
Vol.:(0123456789)

User Modeling and User-Adapted Interaction (2022) 32:649–683
https://doi.org/10.1007/s11257-021-09306-7

1 3

Online convex combination of ranking models

Erzsébet Frigó1 · Levente Kocsis1 

Received: 5 March 2021 / Accepted in revised form: 24 September 2021 / Published online: 6 November 2021
© The Author(s) 2021

Abstract
As a task of high importance for recommender systems, we consider the problem
of learning the convex combination of ranking algorithms by online machine learn-
ing. First, we propose a stochastic optimization algorithm that uses finite differ-
ences. Our new algorithm achieves close to optimal empirical performance for two
base rankers, while scaling well with an increased number of models. In our experi-
ments with five real-world recommendation data sets, we show that the combination
offers significant improvement over previously known stochastic optimization tech-
niques. The proposed algorithm is the first effective stochastic optimization method
for combining ranked recommendation lists by online machine learning. Secondly,
we propose an exponentially weighted algorithm based on a grid over the space of
combination weights. We show that the algorithm has near-optimal worst-case per-
formance bound. The bound provides the first theoretical guarantee for non-convex
bandits using limited number of evaluations under very general conditions.

Keywords  Ranking combination · Online learning · Black-box optimization

1  Introduction

Recommender systems are ubiquitous in our online existence. A large number of
algorithms have been developed over the years, some of them are specific to particu-
lar domains, others are more general. Selecting the right algorithm for a particular
domain is not an easy task. Instead of selecting a single algorithm, recommender
systems often rely on an ensemble of base ranking algorithms. The influence of
combination algorithms was highlighted for batch rating prediction in the Netflix
Prize competition (Balcan et al. 2007), when the approach of Töscher et al. (2009)

 *	 Levente Kocsis
	 kocsis@sztaki.hu

	 Erzsébet Frigó
	 frigob@sztaki.hu

1	 Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network
(ELKH), Kende u. 13–17, Budapest, Hungary

http://orcid.org/0000-0002-8700-5060
http://crossmark.crossref.org/dialog/?doi=10.1007/s11257-021-09306-7&domain=pdf

650	 E. Frigó, L. Kocsis

1 3

was essential for the winning entry. Beyond competitions, ensembles are widely
used in industrial applications as well (Amatriain and Agarwal 2016).

A milestone in the research of recommendation algorithms, the Netflix Prize had
high impact on research directions. The target of the contest was based on the one to
five star ratings given by users, with one part of the data used for model training and
the other for evaluation. As an impact of the competition, tasks now termed batch
rating prediction were dominating research results. However, real systems differ not
just in that the user feedback is implicit, but also in that they process data streams
where users request one or a few items at a time and get exposed to new information
that may change their needs and taste when they return to the service next time. Fur-
thermore, an online trained model may change and return completely different lists
for the same user even for interactions very close in time.

In an online scenario, the environment for a combination algorithm is non-sta-
tionary: not only the user preferences and item popularities, but also the base rank-
ing models change in time. Therefore, the combination of the base algorithms also
needs to be updated. While it is infeasible to update the parameters of the combina-
tion with the computationally intensive blending approaches used in batch settings,
convex combination of the base models often leads to satisfying results. In sum-
mary, we consider online convex combination algorithms under implicit feedback.

From the machine learning point of view, the main difficulty of combining ranked
recommendation lists is that the typical ranking measures, such as NDCG (Järvelin
and Kekäläinen 2000), are not continuous, making their optimization a difficult task.
Optimizing non-continuous functions is handled most often by using a continuous
surrogate function, explicitly or implicitly. The optimization then proceeds by using
some form of gradient descent with respect to the surrogate function. An example
for this approach is the algorithm proposed in Pálovics et al. (2014) for online rank-
ing combination. A potential drawback in this case is that optimal weight vector for
the surrogate function can be very different from the one that is optimal for the orig-
inal ranking measure.

Black-box optimization algorithms (Conn et al. 2009) do not need the compact
form of the gradient and can optimize a function directly. These algorithms have
difficulty in optimizing functions with a large number of parameters (as it would
be the case for a factor model with millions of parameters), but they can provide an
effective alternative, when the number of parameters is moderate (as in the case of
convex combination). In this paper, we propose two black-box optimization strate-
gies for non-continuous ranking measures.

The first strategy is a local optimization algorithm that uses finite differences to
approximate the gradient. We build on the resilient simultaneous perturbation sto-
chastic approximation (RSPSA) algorithm (Kocsis and Szepesvári 2006), which
was used for optimizing model parameters in games. While RSPSA was shown to
cope with non-continuous rewards, it is non-trivial whether it can cope with ranking
functions as well. Indeed, we observe empirically that RSPSA does not scale well
for ranking prediction. The reason for this is that ranking functions have many flat
regions with respect to individual combination weights. To improve the scalability
properties of RSPSA, we switch from simultaneous perturbation to finite differences
to identify flat regions with respect to a given weight, and modify the update rule to

651

1 3

Online convex combination of ranking models﻿	

deal with flat regions. Our proposed method, Resilient Finite Difference Stochastic
Approximation (RFDSA+), is shown to be the first effective stochastic optimization
method for combining ranked lists. We show empirically that RFDSA+ achieves
near optimal performance when two base rankers are combined, and scales well
with the number of base rankers.

While the effectiveness of the RFDSA+ algorithm on real-word data sets is
encouraging, it has no theoretical guarantees. Moreover, in the presence of multi-
ple optima, the algorithm may converge to an inferior local optimum. The second
strategy deals with these two issues. It relies on exponentially weighted algorithms
(EWA) (Cesa-Bianchi and Lugosi 2006) that explore the space of combination
weights globally. EWA was shown to be close to optimal for Lipschitz-continuous
environments (Maillard and Munos 2010). We will show that EWA is able to opti-
mize ranking combination as well, under certain assumption (see Property 1). How-
ever, the number of combinations that needs to be evaluated grows exponentially
with the number of base rankers. For the practical case of limited number of evalu-
ations, we propose a new algorithm, limited advice on grids (LAG). We show that
LAG has sub-linear regret (i.e. loss of performance compared to an optimal static
combination weight). We note that we provide here the first theoretical guarantee
under multiple, but limited number of evaluations for non-convex functions on con-
tinuous domains. The regret bound is proved to be log-optimal. We show on syn-
thetic data that LAG can deal well with multiple optima. However, on real-word
data sets that appear to be unimodal, RFDSA+ performs significantly better.

The article is organized as follows: after discussing the related research in
Sect. 2, we formalize our framework in Sect. 3. The proposed RFDSA+ algorithm
is described in Sect. 4. Exponentially weighted algorithms are discussed in Sect. 5,
including the theoretical guarantees for LAG. Empirical evaluation highlighting the
strengths of RFDSA+ and LAG is provided in Sect. 6. Some conclusions and dis-
cussion of future research close the paper in Sect. 7.

2 � Related research

Research on incremental recommender algorithms with online or prequential evalu-
ation (Gama et al. 2009) scenario has gained popularity in recent years. There are
several papers that use prequential evaluation (Al-Ghossein et al. 2018; Jugovac
et al. 2018; Zoller et al. 2017; Burke 2010; Pálovics et al. 2014; Pálovics and Benc-
zúr 2015); however, only (Pálovics et al. 2014) considers the issue of combining
multiple base rankers. The latter will be discussed in more detail in Sect. 6.1.4, and
evaluated empirically in Sect. 6.

Ranking combination has received considerable attention during the Netflix
Prize competition, when the approach of Töscher et al. (2009) was essential for
the winning entry. In the batch setting, one of the later approaches that can be
adapted naturally to an online scenario is described in Busa-Fekete et al. (2011).
The authors use the cumulative loss of each base algorithm weighted exponen-
tially to compute its score in the convex combination. One can notice that any
arbitrary linear shift of the scores of a base algorithm would leave its cumulative

652	 E. Frigó, L. Kocsis

1 3

loss unchanged, but it would affect the base algorithm contribution to the mix.
Therefore, the algorithm seems somewhat less sound, nevertheless, may still per-
form reasonably well on some practical instances. We will describe the algorithm
more formally in Sect. 6.1.2, and evaluate it (for implicit feedback problems)
empirically in Sect. 6.3.

Model combination methods have been studied extensively for classification as
well (Kuncheva 2014). In the case of batch evaluation, complex combination mod-
els are often used. Conversely, a survey of more than sixty ensemble learning algo-
rithms (Gomes et al. 2017) showed that flat structures (such as convex combination)
are more frequent for streaming data. For classification, ensembles of simple homo-
geneous models with dynamic cardinality are more frequent. There are heteroge-
neous ensembles as well, in which case the cardinality is fixed (see Gomes et al.
2017, and the references therein). Recommender systems, on the other hand, mostly
rely on ensembles of complex heterogeneous ranking models, and the cardinality is
fixed.

In an online setting, ranking combination was proposed by Radlinski et al.
(2008), Yue and Joachims (2009) using dueling bandits. Their approach assumes
that the loss functions are convex and stationary. Neither assumption seems reason-
able for most ranking measures in a real application. There are several algorithms in
the literature of online learning that can be considered for combining ranking mod-
els. Agarwal et al. (2010) considered a two-point approximation of the gradient for
convex functions. The ranking measures are not convex, nevertheless, the algorithm
is similar to SPSA (Spall 1992) that have been applied to optimizing non-convex
functions as well. We will discuss the algorithm in Sect. 4.

An exponentially weighted algorithm was applied to optimize (non-convex) Lip-
schitz-continuous functions (Maillard and Munos 2010) with an O(

√
T) bound on

the regret in full-information setting, where T is the length of the episode. While we
rely on a grid structure over the weight space for our exponentially weighted algo-
rithms, it is possible to use interval trees as suggested in Cohen-Addad and Kanade
(2017). The authors proposed full-information algorithm for online optimization of
(smoothed) piecewise constant functions that is close to the optimization of rank-
ing measures. The algorithm discussed in the 1-dimensional case is computationally
efficient if the discontinuities in the function can be easily determined. The authors
propose some extensions for higher dimensions for the case when the separation sur-
faces are orthogonal. The orthogonality condition is not valid for the convex com-
bination of (ranking) models, however. A similar class of functions was discussed
in Balcan et al. (2019). Full information setting implies evaluating a prohibitively
large number of points, when the number of base rankers is slightly larger. There
are bandit variants that evaluate only one point per iteration, however, they scale
badly on error. Using a grid-based variant, similar to ours, (Kleinberg 2005) proves
a regret bound of O(T (d+1)∕(d+2)) , where d is the dimensionality of the problem. For
stationary/stochastic continuous bandits hierarchical partitioning seems to offer bet-
ter empirical performance (Bubeck et al. 2011; Grill et al. 2015), but the theoretical
guarantees remain the same in the worst case. Stronger guarantees exist when the
function class constrained to be convex (Hazan and Levy 2014; Hazan and Li 2016).
We are not aware of any theoretical guarantees for non-convex functions under

653

1 3

Online convex combination of ranking models﻿	

multiple, but limited number of evaluations. The exponentially weighted algorithms
will be considered in Sect. 5.

