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Abstract
As a task of high importance for recommender systems, we consider the problem 
of learning the convex combination of ranking algorithms by online machine learn-
ing. First, we propose a stochastic optimization algorithm that uses finite differ-
ences. Our new algorithm achieves close to optimal empirical performance for two 
base rankers, while scaling well with an increased number of models. In our experi-
ments with five real-world recommendation data sets, we show that the combination 
offers significant improvement over previously known stochastic optimization tech-
niques. The proposed algorithm is the first effective stochastic optimization method 
for combining ranked recommendation lists by online machine learning. Secondly, 
we propose an exponentially weighted algorithm based on a grid over the space of 
combination weights. We show that the algorithm has near-optimal worst-case per-
formance bound. The bound provides the first theoretical guarantee for non-convex 
bandits using limited number of evaluations under very general conditions.

Keywords  Ranking combination · Online learning · Black-box optimization

1  Introduction

Recommender systems are ubiquitous in our online existence. A large number of 
algorithms have been developed over the years, some of them are specific to particu-
lar domains, others are more general. Selecting the right algorithm for a particular 
domain is not an easy task. Instead of selecting a single algorithm, recommender 
systems often rely on an ensemble of base ranking algorithms. The influence of 
combination algorithms was highlighted for batch rating prediction in the Netflix 
Prize competition (Balcan et al. 2007), when the approach of Töscher et al. (2009) 
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was essential for the winning entry. Beyond competitions, ensembles are widely 
used in industrial applications as well (Amatriain and Agarwal 2016).

A milestone in the research of recommendation algorithms, the Netflix Prize had 
high impact on research directions. The target of the contest was based on the one to 
five star ratings given by users, with one part of the data used for model training and 
the other for evaluation. As an impact of the competition, tasks now termed batch 
rating prediction were dominating research results. However, real systems differ not 
just in that the user feedback is implicit, but also in that they process data streams 
where users request one or a few items at a time and get exposed to new information 
that may change their needs and taste when they return to the service next time. Fur-
thermore, an online trained model may change and return completely different lists 
for the same user even for interactions very close in time.

In an online scenario, the environment for a combination algorithm is non-sta-
tionary: not only the user preferences and item popularities, but also the base rank-
ing models change in time. Therefore, the combination of the base algorithms also 
needs to be updated. While it is infeasible to update the parameters of the combina-
tion with the computationally intensive blending approaches used in batch settings, 
convex combination of the base models often leads to satisfying results. In sum-
mary, we consider online convex combination algorithms under implicit feedback.

From the machine learning point of view, the main difficulty of combining ranked 
recommendation lists is that the typical ranking measures, such as NDCG (Järvelin 
and Kekäläinen 2000), are not continuous, making their optimization a difficult task. 
Optimizing non-continuous functions is handled most often by using a continuous 
surrogate function, explicitly or implicitly. The optimization then proceeds by using 
some form of gradient descent with respect to the surrogate function. An example 
for this approach is the algorithm proposed in Pálovics et al. (2014) for online rank-
ing combination. A potential drawback in this case is that optimal weight vector for 
the surrogate function can be very different from the one that is optimal for the orig-
inal ranking measure.

Black-box optimization algorithms (Conn et al. 2009) do not need the compact 
form of the gradient and can optimize a function directly. These algorithms have 
difficulty in optimizing functions with a large number of parameters (as it would 
be the case for a factor model with millions of parameters), but they can provide an 
effective alternative, when the number of parameters is moderate (as in the case of 
convex combination). In this paper, we propose two black-box optimization strate-
gies for non-continuous ranking measures.

The first strategy is a local optimization algorithm that uses finite differences to 
approximate the gradient. We build on the resilient simultaneous perturbation sto-
chastic approximation (RSPSA) algorithm (Kocsis and Szepesvári 2006), which 
was used for optimizing model parameters in games. While RSPSA was shown to 
cope with non-continuous rewards, it is non-trivial whether it can cope with ranking 
functions as well. Indeed, we observe empirically that RSPSA does not scale well 
for ranking prediction. The reason for this is that ranking functions have many flat 
regions with respect to individual combination weights. To improve the scalability 
properties of RSPSA, we switch from simultaneous perturbation to finite differences 
to identify flat regions with respect to a given weight, and modify the update rule to 
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deal with flat regions. Our proposed method, Resilient Finite Difference Stochastic 
Approximation (RFDSA+), is shown to be the first effective stochastic optimization 
method for combining ranked lists. We show empirically that RFDSA+ achieves 
near optimal performance when two base rankers are combined, and scales well 
with the number of base rankers.

While the effectiveness of the RFDSA+ algorithm on real-word data sets is 
encouraging, it has no theoretical guarantees. Moreover, in the presence of multi-
ple optima, the algorithm may converge to an inferior local optimum. The second 
strategy deals with these two issues. It relies on exponentially weighted algorithms 
(EWA) (Cesa-Bianchi and Lugosi 2006) that explore the space of combination 
weights globally. EWA was shown to be close to optimal for Lipschitz-continuous 
environments (Maillard and Munos 2010). We will show that EWA is able to opti-
mize ranking combination as well, under certain assumption (see Property 1). How-
ever, the number of combinations that needs to be evaluated grows exponentially 
with the number of base rankers. For the practical case of limited number of evalu-
ations, we propose a new algorithm, limited advice on grids (LAG). We show that 
LAG has sub-linear regret (i.e. loss of performance compared to an optimal static 
combination weight). We note that we provide here the first theoretical guarantee 
under multiple, but limited number of evaluations for non-convex functions on con-
tinuous domains. The regret bound is proved to be log-optimal. We show on syn-
thetic data that LAG can deal well with multiple optima. However, on real-word 
data sets that appear to be unimodal, RFDSA+ performs significantly better.

The article is organized as follows: after discussing the related research in 
Sect. 2, we formalize our framework in Sect. 3. The proposed RFDSA+ algorithm 
is described in Sect. 4. Exponentially weighted algorithms are discussed in Sect. 5, 
including the theoretical guarantees for LAG. Empirical evaluation highlighting the 
strengths of RFDSA+ and LAG is provided in Sect. 6. Some conclusions and dis-
cussion of future research close the paper in Sect. 7.

2 � Related research

Research on incremental recommender algorithms with online or prequential evalu-
ation (Gama et al. 2009) scenario has gained popularity in recent years. There are 
several papers that use prequential evaluation (Al-Ghossein et  al. 2018; Jugovac 
et al. 2018; Zoller et al. 2017; Burke 2010; Pálovics et al. 2014; Pálovics and Benc-
zúr 2015); however, only (Pálovics et  al. 2014) considers the issue of combining 
multiple base rankers. The latter will be discussed in more detail in Sect. 6.1.4, and 
evaluated empirically in Sect. 6.

Ranking combination has received considerable attention during the Netflix 
Prize competition, when the approach of Töscher et al. (2009) was essential for 
the winning entry. In the batch setting, one of the later approaches that can be 
adapted naturally to an online scenario is described in Busa-Fekete et al. (2011). 
The authors use the cumulative loss of each base algorithm weighted exponen-
tially to compute its score in the convex combination. One can notice that any 
arbitrary linear shift of the scores of a base algorithm would leave its cumulative 
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loss unchanged, but it would affect the base algorithm contribution to the mix. 
Therefore, the algorithm seems somewhat less sound, nevertheless, may still per-
form reasonably well on some practical instances. We will describe the algorithm 
more formally in Sect.  6.1.2, and evaluate it (for implicit feedback problems) 
empirically in Sect. 6.3.

Model combination methods have been studied extensively for classification as 
well (Kuncheva 2014). In the case of batch evaluation, complex combination mod-
els are often used. Conversely, a survey of more than sixty ensemble learning algo-
rithms (Gomes et al. 2017) showed that flat structures (such as convex combination) 
are more frequent for streaming data. For classification, ensembles of simple homo-
geneous models with dynamic cardinality are more frequent. There are heteroge-
neous ensembles as well, in which case the cardinality is fixed (see Gomes et  al. 
2017, and the references therein). Recommender systems, on the other hand, mostly 
rely on ensembles of complex heterogeneous ranking models, and the cardinality is 
fixed.

In an online setting, ranking combination was proposed by Radlinski et  al. 
(2008), Yue and Joachims (2009) using dueling bandits. Their approach assumes 
that the loss functions are convex and stationary. Neither assumption seems reason-
able for most ranking measures in a real application. There are several algorithms in 
the literature of online learning that can be considered for combining ranking mod-
els. Agarwal et al. (2010) considered a two-point approximation of the gradient for 
convex functions. The ranking measures are not convex, nevertheless, the algorithm 
is similar to SPSA (Spall 1992) that have been applied to optimizing non-convex 
functions as well. We will discuss the algorithm in Sect. 4.

