |ϕ j 〉〈ϕ j |L†β j + |ϕ j 〉〈ϕ j ||β j |2
)

τ + O(τ 2). (68)
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The conditional probability of the outcome 1 at the moment ( j + 1)τ when the a
posteriori state of S at the moment jτ was ρ̃ j is defined by

p j+1(1|ρ̃ j ) = Trρ j+1

Trρ j
, (69)

where ρ j+1 is given by (51) with η j = 1. One can check that

p j+1(1|ρ̃ j ) = ν jτ + O(τ 2), (70)

where the conditional intensity ν j is defined by (57). So for the result 1 we find that

ρ̃αα
j+1 = 1

ν j

(
Lρ̃αα

j L† + Lρ̃αα
j α∗

j + ρ̃αα
j L†α j + ρ̃αα

j |α j |2
)

+ O(τ ), (71)

ρ̃
αβ
j+1 = 1

ν j

(
Lρ̃

αβ
j L† + Lρ̃

αβ
j β∗

j + ρ̃
αβ
j L†α j + ρ̃

αβ
j α jβ

∗
j

)
+ O(τ ), (72)

ρ̃
ββ
j+1 = 1

ν j

(
Lρ̃

ββ
j L† + Lρ̃

ββ
j β∗

j + ρ̃
ββ
j L†β j + ρ̃

ββ
j |β j |2

)
+ O(τ ). (73)

Let us introduce now the stochastic discrete process

n j =
j∑

k=0

ηk, (74)

with the increment

�n j = n j+1 − n j . (75)

One can check that the conditional expectation

E[�n j |ρ̃ j ] = ν jτ + O(τ 2). (76)

Finally, by combining Eqs. (63)–(65) with Eqs. (71)–(73), we obtain the set of
stochastic difference equations

ρ̃αα
j+1 − ρ̃αα

j = Lρ̃αα
j τ + [ρ̃αα

j , L†]α jτ + [L, ρ̃αα
j ]α∗

j τ

+
{
1

ν j

(
Lρ̃αα

j L† + ρ̃αα
j L†α j + Lρ̃αα

j α∗
j

+ ρ̃αα
j |α j |2

)
− ρ̃αα

j

} (
�n j − ν jτ

)
, (77)

ρ̃
αβ
j+1 − ρ̃

αβ
j = Lρ̃

αβ
j τ + [ρ̃αβ

j , L†]α jτ + [L, ρ̃
αβ
j ]β∗

j τ

+
{
1

ν j

(
Lρ̃

αβ
j L† + ρ̃

αβ
j L†α j + Lρ̃

αβ
j β∗

j

+ρ̃
αβ
j β∗

j α j

)
− ρ̃

αβ
j

} (
�n j − ν jτ

)
(78)
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ρ̃
ββ
j+1 − ρ̃

ββ
j = Lρ̃

ββ
j τ + [ρ̃ββ

j , L†]β jτ + [L, ρ̃
ββ
j ]β∗

j τ

+
{
1

ν j

(
Lρ̃

ββ
j L† + ρ̃

ββ
j L†β j + Lρ̃

ββ
j β∗

j

+ρ̃
ββ
j |βt |2

)
− ρ̃

ββ
j

} (
�n j − ν jτ

)
, (79)

where

Lρ = −i[HS , ρ] − 1

2

{
L†L, ρ

}
+ LρL† (80)

and the initial condition ρ̃αα
0 = ρ̃

ββ
0 = |ψ〉〈ψ |, ρ̃

αβ
0 = 〈β|α〉|ψ〉〈ψ |. We dropped

here all terms that do not contribute to the continuous time limit when τ → dt . Note
that when �n j is equal to 0, then Eqs. (77)–(79) reduce to Eqs. (63)–(65), and when
�n j is equal to 1, then all the terms proportional to τ in Eqs. (77)–(79) are negligible
and we obtain the formulas (71)–(73).