We argued in Sect. 1 that given the moderate dimensionality of the convex combi-
nation, black-box optimization algorithms can be good candidates to optimize com-
bination weights of ranking models. There are certain properties of the environment
that affect adversely the applicability of these algorithms, including the non-conti-
nuity of the ranking measures, the non-stationarity of the online scenario, and a fair
amount noise in the evaluation. Stochastic approximation (SA) algorithms can deal
well with the noise and the non-stationarity. We discuss one of the best known SA
algorithms, Simultaneous Perturbation Stochastic Approximation (SPSA) in Sect. 4,
and we evaluate it empirically in Sect. 6. The problem for algorithms such as SPSA
is that ranking functions such as NDCG that are not continuous. In most games, the
reward is also non-continuous, for instance, 1/0 for win/loss, or a discrete number of
points (or money) that can be won in a card game. The algorithm RSPSA (Kocsis
and Szepesvári 2006) was proposed for (offline) optimization of some parameters
of a poker playing program. Our proposed algorithm, RFDSA+, builds on the idea
of RSPSA, but identifies the flat area for each weight by switching to estimation by
finite differences. The problem of flat regions in the ranking measures is discussed
in more depth in Sect. 4, and illustrated empirically in Sect. 6.2. There are a large
number of alternative black-box optimization algorithms (see e.g., Conn et al. 2009;
Larson et al. 2019). Of these, the covariance matrix adaptation evolution strategy
(CMA-ES) was proven to be effective on a wide range of test benches with larger
dimensional spaces (Hansen et al. 2010). In Sect. 6, we evaluate empirically a vari-
ant (Igel et al. 2006), which was shown to work well in dynamic environments (Au
and Leung 2012).

3 � Problem setup

In our task, we want to combine the ranked lists of multiple base recommender algo-
rithms by monitoring the performance of the base recommenders and adaptively
changing the weights on the fly. As soon as the base algorithms give a prediction,
we have to apply and potentially re-learn the combination weight by a data stream-
ing, online machine learning method.

The difficulty of evaluating streaming recommenders was first mentioned in
Lathia et al. (2009), although the authors evaluated models by offline training and
testing split. Ideas for online evaluation metrics appeared first in Pálovics and
Benczúr (2015), Vinagre et al. (2014), Pálovics et al. (2014). In the following, we
use prequential evaluation (Gama et al. 2009), which has grown in popularity in
recent years. Both batch and prequential evaluation rely on a set of recorded user-
item interactions. For batch evaluation, one splits the data in a training and a test
set, and trains the algorithms on the former and tests on the latter. Conversely,
for prequential evaluation, we test algorithms sequentially on each data point,
and potentially use all preceding data points for training. Since often, the user
selects a single item only, we will consider implicit feedback evaluation metrics
with only one relevant item. The evaluation can easily be generalized for the case

654	 E. Frigó, L. Kocsis

1 3

when the user takes multiple choices or when the feedback is explicit. Prequential
evaluation is closer to a real application, since in practice, user interaction occurs
sequentially. Algorithms can also exploit the most recent data.

For batch and prequential evaluation, we have to assume that the preference of
the user is independent of the recommendation of the system. This assumption is
necessary for testing on a data collected independently, usually before the recom-
mender algorithms of the experiment are developed. In contrast, papers using the
cascade model (Craswell et al. 2008) in a bandit scenario (see e.g., Kveton et al.
2015) assume that the choice of the user is strongly determined by the recom-
mendation made. Offline testing is more difficult in this case, since the collected
data needs to cover all possible recommendations. For an online retailer or hash
tag recommendation (see Sect. 6.3.1), the user can select items regardless of the
recommendation. In these domains, batch or prequential evaluations are reason-
able. Conversely, cascade models could be more appropriate for search engines.

The protocol for prequential evaluation with implicit feedback is as follows.
Given a chronologically ordered data set with T records, prequential evaluation is
an episode with T rounds. In each round t, we take the following steps.

1.	 We observe the next user-item pair from the data set, and set the active user
accordingly.

2.	 We query the recommender system for a top-K recommendation for the active
user.

3.	 We evaluate the output recommendation list against the single relevant item jt
that the user interacted with, and the recommender collects reward rt.

4.	 Finally, we reveal the relevant item jt to the recommender system, and allow to
update the model using the additional user-item pair.

In the context of convex combination algorithms, we consider N base ranking algo-
rithms, and the ith base algorithm is denoted by Ai . In each round t = 1,… , T  , first,
each base algorithm Ai assigns a score xtij to each item j. After that, the convex com-
bination algorithm assigns the weight �ti to each algorithm Ai . The weights form an
N-dimensional vector �t = (�t1,… , �tN) . The parameter space is �t ∈ Θ = ℝ

N
0+
. The

combined score of item j in round t is xtj =
∑N

i=1
�tixtij. The top lists are generated by

sorting the items by the combined scores in descending order.
After the active user’s preferred item is revealed, the combination algorithm col-

lects the reward rt , which depends on the top list generated and on the user’s choice.
With an abuse of notation, we will denote the reward of a base ranker Ai by rti , the
reward corresponding to a weight assignment � by rt(�) , and the reward obtained by
a combination algorithm C by rt(C) . The cumulative reward collected up to round t is
Rt =

∑t

�=1
r� . We let Rti , Rt(�) , and Rt(C) denote the cumulative reward correspond-

ing to a base ranker, a weight vector, and a combination algorithm.
There are several choices of ranking measures. A popular choice, which we use

in our experiments, is NDCG@K (Järvelin and Kekäläinen 2000). In prequential
evaluation, we assume the scenario that there is only one item with nonzero label in
each round t, namely jt . The NDCG@K of a permutation �t of the items reduces to

655

1 3

Online convex combination of ranking models﻿	

as there is always exactly one relevant item and hence the ideal DCG is equal to one.
Another ranking measure used in the experiments is the mean reciprocal rank (MRR
Voorhees and Tice 1999). The MRR@K of a permutation �t is

4 � Resilient finite difference stochastic approximation (RFDSA+)

In this section, we present our main algorithm, RFDSA+. First, we provide a moti-
vation for the construction of the algorithm, followed by its full description.

The gradient of most ranking functions with respect to the combination weights is
typically zero in most points where it exists. However, if we average over more time
steps, the ranking function starts to “smooth out”. The gradient still cannot be com-
puted in a closed form, but it can be approximated by finite differences. For online
optimization of convex functions, (Agarwal et al. 2010) suggested the gradient to
be approximated by simultaneous perturbation, with an online gradient step taken
in the approximated direction. For non-convex optimization, a similar algorithm is
known as simultaneous perturbation stochastic approximation (SPSA) (Spall 1992).
The approximated gradient gti for weight component �ti is given by

where ct is an appropriately chosen, decreasing sequence,

and Δti are ±1 valued unbiased Bernoulli random variables.
In SPSA, especially with non-smooth functions, the difficulty lies in choosing the

appropriate perturbation sequence, ct . The sum of ranking reward functions is a step
function. If the perturbation size is too small, we might get stuck on a plateau and
can not find the right direction. If the perturbation is too large, we miss local optima.
The appropriate perturbation size might differ depending on the coordinate and time.

The RSPSA algorithm was proposed in Kocsis and Szepesvári (2006) for games,
which also have a discrete reward (e.g., 1 for win, 0 for loss). The algorithm com-
bines the simultaneous perturbation approximation with the resilient backpropaga-
tion (RPROP) (Igel and Hüsken 2000) update rule.

In RPROP, we assign a distinct step size to each weight. The gradient update of
the weights depends only on the sign of the gradient, and the step size determines
how much the weight changes. The step sizes are also adjusted during the updating
process. Considering each coordinate separately, the step size is updated based on

rt = NDCG@K(�t) =

{
1∕ log2(rank�t (jt) + 1) if rank�t (jt) ≤ K,

0 otherwise,

MRR@K(�t) =

{
1∕rank�t (jt) if rank�t (jt) ≤ K,

0 otherwise.

gti =
rt(�t + ct�t) − rt(�t − ct�t)

ctΔti

,

�t = (Δt1,… ,ΔtN),

656	 E. Frigó, L. Kocsis

1 3

the changes of the sign of the corresponding coordinate of the gradient. If the direc-
tion of the gradient changes, i.e., the sign switches, then the step size is decreased.
Otherwise, it is increased.

In RSPSA, the perturbation size for each weight is connected to the step size,
solving the above mentioned difficulty. The RPROP update rule is designed for
batch update, and therefore, in our setting, we use mini batches to collect the gradi-
ents before an update.

We designed our new method by observing the behavior of RSPSA for ranking
combination. One of the strengths of the RPROP update rule is that it increases the
update steps on a large plateau, taking larger steps in the directions of the gradient.
Ranking measures as function of a combination weight consist of constant intervals.
However, if the perturbation is sufficiently large, the averaged gradient estimate will
be nonzero. Therefore, if the step size for a weight is small in a flat area, then it
should be increased in order to escape the flat area, but also in order to be able to
estimate the right direction. In other words, the weight needs a sufficiently large per-
turbation to be able to influence the ranking function.

We observed that in RSPSA, the estimated direction changes often in a flat area.
In accordance to the RPROP rule, the change in the direction results in a decrease of
the step size, which is contrary to the desired behavior outlined above. To illustrate
the problem, consider a ranking function that is completely flat in the direction of
some, but not all coordinates in the neighborhood of the current �t . In this case, the
sign of the coordinates of the estimated gradient corresponding to the ‘flat’ coordi-
nates becomes an unbiased Bernoulli variable. The reason behind this behavior is
that even if the ranking function is completely flat with respect to coordinate i, the
numerator of gti will still be nonzero because of the non-flat coordinates. However,
the value of the numerator will be independent of the randomly chosen direction of
Δti , that still appears in the denominator, and hence gti will simply mirror the ran-
dom variable Δti.