An exponentially weighted algorithm was applied to optimize (non-convex) Lip-
schitz-continuous functions (Maillard and Munos 2010) with an O(

√
T) bound on 

the regret in full-information setting, where T is the length of the episode. While we 
rely on a grid structure over the weight space for our exponentially weighted algo-
rithms, it is possible to use interval trees as suggested in Cohen-Addad and Kanade 
(2017). The authors proposed full-information algorithm for online optimization of 
(smoothed) piecewise constant functions that is close to the optimization of rank-
ing measures. The algorithm discussed in the 1-dimensional case is computationally 
efficient if the discontinuities in the function can be easily determined. The authors 
propose some extensions for higher dimensions for the case when the separation sur-
faces are orthogonal. The orthogonality condition is not valid for the convex com-
bination of (ranking) models, however. A similar class of functions was discussed 
in Balcan et  al. (2019). Full information setting implies evaluating a prohibitively 
large number of points, when the number of base rankers is slightly larger. There 
are bandit variants that evaluate only one point per iteration, however, they scale 
badly on error. Using a grid-based variant, similar to ours, (Kleinberg 2005) proves 
a regret bound of O(T (d+1)∕(d+2)) , where d is the dimensionality of the problem. For 
stationary/stochastic continuous bandits hierarchical partitioning seems to offer bet-
ter empirical performance (Bubeck et al. 2011; Grill et al. 2015), but the theoretical 
guarantees remain the same in the worst case. Stronger guarantees exist when the 
function class constrained to be convex (Hazan and Levy 2014; Hazan and Li 2016). 
We are not aware of any theoretical guarantees for non-convex functions under 
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multiple, but limited number of evaluations. The exponentially weighted algorithms 
will be considered in Sect. 5.

We argued in Sect. 1 that given the moderate dimensionality of the convex combi-
nation, black-box optimization algorithms can be good candidates to optimize com-
bination weights of ranking models. There are certain properties of the environment 
that affect adversely the applicability of these algorithms, including the non-conti-
nuity of the ranking measures, the non-stationarity of the online scenario, and a fair 
amount noise in the evaluation. Stochastic approximation (SA) algorithms can deal 
well with the noise and the non-stationarity. We discuss one of the best known SA 
algorithms, Simultaneous Perturbation Stochastic Approximation (SPSA) in Sect. 4, 
and we evaluate it empirically in Sect. 6. The problem for algorithms such as SPSA 
is that ranking functions such as NDCG that are not continuous. In most games, the 
reward is also non-continuous, for instance, 1/0 for win/loss, or a discrete number of 
points (or money) that can be won in a card game. The algorithm RSPSA (Kocsis 
and Szepesvári 2006) was proposed for (offline) optimization of some parameters 
of a poker playing program. Our proposed algorithm, RFDSA+, builds on the idea 
of RSPSA, but identifies the flat area for each weight by switching to estimation by 
finite differences. The problem of flat regions in the ranking measures is discussed 
in more depth in Sect. 4, and illustrated empirically in Sect. 6.2. There are a large 
number of alternative black-box optimization algorithms (see e.g., Conn et al. 2009; 
Larson et  al. 2019). Of these, the covariance matrix adaptation evolution strategy 
(CMA-ES) was proven to be effective on a wide range of test benches with larger 
dimensional spaces (Hansen et al. 2010). In Sect. 6, we evaluate empirically a vari-
ant (Igel et al. 2006), which was shown to work well in dynamic environments (Au 
and Leung 2012).

3 � Problem setup

In our task, we want to combine the ranked lists of multiple base recommender algo-
rithms by monitoring the performance of the base recommenders and adaptively 
changing the weights on the fly. As soon as the base algorithms give a prediction, 
we have to apply and potentially re-learn the combination weight by a data stream-
ing, online machine learning method.

The difficulty of evaluating streaming recommenders was first mentioned in 
Lathia et al. (2009), although the authors evaluated models by offline training and 
testing split. Ideas for online evaluation metrics appeared first in Pálovics and 
Benczúr (2015), Vinagre et al. (2014), Pálovics et al. (2014). In the following, we 
use prequential evaluation (Gama et al. 2009), which has grown in popularity in 
recent years. Both batch and prequential evaluation rely on a set of recorded user-
item interactions. For batch evaluation, one splits the data in a training and a test 
set, and trains the algorithms on the former and tests on the latter. Conversely, 
for prequential evaluation, we test algorithms sequentially on each data point, 
and potentially use all preceding data points for training. Since often, the user 
selects a single item only, we will consider implicit feedback evaluation metrics 
with only one relevant item. The evaluation can easily be generalized for the case 
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when the user takes multiple choices or when the feedback is explicit. Prequential 
evaluation is closer to a real application, since in practice, user interaction occurs 
sequentially. Algorithms can also exploit the most recent data.

For batch and prequential evaluation, we have to assume that the preference of 
the user is independent of the recommendation of the system. This assumption is 
necessary for testing on a data collected independently, usually before the recom-
mender algorithms of the experiment are developed. In contrast, papers using the 
cascade model (Craswell et al. 2008) in a bandit scenario (see e.g., Kveton et al. 
2015) assume that the choice of the user is strongly determined by the recom-
mendation made. Offline testing is more difficult in this case, since the collected 
data needs to cover all possible recommendations. For an online retailer or hash 
tag recommendation (see Sect. 6.3.1), the user can select items regardless of the 
recommendation. In these domains, batch or prequential evaluations are reason-
able. Conversely, cascade models could be more appropriate for search engines.

The protocol for prequential evaluation with implicit feedback is as follows. 
Given a chronologically ordered data set with T records, prequential evaluation is 
an episode with T rounds. In each round t, we take the following steps. 

1.	 We observe the next user-item pair from the data set, and set the active user 
accordingly.

2.	 We query the recommender system for a top-K recommendation for the active 
user.

3.	 We evaluate the output recommendation list against the single relevant item jt 
that the user interacted with, and the recommender collects reward rt.

4.	 Finally, we reveal the relevant item jt to the recommender system, and allow to 
update the model using the additional user-item pair.

In the context of convex combination algorithms, we consider N base ranking algo-
rithms, and the ith base algorithm is denoted by Ai . In each round t = 1,… , T  , first, 
each base algorithm Ai assigns a score xtij to each item j. After that, the convex com-
bination algorithm assigns the weight �ti to each algorithm Ai . The weights form an 
N-dimensional vector �t = (�t1,… , �tN) . The parameter space is �t ∈ Θ = ℝ

N
0+
. The 

combined score of item j in round t is xtj =
∑N

i=1
�tixtij. The top lists are generated by 

sorting the items by the combined scores in descending order.
After the active user’s preferred item is revealed, the combination algorithm col-

lects the reward rt , which depends on the top list generated and on the user’s choice. 
With an abuse of notation, we will denote the reward of a base ranker Ai by rti , the 
reward corresponding to a weight assignment � by rt(�) , and the reward obtained by 
a combination algorithm C by rt(C) . The cumulative reward collected up to round t is 
Rt =

∑t

�=1
r� . We let Rti , Rt(�) , and Rt(C) denote the cumulative reward correspond-

ing to a base ranker, a weight vector, and a combination algorithm.
There are several choices of ranking measures. A popular choice, which we use 

in our experiments, is NDCG@K (Järvelin and Kekäläinen 2000). In prequential 
evaluation, we assume the scenario that there is only one item with nonzero label in 
each round t, namely jt . The NDCG@K of a permutation �t of the items reduces to
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as there is always exactly one relevant item and hence the ideal DCG is equal to one. 
Another ranking measure used in the experiments is the mean reciprocal rank (MRR 
Voorhees and Tice 1999). The MRR@K of a permutation �t is

4 � Resilient finite difference stochastic approximation (RFDSA+)

In this section, we present our main algorithm, RFDSA+. First, we provide a moti-
vation for the construction of the algorithm, followed by its full description.

The gradient of most ranking functions with respect to the combination weights is 
typically zero in most points where it exists. However, if we average over more time 
steps, the ranking function starts to “smooth out”. The gradient still cannot be com-
puted in a closed form, but it can be approximated by finite differences. For online 
optimization of convex functions, (Agarwal et  al. 2010) suggested the gradient to 
be approximated by simultaneous perturbation, with an online gradient step taken 
in the approximated direction. For non-convex optimization, a similar algorithm is 
known as simultaneous perturbation stochastic approximation (SPSA) (Spall 1992). 
The approximated gradient gti for weight component �ti is given by

where ct is an appropriately chosen, decreasing sequence,

and Δti are ±1 valued unbiased Bernoulli random variables.
In SPSA, especially with non-smooth functions, the difficulty lies in choosing the 

appropriate perturbation sequence, ct . The sum of ranking reward functions is a step 
function. If the perturbation size is too small, we might get stuck on a plateau and 
can not find the right direction. If the perturbation is too large, we miss local optima. 
The appropriate perturbation size might differ depending on the coordinate and time.

The RSPSA algorithm was proposed in Kocsis and Szepesvári (2006) for games, 
which also have a discrete reward (e.g., 1 for win, 0 for loss). The algorithm com-
bines the simultaneous perturbation approximation with the resilient backpropaga-
tion (RPROP) (Igel and Hüsken 2000) update rule.