Let us notice that to get the continuous in time evolution of S, we fix time t = jτ
such that when j → +∞, we have τ → 0. Of course, we take t fixed but arbitrary.
Thus, in the continuous time limit we get from (77)–(79) the set of the stochastic
differential equations of the form

dρ̃αα
t = Lρ̃αα

t dt + [ρ̃αα
t , L†]αtdt + [L, ρ̃αα

t ]α∗
t dt

+
{
1

ν j

(
Lρ̃αα

t L† + ρ̃αα
t L†αt + Lρ̃αα

t α∗
t

+ ρ̃αα
t |αt |2

)
− ρ̃αα

t

}
(dnt − νtdt) , (81)

dρ̃αβ
t = Lρ̃

αβ
t dt + [ρ̃αβ

t , L†]αtdt + [L, ρ̃
αβ
t ]β∗

t dt

+
{
1

νt

(
Lρ̃

αβ
t L† + ρ̃

αβ
t L†αt + Lρ̃

αβ
t β∗

t

+ ρ̃
αβ
t β∗

t αt

)
− ρ̃

αβ
t

}
(dnt − νtdt) (82)

dρ̃ββ
t = Lρ̃

ββ
t dt + [ρ̃ββ

t , L†]βtdt + [L, ρ̃
ββ
t ]β∗

t dt

+
{
1

νt

(
Lρ̃

ββ
t L† + ρ̃

ββ
t L†βt + Lρ̃

ββ
t β∗

j

+ ρ̃
ββ
t |βt |2

)
− ρ̃

ββ
t

}
(dnt − νtdt) (83)

and initially ρ̃αα
0 = ρ̃

ββ
0 = |ψ〉〈ψ |, ρ̃

αβ
0 = 〈β|α〉|ψ〉〈ψ |. The stochastic process nt

is defined as the continuous limit of the discrete process n j . The Itô table for dnt is
(dnt )2 = dnt (we can measure at most one photon in the interval of length dt) and
E

[
dnt |ρ̃t

] = νtdt , where
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νt = |cα|2ναα
t + cαc

∗
βν

αβ
t + c∗

αcβν
βα
t + |cβ |2νββ

t , (84)

ναα
t = Tr

[(
L†L + Lα∗

t + L†αt + |αt |2
)

ρ̃αα
t

]
, (85)

ν
αβ
t = Tr

[(
L†L + Lβ∗

t + L†αt + αtβ
∗
t

)
ρ̃

αβ
t

]
, (86)

ν
βα
t = Tr

[(
L†L + Lα∗

t + L†βt + α∗
t βt

)
ρ̃

βα
t

]
, (87)

ν
ββ
t = Tr

[(
L†L + Lβ∗

t + L†βt + |βt |2
)

ρ̃
ββ
t

]
. (88)

Moreover, the complex functions αt and βt satisfy the conditions

∫ +∞

0
|αt |2dt < +∞,

∫ +∞

0
|βt |2dt < +∞, (89)

and

〈β|α〉 = exp

{
−1

2

∫ +∞

0

(
|αt |2 + |βt |2 − 2αtβ

∗
t

)
dt

}
. (90)

Thus, the a posteriori state of S is given as

ρ̃t = |cα|2ρ̃αα
t + cαc

∗
βρ̃

αβ
t + c∗

αcβρ̃
βα
t + |cβ |2ρ̃ββ

t , (91)

where the conditional operators ρ̃αα
t , ρ̃

αβ
t , ρ̃

ββ
t satisfy Eqs. (81)–(83), and ρ̃

βα
t =(

ρ̃
αβ
t

)†
. One can check that Trρ̃t = 1 for any t ≥ 0. The equations (81)–(83) agree

with the stochastic master equations derived in [23] (see Sec. IV in [23]).
When we take an average of ρ̃t over all realizations of the stochastic process nt (all

possible outcomes), we get the a priori evolution of the system S. One can check that
the a priori state of S is described by