To remedy the problem of flat regions, we switch from simultaneous perturbation
to finite differences in order to identify that the ranking function is flat with respect
to the weight in question. When the gradient is estimated by finite differences, only
one weight is perturbed at a time, the other weights remain unchanged. Therefore,
we eliminate the noise coming from the perturbation of the other weights. If we
detect a flat region, then we increase the step size.

The pseudocode of the RFDSA+ is provided in Algorithm 1. The key differ-
ences to RSPSA are switching from simultaneous perturbation to finite differences
(lines 7–9), and handling the flat regions (lines 23–24). The RPROP update is given
by lines 12–29.

657

1 3

Online convex combination of ranking models﻿	

The algorithm has four parameters: the mini-batch size B, the initial step size �0 ,
and the step size adjustment variables �+ and �− . For noisy functions, typical values
are �+ = 1.1 and �− = 0.85 (Kocsis and Szepesvári 2006). The initial value of the
step size has minimal influence, since it is quickly adjusted; it is set to �0 = 0.1 . The
size of the mini batch will be chosen 1000 in the experiments, the same as for SPSA
and RSPSA. The length of an episode T, and the number of the base rankers N is
determined by the problem.

The key variables of the RFDSA+ algorithm are the step sizes �i , corresponding
to each weight �i . The auxiliary variables si store the previous weight update and
are used for identifying a change in the direction of the partial derivatives. During a
mini batch, the partial derivatives are collected in the variables gi.

658	 E. Frigó, L. Kocsis

1 3

The RFDSA+ algorithm starts with an initialization phase in lines 1–4. After
every user interaction, at time t, the partial derivatives are computed as follows.
For each base ranker i, we perturb its weight by twice the corresponding step size
(line 8). The coupling factor 2 is standard for RSPSA (Kocsis and Szepesvári 2006),
but slightly different values can be used as well. We use one-sided positive pertur-
bation in the description of the algorithm. Using one-sided perturbation halves the
number of evaluations needed. The partial derivatives gi are updated in line 9, using
the finite difference estimator.

At the end of each mini batch, the weights �i and the step sizes �i are updated
according to the RPROP rule (Igel and Hüsken 2000) in lines 12–29, independently
for each component i. The auxiliary variable h detects the direction change of the
partial derivative. If there is no change (lines 14–16), the step size is increased, and
the weight �i will be updated in the direction of the derivatives with the amount
determined by the step size. If there is change in the direction (lines 17–19), then the
step size is decreased, and the weight is left unchanged. The weight will be updated
after the next mini batch (line 21). The key modification that deals with flat regions
in the partial derivatives is shown in lines 23–24. Accordingly, the step size is
increased if the partial derivative is 0 during the mini batch. Detecting the flat region
is made possible by using finite difference estimation, instead of simultaneous per-
turbation. The weights are modified in line 26. As discussed previously, si depends
only on the sign, and not the size of the estimated gradient.

We note that while that differences between the RSPSA and the RFDSA+ algo-
rithms are seemingly small, the ability to handle better the flat areas proves to be
significant in the empirical performance, as discussed in Sect. 6.

5 � Grid based exponentially weighted algorithms

The algorithms presented in this section explore the weight space globally, without
relying on the existence of a gradient of the reward function. We define a grid struc-
ture over the weight space, and we explore the grid points using some variant of the
exponentially weighted forecaster (Cesa-Bianchi and Lugosi 2006).

In Sect. 5.1, we consider an algorithm for the case when there is no limit on the
number of evaluations per round. Since a very large number of evaluations is not
feasible in a practical application, we propose an exponentially weighted algorithm
with limited number of evaluations in Sect. 5.2. The theoretical properties of the
exponentially weighted algorithms are analyzed in Sect. 5.3. As an important theo-
retical contribution, we show that the proposed algorithm for the limited case has
near-optimal worst-case performance.

5.1 � ExpW

Exponentially weighted algorithm for Lipschitz-continuous functions in the full-infor-
mation case was proposed in e.g., (Maillard and Munos 2010). They propose a simple
variant that relies on a uniform grid over parameter space, and use the exponentially

659

1 3

Online convex combination of ranking models﻿	

weighted forecaster to select the next parameter vector, and update the estimated value
for each grid point.

While our ranking measures are non-continuous, we will provide a weaker Lip-
schitz-like condition in Sect. 5.3, Eq. 5, that is sufficient for the good performance of
the algorithm. The condition is validated empirically in Sect. 6.3.3.

In the algorithm denoted ExpW, we choose a subset Q from the parameter space Θ .
We consider here a more general definition of the set Q, but in practice, we will use a
uniform grid, described in more detail later. In each round t, we select a weight vector
� ∈ Q , according to a probability distribution pt(�) , defined as

where � , called the learning rate, is a parameter specified in Sect. 5.3. After the user
feedback, we evaluate the ranking performance rt for all weight vectors �.

We will show that this algorithm has close to optimal performance guarantees, but
the number of evaluations per round is high, especially in the presence of several base
rankers.

5.2 � LAG

In order to decrease the number of points that need to be evaluated in each round, we
can apply the limited advice exponentially weighted forecaster (Seldin et al. 2014) on
a similar set Q. We denote this algorithm by LAG. We limit the number of evaluated
weight vectors in each round by M. The point of Q to play is chosen using a random
distribution, similarly to ExpW. However, as not all weight combinations of Q are eval-
uated, we need to estimate the reward values. As in Seldin et al. (2014), the estimator
r̂t(�) of rt(�) is defined by

where �t(�) is the indicator of � being evaluated in round t.
We select the weight vector � ∈ Q in round t by sampling from the probability dis-

tribution pt:

We evaluate the selected vector and sample uniformly further M − 1 weight vectors
without replacement from Q that are also evaluated. We note that the estimator r̂t(�)
is unbiased, however, it has high variance when M is small. Moreover, when all vec-
tors in Q are evaluated ( M = |Q| ), the LAG algorithm is identical to ExpW.

(1)pt(�) =
exp

�
�
∑t−1

�=1
r�(�)

�

∑
��∈Q exp

�
�
∑t−1

�=1
r�(�

�)
� ,

r̂t(�) =
rt(�)

pt(�) + (1 − pt(�))
M−1

|Q|−1

�t(�),

pt(�) =
exp

�
𝜂t
∑t−1

𝜏=1
r̂t(�)

�

∑
��∈Q exp

�
−𝜂t

∑t−1

𝜏=1
r̂t(�

�)
� .

660	 E. Frigó, L. Kocsis

1 3

The pseudocode of LAG is provided in Algorithm 2. In the pseudocode, we
use the variable w(�) to store exp(𝜂t

∑t−1

𝜏=1
r̂t(�)) . The probability of being evalu-

ated is denoted by p�(�) . The algorithm has three inputs: the limit on the number
of evaluations per round, M, which is a design parameter, the set Q and the
learning rate � , which will be chosen in the next subsection.

5.3 � Theoretical properties

In online learning, performance bounds are derived for the regret of the algo-
rithm (Cesa-Bianchi and Lugosi 2006). Informally, the regret is the performance
loss from not knowing the best weight vector. Formally, it is the difference
between the reward of the best constant weight vector � ∈ Θ and the reward col-
lected by the algorithm:

Comparing the reward of the combination algorithm to the best constant gridpoint
mirrors the expectation that the performance of the algorithm depends on the envi-
ronment. If all weight vectors pay a low reward, then we do not expect a high reward
from the combination algorithm either. If a low regret can be guaranteed, that means
the performance of the algorithm is always close to the optimal convex combination.
Regret bounds deal with worst-case regret, since they bound the maximum expected
regret over all possible environments.

In the following, we first provide an upper bound for ExpW. This will require
an assumption on the cumulative ranking measure. We show that this bound is
log-optimal. Then, we provide regret upper and lower bounds for LAG, under
the same assumption. The proofs are provided in the “Appendix”.

(2)ℜT (C) = max
�∈Θ

RT (�) − RT (C).

661

1 3

Online convex combination of ranking models﻿	

5.3.1 � Full information

In case of ExpW, if an appropriately large Q is chosen, and the cumulative reward
function RT (�) is sufficiently smooth, then the expected regret is guaranteed to be
low. The following proposition formalizes this statement.

Proposition 1  Let Q ⊂ Θ be a finite set such that for some constant c ∈ ℝ

Then the regret of the exponentially weighted forecaster applied on Q is bounded by

that can be achieved by setting � =
√

2
ln |Q|
T

.

The goal of the condition in inequality (3) is to ensure that the optimum is not
on an isolated spike of the parameter space, making it practically impossible to be
found by any algorithm. For a sufficiently large T, while function RT (�) still con-
sists of small steps, it is fairly smooth in practice, as observed in Sect. 6.3.3. The
following property is a generalization of the Lipschitz-property for such functions
that lets us find appropriate subsets.

Property 1  (Lipschitz-like) Define a d-dimensional �-grid as
{0 ≤ i∕� ≤ 1 ∣ i ∈ ℤ0+}

d . The function RT is Lipschitz-like on Φ = [0, 1]d if there is
a � ∈ ℝ such that for all � ∈ ℝ0+,

where G� is the �-grid.

The parameter � of the grid describes the density of the grid. The distance of
closest points in a �-grid is 1∕� . There are ⌊� + 1⌋ points along each edge of the
parameter space, and the grid consists of ⌊� + 1⌋d points.

Note that without loss of generality, in the case of ranking combination, we
can assume that the sum of the weights is 1. Applying this restriction, we can
decrease the dimensionality of the problem by 1, thus in our case the dimension-
ality is d = N − 1 . For instance, in the case of two base rankers, the weight of the
first ranker will be �1 ∈ [0, 1] , and the second will be �2 = 1 − �1.

If RT is Lipschitz-like, then a
√
T-grid satisfies the condition of Proposition 1

for c = �
√
d . As a corollary, applying ExpW on this grid results in an Õ(

√
T)

regret bound. This is formalized in the next proposition.

(3)E

�
max
�∈Θ

RT (�) −max
�∈Q

RT (�)

�
≤ c

√
T .

(4)E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤

�
T

2
ln �Q� + c

√
T

(5)E[max
�∈Φ

RT (�) −max
�∈G�

RT (�)] ≤
�T

√
d

�
,

662	 E. Frigó, L. Kocsis

1 3

Proposition 2  If RT is Lipschitz-like with the constant � , then the regret of the expo-
nentially weighted forecaster applied on a

√
T-grid is bounded by

To show that under these conditions no stronger algorithms may exist, we prove a
matching lower bound.

