Swarm Intelligence (2019) 13:347-380
https://doi.org/10.1007/5s11721-019-00174-x

®

Check for

updates
Toward a theory of collective resource distribution: a study of
a dynamic morphogenesis controller

t1,2

Payam Zahada - Daniel Nicolas Hofstadler?

Received: 6 March 2019 / Accepted: 22 August 2019 / Published online: 29 August 2019
© The Author(s) 2019

Abstract

Nature has various approaches to manage the collective distribution of resources. The divi-
sion of a honeybee colony into subgroups, the formation of ant trails to food sources, and
the spread of tree branches to optimize the access to light are some examples of collective
decision making for resource distribution. This paper investigates collective distribution via
an algorithm named vascular morphogenesis controller (VMC). This algorithm is inspired by
plant morphogenesis that is a result of competitions between branches for shared resources,
e.g., water and minerals. The algorithm acts on a directed graph and determines its dynamics
over time. The nodes of the graph collectively decide on the distribution of a shared resource
to propose the places to add or remove new nodes. The resulting dynamical system is adap-
tive to variations in the structural and environmental conditions. In this paper, the VMC is
embodied in a modular physical structure. The structures’ modules host the nodes of the
VMC graph. They may suggest changes in the morphology over time, and a human can
manually implement them into the physical structure. The paper investigates the effects of
different parameters of the algorithm on the collective behavior of the system, both through
embodied implementations and theory. The investigations have led to a better understanding
of various aspects of the VMC and provided new knowledge to facilitate parameter selection
for potential applications. Furthermore, the analyses have indicated similarities between the
VMC and other types of collective systems, suggesting the potential benefits of viewing those
systems from the perspective of resource distribution.

Keywords Vascular morphogenesis controller - Collective decision making - Resource
distribution - Swarm intelligence - Plant mechanisms - Transport networks
1 Introduction

Resource distribution is a collective process shared by many natural and artificial systems.
Nutrients and other chemicals flowing in the vessels of plants, blood flowing in the vessels of
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animals, water flowing in river systems, information in the form of electrical signals flowing
in neural networks or communication networks, and vehicles moving in road networks are
examples of collective resource distribution systems. Often, the distribution of a resource
across acomplex systemis an influential factor in its dynamics. Bejan and Zane (2012) suggest
that the mechanisms of resource distribution are the principle elements of design in natural
and engineered systems. He formulates the idea as follows: “for a finite-size system to persist
in time (to live), it must evolve in such a way that it provides easier access to the imposed
currents that flow through it.” In this paper, we investigate a collective resource distribution
algorithm, called vascular morphogenesis controller (VMC) (Zahadat et al. 2017b), to guide
the dynamic morphology of a structure. The algorithm self-organizes the flows of a shared
virtual resource and incorporates environmental conditions in the morphological dynamics
of the structure.

In a distribution process, the term resource can be used as a general term to describe
any given supply that is divided between several receivers. On the one hand, a swarm of
active agents divided into subgroups, each focusing on a particular task, can be seen as a
resource. An example is a swarm of honeybees divided into several task forces, i.e., foragers,
nurses, etc. On the other hand, a set of tasks can be considered as a resource distributed
among a number of agents, e.g., a set of orders from customers divided between the staff.
The difference between the two examples resides in the way the problems are viewed, i.e.,
what is considered to be the fixed part and what is the more variable part of the system. In the
first example, the honeybees replace each other over time, but the tasks often stay the same.
In the second case, the orders vary, but the staff is often the same. In a path formation task
(e.g., by ants) or in the development of branching structures (e.g., by slime mold), the active
agents (e.g., ants or slime molds) are the resources distributed between different regions of
the environment forming the paths of a network. The benefit of this general view of the term
resource is to allow noticing similarities in the distribution mechanisms operating in various
systems and to learn from those similarities.

The VMC algorithm studied in this paper abstracts plants’ mechanisms of self-organized
resource distribution. Individual branches of a plant compete for a shared resource distributed
through a dynamic transportation network, i.e., the vascular system of the plant (Lucas et al.
2013). The shared resource (e.g., water, minerals, etc.) enters through the roots and flows
toward the branches’ tips, where it enables growth. The distribution of the resource at the
branching points occurs relative to the vessel thicknesses of the branches. A hormone that is
produced at the tips and flows rootward (opposite direction of the resource) is responsible for
regulating the vessel thicknesses. The hormone is produced according to the local environ-
mental conditions (e.g., light) and acts as a guiding signal, modifying the vascular system.
Producing stronger flows of the hormone in a well-located branch results in thicker vessels
between its tip and the root, and leads to more share of the resource and more growth for the
branch. This positive feedback increases the plant’s growth in the more favorable regions of
the environment. However, the limitation of the shared resource imposes a negative feedback,
restricting the size of the branching structure and the potential options for further growth.
The resulting dynamic system can explore the environment, guide the morphology toward an
optimized shape for the given environment, and adapt to future structural and environmental
changes, e.g., a broken branch or a variation in the light conditions.

This paper extends the analysis and physical implementation of the VMC in Zahadat et al.
(2018). A main contribution of this paper is the numerical analysis of the VMC dynamics that
point to similarities between this system—that is explicitly designed for self-organization
based on collective distribution of resource—and other types of multi-agent systems. Addi-
tionally, this paper presents physical experiments, as well as theoretical and simulation studies
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on the behavioral effects of different parameterizations. VMC includes several parameters
that determine different behavioral tendencies in terms of morphological dynamics and sensi-
tivity to structural and environmental conditions. With the theoretical and numerical analysis
of the parameters’ effects, this paper provides a better understanding of how the system func-
tions and gives a basis for parameter selection for future applications. The presented physical
experiments provide a proof of concept, demonstrate the parameter effects in the real world,
and support the predictions of the theoretical analysis. Similarities between the VMC and
other types of multi-agent systems are the subject of the final part of the paper. These simi-
larities suggest that the viewpoint of collective resource distribution is potentially beneficial
in exploring and explaining some properties of different types of collective systems.