In RPROP, we assign a distinct step size to each weight. The gradient update of 
the weights depends only on the sign of the gradient, and the step size determines 
how much the weight changes. The step sizes are also adjusted during the updating 
process. Considering each coordinate separately, the step size is updated based on 

rt = NDCG@K(�t) =

{
1∕ log2(rank�t (jt) + 1) if rank�t (jt) ≤ K,

0 otherwise,

MRR@K(�t) =

{
1∕rank�t (jt) if rank�t (jt) ≤ K,

0 otherwise.

gti =
rt(�t + ct�t) − rt(�t − ct�t)

ctΔti

,

�t = (Δt1,… ,ΔtN),
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the changes of the sign of the corresponding coordinate of the gradient. If the direc-
tion of the gradient changes, i.e., the sign switches, then the step size is decreased. 
Otherwise, it is increased.

In RSPSA, the perturbation size for each weight is connected to the step size, 
solving the above mentioned difficulty. The RPROP update rule is designed for 
batch update, and therefore, in our setting, we use mini batches to collect the gradi-
ents before an update.

We designed our new method by observing the behavior of RSPSA for ranking 
combination. One of the strengths of the RPROP update rule is that it increases the 
update steps on a large plateau, taking larger steps in the directions of the gradient. 
Ranking measures as function of a combination weight consist of constant intervals. 
However, if the perturbation is sufficiently large, the averaged gradient estimate will 
be nonzero. Therefore, if the step size for a weight is small in a flat area, then it 
should be increased in order to escape the flat area, but also in order to be able to 
estimate the right direction. In other words, the weight needs a sufficiently large per-
turbation to be able to influence the ranking function.

We observed that in RSPSA, the estimated direction changes often in a flat area. 
In accordance to the RPROP rule, the change in the direction results in a decrease of 
the step size, which is contrary to the desired behavior outlined above. To illustrate 
the problem, consider a ranking function that is completely flat in the direction of 
some, but not all coordinates in the neighborhood of the current �t . In this case, the 
sign of the coordinates of the estimated gradient corresponding to the ‘flat’ coordi-
nates becomes an unbiased Bernoulli variable. The reason behind this behavior is 
that even if the ranking function is completely flat with respect to coordinate i, the 
numerator of gti will still be nonzero because of the non-flat coordinates. However, 
the value of the numerator will be independent of the randomly chosen direction of 
Δti , that still appears in the denominator, and hence gti will simply mirror the ran-
dom variable Δti.

To remedy the problem of flat regions, we switch from simultaneous perturbation 
to finite differences in order to identify that the ranking function is flat with respect 
to the weight in question. When the gradient is estimated by finite differences, only 
one weight is perturbed at a time, the other weights remain unchanged. Therefore, 
we eliminate the noise coming from the perturbation of the other weights. If we 
detect a flat region, then we increase the step size.

The pseudocode of the RFDSA+ is provided in Algorithm  1. The key differ-
ences to RSPSA are switching from simultaneous perturbation to finite differences 
(lines 7–9), and handling the flat regions (lines 23–24). The RPROP update is given 
by lines 12–29. 



657

1 3

Online convex combination of ranking models﻿	

The algorithm has four parameters: the mini-batch size B, the initial step size �0 , 
and the step size adjustment variables �+ and �− . For noisy functions, typical values 
are �+ = 1.1 and �− = 0.85 (Kocsis and Szepesvári 2006). The initial value of the 
step size has minimal influence, since it is quickly adjusted; it is set to �0 = 0.1 . The 
size of the mini batch will be chosen 1000 in the experiments, the same as for SPSA 
and RSPSA. The length of an episode T, and the number of the base rankers N is 
determined by the problem.

The key variables of the RFDSA+ algorithm are the step sizes �i , corresponding 
to each weight �i . The auxiliary variables si store the previous weight update and 
are used for identifying a change in the direction of the partial derivatives. During a 
mini batch, the partial derivatives are collected in the variables gi.
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The RFDSA+ algorithm starts with an initialization phase in lines  1–4. After 
every user interaction, at time t, the partial derivatives are computed as follows. 
For each base ranker i, we perturb its weight by twice the corresponding step size 
(line 8). The coupling factor 2 is standard for RSPSA (Kocsis and Szepesvári 2006), 
but slightly different values can be used as well. We use one-sided positive pertur-
bation in the description of the algorithm. Using one-sided perturbation halves the 
number of evaluations needed. The partial derivatives gi are updated in line 9, using 
the finite difference estimator.

At the end of each mini batch, the weights �i and the step sizes �i are updated 
according to the RPROP rule (Igel and Hüsken 2000) in lines 12–29, independently 
for each component i. The auxiliary variable h detects the direction change of the 
partial derivative. If there is no change (lines 14–16), the step size is increased, and 
the weight �i will be updated in the direction of the derivatives with the amount 
determined by the step size. If there is change in the direction (lines 17–19), then the 
step size is decreased, and the weight is left unchanged. The weight will be updated 
after the next mini batch (line 21). The key modification that deals with flat regions 
in the partial derivatives is shown in lines  23–24. Accordingly, the step size is 
increased if the partial derivative is 0 during the mini batch. Detecting the flat region 
is made possible by using finite difference estimation, instead of simultaneous per-
turbation. The weights are modified in line 26. As discussed previously, si depends 
only on the sign, and not the size of the estimated gradient.

We note that while that differences between the RSPSA and the RFDSA+ algo-
rithms are seemingly small, the ability to handle better the flat areas proves to be 
significant in the empirical performance, as discussed in Sect. 6.

5 � Grid based exponentially weighted algorithms

The algorithms presented in this section explore the weight space globally, without 
relying on the existence of a gradient of the reward function. We define a grid struc-
ture over the weight space, and we explore the grid points using some variant of the 
exponentially weighted forecaster (Cesa-Bianchi and Lugosi 2006).

In Sect. 5.1, we consider an algorithm for the case when there is no limit on the 
number of evaluations per round. Since a very large number of evaluations is not 
feasible in a practical application, we propose an exponentially weighted algorithm 
with limited number of evaluations in Sect.  5.2. The theoretical properties of the 
exponentially weighted algorithms are analyzed in Sect. 5.3. As an important theo-
retical contribution, we show that the proposed algorithm for the limited case has 
near-optimal worst-case performance.

5.1 � ExpW

Exponentially weighted algorithm for Lipschitz-continuous functions in the full-infor-
mation case was proposed in e.g., (Maillard and Munos 2010). They propose a simple 
variant that relies on a uniform grid over parameter space, and use the exponentially 
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weighted forecaster to select the next parameter vector, and update the estimated value 
for each grid point.

While our ranking measures are non-continuous, we will provide a weaker Lip-
schitz-like condition in Sect. 5.3, Eq. 5, that is sufficient for the good performance of 
the algorithm. The condition is validated empirically in Sect. 6.3.3.

In the algorithm denoted ExpW, we choose a subset Q from the parameter space Θ . 
We consider here a more general definition of the set Q, but in practice, we will use a 
uniform grid, described in more detail later. In each round t, we select a weight vector 
� ∈ Q , according to a probability distribution pt(�) , defined as

where � , called the learning rate, is a parameter specified in Sect. 5.3. After the user 
feedback, we evaluate the ranking performance rt for all weight vectors �.

We will show that this algorithm has close to optimal performance guarantees, but 
the number of evaluations per round is high, especially in the presence of several base 
rankers.

5.2 � LAG

In order to decrease the number of points that need to be evaluated in each round, we 
can apply the limited advice exponentially weighted forecaster (Seldin et al. 2014) on 
a similar set Q. We denote this algorithm by LAG. We limit the number of evaluated 
weight vectors in each round by M. The point of Q to play is chosen using a random 
distribution, similarly to ExpW. However, as not all weight combinations of Q are eval-
uated, we need to estimate the reward values. As in Seldin et al. (2014), the estimator 
r̂t(�) of rt(�) is defined by

where �t(�) is the indicator of � being evaluated in round t.
We select the weight vector � ∈ Q in round t by sampling from the probability dis-

tribution pt:

We evaluate the selected vector and sample uniformly further M − 1 weight vectors 
without replacement from Q that are also evaluated. We note that the estimator r̂t(�) 
is unbiased, however, it has high variance when M is small. Moreover, when all vec-
tors in Q are evaluated ( M = |Q| ), the LAG algorithm is identical to ExpW.

(1)pt(�) =
exp

�
�
∑t−1

�=1
r�(�)

�

∑
��∈Q exp

�
�
∑t−1

�=1
r�(�

�)
� ,

r̂t(�) =
rt(�)

pt(�) + (1 − pt(�))
M−1

|Q|−1

�t(�),

pt(�) =
exp

�
𝜂t
∑t−1

𝜏=1
r̂t(�)

�

∑
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The pseudocode of LAG is provided in Algorithm 2. In the pseudocode, we 
use the variable w(�) to store exp(𝜂t

∑t−1

𝜏=1
r̂t(�)) . The probability of being evalu-

ated is denoted by p�(�) . The algorithm has three inputs: the limit on the number 
of evaluations per round, M,   which is a design parameter, the set Q and the 
learning rate � , which will be chosen in the next subsection. 