Proposition 3  For the combination problem on Θ , the expected regret is lower
bounded by

where the infimum is over all playing strategies and the supremum is over all oblivi-
ous environments satisfying Property 1 for � = 1.

If we compare the lower bound to the upper bound of ExpW for functions that
satisfy Property 1, we obtain that the performance of ExpW is optimal up to loga-
rithmic terms. Since functions that satisfy Property 1 also satisfy the condition of
Eq. 3 by taking the grid as the subset Q, the proposition provides a lower bound for
Proposition 1 as well.

For two base rankers, the parameter space can be represented by a section. Then,
a uniform grid with O(

√
T) gridpoints can be sufficient if the cumulative function

acts like a Lipschitz function on the grid points. This latter condition will often
be true (see also Fig. 5). However, with more base rankers, the number of points
required for a Lipschitz-like cumulative function is Ω(T (N−1)∕2) . Since ExpW needs
to evaluate the reward in each point, the number of evaluations scales exponentially
with the number of base rankers.

5.3.2 � Limited number of evaluations

We have seen that the ExpW algorithm has strong regret guarantees, but at the price
of high number of evaluations. In practice, the number of evaluations are limited for
computational reasons. We now turn our attention to the case when the number of
evaluations are limited, upper bounding the regret of the LAG algorithm. Decreas-
ing the number of points allowed to be evaluated provides a trade-off between com-
plexity and efficiency, as stated by the following proposition.

Proposition 4  Let Q ⊂ Θ be a finite set such that for some constants c, c� ∈ ℝ

and |Q| < c�(TM)
d

d+2.

(6)E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤

�
1√
2
+ �

�
√
Td ln T .

(7)inf sup E[ℜT] ≥ 0.03
√
T ,

(8)E

[
max
�∈Θ

RT (�) −max
�∈Q

RT (�)

]
≤ c

T

(TM)
1

d+2

,

663

1 3

Online convex combination of ranking models﻿	

Then the expected regret of the limited advice exponentially weighted forecaster
applied on Q for any M ≤ |Q| is bounded by

that can be achieved by setting �t =
√

M ln |Q|
t|Q| .

The bound clearly shows the trade-off between the number of points evalu-
ated and the regret. Assuming the Lipschitz-like property, and setting c = �

√
d ,

c� = 2 in Proposition 4, we obtain the first main theoretical result.

Theorem 1  If RT is Lipschitz-like with the constant � , then the regret of the limited
advice exponentially weighted forecaster applied on a (TM)

1

d+2-grid is bounded by

We note that if all points of Q can be evaluated, then the bound with a
√
T

-grid is similar to the bound on ExpW stated in Proposition 2.
To show that LAG is optimal, we need to show that in an environment that

satisfies our conditions, no algorithm can perform better. This is stated in the
following theorem.

Theorem 2  For the combination problem on Φ = [0, 1]d with M ≤ T� observations
per round and 3

4
log T ≤ T

d−2�

d+2  , the expected regret is lower bounded by

where the infimum is over all playing strategies and the supremum is over all oblivi-
ous environments satisfying Property 1 for � = 3.

Note that for any fixed 𝜙 <
d

2
 , the condition of the theorem is satisfied for

large enough T. The case of � ≥
d

2
 is not relevant because the full information

lower bound in Proposition 3 provides a stronger bound. This is not surpris-
ing since ExpW needs to evaluate T

d

2 weight combinations only for optimal
performance.

We observe that the worst-case regret of LAG is much higher than that of
ExpW. Nevertheless, it is also clear that the bound for limited number of evalua-
tions is improvable by at most logarithmic factors. We note that Theorem 1 pro-
vides the first sub-linear regret bound for non-convex continuous domains under
limited number of evaluations. The conditions of this bound are also very gen-
eral and non-restrictive.

(9)E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤

�
c + 2

√
c� ln �Q�

�
T

d+1

d+2

M
1

d+2

(10)E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤

�
�
√
d + 2

√
2 ln(2TM)

�
T

d+1

d+2

M
1

d+2

(11)inf sup E[ℜT] ≥ 0.03
T (d+1)∕(d+2)

M1∕(d+2)
,

664	 E. Frigó, L. Kocsis

1 3

6 � Experiments

In this section, we evaluate empirically the proposed combination algorithms.
First, we describe the baseline combination algorithms. Then, we illustrate the
strengths of our algorithms using synthetic data in Sect. 6.2. Experiments on real
data are provided in Sect. 6.3.

6.1 � Baselines

For baselines, we use two exponentially weighted algorithms, four stochastic
approximation variants similar to RFDSA+, a stochastic gradient algorithm that
uses a surrogate function, and the state-of-the-art black-box optimization algo-
rithm CMA-ES, described in the following.

6.1.1 � ExpA

The simplest choice to deal with multiple base rankers is to select the base ranker
that appears the best. In a non-stationary environment this can be best achieved
by the exponentially weighted forecaster. Accordingly, the combination algo-
rithm, denoted by ExpA, selects base ranker Ai in round t with probability

Selecting base ranker Ai in round t means setting �ti = 1 and �tj = 0 for j ≠ i . The
algorithm is guaranteed to achieve a cumulative reward that is not worse than the
cumulative reward of the best base rankers by an additive O(

√
T) term in expecta-

tion (Cesa-Bianchi and Lugosi 2006).

6.1.2 � ExpAW

In Busa-Fekete et al. (2011), the authors proposed an algorithm that can be
regarded as a mix of ExpA and ExpW. The algorithm, denoted here by ExpAW,
relies on the cumulative performance of the base rankers (as ExpA), but it is used
as the weight of the base ranker, instead of using it as selection probability. The
weight of base ranker Ai in round t is

It is easy to see that the reward of a base ranker does not change if the scores of
the rankers are scaled by some factor. However, the scaling will affect the reward
of the combination algorithm in an arbitrary way. Nevertheless, with a reasonable

(12)pti =
e−�t

∑t−1
�=1

r�i

∑N

j=1
e−�t

∑t−1
�=1

r�j

.

(13)�ti =
e−�t

∑t−1
�=1

r�i

∑N

j=1
e−�t

∑t−1
�=1

r�j

.

665

1 3

Online convex combination of ranking models﻿	

normalization, the algorithm may still lead to a decent performance, and it is less
likely to be affected by an increase in the number of base rankers.

6.1.3 � Stochastic approximation algorithms: SPSA, RSPSA, RSPSA+ and RFDSA

The SPSA and RSPSA algorithms were described in Sect. 4. RFDSA denotes the
algorithm that uses finite differences for the estimation of the gradient, and RPROP
for updating the combination vector, but it is not increasing the step size in flat
regions. RSPSA+ extends RSPSA with the step size increase for flat regions, but the
partial derivatives are estimated using simultaneous perturbation (as in the original
RSPSA formulation). These two hybrid choices are designed to elicit the individual
effect of the two elements when switching from RSPSA to RFDSA+.

6.1.4 � SGD

While we advocate in this paper a direct optimization of the ranking measure, most
classification or ranking combination algorithms optimize a surrogate of the eval-
uation measure by stochastic gradient descent. The surrogate function can appear
explicitly or implicitly in the formulation of the algorithm. For ranking it is usual to
consider the current item as a positive instance, and some randomly sampled items
as negative instances. In this case the target for the positive item is set to 1, and for
negative items 0. After seeing a user-item pair, a stochastic gradient step is taken to
minimize the mean squared error between the ranking score ( xtj ) and the target value
of the positive item and of the selected negative items. The algorithm was used by
Pan et al. (2008) for matrix factorization and by Pálovics et al. (2014) for online
combination. In the following, we refer to this algorithm by SGD.

We do not expect the algorithm to have difficulty with a large number of base
rankers. However, minimizing the surrogate loss may not result in a sufficiently
good optimization of the original reward function.

6.1.5 � CMAES

Covariance matrix adaptation evolution strategy (CMA-ES) is a black-box optimi-
zation algorithm that was proven to be effective on a wide range of test benches
with larger dimensional spaces (Hansen et al. 2010). For mutation, CMA-ES sam-
ples from a Gaussian distribution that depends on adaptive covariance matrices. The
selection strategy can be elitist or non-elitist. In a non-elitist strategy, the current
population is replaced by their best offspring. In an elitist strategy, parents are pre-
served if they are sufficiently good. Since, in our online learning scenario, the goal is
not only to find the best weight vector (as it is in an optimization scenario), but also
to exploit the current best solution, we feel that the more aggressive, elitist selection
is appropriate. We use an elitist selection variant (Igel et al. 2006), which was shown
to work well in dynamic environments (Au and Leung 2012). The variant is referred
generally as CMA-ES(1 + � ), where 1 denotes the number of parents kept, and � is
the size of the candidate population. We will set � = N , which means that the algo-
rithm will use the same number of evaluations as RFDSA+. The fitness of the parent

666	 E. Frigó, L. Kocsis

1 3

is reevaluated when the offspring population is evaluated. This is necessary to avoid
persisting with an individual that got ‘lucky’ by having an evaluation at a time when
the base rankers had high success rate. The evaluation is performed in batches of
5000 rounds. This seemed empirically a good choice to reduce sufficiently the noise
of the evaluation, while still allowing the search to progress. In the following, we
will refer to the algorithm by CMAES.

6.2 � Synthetic data

In this section, we illustrate the strength and weaknesses of the combination algo-
rithms using synthetic functions. The advantage of these functions is that we can
control their shape, eliciting particular characteristics. The optimal weight vectors
are known for these functions. Therefore, we show the performance of the algo-
rithms as average cumulative regret, (max�∈Θ Rt(�) − Rt(C))∕t.

6.2.1 � Test functions

The functions used in this set of experiments do not assume an underlying rank-
ing, but they do preserve certain properties of ranking functions. We note that all
combination algorithms discussed, except SGD, rely only on the ranking value of a
particular combination vector, and do not use explicitly the item scores assigned by
base ranking algorithms. All functions are stationary and stochastic. At each time
step t, the random functions Ft are constructed as binary-valued (0,1) segments.
The functions are defined on the unit cube [0, 1]d , and if a combination algorithms
selects a vector outside of the cube, then the value corresponding to its projection on
the cube is returned.