1.1 Related topics
1.1.1 Generation of forms

Regular repetitions of semi-identical forms in nature, for example on the outer skin of animals
or nonlinear non-equilibrium chemical oscillators, e.g., the Belousov—Zhabotinsky reaction
(Camazine et al. 2001; Goodwin 2001), can be described by reaction—diffusion mechanisms
and Turing processes (Turing 1952). Many researchers (e.g., Devert et al. 2011; Murray 2003;
dos Silva et al. 2015; Zahadat and Schmickl 2014) have widely investigated the formation
of such patterns and their diversity and adaptability to environmental conditions. Morpho-
genetic models are often used to describe more complex patterns with multi-level hierarchies
of forms. Morphogenesis is a generative process that uses the modular approach of repetition
and variation. It usually starts with a few initial units and develops the system into a complex
organism. The process is the result of interactions, both within the system and between the
system and its environment. It is driven by the laws of physics, chemistry, and the infor-
mation encoded in the genomes (Goodwin 2001). Several models have been proposed to
develop artificial systems. Some models focus on cellular mechanisms such as variation of
cell types, cell division, gene regulatory networks, and diffusion (Doursat et al. 2012). Some
cellular automata models with various types of cells have also been implemented (Kowaliw
and Banzhaf 2012). Other examples are L-systems (Lindenmayer 1975) that are abstract
generative encodings introduced to describe the development of multi-cellular organisms,
plants in particular. L-systems are formal grammars focusing mostly on the development
of branching geometric structures by repetitive application of production rules on a set of
symbols. Variations of L-systems have been used in developing artificial organisms (Hornby
and Pollack 2001; Sims 1994). Researchers in mobile robotic swarms have employed various
methods of self-organized morphogenesis. Most of those methods generate defined shapes
and are mainly based on diffusion mechanisms, encodings of the desired shapes, and some
form of rules determining the behavior of the robots (Meng et al. 2013; Rubenstein et al.
2014; Slavkov et al. 2018; Stoy and Nagpal 2007). The diffusion mechanism generates gra-
dients providing information about the relative positioning of each robot. The robots react
to this information by locating themselves according to their encoded rules concerning the
desired shape. The gradient information can be used minimally and merely serve to differ-
entiate between a seed robot and the rest (O’Grady et al. 2012). In most approaches to the
morphogenesis of collective robots, the desired shape is well defined. Nevertheless, the shape
can be loosely defined based on a set of requirements and preferences, e.g., the collective
may prefer brighter regions of the environment over the darker ones (Divband et al. 2018a).
The former approach is more similar to the embryogenetic mechanisms of animals. The
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latter approach follows the mechanisms of plants (Sachs 1981), fungi (Bebber et al. 2007)
and slime molds (e.g., Physarum polycephalum) (Nakagaki et al. 2000), strongly reflecting
the environmental conditions in their self-organized shape. This more environment-oriented
approach to morphogenesis has also been used in other areas of robotics, e.g., in soft robots
(Laschi and Mazzolai 2016).

1.1.2 Resource transportation

Nature employs different mechanisms for resource transportation (Bejan and Zane 2012).
When the environment shows a high resistance against transportation of a resource, diffusion
is often the mechanism of transfer. Diffusion is a random walk of single particles resulting in a
slow net flow down the concentration gradient. Another mechanism of transfer is the canalized
motion of resources in a transportation network, where particles join their paths and form
a mass flow down the pressure gradient of the medium. Transportation networks are mostly
responsible for strong flows ensuring the fast distribution of resources. The morphology of
transportation networks in some systems is a mere result of a flow gradient in the environment.
For example, the formation of river systems is a result of the physics of fluids interacting with
the environment. In biological systems, the branching patterns of transportation networks are
often partially encoded in the genome (Goodwin 2001). The encoded information unfolds into
anetwork structure via a modular process of repetition and variation of encoded forms. Some
examples are the development of neural networks and vascular systems in animals and plants.
The actual morphology of such networks is the dynamic result of the interactions of flows
with their environment, plus the regional differences in the strengths of the flows. However,
the formation of transportation networks in the world of living systems does not necessarily
need a genetic encoding. Some of the examples are the formation of ant trails (Detrain and
Deneubourg 2006), the growth of slime mold tubes (Nakagaki et al. 2000), and fungi (Bebber
etal.2007). In these examples, the flow networks are not genetically encoded. Instead, they are
a direct result of interactions of agents among themselves, and with the environment. Several
models describing the developmental mechanisms of such networks have been proposed and
used as inspiration for solving problems in artificial systems. For example, pheromone trails
connecting the nest of ants to patches of food (Detrain and Deneubourg 2006) have inspired
optimization algorithms (Dorigo et al. 1996) and have been implemented in many robotic
swarms (Campo et al. 2010; Payton et al. 2001; Sperati et al. 2011). The models mostly
apply a reinforcement mechanism on the network connections based on the particle density
(agent density) at the nodes. However, Ma et al. (2013) show that a flow-based reinforcement
(according to the particle gradient of the connections) is preferable to the density-based
reinforcement, leading to convergence to optimal shortest paths while automatically avoiding
self-reinforcing loops.