5.3 � Theoretical properties

In online learning, performance bounds are derived for the regret of the algo-
rithm (Cesa-Bianchi and Lugosi 2006). Informally, the regret is the performance 
loss from not knowing the best weight vector. Formally, it is the difference 
between the reward of the best constant weight vector � ∈ Θ and the reward col-
lected by the algorithm:

Comparing the reward of the combination algorithm to the best constant gridpoint 
mirrors the expectation that the performance of the algorithm depends on the envi-
ronment. If all weight vectors pay a low reward, then we do not expect a high reward 
from the combination algorithm either. If a low regret can be guaranteed, that means 
the performance of the algorithm is always close to the optimal convex combination. 
Regret bounds deal with worst-case regret, since they bound the maximum expected 
regret over all possible environments.

In the following, we first provide an upper bound for ExpW. This will require 
an assumption on the cumulative ranking measure. We show that this bound is 
log-optimal. Then, we provide regret upper and lower bounds for LAG, under 
the same assumption. The proofs are provided in the “Appendix”.

(2)ℜT (C) = max
�∈Θ

RT (�) − RT (C).
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5.3.1 � Full information

In case of ExpW, if an appropriately large Q is chosen, and the cumulative reward 
function RT (�) is sufficiently smooth, then the expected regret is guaranteed to be 
low. The following proposition formalizes this statement.

Proposition 1  Let Q ⊂ Θ be a finite set such that for some constant c ∈ ℝ

Then the regret of the exponentially weighted forecaster applied on Q is bounded by

that can be achieved by setting � =
√

2
ln |Q|
T

.

The goal of the condition in inequality (3) is to ensure that the optimum is not 
on an isolated spike of the parameter space, making it practically impossible to be 
found by any algorithm. For a sufficiently large T, while function RT (�) still con-
sists of small steps, it is fairly smooth in practice, as observed in Sect. 6.3.3. The 
following property is a generalization of the Lipschitz-property for such functions 
that lets us find appropriate subsets.

Property 1  (Lipschitz-like) Define a d-dimensional �-grid as 
{0 ≤ i∕� ≤ 1 ∣ i ∈ ℤ0+}

d . The function RT is Lipschitz-like on Φ = [0, 1]d if there is 
a � ∈ ℝ such that for all � ∈ ℝ0+,

where G� is the �-grid.

The parameter � of the grid describes the density of the grid. The distance of 
closest points in a �-grid is 1∕� . There are ⌊� + 1⌋ points along each edge of the 
parameter space, and the grid consists of ⌊� + 1⌋d points.

Note that without loss of generality, in the case of ranking combination, we 
can assume that the sum of the weights is 1. Applying this restriction, we can 
decrease the dimensionality of the problem by 1, thus in our case the dimension-
ality is d = N − 1 . For instance, in the case of two base rankers, the weight of the 
first ranker will be �1 ∈ [0, 1] , and the second will be �2 = 1 − �1.

If RT is Lipschitz-like, then a 
√
T-grid satisfies the condition of Proposition 1 

for c = �
√
d . As a corollary, applying ExpW on this grid results in an Õ(

√
T) 

regret bound. This is formalized in the next proposition.

(3)E

�
max
�∈Θ

RT (�) −max
�∈Q

RT (�)

�
≤ c

√
T .

(4)E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤

�
T

2
ln �Q� + c

√
T

(5)E[max
�∈Φ

RT (�) −max
�∈G�

RT (�)] ≤
�T

√
d

�
,
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Proposition 2  If RT is Lipschitz-like with the constant � , then the regret of the expo-
nentially weighted forecaster applied on a 

√
T-grid is bounded by

To show that under these conditions no stronger algorithms may exist, we prove a 
matching lower bound.

Proposition 3  For the combination problem on Θ , the expected regret is lower 
bounded by

where the infimum is over all playing strategies and the supremum is over all oblivi-
ous environments satisfying Property 1 for � = 1.

If we compare the lower bound to the upper bound of ExpW for functions that 
satisfy Property 1, we obtain that the performance of ExpW is optimal up to loga-
rithmic terms. Since functions that satisfy Property 1 also satisfy the condition of 
Eq. 3 by taking the grid as the subset Q, the proposition provides a lower bound for 
Proposition 1 as well.

For two base rankers, the parameter space can be represented by a section. Then, 
a uniform grid with O(

√
T) gridpoints can be sufficient if the cumulative function 

acts like a Lipschitz function on the grid points. This latter condition will often 
be true (see also Fig. 5). However, with more base rankers, the number of points 
required for a Lipschitz-like cumulative function is Ω(T (N−1)∕2) . Since ExpW needs 
to evaluate the reward in each point, the number of evaluations scales exponentially 
with the number of base rankers.

5.3.2 � Limited number of evaluations

We have seen that the ExpW algorithm has strong regret guarantees, but at the price 
of high number of evaluations. In practice, the number of evaluations are limited for 
computational reasons. We now turn our attention to the case when the number of 
evaluations are limited, upper bounding the regret of the LAG algorithm. Decreas-
ing the number of points allowed to be evaluated provides a trade-off between com-
plexity and efficiency, as stated by the following proposition.

Proposition 4  Let Q ⊂ Θ be a finite set such that for some constants c, c� ∈ ℝ

and |Q| < c�(TM)
d

d+2.

(6)E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤

�
1√
2
+ �

�
√
Td ln T .

(7)inf sup E[ℜT ] ≥ 0.03
√
T ,

(8)E

[
max
�∈Θ

RT (�) −max
�∈Q

RT (�)

]
≤ c

T

(TM)
1

d+2

,
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Then the expected regret of the limited advice exponentially weighted forecaster 
applied on Q for any M ≤ |Q| is bounded by

that can be achieved by setting �t =
√

M ln |Q|
t|Q| .

The bound clearly shows the trade-off between the number of points evalu-
ated and the regret. Assuming the Lipschitz-like property, and setting c = �

√
d , 

c� = 2 in Proposition 4, we obtain the first main theoretical result.

Theorem 1  If RT is Lipschitz-like with the constant � , then the regret of the limited 
advice exponentially weighted forecaster applied on a (TM)

1

d+2-grid is bounded by

We note that if all points of Q can be evaluated, then the bound with a 
√
T

-grid is similar to the bound on ExpW stated in Proposition 2.
To show that LAG is optimal, we need to show that in an environment that 

satisfies our conditions, no algorithm can perform better. This is stated in the 
following theorem.

Theorem 2  For the combination problem on Φ = [0, 1]d with M ≤ T� observations 
per round and 3

4
log T ≤ T

d−2�

d+2  , the expected regret is lower bounded by

where the infimum is over all playing strategies and the supremum is over all oblivi-
ous environments satisfying Property 1 for � = 3.

Note that for any fixed 𝜙 <
d

2
 , the condition of the theorem is satisfied for 

large enough T. The case of � ≥
d

2
 is not relevant because the full information 

lower bound in Proposition  3 provides a stronger bound. This is not surpris-
ing since ExpW needs to evaluate T

d

2 weight combinations only for optimal 
performance.

We observe that the worst-case regret of LAG is much higher than that of 
ExpW. Nevertheless, it is also clear that the bound for limited number of evalua-
tions is improvable by at most logarithmic factors. We note that Theorem 1 pro-
vides the first sub-linear regret bound for non-convex continuous domains under 
limited number of evaluations. The conditions of this bound are also very gen-
eral and non-restrictive.

(9)E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤

�
c + 2

√
c� ln �Q�

�
T

d+1

d+2

M
1

d+2

(10)E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤

�
�
√
d + 2

√
2 ln(2TM)

�
T

d+1

d+2

M
1

d+2

(11)inf sup E[ℜT ] ≥ 0.03
T (d+1)∕(d+2)

M1∕(d+2)
,
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6 � Experiments

In this section, we evaluate empirically the proposed combination algorithms. 
First, we describe the baseline combination algorithms. Then, we illustrate the 
strengths of our algorithms using synthetic data in Sect. 6.2. Experiments on real 
data are provided in Sect. 6.3.

6.1 � Baselines

For baselines, we use two exponentially weighted algorithms, four stochastic 
approximation variants similar to RFDSA+, a stochastic gradient algorithm that 
uses a surrogate function, and the state-of-the-art black-box optimization algo-
rithm CMA-ES, described in the following.

6.1.1 � ExpA

The simplest choice to deal with multiple base rankers is to select the base ranker 
that appears the best. In a non-stationary environment this can be best achieved 
by the exponentially weighted forecaster. Accordingly, the combination algo-
rithm, denoted by ExpA, selects base ranker Ai in round t with probability

Selecting base ranker Ai in round t means setting �ti = 1 and �tj = 0 for j ≠ i . The 
algorithm is guaranteed to achieve a cumulative reward that is not worse than the 
cumulative reward of the best base rankers by an additive O(

√
T) term in expecta-

tion (Cesa-Bianchi and Lugosi 2006).