�t = |cα|2�αα
t + cαc

∗
β�

αβ
j + c∗

αcβ�
βα
t + |cβ |2�ββ

t , (92)

where the operators �αα
t , �αβ

t , �ββ
t satisfy the differential equations

�̇αα
t = L�αα

t + [�αα
t , L†]αt + [L, �αα

t ]α∗
t , (93)

�̇
αβ
t = L�

αβ
t + [�αβ

t , L†]αt + [L, �
αβ
t ]β∗

t , (94)

�̇
ββ
t = L�

ββ
t + [�ββ

t , L†]βt + [L, �
ββ
t ]β∗

t , (95)

where L acts as (80). The initial condition is �αα
0 = �

ββ
0 = |ψ〉〈ψ |, �

αβ
0 =

〈β|α〉|ψ〉〈ψ |, and �
βα
t =

(
�

αβ
t

)†
. One can easily check that Tr�αα

t = Tr�ββ
t = 1,

Tr�αβ
t = 〈β|α〉, and Tr�βα

t = 〈α|β〉 for any t ≥ 0.
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4.2 Homodyne detection

Theorem 4 The conditional state of S and the part of the environment which has not
interacted with S up to jτ for the initial state (31) and the measurement of (21) at the
moment jτ is given by

|�̃ j 〉 = |� j 〉√〈� j |� j 〉
, (96)

where

|� j 〉 = cα

+∞⊗

k= j

|αk〉k ⊗ |ψ j 〉 + cβ

+∞⊗

k= j

|βk〉k ⊗ |ϕ j 〉. (97)

The conditional vectors |ψ j 〉, |ϕ j 〉 from HS in (34) are given by the recurrence for-
mulas

|ψ j+1〉 = R
α j
ζ j+1

|ψ j 〉, (98)

|ϕ j+1〉 = R
β j
ζ j+1

|ϕ j 〉, (99)

where ζ j+1 stands for a random variable describing the ( j +1)-th output of (21), and

R
α j
ζ j+1

= 1√
2

[
1S −

(
i HS + 1

2
L†L + L†α j + |α j |2

2

)
τ

+ (L + α j )ζ j+1
√

τ + O
(
τ 3/2

) ]
, (100)

R
β j
ζ j+1

= 1√
2

[
1S −

(
i HS + 1

2
L†L + L†β j + |β j |2

2

)
τ

+ (L + β j )ζ j+1
√

τ + O
(
τ 3/2

) ]
, (101)

and initially we have |ψ0〉 = |ϕ0〉 = |ψ〉.
Proof To prove Theorem (4), we use the result of Sect. 3.2 and the linearity of the
evolution equation for the total system. 
�

Clearly, the conditional state of S at the moment jτ has the form (44). We start
derivation of the filtering equations for the stochastic operators (45)–(48) fromwriting
down the recursive formulas

2|ψ j+1〉〈ψ j+1| = |ψ j 〉〈ψ j | + L|ψ j 〉〈ψ j |τ
+[|ψ j 〉〈ψ j |, L†]α jτ + [L, |ψ j 〉〈ψ j |]α∗

j τ

+
[(
L + α j

) |ψ j 〉〈ψ j | + |ψ j 〉〈ψ j |
(
L† + α∗

j

)]
ζ j+1

√
τ , (102)
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2|ψ j+1〉〈ϕ j+1| = |ψ j 〉〈ϕ j |
(
1 − 1

2

(
|α j |2 + |β j |2 − 2β∗

j α j

)
τ

)

+L|ψ j+1〉〈ϕ j+1|τ
+[|ψ j 〉〈ϕ j |, L†]α jτ + [L, |ψ j 〉〈ϕ j |]β∗

j τ

+
[(
L + α j

) |ψ j 〉〈ϕ j | + |ψ j 〉〈ϕ j |
(
L† + β∗

j

)]
ζ j+1

√
τ , (103)

2|ϕ j+1〉〈ϕ j+1| = |ϕ j 〉〈ϕ j | + L|ϕ j 〉〈ϕ j |τ
+[|ϕ j 〉〈ϕ j |, L]β jdt + [L, |ϕ j 〉〈ϕ j |]β∗

j τ

+
[(
L + β j

) |ϕ j 〉〈ϕ j | + |ϕ j 〉〈ϕ j |
(
L† + β∗

j

)]
ζ j+1

√
τ , (104)