1.1.3 Collective decision making

Collective decision making is the self-organized process of choosing some options over
others. In many cases, the problem is to select among different areas in the environment to
position the agents. There are several examples for such a process in nature, roughly dividable
into two groups, i.e., spot selection and path selection. Examples of spot selection are nest site
selection in honeybees (Seeley and Buhrman 2001), house hunting in ants (Franks et al. 2003),
shelter selection in cockroaches (Halloy et al. 2007), and aggregation of young honeybees
in regions of the hive with favorable temperature (Szopek et al. 2013). Examples of path
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selection are path formation of ants between their nest and the best food patches (Detrain and
Deneubourg 2006), growth of slime mold tubes toward regions with more food (Nakagaki
et al. 2000), and growth of more branches in plants toward brighter regions (Sachs 1981).
Still, further division of the mentioned groups is possible. For example, one can draw a rather
loose line between the selection processes in a discrete set of spots (e.g., nest site, shelter,
bridge, or branch) and in a continuous space of options (e.g., aggregating in preferable spots
in a continuous temperature field, forming a path or a tube in a continuous environment).
Despite their differences, all the various groups share the behavior of collectively selecting
between different options. In this paper, we investigate an algorithm inspired from plants
implementing a variation of the path selection behavior, i.e., to favor the growth (and further
branching) of branches that are better positioned (wrt. light, gravity, etc.) compared to their
mates.

1.1.4 Multi-agent systems

In multi-agent systems, complexity arises from local interactions. They span from swarm
intelligence (Bonabeau et al. 1999) initially inspired by behaviors of social insects, via swarm
robotics (Dorigo et al. 2014; Hamann 2018b), distributed approaches in microeconomics and
market-based methods (Clearwater 1996; Deconinck et al. 2015; Kurose and Simha 1989). A
common subject of interest shared in all these fields of research is resource distribution that
includes task distribution and division of labor (Bonabeau et al. 1999; Huberman and Hogg
1995; Waldspurger et al. 1992; Zahadat et al. 2015; Zahadat and Schmickl 2016). Individual
agents in a swarm consume or contribute to the shared resource while trying to meet their
own private needs. Sharing common resources puts constraints on the swarm and imposes
interdependencies between its agents. The interdependencies become more prominent where
agents’ reactions to their available resources are nonlinear. For instance, in an example
scenario, the agents who receive a tiny share of the resource (below a threshold) may leave the
swarm. In this case, a mechanism that maintains a uniform resource distribution can protect
the swarm from shrinking, as long as the overall resource is enough. The interdependencies
induced by resource sharing point to the importance of distribution mechanisms in steering
the behavior of swarms, e.g., as in microeconomics and market-based control (Clearwater
1996; Kurose and Simha 1989). Similar topics and challenges also appear in the study of
task allocation mechanisms and division of labor, e.g., how to distribute agents—the shared
limited resource of the system—to handle sets of given tasks (Bonabeau et al. 1997; Karsai
and Schmickl 2011; Pini et al. 2013; Zahadat et al. 2015).

1.2 Previous works on VMC

The VMC has been implemented previously in a number of different systems in simulation
and in physical mobile robotic scenarios. In Zahadat et al. (2017b), an earlier version of
VMC was evolved to grow structures in a physics-based simulation in different conditions
(e.g., harsh and mild environmental conditions, different lighting). In Zahadat et al. (2017a)
the behavior of VMC was demonstrated in a maze scenario, showing the preference for the
shortest path. The controller has also been used for the growth of a non-deterministic structure
in an architectural framework with interactive evolution (Heinrich et al. 2018). A variation
of VMC with a root that is allowed to move within the network was implemented in Zahadat
and Schmickl (2017, 2018), showing an amoeboid locomotion toward the source of interest.
The algorithm has also been studied to show self-adaptation and self-repair in simulation

@ Springer



352 Swarm Intelligence (2019) 13:347-380

(Zahadat 2019) as well as physical mobile robotic systems. In the physical implementations,
a swarm of mobile robots running VMC show adaptive path formation from a fixed root
toward brighter regions of the environment and self-repair of the structure after damages
(Divband et al. 2018a,b).

1.3 Physical implementation

In this paper, several experiments are conducted with the VMC embodied in physical struc-
tures. The traditional technique of braiding is employed in order to build autonomous
structural modules that can be manually attached to (or detached from) each other.! The
modules provide support and hold local electronics, i.e., sensors and processors. Every mod-
ule acts as an autonomous agent. Once the modules are connected, the neighboring processors
communicate to form a network of nodes that collectively decide how the shape of the struc-
ture should change. The VMC running in the network combines sensory information, intrinsic
tendencies (e.g., exploration vs. exploitation) encoded as the parameters of the algorithm,
and structural constraints (i.e., size). In the experiments, local light intensities and tilting
of individual branches of the structure act as the local sensory information for each VMC
node. The VMC network suggests where the structure must grow or shrink, with a tendency
to grow upward and toward more light. If the nodes collectively decide on the addition or
removal of a module, a signaling light at the position of the required change communicates
it to the human. In practice, the human can deviate from the suggestions of the system and
make their own changes to the structure. Likewise, the structure might change due to external
reasons (e.g., a branch might be accidentally bent by a human passing by). In such cases, the
collective distribution system adapts to the new conditions and presents new suggestions.