6.1.2 � ExpAW

In Busa-Fekete et  al. (2011), the authors proposed an algorithm that can be 
regarded as a mix of ExpA and ExpW. The algorithm, denoted here by ExpAW, 
relies on the cumulative performance of the base rankers (as ExpA), but it is used 
as the weight of the base ranker, instead of using it as selection probability. The 
weight of base ranker Ai in round t is

It is easy to see that the reward of a base ranker does not change if the scores of 
the rankers are scaled by some factor. However, the scaling will affect the reward 
of the combination algorithm in an arbitrary way. Nevertheless, with a reasonable 

(12)pti =
e−�t

∑t−1
�=1

r�i

∑N

j=1
e−�t

∑t−1
�=1

r�j

.

(13)�ti =
e−�t

∑t−1
�=1

r�i

∑N

j=1
e−�t

∑t−1
�=1

r�j

.
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normalization, the algorithm may still lead to a decent performance, and it is less 
likely to be affected by an increase in the number of base rankers.

6.1.3 � Stochastic approximation algorithms: SPSA, RSPSA, RSPSA+ and RFDSA

The SPSA and RSPSA algorithms were described in Sect. 4. RFDSA denotes the 
algorithm that uses finite differences for the estimation of the gradient, and RPROP 
for updating the combination vector, but it is not increasing the step size in flat 
regions. RSPSA+ extends RSPSA with the step size increase for flat regions, but the 
partial derivatives are estimated using simultaneous perturbation (as in the original 
RSPSA formulation). These two hybrid choices are designed to elicit the individual 
effect of the two elements when switching from RSPSA to RFDSA+.

6.1.4 � SGD

While we advocate in this paper a direct optimization of the ranking measure, most 
classification or ranking combination algorithms optimize a surrogate of the eval-
uation measure by stochastic gradient descent. The surrogate function can appear 
explicitly or implicitly in the formulation of the algorithm. For ranking it is usual to 
consider the current item as a positive instance, and some randomly sampled items 
as negative instances. In this case the target for the positive item is set to 1, and for 
negative items 0. After seeing a user-item pair, a stochastic gradient step is taken to 
minimize the mean squared error between the ranking score ( xtj ) and the target value 
of the positive item and of the selected negative items. The algorithm was used by 
Pan et  al. (2008) for matrix factorization and by Pálovics et  al. (2014) for online 
combination. In the following, we refer to this algorithm by SGD.

We do not expect the algorithm to have difficulty with a large number of base 
rankers. However, minimizing the surrogate loss may not result in a sufficiently 
good optimization of the original reward function.

6.1.5 � CMAES

Covariance matrix adaptation evolution strategy (CMA-ES) is a black-box optimi-
zation algorithm that was proven to be effective on a wide range of test benches 
with larger dimensional spaces (Hansen et al. 2010). For mutation, CMA-ES sam-
ples from a Gaussian distribution that depends on adaptive covariance matrices. The 
selection strategy can be elitist or non-elitist. In a non-elitist strategy, the current 
population is replaced by their best offspring. In an elitist strategy, parents are pre-
served if they are sufficiently good. Since, in our online learning scenario, the goal is 
not only to find the best weight vector (as it is in an optimization scenario), but also 
to exploit the current best solution, we feel that the more aggressive, elitist selection 
is appropriate. We use an elitist selection variant (Igel et al. 2006), which was shown 
to work well in dynamic environments (Au and Leung 2012). The variant is referred 
generally as CMA-ES(1 + � ), where 1 denotes the number of parents kept, and � is 
the size of the candidate population. We will set � = N , which means that the algo-
rithm will use the same number of evaluations as RFDSA+. The fitness of the parent 
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is reevaluated when the offspring population is evaluated. This is necessary to avoid 
persisting with an individual that got ‘lucky’ by having an evaluation at a time when 
the base rankers had high success rate. The evaluation is performed in batches of 
5000 rounds. This seemed empirically a good choice to reduce sufficiently the noise 
of the evaluation, while still allowing the search to progress. In the following, we 
will refer to the algorithm by CMAES.

6.2 � Synthetic data

In this section, we illustrate the strength and weaknesses of the combination algo-
rithms using synthetic functions. The advantage of these functions is that we can 
control their shape, eliciting particular characteristics. The optimal weight vectors 
are known for these functions. Therefore, we show the performance of the algo-
rithms as average cumulative regret, (max�∈Θ Rt(�) − Rt(C))∕t.

6.2.1 � Test functions

The functions used in this set of experiments do not assume an underlying rank-
ing, but they do preserve certain properties of ranking functions. We note that all 
combination algorithms discussed, except SGD, rely only on the ranking value of a 
particular combination vector, and do not use explicitly the item scores assigned by 
base ranking algorithms. All functions are stationary and stochastic. At each time 
step t, the random functions Ft are constructed as binary-valued (0,1) segments. 
The functions are defined on the unit cube [0, 1]d , and if a combination algorithms 
selects a vector outside of the cube, then the value corresponding to its projection on 
the cube is returned.

The first function sequence, F1 , relies on a one-dimensional quadratic function 
f1(�) = 0.5 − (� − 0.5)2 . At each time step, the function is divided in 100 segments, 
with the delimiting points chosen uniformly. The value of the segment j is a 0-1 
valued Bernoulli variable with the expectation given by (f1(�j1 ) + f1(�j2 ))∕2 , where 
�j1 and �j2 are the extremities of the segment. In Fig. 1, left we show the function f1 , 
along with a random instance F1,t and the average of F1,t taken over 1000 time steps. 
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Fig. 1   Synthetic test functions F1 (left) and F4 (right)
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We observe, that the function is fairly noisy even after the averaging. The expecta-
tion of F1 is concave, therefore combination algorithms that approximate the gradi-
ent (in particular SPSA) are expected to perform well.

The second function sequence, F2 , is a d-dimensional version of the previous 
function. At each time step, each coordinate is divided in 100 intervals, resulting in 
100d cubes. As previously, the value of a cube is a Bernoulli variable with expecta-
tion given by 

∑d

i=1
(f1(�i,j1) + f1(�i,j2))∕2d.

The third function sequence, F3 , relies on a function constructed by the union of 
two quadratic functions

The function has a lower (local) maximum at � = 0.25 and a higher (global) maxi-
mum at � = 0.75 . At each time step, 100 segments are constructed in a similar way 
as for F1 . Since the function has two separate maxima, gradient approximation algo-
rithms can get stuck in the local maximum.

The fourth function sequence, F4 , relies on a one-dimensional function specially 
constructed to have several flat regions. The construction is similar to the function 
used in the lower bound in Kleinberg (2005). The interval is split in two, with one 
chosen as the better one and the other the sub-optimal one. The better sub-interval is 
split recursively. The elevation of the better sub-interval is also halved after a split. 
The precise shape of the function is shown in Fig. 1, right. The segments are chosen 
again randomly, but only one discontinuity is chosen per each oblique interval. The 
expected value of each segment is the value of the constant interval that is included 
in the segment. A sample ‘segmentation’ is also shown in the figure as f4,t(�) . Simi-
larly to previous functions, the value observed for a segment is a Bernoulli 0–1 val-
ued variable with the expected value described above.

The fifth function sequence, F5 , relies on a two-dimensional extension of the pre-
vious function. The segments for the first coordinate is constructed as for F4 . 100 
segments are chosen for the second coordinate, with extremities chosen uniformly. 
The expectation for the second coordinate is constant, and it is only present to add 
noise when simultaneous perturbation is preferred. When the value of the function is 
queried at a certain time, it will return the same value for queries that have the sec-
ond coordinate the same and the first coordinate fall on the same flat region. It can 
result in different values if the second coordinate is different.

The sequence of functions enlisted above are similar to ranking functions in that 
ranking functions are also made of discrete segments with fixed values (although, 
not necessarily binary). The stationary condition makes it easier to define the 
optima, and to keep the desired characteristics of the functions.

6.2.2 � Convergence of LAG

In the first set of experiment with synthetic data, we validate empirically the theo-
retical results from Sect. 5.3 concerning the convergence of the LAG algorithm. We 
use the d-dimensional quadratic function sequences F2 , with d = 1, 2, 3 . The regret 

f3(𝜃) =

{
0.5 − 0.8(𝜃 − 0.25)2 − 1.2 ⋅ 0.252, 𝜃 < 0.5

0.5 − 0.8 ⋅ 0.252 − 1.2(𝜃 − 0.75)2, 𝜃 ≥ 0.5
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of LAG after T = 1, 000, 000 rounds is plotted in Fig.  2 with varying number of 
sample points per round (M). We observe that the empirical results mirror fairly well 
the theoretical bound of O(1∕(TM)d+2).