We can readily deduce that the conditional probability of the result ζ j+1 at the
moment ( j + 1)τ when the conditional state of S is ρ̃ j at the time jτ is given by

p j+1(ζ j+1|ρ̃ j ) = 1

2

(
1 + μ jζ j+1

√
τ
) + O(τ 3/2), (105)

where

μ j = |cα|2μαα
j + cαc

∗
βμ

αβ
j + c∗

αcβμ
βα
j + |cβ |2μββ

j (106)

and

μαα
j = Tr

[(
L + L† + α j + α∗

j

)
ρ̃αα
j

]
, (107)

μ
αβ
j = Tr

[(
L + L† + α j + β∗

j

)
ρ̃

αβ
j

]
, (108)

μ
βα
j = Tr

[(
L + L† + β j + α∗

j

)
ρ̃

βα
j

]
, (109)

μ
ββ
j = Tr

[(
L + L† + β j + β∗

j

)
ρ̃

ββ
j

]
. (110)

Thus for the discrete stochastic process ζ j we obtain the conditional mean values

E[ζ j+1|ρ̃ j ] = μ j
√

τ + O(τ 3/2), (111)

E[ζ 2
j+1|ρ̃ j ] = 1 + O(τ 3/2). (112)

Let us introduce now the stochastic process

q j = √
τ

j∑

k=1

ζk (113)

One can easily check that E[�q j = q j+1 − q j |ρ̃ j ] = μ jτ + O(τ 3/2).
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Now, taking into account that

1

Trρ j+1
= 2

Trρ j

(
1 − μ jζ j+1

√
τ + μ2

jτ
)

(114)

after some algebra we find the set of the stochastic difference equations

ρ̃αα
j+1 − ρ̃αα

j = Lρ̃αα
j τ + [ρ̃αα

j , L†]α jτ + [L, ρ̃αα
j ]α∗

j τ

+
[(
L + α j

)
ρ̃αα
j + ρ̃αα

j (L† + α∗
j ) − μ j ρ̃

αα
j

] (
�q j − μ jτ

)
,

(115)

ρ̃
αβ
j+1 − ρ̃

αβ
j = Lρ̃

αβ
j τ + [ρ̃αβ

j , L†]α jτ + [L, ρ̃
αβ
j ]β∗

j τ

+
[(
L + α j

)
ρ̃

αβ
j + ρ̃

αβ
j (L† + β∗

j ) − μ j ρ̃
αβ
j

] (
�q j − μ jτ

)
,

(116)

ρ̃
ββ
j+1 − ρ̃

ββ
j = Lρ̃

ββ
j τ + [ρ̃ββ

j , L†]β jτ + [L, ρ̃
ββ
j ]β∗

j τ

+
[(
L + β j

)
ρ̃

ββ
j + ρ̃

ββ
j

(
L† + β∗

j

)
− μ j ρ̃

ββ
j

] (
�q j − μ jτ

)

(117)

with the initial conditions ρ̃αα
0 = |ψ〉〈ψ |, ρ̃ββ

0 = |ψ〉〈ψ |, ρ̃αβ
0 = 〈β|α〉|ψ〉〈ψ |. Then

in the continuous time limit, we have

dρ̃αα
t = Lρ̃αα

t dt + [ρ̃αα
t , L†]αtdt + [L, ρ̃αα

t ]α∗
t dt

+
[
(L + αt ) ρ̃αα

t + ρ̃αα
t

(
L† + α∗

t

)
− μt ρ̃

αα
t

]
(dqt − μtdt) (118)

dρ̃αβ
t = Lρ̃

αβ
t dt + [ρ̃αβ

t , L†]αtdt + [L, ρ̃
αβ
t ]β∗

t dt

+
[
(L + αt ) ρ̃

αβ
t + ρ̃

αβ
t

(
L† + β∗

t

)
− μt ρ̃

αβ
t

]
(dqt − μtdt) , (119)