2 Vascular morphogenesis controller: a model of collective decision for
resource distribution

Vascular morphogenesis controller (VMC) is a distributed algorithm inspired by the mech-
anisms of branching and growth in plants. All the branches of a plant share the necessary
resources for growth. In this respect, they act as autonomous agents competing for the limited
shared resource. To participate in the competition, each branch produces some amount of a
hormone, called auxin (Leyser 2011), according to the local environment (e.g., the intensity
of light received at the tip of the branch). The auxin hormone flows from the tips of the
branches along the vessels toward the roots of the plant. On their way to the root, the hor-
mones change the quality of the vessels, i.e., their capacity to transfer resources. According to
the canalization hypothesis (Bennett et al. 2014; Sachs 1981), a well-positioned branch (wrt.
environmental resources, e.g., light) produces high amounts of auxin which leads to better
quality of vessels and therefore a higher share of the common resources and eventually more
growth for the branch. Growth may facilitate the access of the branch to even better regions
of the environment (e.g., more light) and lead to a positive feedback loop of better local con-
ditions, a higher share of the resource, and more growth. Nevertheless, a higher share of the
limited resource for well-positioned branches means a lower share is available for distribution
among the others. Biological tissues generally deteriorate if no constant investment is made
to keep them functional. Therefore, a non-successful (outcompeted) branch will be slowly

! In the context of the EU-funded project flora robotica (Hamann et al. 2017).
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Fig.1 An example structure guided by VMC. The VMC uses two flows: one flow, namely successin, starts at
the leaves flowing toward the root and is responsible for the adjustment of the vessel thicknesses (connections
of the graph). The production of successin at the leaves and its modification at the interior nodes are according
to local environmental conditions perceived by the sensors and a set of constant parameters. The other flow,
namely resource, starts at the root and flows toward the leaves being divided proportionally to the thickness
of vessels. The resource motivates growth at the leaves

depleted of resources and eventually die.? The level of competition between branches can be
fine-tuned globally depending on the availability of resources, which is reflected in hormonal
status (Crawford et al. 2010; Domagalska and Leyser 2011). The self-organized distribution
of the limited resource between the competing branches of a plant drives a collective process
of decision making for finding favorable regions of the environment and to enable the plant
to benefit growing in those regions.

The VMC abstracts the above-mentioned dynamics of the collective system in the growth
process of an acyclic directed graph. Figure 1 summarizes this process in a schematic repre-
sentation of an example VMC graph. The figure shows the flow of a value we call successin
(in analogy to auxin in plants). Successin (S) is produced at the leaves of the graph and
propagating toward the root. The flow of successin regulates the thickness of vessels (i.e.,
the weights of the connections of the graph). A limited shared resource (R) starts at the root
of the graph and is distributed between the children of each node proportional to their vessel
thickness (V). Real plants usually have only a single-root system (Morris et al. 2017). In a
VMC graph, the root node represents the totality of a plant’s root system. However, in nature
there are cases where the shoots of multiple plants may fuse together, resulting in multiple
root systems. Likewise, the acyclic directed graph of VMC is allowed to have multiple root
nodes. Nevertheless, in all implementations of VMC presented here, the graphs only contain
a single root. VMC graphs may expand through growth at their leaf nodes, i.e., by addition
of new nodes to the leaves (in analogy to the outgrowth of new branches in plants). Similarly,
the graph may lose some of the leaves (roughly analogous to the death, i.e., shedding, of
branches in real plants).

In plants, auxin production occurs at the growing tips of branches according to the local
conditions and parameters encoded in the genome. In analogy to that, successin production
occurs at the leaves of the VMC graph according to the local sensory inputs and a set of

2 The reduction in transport capacity caused by this neglect (i.e., the canalization of nutrients to better com-
petitors) is reversible only up to a certain point. Beyond that point, some materials from the affected branch
can be recycled back to the main stem in a process known as “senescence” and eventually, the branch will be
shed (“abscission”) (Sachs 2004).
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constant parameters>:
Steat := PRODUCTION (params, sensors) (1)

Successin flows toward the root, passing through interior nodes. At an interior node, a
transfer function (in the range of [0, 1]) may alter the flow based on the local sensory inputs
and constant parameters.

Snon-leat := TRANSFER (params, sensors)  »  Sp. )

bechildren

The local sensors used in the interior nodes might be different than those on the leaf nodes.

The successin passing a connection (i, j) of the graph (a vessel) adjusts its weight (thick-
ness) according to a set of parameters, influencing the intensity of competition between the
siblings:

Vij=Vij+a <Sfi — ,-,j> , with gB; = COMPETITION (params, sensors), (3)

where V; ; is the weight of the connection between node i and its child node j, S; is the
successin of node j flowing toward i, and « is the adaptation rate determining the speed of
convergence of V; ; to S’,.3 n

In the current work, the above-mentioned functions are implemented as follows. The
production of successin at a leaf is defined as:

PRODUCTION (params, sensors) = f (a)c + Z wsls) , “)

SESensors

where f(x) = max(0, x), w. is the constant term for production of successin at a leaf and
ws is the sensor-dependent production term (a coefficient) determining the dependency of
successin production on the sensor input /.

The transfer rate of successin passing an interior node is defined as:

TRANSFER (params, sensor) = g (,oc + Z psls> , (5)

SEsensors

where p, is a constant transfer rate, py is the sensor-dependent transfer rate for sensor s, and
g(x) = max (0, min(1, x)).
The intensity of competition is defined as:

COMPETITION (params, sensor) = . + Z Bs1s, 6)

S Esensors

where . and f, respectively, represent the constant competition term and the sensor-
dependent competition term for sensor s.

Each of the above parameters can be set to zero according to the requirements of a particular
application.

3 In all the following equations, the operator := stands for the assignment of the right-hand side statement to
the left-hand side variable occurring in every timestep.
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2.1 Distribution of resource over the whole structure

A limited shared resource starts at the root, being distributed within the structure according
to the thickness of the vessels (weight of the connections of the graph). A part of the resource
reaching node i (R;) can be consumed there. The remaining amount is divided between its
children proportional to the thickness of their vessels. A given child j with vessel thickness
Vi, j receives

_o— Vi
Zhechildren ‘/isb

where c is the constant consumption term, representing the resource consumed at every non-
leaf node, and children is the set of children of node i (including j). The parameter ¢ can be set
to zero.* In that case, all resource is divided only among the leaves of the graph (where new
growth can happen). The amount of resource at the root node can be constant. Alternatively,
it can be a function of the environment and the amount of successin that reaches the root. In
the current implementation, Ry is fixed to a constant value.