The main discrepancy between the theoretical bound and the empirical perform 
is at M = 1 . The discrepancy can be understood by comparing the base bandit algo-
rithm used in LAG (Seldin et al. 2014) with M = 1 to non-stochastic bandit algo-
rithms with explicit exploration, such as Exp3.P (Auer et al. 2002) or with implicit 
exploration (Neu 2015). The lack of exploration term in the limited advice algo-
rithm leads to a higher variance of the estimation of the reward, since the selection 
probabilities ( pti ) can be very small. The higher variance is an obstacle for deriving 
high probability bounds, but not as much for deriving bounds on the expected regret. 
It also appears to affect negatively the empirical performance, especially when the 
number of arms (i.e. grid points) are large such as in our case. The problem is miti-
gated when M is larger, since the selection probability is mixed in the estimation 
with uniform distribution using a coefficient linear in M − 1 (see Algorithm 2, line 
10).

6.2.3 � Performance of black‑box optimization algorithms

The next set of experiments illustrate the performance of black-box optimization 
algorithms, focusing on the properties of the reward functions such as concavity, 
multi-modality and flatness.

First, we test algorithms on F1 , which is concave and unimodal, and the results are 
shown in Fig. 3, left. LAG with a moderate number of samples per round ( M = 10 ) 
is doing well for this function. This is not surprising since it is a one-dimensional 
function with a small Lipschitz constant near the optimum. SPSA is doing also 
well for this function, which is natural since for similar algorithms there are known 
O(

√
T) regret bounds on concave reward functions1 (Shamir 2017). RSPSA and 

Fig. 2   The average regret of 
LAG samples per round limited 
to M on the d-dimensional test 
function F2 after T = 1, 000, 000 
rounds. Each data point is aver-
aged over 1000 runs

 0.0001

 0.001

 0.01

 0.1

 1  10  100  1000
R

eg
re

t
M

LAG, d=1
LAG, d=2
LAG, d=3

0.5/(TM)1/3

0.5/(TM)1/4

0.5/(TM)1/5

1  In fact, the problem discussed in Shamir (2017) was the minimization of convex functions, which is the 
reciprocal problem to the maximization of concave reward functions.
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RFDSA+ perform identically, and converge faster than SPSA although they have 
a slightly higher regret after T=1,000,000 rounds. CMAES has the weakest result.

Next, we use F3 , which is multi-modal, and the results are being shown in Fig. 3, 
right. The Lipschitz constant near the optimum is similar for F1 and F2 , and the dif-
ference between the expected reward at the two maxima is sufficiently large. Conse-
quently, LAG is performing similarly well as in the previous experiment. SPSA and 
RSPSA/RFDSA+ are much more affected. These algorithms will often converge to 
the weaker local maximum. Interestingly, CMAES is able to cope better with multi-
ple optima. While CMAES and the SA algorithms are all local search algorithms the 
candidate selection in CMAES has a longer tail compared to the perturbation size of 
the SA algorithms. This leads to an advantage for CMAES, since it is more likely to 
escape local optima.

Finally, we test the effect of flatness extension in RFDSA+. For the 1-dimen-
sional function F4 , we observe in Fig. 4, left that RFDSA+ significantly outperforms 
RSPSA. RFDSA+ deals with the flatness of the function by switching to finite-dif-
ference estimation and increasing the step-size when flatness is detected. The effect 
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Fig. 3   The time-varying regret of black-box optimization algorithms on the one-dimensional quadratic 
test functions F1 (left) and F3 (right). Each data point is averaged over 1000 runs, and 99% confidence 
intervals are shown. Note that most of the intervals are very small
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of the two mechanism is tested in Fig. 4, right with the two-dimensional function 
F5 . We observe that switching to finite-difference estimation only (RFDSA) dete-
riorates the performance. Dealing with the flatness using simultaneous perturbation 
(RSPSA+) has some advantage over RSPSA, but a very small one. The two mecha-
nisms combined in RFDSA+ lead to a significant increase in performance. Of the 
remaining algorithms, SPSA is unable to deal with the non-concavity of the func-
tion, especially with the flatness, and performs poorly. CMAES starts slowly, but 
overtakes slightly RSPSA after nearly 1,000,000 steps. The Lipschitz constant near 
the optimum of F4 (and consequently, F5 ) is fairly large, therefore, the performance 
of LAG is not as strong anymore, especially for the two-dimensional function.

6.3 � Real data

In this section, first, we empirically investigate how well the combination algorithms 
perform for two base rankers, compared to the optimal (static) combination. Then 
we analyze how the combination algorithms scale when a larger number of base 
rankers are available. We can not compute analytically the optimal static weight 
assignment on real data, and therefore, we show the performance as the average 
cumulative reward ( Rt(C)∕t).

6.3.1 � Data sets

All data sets consists of time-ordered sequence of user-item pairs. Only the first 
occurrence of a user-item pair is included. The task at a certain point of time is to 
rank the available items for the current user. After a top list is provided by a par-
ticular algorithm, a reward is obtained using NDCG@100 as ranking measure (see 
Sect. 3). In our case, there is only one item with nonzero label (the one from the cur-
rent user-item pair). Following the evaluation step, the item is revealed to the base 
rankers and the combination algorithm, allowing them to update their model.

In these experiments, we use three data sets from the Amazon collection (CDs 
and Vinyl; Movies and TV; Electronics McAuley et al. 2015), the 10M MovieLens 
data set,2 and a Twitter data set, where the items are defined by the hashtags used in 
tweets (Pálovics et al. 2017).

6.3.2 � Base rankers

We rely on two basic classes of collaborative filtering models: item-based nearest 
neighbor (item2item) (Sarwar et al. 2001) and matrix factorization (Abernethy et al. 
2007). These two classes of methods represent the most successful and most popu-
lar collaborative filtering algorithms3 Koren et al. (2009), Pilászy et al. (2015). In 

2  http://​group​lens.​org/​datas​ets/​movie​lens/.
3  For particular data sets, there may be superior algorithms, especially in batch settings. The two main 
base rankers considered are representatives of two main approaches to collaborative filtering, and have 
natural incremental versions. None of the combination algorithms exploit the particular base rankers, 
thus replacing the base rankers is straightforward.

http://grouplens.org/datasets/movielens/
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addition to the two techniques, we also include temporal popularity (denoted Pop), 
which records how many times an item was visited in the preceding time window.

For item2item, we use a time-decayed item-to-item similarity function, the model 
being updated every day. When computing the score for an item, we consider the 
similarity to all items previously visited by the user. Thus, this algorithm also incor-
porates the recent history.

We include four matrix factorization variants: online matrix factorization (OMF) 
(Pan et  al. 2008), online asymmetric matrix factorization (OAMF) (Koren 2008), 
batch matrix factorization (MF), and (batch) implicit alternating least squares 
(iALS) (Hu et  al. 2008). All variants use latent factors with ten dimensions. The 
online variants update once after every user-item pair. The batch variants retrain 
their models after every 100,000 time steps, using a required number of iterations. 
We use stochastic gradient descent for OMF, OAMF and MF with the current item 
from the data set designated as positive item, and additional negative items sampled 
randomly (Pan et al. 2008).

The parameters of the base rankers are optimized for each data set. In the combi-
nation, the scores of the base rankers are normalized by the standard deviation.

6.3.3 � Combination of two models

We start with the combination of two base models OMF and item2item. We let � 
denote the weight of OMF in the convex combination. The average cumulative 
reward at the end of the episode ( RT∕T  ), depending on � , is shown for the Ama-
zon-CD data set in Fig. 5. Interestingly, the optimum is reached for a combination 
that puts heavy weigh to item2item, even though OMF alone performs better than 
item2item.

Fig. 5   Reward with various 
combination coefficients ( � ) for 
the combination of OMF and 
item2item on the Amazon-CD 
set. In the figure, � denotes the 
normalized weight of the OMF 
base ranker. The normalized 
weight for item2item is 1 − �
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The average cumulative reward of the combination algorithms is shown in Fig. 6. 
The peculiar shape in the first three years is due to the low amount of data collected 
and the more significant changes in the data distribution. We observe the relative 
order of the base algorithms changes over time: at first OMF is better, then item-
2item, and then OMF again. This shows that selecting an algorithm on partial data, 
and using only that algorithm later is a poor choice. ExpA follows the better base 
algorithm, being slightly worse than that due to exploration. ExpW4 achieves a per-
formance that equals to the best static convex combination (cf. Fig. 5). ExpAW is on 
par with ExpW in the beginning, but its performance deteriorates later. This is natu-
ral, since it is choosing a larger weight for OMF due to the superior performance of 
OMF, despite that the actual optimum is to assign a large weight to item2item, as 
seen in Fig. 5. SGD has similar performance to ExpAW, giving also a larger weight 
to OMF. This is possibly because SGD and OMF optimize the same surrogate loss 
function. RSPSA, RFDSA+ and CMAES obtain near optimal performance. SPSA 
performs somewhat weaker than the other SA algorithms, and LAG with M = 10 

Fig. 6   Average cumulative 
NDCG of the ranking algo-
rithms on the Amazon-CD set
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Fig. 7   The weight assignment 
of the ranking algorithms on 
the Amazon-CD set. OptG100+ 
corresponds to the optimal 
weight assignment over 100 
uniform grid points, with a few 
additional points chosen near 
the presumed optimum. In the 
figure, � denotes the normalized 
weight of the OMF base ranker. 
The normalized weight for 
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4  For ExpW, the set of points P consisted of a uniform grid with 100 points.
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has similar performance to SPSA. We note that the reward has a fairly large Lip-
schitz constant near the optimum (cf. Fig. 5), thus the weaker performance of LAG 
is not surprising.