dρ̃ββ
t = Lρ̃

ββ
t dt + [ρ̃ββ

t , L†]βtdt + [L, ρ̃
ββ
t ]β∗

t dt

+
[
(L + βt ) ρ̃

ββ
t + ρ̃

ββ
t

(
L† + β∗

t

)
− μt ρ̃

ββ
t

]
(dqt − μtdt) (120)

where

μt = |cα|2μαα
t + cαc

∗
βμ

αβ
t + c∗

αcβμ
βα
t + |cβ |2μββ

t (121)

and

μαα
t = Tr

[(
L + L† + αt + α∗

t

)
ρ̃αα
t

]
, (122)

μ
αβ
t = Tr

[(
L + L† + αt + β∗

t

)
ρ̃

αβ
t

]
, (123)

μ
βα
t = Tr

[(
L + L† + βt + α∗

t

)
ρ̃

βα
t

]
, (124)

μ
ββ
t = Tr

[(
L + L† + βt + β∗

t

)
ρ̃

ββ
t

]
. (125)
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The process q j in the limit τ → 0 converges to the stochastic process qt with the
conditional probability E[dqt = qt+dt − qt |ρ̃t ] = μtdt .

5 An example: a cavity mode

One can read about the emergence of collision model in quantum optics , for instance,
in [33,42]. To derive the discretemodel of repeated interactions andmeasurements one
starts from description of interaction of a quantum system with a Bose field propagat-
ing in only one direction, making the rotating wave approximation and taking the flat
spectrum of the field. Then one passes to the interaction picture with respect to the free
dynamics of the field and takes the Hamiltonian of the field in the frequency domain
with the lower limit of integration extended to −∞. The time coarse-graining model
arises from division of the field into some probe segments. Lack of an interaction
between the system and the output field means that the photons emitted by the system
leave immediately the interaction region and cannot be reabsorbed. We describe here
briefly the a priori and the a posteriori evolution of a cavity mode coupled to a propa-
gating one-dimensional Bose field in a superposition of two coherent states. Thus, we
have

HS = ω0a
†a, (126)

L = √
�a, (127)

where a stands for the annihilation operator, ω0 > 0, and � is a positive coupling
constant. We consider here the case when the harmonic oscillator is initially in the
coherent state

a|u〉 = u|u〉. (128)

Then, the solution to the set of the master equations can be written then in the form

�t = |cα|2| ft 〉〈 ft | + cαc
∗
β

〈β|α〉
〈gt | ft 〉 | ft 〉〈gt | + c∗

αcβ

〈α|β〉
〈 ft |gt 〉 |gt 〉〈 ft | + |cβ |2|gt 〉〈gt |,

(129)

where

〈gt | ft 〉 = exp

{
−1

2

(
|gt |2 + | ft |2 − 2g∗

t ft
)}

, (130)

and | ft 〉, |gt 〉 are coherent states of the harmonic oscillator with the amplitudes satis-
fying the equations

ḟt = −
(
iω0 + �

2

)
ft − √

�αt , (131)
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ġt = −
(
iω0 + �

2

)
gt − √

�βt , (132)

where one can easily recognize the damping and driving terms. Hence, we obtain

ft = e
−

(
iω0+ �

2

)
t
(
u − √

�

∫ t

0
e

(
iω0+ �

2

)
s
αsds

)
(133)

gt = e
−

(
iω0+ �

2

)
t
(
u − √

�

∫ t

0
e

(
iω0+ �

2

)
s
βsds

)
. (134)

The solution (129) one can check by inserting it into Eqs. (93)–(95). The conditional
state of the system can be written as