Rj = (Ri s (7)

2.2 Addition of nodes

A graph can grow at its leaves. Growth here means the addition of new leaves as the children
of an old one. The decision about the occurrence of growth on a particular leaf follows a
strategy that considers the amount of resource reaching it. An example strategy is to use a
threshold th,gq on the resource value at the leaf, determining whether or not growth should
occur there. Another example strategy is to regard the resource at the leaves as the probability
of growth. In such implementations of the growth strategy, the ratio between the resource
consumption of nodes (c) and the total resource value (Ryoot) constrains the overall size of
the graph.

2.3 Deletion of nodes

A deletion strategy can be defined for removing leaves from a VMC graph. The strategy
may consider the amount of resource reaching the nodes and a threshold value thge. For
example, if all children of node i are leaves and R; < thge], the children can be removed and
the node becomes a leaf. Alternative strategies may additionally include probabilistic and
environmental factors. However, one can implement a growth process without any deletion.

3 Analysis of parameter effects

In this section, we apply a formal approach to analyze the effects of various parameters of
VMC on the behavior of the structures. Table 1 presents the set of parameters in a VMC
system and their descriptions. The focus here is solely on the effects of internal parameters.
Therefore, in all setups, the sensor values are identical everywhere, unless stated otherwise.

4 Considering the consumption of resource in plants, nutrients primarily aggregate at the growth zones (e.g.,
tips of branches and expanding leaves). The living cells of the vessels have only very small amounts of energetic
“upkeep costs.” In general, the consumption term will vary with the material to be consumed (e.g., water or
nutrients), the tissues considered and the developmental or ecological situation.
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Table 1 List of parameters

Parameter Description
o Adaptation rate of vessels
Be Competition intensity between sibling vessels, constant
Bs Competition intensity between sibling vessels, sensor-dependent
Pc Transfer rate of successin at the interior nodes, constant
Ps Transfer rate of successin at the interior nodes, sensor-dependent
wc Production of successin at the leaves, constant
wg Production of successin at the leaves, sensor-dependent
c Consumption of resource in every node
Rroot Constant resource value at the root

SL =) -— [ SmainL smalnR — 4 L SR

— — ]  — [ [
RL RmainL RmainR RR

Fig.2 An example one-dimensional VMC graph

The analysis demonstrates: (1) the intrinsic tendency of VMC toward favoring shorter
paths, (2) the necessary conditions for overcoming this tendency and promoting asymmetry
in equal conditions, and (3) the use of sensor-dependent transfer rate in reaching different
growth behaviors in different branches.

In the following and where applicable, the TRANSFER and COMPETITION functions
are represented by p and g, respectively.

3.1 Intrinsic tendency toward shorter paths

A simplified one-dimensional VMC structure is used to show the intrinsic tendency of VMC
for choosing the shortest paths (see Fig. 2). In this setup, only the root node has two children.
All other nodes have a single child at most. The lengths of the paths between the leaves and the
root are n and m for the left and the right leaf, respectively. The sensor-dependent parameters
for transfer and competition are set to zero (ps = fs = 0). To compute the successin for any
non-leaf node of the structure, Eq. 2 can be rewritten as:

Shon-leaf 1= P Z Sp ®)
bechildren

Considering that there is only a single leaf on each side of the structure (Fig. 2), the
successin reaching the root from one side, say the right side with the length m, converges to:

Smaink = pS2 = p*S3 = -+ = p" " S = p" SR ©)
The same holds for the left side (with length n), and thus:

SmainL = )On SL, SmainR = )OmSR (10)
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According to Eq. 3, and with a competition intensity B, the vessel thicknesses for the two
branches of the root converge at the steady state to”:

VinainL = Sr/flainL = (anL)ﬁ B VinainR = SflainR = (PmSR)ﬁ (11)

With aresource value of Ry at the root, due to Eq. 7 for resource distribution, the children
of the root get the following amounts of resource:

(p"51)° (0" SR)P

, RmainRk = (Rroot — ’
(PSP + (o Sg)f Rmaink = (Rroot = O) ey g
(12)

RmainL. = (Rroot — €)

Since there is no branching for any node except the root, the resource from every parent
to its child equals the amount it receives minus the consumption c. Thus, the resource value
at every leaf converges to:

RL = RmainL — 1 -¢, RR = Rmaink —m - C, (13)
Combining Eqgs. 12 and 13, the resources at the leaves are as follows if S, = Sr:
RL=RC-p"P—n-¢c, RxR=RC-p™—m-c (14)

with RC = (Rroot — )/ (p"F + p™P).

Considering that p < 1, Eq. 14 means that the leaf with the shorter path to the root
receives a higher share of the resource and therefore is more motivated to grow, except in
the special case of p = 1, ¢ = 0, where there is no preference. Where all conditions are
equal, the preference for growing at the shorter paths leads to symmetric structures, because
their growth continues until they reach the same length as others. This preference for shorter
paths has been demonstrated previously in a case study of a maze scenario in simulation of
a VMC-controlled organism (Zahadat et al. 2017a).

3.2 Effect of the sensor-dependent transfer rate in regulating the growth of
particular branches

In the previous example, the transfer rate p was identical in all nodes. That was achieved by
the use of a constant transfer rate and setting the sensor-dependent transfer rate to zero in
Eq. 5. However, this is not necessarily the case in all scenarios. For instance, one can use
light sensors at the leaves to influence the production rate of successin, and accelerometers
(providing the tilting angle of branches) or stress sensors (associated with physical joints) at
the interior nodes for influencing the transfer rate p. In the structure of Fig. 2, if S¢ = Sr and
m = n (see Eq. 14), high stress or bending that influences an interior node at the left branch
can decrease the p of that node and lead to Smainl. < Smaink and consequently Ry, < RR,
which results in a preference for growth at the right branch.