The first function sequence, F1 , relies on a one-dimensional quadratic function
f1(�) = 0.5 − (� − 0.5)2 . At each time step, the function is divided in 100 segments,
with the delimiting points chosen uniformly. The value of the segment j is a 0-1
valued Bernoulli variable with the expectation given by (f1(�j1) + f1(�j2))∕2 , where
�j1 and �j2 are the extremities of the segment. In Fig. 1, left we show the function f1 ,
along with a random instance F1,t and the average of F1,t taken over 1000 time steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

re
w

ar
d

θ

f1(θ)
F1(θ), T=1

F1(θ), T=1000

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1
θ

f4(θ)
f4,t(θ)

Fig. 1   Synthetic test functions F1 (left) and F4 (right)

667

1 3

Online convex combination of ranking models﻿	

We observe, that the function is fairly noisy even after the averaging. The expecta-
tion of F1 is concave, therefore combination algorithms that approximate the gradi-
ent (in particular SPSA) are expected to perform well.

The second function sequence, F2 , is a d-dimensional version of the previous
function. At each time step, each coordinate is divided in 100 intervals, resulting in
100d cubes. As previously, the value of a cube is a Bernoulli variable with expecta-
tion given by

∑d

i=1
(f1(�i,j1) + f1(�i,j2))∕2d.

The third function sequence, F3 , relies on a function constructed by the union of
two quadratic functions

The function has a lower (local) maximum at � = 0.25 and a higher (global) maxi-
mum at � = 0.75 . At each time step, 100 segments are constructed in a similar way
as for F1 . Since the function has two separate maxima, gradient approximation algo-
rithms can get stuck in the local maximum.

The fourth function sequence, F4 , relies on a one-dimensional function specially
constructed to have several flat regions. The construction is similar to the function
used in the lower bound in Kleinberg (2005). The interval is split in two, with one
chosen as the better one and the other the sub-optimal one. The better sub-interval is
split recursively. The elevation of the better sub-interval is also halved after a split.
The precise shape of the function is shown in Fig. 1, right. The segments are chosen
again randomly, but only one discontinuity is chosen per each oblique interval. The
expected value of each segment is the value of the constant interval that is included
in the segment. A sample ‘segmentation’ is also shown in the figure as f4,t(�) . Simi-
larly to previous functions, the value observed for a segment is a Bernoulli 0–1 val-
ued variable with the expected value described above.

The fifth function sequence, F5 , relies on a two-dimensional extension of the pre-
vious function. The segments for the first coordinate is constructed as for F4 . 100
segments are chosen for the second coordinate, with extremities chosen uniformly.
The expectation for the second coordinate is constant, and it is only present to add
noise when simultaneous perturbation is preferred. When the value of the function is
queried at a certain time, it will return the same value for queries that have the sec-
ond coordinate the same and the first coordinate fall on the same flat region. It can
result in different values if the second coordinate is different.

The sequence of functions enlisted above are similar to ranking functions in that
ranking functions are also made of discrete segments with fixed values (although,
not necessarily binary). The stationary condition makes it easier to define the
optima, and to keep the desired characteristics of the functions.

6.2.2 � Convergence of LAG

In the first set of experiment with synthetic data, we validate empirically the theo-
retical results from Sect. 5.3 concerning the convergence of the LAG algorithm. We
use the d-dimensional quadratic function sequences F2 , with d = 1, 2, 3 . The regret

f3(𝜃) =

{
0.5 − 0.8(𝜃 − 0.25)2 − 1.2 ⋅ 0.252, 𝜃 < 0.5

0.5 − 0.8 ⋅ 0.252 − 1.2(𝜃 − 0.75)2, 𝜃 ≥ 0.5

668	 E. Frigó, L. Kocsis

1 3

of LAG after T = 1, 000, 000 rounds is plotted in Fig. 2 with varying number of
sample points per round (M). We observe that the empirical results mirror fairly well
the theoretical bound of O(1∕(TM)d+2).

The main discrepancy between the theoretical bound and the empirical perform
is at M = 1 . The discrepancy can be understood by comparing the base bandit algo-
rithm used in LAG (Seldin et al. 2014) with M = 1 to non-stochastic bandit algo-
rithms with explicit exploration, such as Exp3.P (Auer et al. 2002) or with implicit
exploration (Neu 2015). The lack of exploration term in the limited advice algo-
rithm leads to a higher variance of the estimation of the reward, since the selection
probabilities ( pti ) can be very small. The higher variance is an obstacle for deriving
high probability bounds, but not as much for deriving bounds on the expected regret.
It also appears to affect negatively the empirical performance, especially when the
number of arms (i.e. grid points) are large such as in our case. The problem is miti-
gated when M is larger, since the selection probability is mixed in the estimation
with uniform distribution using a coefficient linear in M − 1 (see Algorithm 2, line
10).

6.2.3 � Performance of black‑box optimization algorithms

The next set of experiments illustrate the performance of black-box optimization
algorithms, focusing on the properties of the reward functions such as concavity,
multi-modality and flatness.

First, we test algorithms on F1 , which is concave and unimodal, and the results are
shown in Fig. 3, left. LAG with a moderate number of samples per round ( M = 10 )
is doing well for this function. This is not surprising since it is a one-dimensional
function with a small Lipschitz constant near the optimum. SPSA is doing also
well for this function, which is natural since for similar algorithms there are known
O(

√
T) regret bounds on concave reward functions1 (Shamir 2017). RSPSA and

Fig. 2   The average regret of
LAG samples per round limited
to M on the d-dimensional test
function F2 after T = 1, 000, 000
rounds. Each data point is aver-
aged over 1000 runs

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000
R

eg
re

t
M

LAG, d=1
LAG, d=2
LAG, d=3

0.5/(TM)1/3

0.5/(TM)1/4

0.5/(TM)1/5

1  In fact, the problem discussed in Shamir (2017) was the minimization of convex functions, which is the
reciprocal problem to the maximization of concave reward functions.

669

1 3

Online convex combination of ranking models﻿	

RFDSA+ perform identically, and converge faster than SPSA although they have
a slightly higher regret after T=1,000,000 rounds. CMAES has the weakest result.

Next, we use F3 , which is multi-modal, and the results are being shown in Fig. 3,
right. The Lipschitz constant near the optimum is similar for F1 and F2 , and the dif-
ference between the expected reward at the two maxima is sufficiently large. Conse-
quently, LAG is performing similarly well as in the previous experiment. SPSA and
RSPSA/RFDSA+ are much more affected. These algorithms will often converge to
the weaker local maximum. Interestingly, CMAES is able to cope better with multi-
ple optima. While CMAES and the SA algorithms are all local search algorithms the
candidate selection in CMAES has a longer tail compared to the perturbation size of
the SA algorithms. This leads to an advantage for CMAES, since it is more likely to
escape local optima.

Finally, we test the effect of flatness extension in RFDSA+. For the 1-dimen-
sional function F4 , we observe in Fig. 4, left that RFDSA+ significantly outperforms
RSPSA. RFDSA+ deals with the flatness of the function by switching to finite-dif-
ference estimation and increasing the step-size when flatness is detected. The effect

 0.001

 0.01

 0.1

 1000 10000 100000 1x106

R
eg

re
t

t

LAG(M=10)
CMAES

SPSA
RSPSA

RFDSA+ 0.001

 0.01

 0.1

 1000 10000 100000 1x106

t

LAG(M=10)
CMAES

SPSA
RSPSA

RFDSA+

Fig. 3   The time-varying regret of black-box optimization algorithms on the one-dimensional quadratic
test functions F1 (left) and F3 (right). Each data point is averaged over 1000 runs, and 99% confidence
intervals are shown. Note that most of the intervals are very small

 0.01

 0.1

 1

 1000 10000 100000 1x106

R
eg

re
t

t

LAG(M=10)
CMAES

SPSA
RSPSA

RFDSA+ 0.01

 0.1

 1

 1000 10000 100000 1x106
t

RSPSA
RFDSA

RSPSA+
RFDSA+

LAG(M=10)
CMAES

SPSA

Fig. 4   The time-varying regret of black-box optimization algorithms on the test functions with flat
regions F4 (left) and F5 (right). Each data point is averaged over 1000 runs, and 99% confidence intervals
are shown

670	 E. Frigó, L. Kocsis

1 3

of the two mechanism is tested in Fig. 4, right with the two-dimensional function
F5 . We observe that switching to finite-difference estimation only (RFDSA) dete-
riorates the performance. Dealing with the flatness using simultaneous perturbation
(RSPSA+) has some advantage over RSPSA, but a very small one. The two mecha-
nisms combined in RFDSA+ lead to a significant increase in performance. Of the
remaining algorithms, SPSA is unable to deal with the non-concavity of the func-
tion, especially with the flatness, and performs poorly. CMAES starts slowly, but
overtakes slightly RSPSA after nearly 1,000,000 steps. The Lipschitz constant near
the optimum of F4 (and consequently, F5 ) is fairly large, therefore, the performance
of LAG is not as strong anymore, especially for the two-dimensional function.

6.3 � Real data

In this section, first, we empirically investigate how well the combination algorithms
perform for two base rankers, compared to the optimal (static) combination. Then
we analyze how the combination algorithms scale when a larger number of base
rankers are available. We can not compute analytically the optimal static weight
assignment on real data, and therefore, we show the performance as the average
cumulative reward ( Rt(C)∕t).

6.3.1 � Data sets

All data sets consists of time-ordered sequence of user-item pairs. Only the first
occurrence of a user-item pair is included. The task at a certain point of time is to
rank the available items for the current user. After a top list is provided by a par-
ticular algorithm, a reward is obtained using NDCG@100 as ranking measure (see
Sect. 3). In our case, there is only one item with nonzero label (the one from the cur-
rent user-item pair). Following the evaluation step, the item is revealed to the base
rankers and the combination algorithm, allowing them to update their model.

In these experiments, we use three data sets from the Amazon collection (CDs
and Vinyl; Movies and TV; Electronics McAuley et al. 2015), the 10M MovieLens
data set,2 and a Twitter data set, where the items are defined by the hashtags used in
tweets (Pálovics et al. 2017).

6.3.2 � Base rankers

We rely on two basic classes of collaborative filtering models: item-based nearest
neighbor (item2item) (Sarwar et al. 2001) and matrix factorization (Abernethy et al.
2007). These two classes of methods represent the most successful and most popu-
lar collaborative filtering algorithms3 Koren et al. (2009), Pilászy et al. (2015). In

2  http://​group​lens.​org/​datas​ets/​movie​lens/.
3  For particular data sets, there may be superior algorithms, especially in batch settings. The two main
base rankers considered are representatives of two main approaches to collaborative filtering, and have
natural incremental versions. None of the combination algorithms exploit the particular base rankers,
thus replacing the base rankers is straightforward.

http://grouplens.org/datasets/movielens/

671

1 3

Online convex combination of ranking models﻿	

addition to the two techniques, we also include temporal popularity (denoted Pop),
which records how many times an item was visited in the preceding time window.