The weight assignment of the combination algorithms is shown in Fig.  7. 
The figure includes additionally an optimal static weight assignment, i.e. 
�t = argmax

�∈ΘRt(�) . By analyzing the weight assignment of the five combina-
tion algorithms that optimize NDCG directly (SPSA, RSPSA, RFDSA+, LAG and 
CMAES), we observe that all give item2item a large weight, although the weights 
for SPSA and LAG are further away from the optimum. RSPSA, RFDSA+, and 
CMAES follow closely the optimal weight assignment, and therefore, match the 
optimal performance of ExpW.

6.3.4 � Scaling

We analyze the scaling of the combination algorithms in two ways: (1) by including 
an increasing number of OMF base rankers (differing only in the random initializa-
tion) next to item2item, and (2) by including all six base rankers in the mix.

In the first case, assuming that the various OMF models achieve similar perfor-
mance, one expects that the optimal weight for item2item stays relatively the same, 
with the weight of one OMF from the previous section divided among the multiple 
instances. The difficulty here is that the proper weight assignment (for item2item) 
needs to be found in a higher dimensional space. For larger dimensions, placing grid 
points that cover the parameter space sufficiently would require exponential number 
of evaluations, thus we do not include ExpW in this experiment. The performance of 
the other combination algorithms is shown in Fig. 8.

We observe that the ranking performance of RFDSA+ is not dropping as the 
number of OMFs increases. It is even able to use the slight variation in the OMFs 
to increase the performance slightly. The performance of SPSA and RSPSA dete-
riorates significantly as more OMFs are included in the mix. CMAES copes better 
with the increase in dimension, but the performance also drops somewhat. LAG is 
perhaps the algorithm most impacted by an increase of the number of base rankers, 
which is in accordance with the theoretical results. ExpA, ExpAW and SGD all cope 

Fig. 8   Average NDCG of the 
ranking algorithms on the 
Amazon-CD set with varying 
number of OMFs. The combina-
tion includes one item2item and 
one to ten OMF base rankers. In 
the case of xOMF there is only 
one OMF, but the dimension of 
the latent factors is increased 
from 10 to the range of 10–100
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well with the increased dimension, but their performance is much weaker overall 
than that of RFDSA+. The relative invariance of ExpA underlines that the individual 
OMF rankers achieve similar performance; we checked that the variance of their 
NDCG score is indeed very small. Results on the other data sets are similar and 
omitted for brevity.

In Table 1, we show the performance of the combination algorithms when all 
the six base rankers are used. First, we notice that the individual performance of 
the batch base rankers (MF and iALS) is poor for all data sets. The performance 
of the other base rankers vary, depending on the data set. Regarding the per-
formance of the combination algorithms, we can draw a somewhat similar con-
clusion as for Fig. 8: RFDSA+ has significantly better performance for all data 
sets compared to other combination algorithms. We also note that the improve-
ment in performance over the best individual base ranker is considerable for all 
data sets. ExpA achieves approximately the performance of the best individual 
ranker. ExpAW and SGD cope reasonably well with more base rankers, but 
their performance is not exceeding by much the performance of the base ranker. 
SPSA, RSPSA and LAG (which were performing well for two base rankers) are 
not performing particularly well when a larger number of models are included 
in the mix. CMAES is the only other algorithm that significantly improves on 
the base rankers performances, but it is still considerably weaker than RFDSA+ 
except on the Twitter data set for which the disadvantage is small.

To validate the ranking performance, we evaluate the algorithms with 
MRR@100 (see Sect. 3), shown in Table 2. The results are fairly similar to those 

Table 1   Combination of six base rankers on five data sets

The average NDCG of the base rankers is shown at the top of table, while the average NDCG of the com-
bination algorithms at the bottom
The best performance for each data set is shown in bold

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter

item2item 0.0343 0.0350 0.0156 0.1445 0.0221
OMF 0.0389 0.0440 0.0222 0.1357 0.3528
Pop 0.0628 0.0663 0.0347 0.0857 0.3486
OAMF 0.0318 0.0320 0.0160 0.1717 0.3118
MF 0.0052 0.0086 0.0056 0.0051 0.0055
iALS 0.0046 0.0075 0.0060 0.0053 0.0054
SGD 0.0640 0.0674 0.0353 0.1568 0.3563
ExpA 0.0628 0.0663 0.0347 0.1717 0.3486
ExpAW 0.0628 0.0664 0.0347 0.1717 0.3486
LAG (M=10) 0.0643 0.0670 0.0349 0.1701 0.3950
CMAES 0.0738 0.0745 0.0390 0.1788 0.4599
SPSA 0.0696 0.0692 0.0349 0.1678 0.3683
RSPSA 0.0640 0.0670 0.0396 0.1435 0.4468
RFDSA+ 0.0880 0.0882 0.0452 0.1879 0.4601
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with NDCG. Therefore, we may conclude that the combination algorithms that 
optimize NDCG directly yield ranking performances that are strong when evalu-
ated with other (similar) ranking measures.

6.3.5 � Time complexity

For all algorithms considered, the time intensive components are (1) computing 
the item scores xtij for each model, and (2) computing the ranking measure rt(�) 
for each parameter vector that needs to be evaluated. Both are linear in the num-
ber of items (or log-linear in the case of producing an ordered list for rt(�) ). The 
first component depends on the complexity of the base models. In our experi-
ments, we included base models that are fast, which is a natural choice for online 
recommendation. The second component depends on the number of vectors that 
are evaluated in each round.

For the combinations that included six base models in the previous section (see 
Table 1), the second component needed at most half the time needed for the first 
component, but in most cases it needed a significantly smaller fraction than that. 
Since the first component is necessary for any combination algorithm, we may 
conclude that the computational overhead of the considered algorithms is moder-
ate. This would not be the case for ExpW that evaluates a much larger number of 
parameter vectors. The speed of recommendation was around 50 recommenda-
tions per seconds, depending on the data set.

Table 2   Combination of six base rankers on five data sets

The MRR of the base rankers is shown at the top of table, while the MRR of the combination algorithms 
at the bottom
The best performance for each data set is shown in bold

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter

item2item 0.0232 0.0248 0.0115 0.0837 0.0165
OMF 0.0199 0.0213 0.0101 0.0639 0.2732
Pop 0.0357 0.0353 0.0160 0.0337 0.2410
OAMF 0.0164 0.0152 0.0072 0.0935 0.2324
MF 0.0019 0.0032 0.0023 0.0011 0.0024
iALS 0.0015 0.0026 0.0026 0.0014 0.0024
SGD 0.0361 0.0359 0.0163 0.0854 0.2468
ExpA 0.0357 0.0353 0.0160 0.0935 0.2410
ExpAW 0.0357 0.0354 0.0160 0.0935 0.2410
LAG (M=10) 0.0364 0.0356 0.0161 0.0930 0.2930
CMAES 0.0426 0.0401 0.0183 0.0989 0.3677
SPSA 0.0402 0.0371 0.0161 0.0899 0.2611
RSPSA 0.0361 0.0356 0.0187 0.0799 0.3502
RFDSA+ 0.0526 0.0510 0.0235 0.1062 0.3662
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Based on these results, we conclude that any combination algorithm included 
in Table  1 can be used in an industrial application without considerable time 
penalty (even when the base ranking models are fast). If the base models are 
somewhat slower (e.g., deep networks), it could be possible to use LAG with a 
higher number of evaluations. However, such a choice depends on the specific 
application.

7 � Conclusions

In this paper, we considered the task of learning the online convex combina-
tion of base recommender algorithms by stochastic optimization. We argued the 
potential strengths of black-box optimization for this task.

We proposed a new stochastic approximation algorithm RFDSA+. The algo-
rithm uses finite differences to estimate the gradient of the ranking reward, and 
the RPROP update rule to adjust the combination weights. The update rule was 
modified in order to deal with flat regions that often appear in ranking functions. 
The new algorithm is empirically shown to perform close to optimum for two 
base rankers, and scale well, if the number of models is increased by homoge-
neous base rankers or varied ones. We observed that by applying the RFDSA+ 
combination algorithm a considerable improvement in ranking performance can 
be obtained over the base rankers.

We also proposed a new exponentially weighted algorithm with limited num-
ber of evaluation based on a grid structure, LAG. The LAG algorithm can deal 
well with multiple optima, but does not scale well with a larger number of base 
ranking models. We proved upper bounds on the regret of the algorithm, which 
was shown to be log-optimal. We derived the first theoretical results in the litera-
ture for online non-convex bandits with limited number of evaluations.