3.3 Combined effect of the number of nodes, competition intensity and transfer rate

Figure 3 shows an example VMC graph with n children for each non-leaf node. Let’s assume
that all the leaves of the left branch (represented in blue) have the same sensor values and

5 Note that the adaptation rate « is not mentioned here because it contributes to the speed of convergence of
the vessel thickness, not its value at convergence.
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Fig.3 An example VMC graph, where the root and its leftmost child each have n children. The thickness of
the connections between the root and directly connected leaves is VR . The vessel thickness for the connection
between the root and the only interior node of the graph is V11, and for all connections between the interior
node and its n children is V} 5

consequently the same successin production Sy, all the others (represented in orange) have
the same successin production Sg and, to simplify the equations, ¢ = 0.

At the steady state, i.e., when the values converge, the successin passing the interior node
is S1 = pnSy, according to Eq. 2 and the thicknesses of the vessels computed by Eq. 3 are:

Via=5S". Vei=5SE Vi = @mSip)’ (15)

According to Eq. 7, the resources reaching a leaf on the left and right branch, respectively,
are:

_ Rroot

nf\(SLp)f. Rp = —2sF, (16)

sum sum

Ry

where Vgum = Vi1 + (n — 1) VR is the sum of all the vessel thicknesses at the root node, Ry,
is the resource reaching a leaf of the left branch, and Ry is the resource reaching one of the
other leaves.

Thus, the ratio between the resources depends on the ratio between their successin, the
competition and transfer rates, and the value of n, as follows:

Ru_ (S
Ru _ L 17
Re n""p Se (7

In an environment with S;, = Sg, the resource ratio is % = pP-1 pﬂ. It indicates that, if
B is large, the structure tends to grow at branches with more nodes, and conversely, if p is

small, tends to grow at shorter branches.
To prefer growth at the large branches, n # < p is a necessary condition. Considering

that p < 1, the above condition never holds for 8 < 1. Hence, if the nodes are in equal states,
with a 8 < 1 (as a sufficient condition), the structure always tends to grow symmetrically.

1
On the other hand, since n > 1, % > 0= n? > 1, the following holds:

- <—=nf <p (18)

Thus, the preconditions for the tendency to grow at larger branches (i.e., toward asymme-
try)are,o>%and,3 > 1.
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Fig.4 An example braided module (left), and two connected modules (right), with their overlaid VMC graphs
(inset images)

4 Experiments with physical structures

This section presents a set of experiments on physical structures, running VMC on distributed
electronics. The experiments are designed to demonstrate parameterization effects similar to
those discussed in the previous section but in physical setups.

4.1 Physical setup

The building blocks of the structure are Y-shaped braided modules, each augmented with
a main board mounted on the base of the braid, two sensor boards mounted on the two
branches, and a set of sensors. The sensor boards are connected to the main board, and each
manages four light sensors and an accelerometer. The main board of a module often runs a
single VMC node. One can connect the modules by attaching the base of one to a branch
of another, making the former module a child of the latter (see Fig. 4). If a branch is not
connected to a child module, the main board additionally runs a leaf VMC node as a child
of its main node. Since each module has two branches, a node may have two leaf children at
most. The sensor boards of the parent module are responsible for maintaining communication
between the main boards of the parent and its children. Once a branch is ready for growth or
removal, it signals the humans via LEDs located on the sensor boards. The human, in turn,
manually realizes the change to the structure (addition/removal). The implementation details
of the braided modules are described in Hofstadler et al. (2018). In short, the VMC graph
is a network of connected VMC nodes distributed over the physical structure. The nodes
have access to local sensors and transfer the flows of resource and successin to their children
and parents. Since leaves and interior nodes play distinct roles, they might take different
sensory information into account. For example, leaf nodes may sense the local intensity of
light and temperature for producing successin while interior nodes may sense the tilting of or
the mechanical stress on the module to adapt the rate of successin transfer accordingly (e.g.,
to add a preference for growing branches under less mechanical stress due to environmental
and structural conditions).
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4.2 Parameter setup

In the following set of experiments, two input sensory variables are implemented, Ij;gne and
Iijie. The input variable /j;gne measures the local light and is used at the leaves, while Iy reads
the local accelerometer (indicating the tilt of the branch) and is used at the interior nodes. The
parameters for the experiments are chosen based on the understanding of the parameter effects
obtained from the previous section and preliminary experiments. The parameters may vary
according to the focus of each particular experiment and its conditions, e.g., light setting. The
value of input variable Ijgp, is the average of all four light sensors scaled to [0, 1]. Successin
is produced at the leaves (Eq. 1) only based on the value of Ijjgn. Therefore, wijghe = 1
with no constant production rate (i.e., w. = 0). Due to technical reasons® with respect to the
implemented communication protocol, the successin values at all leaves are rescaled with a
factor of 0.167. The accelerometer readings are also scaled to [0, 1] (where 1 means upright
and O indicates upside-down) to obtain the input variable Iy which influences the transfer
rate at interior nodes (Eq. 2). To compute the transfer rate, the input value is weighted by pyje
and added to the constant transfer rate p. = 0.5 (unless stated otherwise in the experiment).
In most of the following experiments, the measured value of I =~ 0.99 and pg;; = 0.5;
thus, the transfer rate is >~ 0.99. The different cases are explained within the descriptions of
the respective experiments. In most experiments, « = 0.9 and . = 2 are chosen to allow
fast adaptation and a medium competition, respectively. In all experiments, Rypot = 1.