ρ̃t = |cα|2Gαα
t | ft 〉〈 ft | + cαc

∗
β

〈β|α〉
〈gt | ft 〉G

αβ
t | ft 〉〈gt | + c∗

αcβ

〈α|β〉
〈 ft |gt 〉G

βα
t |gt 〉〈 ft |

+ |cβ |2Gββ
t |gt 〉〈gt |, (135)

where the conditional amplitudes ft and gt coincide with the a priori ones given by
(133) and (134), and the stochastic coefficients Gαα

t , Gαβ
t , Gβα

t , and Gββ
t for the

counting stochastic process satisfy the equations

dGαα
t =

(
ναα
t

νt
− Gαα

t

)
(dnt − νtdt) , (136)

dGαβ
t =

(
ν

αβ
t

νt 〈β|α〉 − Gαβ
t

)
(dnt − νtdt) , (137)

dGβα
t =

(
ν

βα
t

νt 〈α|β〉 − Gβα
t

)
(dnt − νtdt) , (138)

dGββ
t =

(
ν

ββ
t

νt
− Gββ

t

)
(dnt − νtdt) , (139)

where the intensities have the form

ναα
t =

∣∣∣
√

� ft + αt

∣∣∣
2
Gαα

t , (140)

ν
αβ
t =

(√
� ft + αt

) (√
�g∗

t + β∗
t

)
Gαβ

t 〈β|α〉, (141)

ν
βα
t =

(√
� f ∗

t + α∗
t

) (√
�gt + βt

)
Gβα

t 〈α|β〉, (142)

ν
ββ
t =

∣∣∣
√

�gt + βt

∣∣∣
2
Gββ

t . (143)

For the homodyne observation, we get

dGαα
t = (

μαα
t − Gαα

t μt
)
(dqt − μtdt) , (144)
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dGαβ
t =

(
μ

αβ
t

〈β|α〉 − Gαβ
t μt

)
(dqt − μtdt) , (145)

dGβα
t =

(
μ

βα
t

〈α|β〉 − Gβα
t μt

)
(dqt − μtdt) , (146)

dGββ
t =

(
μ

ββ
t − Gββ

t μt

)
(dqt − μtdt) , (147)

where

μαα
t =

(√
�

(
ft + f ∗

t

) + αt + α∗
t

)
Gαα

t , (148)

μ
αβ
t =

(√
�

(
ft + g∗

t

) + αt + β∗
t

)
Gαβ

t 〈β|α〉, (149)

μ
βα
t =

(√
�

(
f ∗
t + gt

) + α∗
t + βt

)
Gβα

t 〈α|β〉, (150)

μ
ββ
t =

(√
�

(
gt + g∗

t

) + βt + β∗
t

)
Gββ

t . (151)

Initially we have Gαα
0 = Gαβ

0 = Gβα
0 = Gββ

0 = 1. One can prove (135) by inserting

the conditional operators ρ̃αα
t , ρ̃

αβ
t , ρ̃

βα
t , and ρ̃

ββ
t of the proposed forms into the

relevant filtering equations. One can check that this leads to the given differential
equations for the amplitudes ft and gt , and the coefficients Gαα

t , Gαβ
t , Gβα

t , and Gββ
t .

For the environment taken in a coherent state our formulas reduce to the known results
(see, for instance, [3,43]).

6 Conclusion

We derived the stochastic equation describing the conditional evolution of an open
quantum system interacting with the Bose field prepared in a superposition of coherent
states. We consider two schemes of measurement of the output field: photon count-
ing and homodyne detection. Instead of methods based on the quantum stochastic
calculus and the cascades system model [23], we used the collision model with the
environment given by an infinite chain of qubits. We assumed that the bath qubits do
not interact between themselves and they are initially prepared in the entangled state
being a discrete analogue of a superposition of continuous-mode coherent states. The
initial state of the compound system was factorizable. Because of the temporal cor-
relations present in the environment, the evolution of open quantum system becomes
non-Markovian. We started from the discrete in time description of the problem and
obtained in the continuous time limit differential filtering equations consistent with
the results published in [22,24]. We would like to stress that the presented method is
more straight and intuitive than the methods described in [22,24]. It not only allows
to derive the equations describing the conditional evolution of the system but also
enables to find the general structure of quantum trajectories.
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