For item2item, we use a time-decayed item-to-item similarity function, the model
being updated every day. When computing the score for an item, we consider the
similarity to all items previously visited by the user. Thus, this algorithm also incor-
porates the recent history.

We include four matrix factorization variants: online matrix factorization (OMF)
(Pan et al. 2008), online asymmetric matrix factorization (OAMF) (Koren 2008),
batch matrix factorization (MF), and (batch) implicit alternating least squares
(iALS) (Hu et al. 2008). All variants use latent factors with ten dimensions. The
online variants update once after every user-item pair. The batch variants retrain
their models after every 100,000 time steps, using a required number of iterations.
We use stochastic gradient descent for OMF, OAMF and MF with the current item
from the data set designated as positive item, and additional negative items sampled
randomly (Pan et al. 2008).

The parameters of the base rankers are optimized for each data set. In the combi-
nation, the scores of the base rankers are normalized by the standard deviation.

6.3.3 � Combination of two models

We start with the combination of two base models OMF and item2item. We let �
denote the weight of OMF in the convex combination. The average cumulative
reward at the end of the episode ( RT∕T  ), depending on � , is shown for the Ama-
zon-CD data set in Fig. 5. Interestingly, the optimum is reached for a combination
that puts heavy weigh to item2item, even though OMF alone performs better than
item2item.

Fig. 5   Reward with various
combination coefficients ( � ) for
the combination of OMF and
item2item on the Amazon-CD
set. In the figure, � denotes the
normalized weight of the OMF
base ranker. The normalized
weight for item2item is 1 − �

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0 0.2 0.4 0.6 0.8 1
N

D
C

G
θ

RT(θ)

672	 E. Frigó, L. Kocsis

1 3

The average cumulative reward of the combination algorithms is shown in Fig. 6.
The peculiar shape in the first three years is due to the low amount of data collected
and the more significant changes in the data distribution. We observe the relative
order of the base algorithms changes over time: at first OMF is better, then item-
2item, and then OMF again. This shows that selecting an algorithm on partial data,
and using only that algorithm later is a poor choice. ExpA follows the better base
algorithm, being slightly worse than that due to exploration. ExpW4 achieves a per-
formance that equals to the best static convex combination (cf. Fig. 5). ExpAW is on
par with ExpW in the beginning, but its performance deteriorates later. This is natu-
ral, since it is choosing a larger weight for OMF due to the superior performance of
OMF, despite that the actual optimum is to assign a large weight to item2item, as
seen in Fig. 5. SGD has similar performance to ExpAW, giving also a larger weight
to OMF. This is possibly because SGD and OMF optimize the same surrogate loss
function. RSPSA, RFDSA+ and CMAES obtain near optimal performance. SPSA
performs somewhat weaker than the other SA algorithms, and LAG with M = 10

Fig. 6   Average cumulative
NDCG of the ranking algo-
rithms on the Amazon-CD set

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1000 2000 3000 4000 5000 6000 7000
N

D
C

G
days

item2item
OMF
ExpA

ExpAW
ExpW

LAG(M=10)

SGD
CMAES

SPSA
RSPSA

RFDSA+

Fig. 7   The weight assignment
of the ranking algorithms on
the Amazon-CD set. OptG100+
corresponds to the optimal
weight assignment over 100
uniform grid points, with a few
additional points chosen near
the presumed optimum. In the
figure, � denotes the normalized
weight of the OMF base ranker.
The normalized weight for
item2item is 1 − �

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0 1000 2000 3000 4000 5000 6000 7000

θ

days

OptG100+
ExpAW

SGD
LAG(M=10)

CMAES
SPSA

RSPSA
RFDSA+

4  For ExpW, the set of points P consisted of a uniform grid with 100 points.

673

1 3

Online convex combination of ranking models﻿	

has similar performance to SPSA. We note that the reward has a fairly large Lip-
schitz constant near the optimum (cf. Fig. 5), thus the weaker performance of LAG
is not surprising.

The weight assignment of the combination algorithms is shown in Fig. 7.
The figure includes additionally an optimal static weight assignment, i.e.
�t = argmax

�∈ΘRt(�) . By analyzing the weight assignment of the five combina-
tion algorithms that optimize NDCG directly (SPSA, RSPSA, RFDSA+, LAG and
CMAES), we observe that all give item2item a large weight, although the weights
for SPSA and LAG are further away from the optimum. RSPSA, RFDSA+, and
CMAES follow closely the optimal weight assignment, and therefore, match the
optimal performance of ExpW.

6.3.4 � Scaling

We analyze the scaling of the combination algorithms in two ways: (1) by including
an increasing number of OMF base rankers (differing only in the random initializa-
tion) next to item2item, and (2) by including all six base rankers in the mix.

In the first case, assuming that the various OMF models achieve similar perfor-
mance, one expects that the optimal weight for item2item stays relatively the same,
with the weight of one OMF from the previous section divided among the multiple
instances. The difficulty here is that the proper weight assignment (for item2item)
needs to be found in a higher dimensional space. For larger dimensions, placing grid
points that cover the parameter space sufficiently would require exponential number
of evaluations, thus we do not include ExpW in this experiment. The performance of
the other combination algorithms is shown in Fig. 8.

We observe that the ranking performance of RFDSA+ is not dropping as the
number of OMFs increases. It is even able to use the slight variation in the OMFs
to increase the performance slightly. The performance of SPSA and RSPSA dete-
riorates significantly as more OMFs are included in the mix. CMAES copes better
with the increase in dimension, but the performance also drops somewhat. LAG is
perhaps the algorithm most impacted by an increase of the number of base rankers,
which is in accordance with the theoretical results. ExpA, ExpAW and SGD all cope

Fig. 8   Average NDCG of the
ranking algorithms on the
Amazon-CD set with varying
number of OMFs. The combina-
tion includes one item2item and
one to ten OMF base rankers. In
the case of xOMF there is only
one OMF, but the dimension of
the latent factors is increased
from 10 to the range of 10–100

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 1 2 3 4 5 6 7 8 9 10
N

D
C

G
number of OMF’s

ExpA
ExpAW

LAG(M=10)
SGD

CMAES
SPSA

RSPSA
RFDSA+

674	 E. Frigó, L. Kocsis

1 3

well with the increased dimension, but their performance is much weaker overall
than that of RFDSA+. The relative invariance of ExpA underlines that the individual
OMF rankers achieve similar performance; we checked that the variance of their
NDCG score is indeed very small. Results on the other data sets are similar and
omitted for brevity.

In Table 1, we show the performance of the combination algorithms when all
the six base rankers are used. First, we notice that the individual performance of
the batch base rankers (MF and iALS) is poor for all data sets. The performance
of the other base rankers vary, depending on the data set. Regarding the per-
formance of the combination algorithms, we can draw a somewhat similar con-
clusion as for Fig. 8: RFDSA+ has significantly better performance for all data
sets compared to other combination algorithms. We also note that the improve-
ment in performance over the best individual base ranker is considerable for all
data sets. ExpA achieves approximately the performance of the best individual
ranker. ExpAW and SGD cope reasonably well with more base rankers, but
their performance is not exceeding by much the performance of the base ranker.
SPSA, RSPSA and LAG (which were performing well for two base rankers) are
not performing particularly well when a larger number of models are included
in the mix. CMAES is the only other algorithm that significantly improves on
the base rankers performances, but it is still considerably weaker than RFDSA+
except on the Twitter data set for which the disadvantage is small.

To validate the ranking performance, we evaluate the algorithms with
MRR@100 (see Sect. 3), shown in Table 2. The results are fairly similar to those

Table 1   Combination of six base rankers on five data sets

The average NDCG of the base rankers is shown at the top of table, while the average NDCG of the com-
bination algorithms at the bottom
The best performance for each data set is shown in bold

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter

item2item 0.0343 0.0350 0.0156 0.1445 0.0221
OMF 0.0389 0.0440 0.0222 0.1357 0.3528
Pop 0.0628 0.0663 0.0347 0.0857 0.3486
OAMF 0.0318 0.0320 0.0160 0.1717 0.3118
MF 0.0052 0.0086 0.0056 0.0051 0.0055
iALS 0.0046 0.0075 0.0060 0.0053 0.0054
SGD 0.0640 0.0674 0.0353 0.1568 0.3563
ExpA 0.0628 0.0663 0.0347 0.1717 0.3486
ExpAW 0.0628 0.0664 0.0347 0.1717 0.3486
LAG (M=10) 0.0643 0.0670 0.0349 0.1701 0.3950
CMAES 0.0738 0.0745 0.0390 0.1788 0.4599
SPSA 0.0696 0.0692 0.0349 0.1678 0.3683
RSPSA 0.0640 0.0670 0.0396 0.1435 0.4468
RFDSA+ 0.0880 0.0882 0.0452 0.1879 0.4601

675

1 3

Online convex combination of ranking models﻿	

with NDCG. Therefore, we may conclude that the combination algorithms that
optimize NDCG directly yield ranking performances that are strong when evalu-
ated with other (similar) ranking measures.

6.3.5 � Time complexity

For all algorithms considered, the time intensive components are (1) computing
the item scores xtij for each model, and (2) computing the ranking measure rt(�)
for each parameter vector that needs to be evaluated. Both are linear in the num-
ber of items (or log-linear in the case of producing an ordered list for rt(�) ). The
first component depends on the complexity of the base models. In our experi-
ments, we included base models that are fast, which is a natural choice for online
recommendation. The second component depends on the number of vectors that
are evaluated in each round.

For the combinations that included six base models in the previous section (see
Table 1), the second component needed at most half the time needed for the first
component, but in most cases it needed a significantly smaller fraction than that.
Since the first component is necessary for any combination algorithm, we may
conclude that the computational overhead of the considered algorithms is moder-
ate. This would not be the case for ExpW that evaluates a much larger number of
parameter vectors. The speed of recommendation was around 50 recommenda-
tions per seconds, depending on the data set.