4.3 Growing structures with different competition intensities

In this experiment, two structures are grown in identical conditions with different values for
the competition term, B. € {1, 2}. A light source is located at the top left of the structures.
The experiment demonstrates the different behaviors of the structures in terms of growing
toward light. The chosen threshold values for addition and deletion of nodes are thygq = 0.25
and thge; = 0.2, respectively. When several branches are ready to grow, i.e., when their
resource is higher than the threshold, the user is free to choose the option they personally
prefer. Figure 5 shows the growth” of the structure with B, = 2. For every growth event, a
new module is added to one of the leaf branches with resource higher than th,gq. If several
options are available, the user prefers the branch with the highest resource. Figure 6 shows the
growth of the structure with 8. = 1. Because . cannot have any influence on the behavior
of the first single module, we started the experiment with a second module already connected
(step A in Fig. 5). The figures indicate the positive effect of the competition term on directing
growth in brighter regions. With the high value for the competition term, the structure directly
grows toward the light while it grows symmetrically (bushy) with a slight tendency to the
brighter side when the competition term is low. Note that only for identical light conditions,
the behaviors for the two values of the competition term are comparable. That means, for
example, the small competition term (8 = 1) in an environment with a different lighting
conditions, may result in a structure which is more asymmetric than the structure shown in
Fig. 6.

6 The communication protocol used here limits the values in the interval [0, 1]. Since successin from different
leaves is added together on its way to the root, we need to define a scaling factor according to a maximum value
allowed for the number of leaves in a structure. In the following experiments we set the maximum value to 6
(a maximum of 6 leaves in the structure) and therefore the scaling factor is set to 1/6 = 0.167. See Hofstadler
et al. (2018) for more details on the communication protocol.

7 A video of the growth experiment is available at https://youtu.be/-niKFhrXocl.
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Fig.5 Growth with . = 2. The plots on the left demonstrate the values of resource, successin, and the light
input for selected nodes over the course of the growth. The final structure is depicted on the right. The A—C
labels in the plots mark the steps right before the start of manual growth. In the photo of the final structure,
the labels indicate the position of growth at each step. The shaded parts of the plots indicate the periods
when growth was physically realized. The labels 1-1, 1-2, etc. mark the location of the selected nodes on the
structure and their corresponding values (resource, successin, light) on the plots. The graphs on the bottom
right depict the virtual VMC graphs running on the structure at each step of growth

4.4 Combined effect of transfer rate and competition intensity

In this experiment the combined effect of transfer rate and competition intensity is inves-
tigated. The final structure from Fig. 5 is used as presented in Fig. 7. Here, instead of the
directional light source as in Fig. 5 (located top left of the structure), the experiments are
performed under ambient room light. The lights received by the different leaves differ from
each other due to reflections and shadows in the environment. However, the variation is much
lower than in the experiment shown in Fig. 5. The constant transfer and competition param-
eters are p. € {0.25, 0.5} and . € {1, 2}. Considering that pgi = 0.5 and I >~ 0.99, then
p = TRANSFER € {0.74, 0.99}.

Table 2 shows the resource and light values of all leaves, with the maximum resource value
of each setup represented in bold and the maximum light values represented in italic fonts. As
shown in the table, there are only small changes in the light values of each leaf between the
different setups. In all setups, leaf 2-2 receives the most light. The leaves 1-2 and 4—1 follow,
with 1-2 being slightly higher. Leaf 4-2 receives the least amount of light. With 8. = 1 and
p = 0.99, ordering the leaves based on their resource values directly reflects the order of their
light values: 2-2, 1-2, 4—1, 4-2. With the same 8. = 1 and lower transfer rate p = 0.74, the
order changes in favor of the shorter branch, preferring 1-2 over the 2-2. For . =2, p =
0.99, the combination conditions act in favor of the longer branches. In this case both 4-1
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Fig.6 Growth with 8. = 1. The plots on the left demonstrate the values of resource, successin, and the light
input for selected nodes over the course of the growth. The final structure is depicted on the right. The A-D
labels in the plots mark the steps right before the start of manual growth. In the photo of the final structure,
the labels indicate the position of growth at each step. The shaded parts of the plots indicate the periods
when growth was physically realized. The labels 1-1, 1-2, etc. mark the location of the selected nodes on the
structure and their corresponding values (resource, successin, light) on the plots. The graphs on the bottom
right depict the virtual VMC graphs running on the structure at each step of growth

Fig.7 The structure that is used
to show the combined effect of
transfer rate and competition
intensity. The experiments are
performed under ambient room
light
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Table2 Combined effect of

. Stat . 1-2 2-2 4-1 4-2
competition and transfer rates P Pe ate var

0.99 1.0 Resource 0.252 0.268 0.247 0.219

Light 0.809 0.857 0.793 0.702
0.74 1.0 Resource 0.358 0.279 0.189 0.168
Light 0.806 0.854 0.791 0.699
0.99 2.0 Resource 0.112 0.227 0.364 0.287
Light 0.806 0.849 0.787 0.698
0.74 2.0 Resource 0.231 0.289 0.263 0.205
Light 0.804 0.853 0.791 0.698

and 4-2 as longest branches get more resource than 2-2 and 1-2, while the 41 is preferred
due to a higher light value. For 8. = 2, p = 0.74, the combination is more complicated.
Leaf 2-2 that receives the most light and has a medium path length to the root, gets the
most resource. But the next choice is the 4-1 with a long path to the root, even with slightly
less light compared to leaf 1-2. Overall, the experiment indicates that the lower transfer rate
creates a tendency for shorter paths, and a higher competition intensity creates a tendency for
further growth of larger branches. This is in line with the discussion in the previous section.

4.5 Regulating growth in particular branches by using a sensor-dependent transfer
rate

This experiment demonstrates the effect of the sensor-dependent transfer rate (Fig. 8). The
experiment is performed in ambient room light. After the first few minutes of the experiment
with the intact structure, we bend the leftmost branch such that /i decreases considerably.
Figure 8 shows the variable values throughout the experiment. It shows that bending a branch
leads to small values of Iy, decreases the transfer rate in the associated interior node and
results in alower share of the resource for that branch which may eventually restrict its growth.