The relatively weak empirical performance of LAG is connected to the coarse-
ness of the grid, which does not allow the algorithm to explore the weight vec-
tors close to the optimum. Using a finer grid, with significantly higher number 
of gridpoints, would prevent LAG to explore and differentiate the value at each 
gridpoint. A possible remedy would be to use the more hierarchical grid con-
structions proposed in Bubeck et al. (2011), Grill et al. (2015). These algorithms, 
however, were designed for stochastic/stationary bandits, and adapting them to a 
non-stationarity setting is left for future research.

In our experiments, RFDSA+ was highly effective for online ranking combina-
tion. It will be interesting to evaluate the algorithm in related domains, includ-
ing online combination of heterogeneous classification models. RFDSA+ extends 
RSPSA, which was applied successfully to optimize parameters of game pro-
grams. Since, games have discrete evaluation (e.g., 0/1 for win/loss), flat regions 
could also occur. Therefore, it is reasonable to assume, that RFDSA+ may 
improve the parameter optimization performance in domains like games.
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A Proof of regret upper bounds

The proofs of the regret upper bounds rely on the regret bound of the original 
exponentially weighted algorithm, with an added term resulting from the discre-
tization error of the grid. First, we prove the regret bound of ExpW (Proposi-
tion 1), and then, the regret bound of LAG (Proposition 4).

A.1 Proof of Proposition 1 

Recall that the regret bound of the exponentially weighted forecaster on a K-armed 
game5 with T rounds (Cesa-Bianchi and Lugosi 2006) is

Consider the difference between the cumulative reward of ExpW and the best con-
stant point q ∈ Q . This difference is equivalent to the regret of the exponentially 
weighted forecaster algorithm in a |Q|-armed full-information game, hence it can be 
bounded as

as we saw it in (14).
Summing the condition of the theorem, Eqs. (3) and (15), we get

concluding our proof.

A.2 Proof of Proposition 4 

Recall that the regret bound of the advice efficient exponentially weighted forecaster 
limited to evaluating M arms in a K-armed game with T rounds (Seldin et al. 2014) 
is

Consider the difference between the cumulative reward of LAG and the best con-
stant point q ∈ Q . This difference is equivalent to the regret of the advice efficient 

(14)E[ℜT ] ≤

√
T

2
lnK.

(15)E

[
max
q∈Q

RT (q) − RT (ExpW)

]
≤

√
T

2
ln |Q|

E
�
max
�∈Θ

RT (�) − RT (ExpW)
�
≤ c

√
T +

�
T

2
ln �Q�,

(16)E[ℜT ] ≤ 2

√
K

M
T lnK.

5  In the “Appendix”, in an abuse of notation, K will denote the number arms in line with the bandit ter-
minology, and not the length of the recommended list. For the set Q we will have |Q| = K.
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exponentially weighted forecaster algorithm in a |Q|-armed limited-information 
game, hence it can be bounded as

as we saw it in (16).
Summing the condition of the theorem, Eqs. (8) and (17), we get

concluding our proof.

B Proof of lower bounds

The proofs of the lower bounds rely on the proof of lower bound for a K-armed ban-
dit with limited feedback (Seldin et al. 2014). In particular, the proof of Theorem 2 
in Seldin et al. (2014) defines K + 1 games. In the hth game, arm h is the designated 
arm. The reward of the designated arm on round t is 1 with probability of (1 + �)∕2 
and 0 otherwise. For the other arms h′ ≠ h , the reward is 1 with probability of 
(1 − �)∕2 and 0 otherwise. In the ∅ th game, all arms behave like non-designated 
arms, i.e., in each round, all arms pay 1 with probability of (1 − �)∕2 and 0 other-
wise. Before the start of the episode, the environment selects randomly one of the 
games ( h > 0 ). It is shown in Seldin et al. (2014) that the probability of being able to 
differentiate the hth game from the ∅ th game is very small, depending on � , K, M, 
and T. If the hth game is not detected, then no algorithm can do better than the uni-
form selection policy corresponding to the ∅ th game. In that case, the forecaster will 
suffer a regret of �T  . The tuning of � is determined by a trade-off: if � is too high, 
then it is easy to differentiate between the games; if � is too low, then the regret of 
uniform policy is small. The proof sets � =

√
3

8

�
K

MT
 . With that value, the minimax 

regret bound obtained in Seldin et al. (2014) is

In our lower bound proofs, we divide the weight space in independent boxes that 
correspond to arms of a bandit. We rely on the above lower bound, but we have to 
show that for a particular � , all games defined above conform with Property 1. We 
start with the easier, full-information case (Proposition 3), and then follow up with 
the more important result of for the limited number of evaluations (Theorem 2).

(17)E

[
max
q∈Q

RT (q) − RT (LAG)

]
≤ 2

√
|Q|
M

T ln |Q|.

E
�
max
�∈Θ

RT (�) − RT (LAG)
�
≤ c

T

(TM)
1

d+2

+ 2

�
�Q�
M

T ln �Q� ≤
�
c + 2

√
c� ln �Q�

�
T

d+1

d+2

M
1

d+2

(18)inf supℜT ≥ 0.03

√
K

M
T .
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B.1 Proof of Proposition 3 

We map the finite armed problem and reward sequences defined in Theorem 2 of 
Seldin et  al. (2014) into a reward function series on the domain of Φ = [0, 1]d . 
Any game played in our framework on these reward functions has a correspondent 
game played in the finite armed framework, resulting the same regret. Therefore the 
expected minimax regret in our framework will be higher or equal than the expected 
minimax regret in the initial finite armed environment.

In the full-information case the reward of all arms are revealed, i.e. K = M . We 
choose K = Td∕3 to get the desired bound by using Eq.  (18). The transformation 
and the mapping is the following. Let � = ⌈K

1

d ⌉ . We split [0, 1]d into �d subcubes 
of equal size. We assign a subcube to each arm. If K < 𝜅d , we assign the remain-
ing unassigned subcubes to the last arm. In each round, each subcube has a constant 
value, that is the same as the reward of the arm assigned to it.

To prove that the reward function series belonging to each game satisfies Eq. (5) 
for � = 1 , we will show that

for all 𝜅̃ ∈ ℝ+ , where G𝜅̃ is a d-dimensional 𝜅̃-grid. If 𝜅 ≤ 𝜅̃ , the assumption is 
clearly satisfied because at least one gridpoint will fall into the subcube that corre-
sponds to the optimal arm and the left hand side will be 0. Otherwise 𝜅̃ < 𝜅 and the 
right hand side can be lower bounded by �T

√
d

�
.

Considering the second term of the left hand side, observe that the expected max-
imum is larger or equal compared to the expected value of any gridpoint. Thus, we 
can lower bound the second term by 1−�

2
T =

1+�

2
T − �T .

Consider now the first two terms, closed into the bracket. E
[
max�∈Θ RT (�)

]
 equals 

to the cumulative reward of the best arm in the K armed game mapped. The second 
term, 1+�

2
T  is the expected cumulative reward of the best arm, thus this is greater or 

equal to the expected cumulative reward of any forecaster applied on the mentioned 
problem, including the exponentially weighted forecaster. Their difference is less or 
equal to the regret of the exponentially weighted forecaster. That lets us upper bound 
the first two term by the regret bound of the exponentially weighted forecaster,

Now we need to show that

E
�
max
𝜃∈Θ

RT (𝜃)
�
− E

�
max
k∈G𝜅̃

RT (k)

�
≤

𝜆T
√
d

𝜅̃

�
E
�
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�∈Θ

RT (�)
�
−

1 + �

2
T
�
+ �T ≤

�T
√
d

�
.

(
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�∈Θ
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1 + �

2
T
)
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√
T

2
logK.

�
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2
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�T
√
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Using (𝜅 − 1)d < K , we lower bound the right hand side,

Recalling that � = 1 , K = M = T
d

3 and � =
√
3

8

�
K

MT
=

√
3

8
√
T
 , we get

that is satisfied for any d ≥ 1 and T ≥ 1.

B.2 Proof of Theorem 2 

The structure of the proof for the limited information case is similar to the proof of 
Proposition 3. However, now we choose K = M

d

d+2 T
d

d+2 and � = 3.
The computation is identical until Eq. (19),

Starting from here, we insert K = M
d

d+2 T
d

d+2 and � =
√
3

8

�
K

MT
=

√
3

8
(TM)

−1

d+2 , getting

Using that 
√
3

8
(TM)

−1

d+2 T <
T
√
d

(TM)
1

d+2 +1
 , we get

Using that M ≤ T� and � = 3 , we get

We can assume that 𝜙 <
d

2
 because otherwise the this theorem is weaker than Propo-

sition 3 that is already proved in Sect. B.1. Using that and simplifying, we get

(19)
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After simplification and bounding we get

which is the condition of the theorem.
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