Table 2   Combination of six base rankers on five data sets

The MRR of the base rankers is shown at the top of table, while the MRR of the combination algorithms
at the bottom
The best performance for each data set is shown in bold

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter

item2item 0.0232 0.0248 0.0115 0.0837 0.0165
OMF 0.0199 0.0213 0.0101 0.0639 0.2732
Pop 0.0357 0.0353 0.0160 0.0337 0.2410
OAMF 0.0164 0.0152 0.0072 0.0935 0.2324
MF 0.0019 0.0032 0.0023 0.0011 0.0024
iALS 0.0015 0.0026 0.0026 0.0014 0.0024
SGD 0.0361 0.0359 0.0163 0.0854 0.2468
ExpA 0.0357 0.0353 0.0160 0.0935 0.2410
ExpAW 0.0357 0.0354 0.0160 0.0935 0.2410
LAG (M=10) 0.0364 0.0356 0.0161 0.0930 0.2930
CMAES 0.0426 0.0401 0.0183 0.0989 0.3677
SPSA 0.0402 0.0371 0.0161 0.0899 0.2611
RSPSA 0.0361 0.0356 0.0187 0.0799 0.3502
RFDSA+ 0.0526 0.0510 0.0235 0.1062 0.3662

676	 E. Frigó, L. Kocsis

1 3

Based on these results, we conclude that any combination algorithm included
in Table 1 can be used in an industrial application without considerable time
penalty (even when the base ranking models are fast). If the base models are
somewhat slower (e.g., deep networks), it could be possible to use LAG with a
higher number of evaluations. However, such a choice depends on the specific
application.

7 � Conclusions

In this paper, we considered the task of learning the online convex combina-
tion of base recommender algorithms by stochastic optimization. We argued the
potential strengths of black-box optimization for this task.

We proposed a new stochastic approximation algorithm RFDSA+. The algo-
rithm uses finite differences to estimate the gradient of the ranking reward, and
the RPROP update rule to adjust the combination weights. The update rule was
modified in order to deal with flat regions that often appear in ranking functions.
The new algorithm is empirically shown to perform close to optimum for two
base rankers, and scale well, if the number of models is increased by homoge-
neous base rankers or varied ones. We observed that by applying the RFDSA+
combination algorithm a considerable improvement in ranking performance can
be obtained over the base rankers.

We also proposed a new exponentially weighted algorithm with limited num-
ber of evaluation based on a grid structure, LAG. The LAG algorithm can deal
well with multiple optima, but does not scale well with a larger number of base
ranking models. We proved upper bounds on the regret of the algorithm, which
was shown to be log-optimal. We derived the first theoretical results in the litera-
ture for online non-convex bandits with limited number of evaluations.

The relatively weak empirical performance of LAG is connected to the coarse-
ness of the grid, which does not allow the algorithm to explore the weight vec-
tors close to the optimum. Using a finer grid, with significantly higher number
of gridpoints, would prevent LAG to explore and differentiate the value at each
gridpoint. A possible remedy would be to use the more hierarchical grid con-
structions proposed in Bubeck et al. (2011), Grill et al. (2015). These algorithms,
however, were designed for stochastic/stationary bandits, and adapting them to a
non-stationarity setting is left for future research.

In our experiments, RFDSA+ was highly effective for online ranking combina-
tion. It will be interesting to evaluate the algorithm in related domains, includ-
ing online combination of heterogeneous classification models. RFDSA+ extends
RSPSA, which was applied successfully to optimize parameters of game pro-
grams. Since, games have discrete evaluation (e.g., 0/1 for win/loss), flat regions
could also occur. Therefore, it is reasonable to assume, that RFDSA+ may
improve the parameter optimization performance in domains like games.

677

1 3

Online convex combination of ranking models﻿	

A Proof of regret upper bounds

The proofs of the regret upper bounds rely on the regret bound of the original
exponentially weighted algorithm, with an added term resulting from the discre-
tization error of the grid. First, we prove the regret bound of ExpW (Proposi-
tion 1), and then, the regret bound of LAG (Proposition 4).

A.1 Proof of Proposition 1 

Recall that the regret bound of the exponentially weighted forecaster on a K-armed
game5 with T rounds (Cesa-Bianchi and Lugosi 2006) is

Consider the difference between the cumulative reward of ExpW and the best con-
stant point q ∈ Q . This difference is equivalent to the regret of the exponentially
weighted forecaster algorithm in a |Q|-armed full-information game, hence it can be
bounded as

as we saw it in (14).
Summing the condition of the theorem, Eqs. (3) and (15), we get

concluding our proof.

A.2 Proof of Proposition 4 

Recall that the regret bound of the advice efficient exponentially weighted forecaster
limited to evaluating M arms in a K-armed game with T rounds (Seldin et al. 2014)
is

Consider the difference between the cumulative reward of LAG and the best con-
stant point q ∈ Q . This difference is equivalent to the regret of the advice efficient

(14)E[ℜT] ≤

√
T

2
lnK.

(15)E

[
max
q∈Q

RT (q) − RT (ExpW)

]
≤

√
T

2
ln |Q|

E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤ c

√
T +

�
T

2
ln �Q�,

(16)E[ℜT] ≤ 2

√
K

M
T lnK.

5  In the “Appendix”, in an abuse of notation, K will denote the number arms in line with the bandit ter-
minology, and not the length of the recommended list. For the set Q we will have |Q| = K.

678	 E. Frigó, L. Kocsis

1 3

exponentially weighted forecaster algorithm in a |Q|-armed limited-information
game, hence it can be bounded as

as we saw it in (16).
Summing the condition of the theorem, Eqs. (8) and (17), we get

concluding our proof.

B Proof of lower bounds

The proofs of the lower bounds rely on the proof of lower bound for a K-armed ban-
dit with limited feedback (Seldin et al. 2014). In particular, the proof of Theorem 2
in Seldin et al. (2014) defines K + 1 games. In the hth game, arm h is the designated
arm. The reward of the designated arm on round t is 1 with probability of (1 + �)∕2
and 0 otherwise. For the other arms h′ ≠ h , the reward is 1 with probability of
(1 − �)∕2 and 0 otherwise. In the ∅ th game, all arms behave like non-designated
arms, i.e., in each round, all arms pay 1 with probability of (1 − �)∕2 and 0 other-
wise. Before the start of the episode, the environment selects randomly one of the
games ( h > 0 ). It is shown in Seldin et al. (2014) that the probability of being able to
differentiate the hth game from the ∅ th game is very small, depending on � , K, M,
and T. If the hth game is not detected, then no algorithm can do better than the uni-
form selection policy corresponding to the ∅ th game. In that case, the forecaster will
suffer a regret of �T  . The tuning of � is determined by a trade-off: if � is too high,
then it is easy to differentiate between the games; if � is too low, then the regret of
uniform policy is small. The proof sets � =

√
3

8

�
K

MT
 . With that value, the minimax

regret bound obtained in Seldin et al. (2014) is

In our lower bound proofs, we divide the weight space in independent boxes that
correspond to arms of a bandit. We rely on the above lower bound, but we have to
show that for a particular � , all games defined above conform with Property 1. We
start with the easier, full-information case (Proposition 3), and then follow up with
the more important result of for the limited number of evaluations (Theorem 2).

(17)E

[
max
q∈Q

RT (q) − RT (LAG)

]
≤ 2

√
|Q|
M

T ln |Q|.

E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤ c

T

(TM)
1

d+2

+ 2

�
�Q�
M

T ln �Q� ≤
�
c + 2

√
c� ln �Q�

�
T

d+1

d+2

M
1

d+2

(18)inf supℜT ≥ 0.03

√
K

M
T .

679

1 3

Online convex combination of ranking models﻿	

B.1 Proof of Proposition 3 

We map the finite armed problem and reward sequences defined in Theorem 2 of
Seldin et al. (2014) into a reward function series on the domain of Φ = [0, 1]d .
Any game played in our framework on these reward functions has a correspondent
game played in the finite armed framework, resulting the same regret. Therefore the
expected minimax regret in our framework will be higher or equal than the expected
minimax regret in the initial finite armed environment.

In the full-information case the reward of all arms are revealed, i.e. K = M . We
choose K = Td∕3 to get the desired bound by using Eq. (18). The transformation
and the mapping is the following. Let � = ⌈K

1

d ⌉ . We split [0, 1]d into �d subcubes
of equal size. We assign a subcube to each arm. If K < 𝜅d , we assign the remain-
ing unassigned subcubes to the last arm. In each round, each subcube has a constant
value, that is the same as the reward of the arm assigned to it.

To prove that the reward function series belonging to each game satisfies Eq. (5)
for � = 1 , we will show that

for all 𝜅̃ ∈ ℝ+ , where G𝜅̃ is a d-dimensional 𝜅̃-grid. If 𝜅 ≤ 𝜅̃ , the assumption is
clearly satisfied because at least one gridpoint will fall into the subcube that corre-
sponds to the optimal arm and the left hand side will be 0. Otherwise 𝜅̃ < 𝜅 and the
right hand side can be lower bounded by �T

√
d

�
.

Considering the second term of the left hand side, observe that the expected max-
imum is larger or equal compared to the expected value of any gridpoint. Thus, we
can lower bound the second term by 1−�

2
T =

1+�

2
T − �T .

Consider now the first two terms, closed into the bracket. E
[
max�∈Θ RT (�)

]
 equals

to the cumulative reward of the best arm in the K armed game mapped. The second
term, 1+�

2
T is the expected cumulative reward of the best arm, thus this is greater or

equal to the expected cumulative reward of any forecaster applied on the mentioned
problem, including the exponentially weighted forecaster. Their difference is less or
equal to the regret of the exponentially weighted forecaster. That lets us upper bound
the first two term by the regret bound of the exponentially weighted forecaster,

Now we need to show that

E
�
max
𝜃∈Θ

RT (𝜃)
�
− E

�
max
k∈G𝜅̃

RT (k)

�
≤

𝜆T
√
d

𝜅̃

�
E
�
max
�∈Θ

RT (�)
�
−

1 + �

2
T
�
+ �T ≤

�T
√
d

�
.

(
E
[
max
�∈Θ

RT (�)
]
−

1 + �

2
T
)
≤

√
T

2
logK.

�
T

2
logK + �T ≤

�T
√
d

�
.

680	 E. Frigó, L. Kocsis

1 3

Using (𝜅 − 1)d < K , we lower bound the right hand side,

Recalling that � = 1 , K = M = T
d

3 and � =
√
3

8

�
K

MT
=

√
3

8
√
T
 , we get

that is satisfied for any d ≥ 1 and T ≥ 1.

B.2 Proof of Theorem 2 

The structure of the proof for the limited information case is similar to the proof of
Proposition 3. However, now we choose K = M

d

d+2 T
d

d+2 and � = 3.
The computation is identical until Eq. (19),

Starting from here, we insert K = M
d

d+2 T
d

d+2 and � =
√
3

8

�
K

MT
=

√
3

8
(TM)

−1

d+2 , getting

Using that
√
3

8
(TM)

−1

d+2 T <
T
√
d

(TM)
1

d+2 +1
 , we get

Using that M ≤ T� and � = 3 , we get

We can assume that 𝜙 <
d

2
 because otherwise the this theorem is weaker than Propo-

sition 3 that is already proved in Sect. B.1. Using that and simplifying, we get

(19)
�

T

2
logK + �T ≤

�T
√
d

K
1

d + 1
.

�
logT

6
+

√
3

8d
≤

√
T

T
1

3 + 1

�
T

2
logK + �T ≤

�T
√
d

K
1

d + 1
.

�
T

2

d

d + 2
(log T + logM) +

√
3

8
(TM)

−1

d+2 T ≤
�T

√
d

(TM)
1

d+2 + 1
.

�
T

2

d

d + 2
(logT + logM) ≤

(� − 1)T
√
d

(TM)
1

d+2 + 1
.

�
1 + �

2(d + 2)
log T ≤

2
√
T

T
1+�

d+2 + 1
.

�����
1

d
+

1

2

2(1 +
2

d
)
logT ≤

√
T

T
1+�

d+2

.

681

1 3

Online convex combination of ranking models﻿	

After simplification and bounding we get

which is the condition of the theorem.

Acknowledgements  The research was supported by the Ministry of Innovation and Technology NRDI
Office within the framework of the Hungarian Artificial Intelligence National Laboratory Program.

Funding  Open access funding provided by ELKH Institute for Computer Science and Control.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Abernethy, J., Canini, K., Langford, J., Simma, A.: Online Collaborative Filtering. University of Califor-
nia at Berkeley, Technical Report (2007)

Agarwal, A., Dekel, O., Xiao, L.: Optimal algorithms for online convex optimization with multi-point
bandit feedback. In: COLT, pp. 28–40 (2010)

Al-Ghossein, M., Murena, P.A., Abdessalem, T., Barré, A., Cornuéjols, A.: Adaptive collaborative topic
modeling for online recommendation. In: Proceedings of the 12th ACM Conference on Recom-
mender Systems, pp. 338–346. ACM (2018)

Amatriain, X., Agarwal, D.: Tutorial: lessons learned from building real-life recommender systems. In:
Proceedings of the 10th ACM Conference on Recommender Systems, p. 433 (2016)

Au, C.K., Leung, H.F.: An empirical comparison of CMA-ES in dynamic environments. In: International
Conference on Parallel Problem Solving from Nature, pp. 529–538. Springer (2012)

Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem.
SIAM J. Comput. 32(1), 48–77 (2002)

Balcan, M.F., Dick, T., Sharma, D.: Online optimization of piecewise Lipschitz functions in changing
environments (2019). arXiv:​1907.​09137

Bennett, J., Lanning, S., et al.: The Netflix prize. In: Proceedings of KDD Cup and Workshop, vol. 2007,
p. 35. New York, NY, USA (2007)

Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X-armed bandits. J. Mach. Learn. Res. 12(5) (2011)
Burke, R.: Evaluating the dynamic properties of recommendation algorithms. In: Proceedings of the

fourth ACM Conference on Recommender Systems, pp. 225–228. ACM (2010)
Busa-Fekete, R., Kégl, B., Éltető, T., Szarvas, G.: Ranking by calibrated adaboost. In: Proceedings of the

Learning to Rank Challenge, pp. 37–48 (2011)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge

(2006)
Cohen-Addad, V., Kanade, V.: Online optimization of smoothed piecewise constant functions. In: Artifi-

cial Intelligence and Statistics, pp. 412–420. PMLR (2017)
Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Phila-

delphia (2009)

3

4
logT ≤ T

d−2�

d+2 ,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.09137

682	 E. Frigó, L. Kocsis

1 3

Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias
models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp.
87–94 (2008)

Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In: Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 329–338. ACM (2009)

Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learning for data stream
classification. ACM Comput. Surv. (CSUR) 50(2), 1–36 (2017)

Grill, J.B., Valko, M., Munos, R.: Black-box optimization of noisy functions with unknown smoothness.
Adv. Neural Inf. Process. Syst. 28, 667–675 (2015)

Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-
box optimization benchmarking bbob-2009. In: Proceedings of the 12th Annual Conference Com-
panion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010)

Hazan, E., Levy, K.: Bandit convex optimization: towards tight bounds. Adv. Neural Inf. Process. Syst.
27, 784–792 (2014)

Hazan, E., Li, Y.: An optimal algorithm for bandit convex optimization (2016). arXiv:​1603.​04350
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth

IEEE International Conference on Data Mining, pp. 263–272 (2008)
Igel, C., Hüsken, M.: Improving the Rprop learning algorithm. In: Bothe, H., Rojas,, R. (eds.) Proceed-

ings of the Second International ICSC Symposium on Neural Computation (NC 2000), pp. 115–
121. ICSC Academic Press (2000)

Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix update and a (1+1)-CMA
for evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pp. 453–460 (2006)

Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 41–48. ACM (2000)

Jugovac, M., Jannach, D., Karimi, M.: Streamingrec: a framework for benchmarking stream-based news
recommenders. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 269–
273. ACM (2018)

Kleinberg, R.D.: Nearly tight bounds for the continuum-armed bandit problem. In: Advances in Neural
Information Processing Systems, pp. 697–704 (2005)

Kocsis, L., Szepesvári, C.: Universal parameter optimisation in games based on SPSA. Mach. Learn.
63(3), 249–286 (2006)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 426–434. ACM (2008)

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Com-
puter 42(8), 30–37 (2009)

Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2014)
Kveton, B., Szepesvari, C., Wen, Z., Ashkan, A.: Cascading bandits: learning to rank in the cascade

model. In: International Conference on Machine Learning, pp. 767–776 (2015)
Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods (2019). arXiv:​1904.​

11585
Lathia, N., Hailes, S., Capra, L.: Temporal collaborative filtering with adaptive neighbourhoods. In:

Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 796–797. ACM (2009)

Maillard, O.A., Munos, R.: Online learning in adversarial lipschitz environments. In: Machine Learn-
ing and Knowledge Discovery in Databases, pp. 305–320 (2010)

McAuley, J., Targett, C., Shi, Q., Den Hengel, Van, A.: Image-based recommendations on styles and
substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 43–52. ACM (2015)

Neu, G.: Explore no more: improved high-probability regret bounds for non-stochastic bandits. Adv.
Neural Inf. Process. Syst. 28, 3168–3176 (2015)

Pálovics, R., Benczúr, A.A.: Temporal influence over the Last.fm social network. Soc. Netw. Anal.
Min. 5(1), 4 (2015)

http://arxiv.org/abs/1603.04350
http://arxiv.org/abs/1904.11585
http://arxiv.org/abs/1904.11585

683

1 3

Online convex combination of ranking models﻿	

Pálovics, R., Benczúr, A.A., Kocsis, L., Kiss, T., Frigó, E.:ACM, : Exploiting temporal influence in
online recommendation. In: Proceedings of the 8th ACM Conference on Recommender Systems,
pp. 273–280. ACM (2014)

Pálovics, R., Szalai, P., Pap, J., Frigó, E., Kocsis, L., Benczúr, A.A.: Location-aware online learning
for top-k recommendation. Pervasive Mob. Comput. 38, 490–504 (2017)

Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class collaborative filter-
ing. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM’08, pp. 502–511.
IEEE (2008)

Pilászy, I., Serény, A., Dózsa, G., Hidasi, B., Sári, A., Gub, J.: Neighbor methods vs. matrix factoriza-
tioncase studies of real-life recommendations. In: LSRS Workshop at ACM RecSys (2015)

Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In:
Proceedings of the 25th International Conference on Machine Learning, pp. 784–791. ACM
(2008)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algo-
rithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295.
ACM (2001)

Seldin, Y., Bartlett, P., Crammer, K., Abbasi-Yadkori, Y.: Prediction with limited advice and multiarmed
bandits with paid observations. In: ICML, pp. 280–287 (2014)

Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feed-
back. J. Mach. Learn. Res. 18(1), 1703–1713 (2017)

Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approxima-
tion. IEEE Trans. Autom. Control 37, 332–341 (1992)

Töscher, A., Jahrer, M., Bell, R.M.: The BigChaos solution to the Netflix grand prize. Netflix prize docu-
mentation, pp. 1–52. (2009)

Vinagre, J., Jorge, A.M., Gama, J.: Evaluation of recommender systems in streaming environments. In:
Workshop on ’Recommender Systems Evaluation: Dimensions and Design’ (REDD 2014), held in
conjunction with RecSys 2014 (2014)

Voorhees, E.M., Tice, D.M.: The TREC-8 question answering track report. In: TREC, vol. 99, pp. 77–82
(1999)

Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a dueling bandits prob-
lem. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1201–
1208. ACM (2009)

Zoller, D., Doerfel, S., Pölitz, C., Hotho, A.: Leveraging user-interactions for time-aware tag recommen-
dations. In: RecTemp@ RecSys, pp. 9–15 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Erzsébet Frigó  is a Ph.D. Candidate at Institute for Computer Science and Control (SZTAKI), Eötvös
Loránd Research Network (ELKH). She has an M.Sc. in Computer Science Engineering from Budapest
University of Technology and Economics (BME). Her research focuses on recommender systems and
online machine learning.

Levente Kocsis  is a senior researcher at Institute for Computer Science and Control (SZTAKI), Eötvös
Loránd Research Network (ELKH). He has a Ph.D. in Computer Science from Maastricht University. His
research interests are in the fields of recommender systems, online machine learning, stochastic optimiza-
tion and games.

	Online convex combination of ranking models
	Abstract
	1 Introduction
	2 Related research
	3 Problem setup
	4 Resilient finite difference stochastic approximation (RFDSA+)
	5 Grid based exponentially weighted algorithms
	5.1 ExpW
	5.2 LAG
	5.3 Theoretical properties
	5.3.1 Full information
	5.3.2 Limited number of evaluations

	6 Experiments
	6.1 Baselines
	6.1.1 ExpA
	6.1.2 ExpAW
	6.1.3 Stochastic approximation algorithms: SPSA, RSPSA, RSPSA+ and RFDSA
	6.1.4 SGD
	6.1.5 CMAES

	6.2 Synthetic data
	6.2.1 Test functions
	6.2.2 Convergence of LAG
	6.2.3 Performance of black-box optimization algorithms

	6.3 Real data
	6.3.1 Data sets
	6.3.2 Base rankers
	6.3.3 Combination of two models
	6.3.4 Scaling
	6.3.5 Time complexity

	7 Conclusions
	Acknowledgements
	References