4.6 The effect of the adaptation rate

In this experiment, we investigate the effect of the adaptation rate on the speed of resource
dynamics. A directional light source is placed at the top left of the structure as demonstrated in
Fig. 9 (top). To investigate the response time of the system to the changes in the environmental
input, an experimenter casts a shadow on the leftmost branch of the structure at various
intervals of time. The experiment is repeated with two different values for the adaptation
rate « € {0.1,0.9}. We observe the light intensity as perceived by the sensors, successin
production, and resource values of all the three leaves of the structure. Figure 9 (bottom)
demonstrates the variable values during the experiment for both values of «. The figure
shows gradual changes in the resource level with the low value of @ = 0.1, reflecting a slow
change in the vessels—a memory of the system stored across the structure. On the other
hand, with @ = 0.9, resource values respond very quickly to the changes in the sensor inputs,
reflecting a fast change in the thickness of vessels. Depending on the application, fast or slow
response times can be desirable. For example, the slow dynamics of vessels with « = 0.1
result in a delayed response to changes, filtering out the variations in light as environmental
noise. As a result, the structure continually prefers the leftmost branch. On the other hand,
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Fig.8 Values of resource, successin, input light variable (sensed at the leaves), and the tilt variable (sensed at the
interior node) in the course of the experiment demonstrating the effects of a sensor-dependent (tilt-dependent)
transfer rate. The structure is intact at first, then the left branch is bent for a period of time (indicated in the
plots and depicted on the right), and then released again. The tilt value is shown only for the interior node 2—1
which is the node that senses the bending. The light input values are shown for the leaves. The resource and
successin values are shown for both the leaves and the interior node 2—1

in the experiment with « = 0.9, the fast response to the changes leads to the preference
switching between two branches (i.e., the leftmost and the middle).

4.7 Adaptation of shape to changes in the environment

Figure 10 shows an example of an adaptation of shape to changes in the environment. The
value of . = 1 and both addition and deletion are possible. The experiment is performed in
two stages. In the first stage, a weak light is switched on at the top right of the structure. The
structure starts from an initial module and grows toward the light (steps A—C in Fig. 10). In
the second stage, a stronger light is added to the environment at the top left of the structure
(step D in the figure). The structure reacts to the change by growing new modules at the left
side while losing the ones at the right (steps E-H). The final structure’s shape is the same
as the one at the end of the first stage but reflected over the y-axis. Figure 10 shows the
structure’s shape at each step of the growth, along with the resource, successin, and light
values at every leaf.

5 Numerical investigation of parameter effects

In this section, we investigate a broader range of parameter setups with larger VMC graphs in
several simulation experiments. In this section, we investigate a broader range of parameter
setups with larger VMC graphs in simulation. The intention here is not to repeat the phys-
ical experiments with large numbers, but to study other intrinsic morphological aspects of
VMC and their dynamics. More specifically, here we study the internal tendency of the VMC
structures toward asymmetry of the shape and dynamics of the morphology (i.e., growth
and retraction) in the absence of any environmental asymmetry (e.g., any variation or gra-
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Fig. 9 Top: the structure in both shaded and unshaded conditions. Bottom: the variables over the course of
the experiment with periods of shaded and unshaded conditions with two different values of adaptation rate
«. The results show a slow reaction to the change in lighting condition (shading/unshading) for small « and a
quick change for the large o (note the different scaling of the x-axis of the diagrams)

dient existing in the environment) or structural information. For that, no external effects are
implemented, i.e., no sensory information or physical interactions either inside the structure
or between the structure and the environment. Therefore, the dynamics and behaviors are
merely the results of internal interactions and dynamics via the vessel system. We limit the
study to a setup with one root node and two children for every node. The simulation starts
with the root node and its two children: one child positioned at the left side and the other at
the right side of the root. None of the nodes of this initial structure are removable during the
experiment. Fig. 11 shows two schematic example structures with the same number of nodes
and different shapes. In the following, we present the set of experiments to investigate the
effects of parameterization on some intrinsic morphological behaviors of the VMC. Since
there is no environmental information, we set all the sensor-dependent parameters to zero.
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Fig. 10 The shape of the structure adapts to changes in the environmental inputs. In the first stage (a—c) only
a weak light is switched on at the top right. After the growth of the structure toward the light, a stronger light
is also switched on at the top left (d). The shape of the structure changes accordingly (e-h). Note that the light
value of each branch is the average of all the four sensors positioned around the branch and the orientation of

the sensors and shadows contribute to the perceived values

5.1 Morphological aspects: asymmetry and dynamicity

The two children of the root make the two main branches of the structure. We measure the
asymmetry of the grown structures concerning these two main branches. Here, we define the
asymmetry at the end of a run as the absolute difference between the proportion of nodes at

the two main branches, as follows:
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Fig. 11 A schematic of two example structures with the same number of nodes. The nodes at the left main
branch are indicated in blue and the nodes at the right main branch are indicated in orange

Table 3 List of parameters and

their values Parameter Value
o 0.1,0.5,0.9
B 0,0.5,1.0,2.0,10.0
P 0.25,0.5,0.8, 1.0
w 0,0.1,1.0
c 1
Rroot 20
asymmetry — oL — VRl (19)
NrtotaL

where N1, and NR are the number of nodes at the left and right side of the structure, respec-
tively, and NtotaL represents the structure’s size which is the total number of nodes excluding
the root.

In addition to the asymmetry that concerns the final morphology, we also use a measure of
dynamics during growth. We define dynamicity as the ratio between the number of deleted
nodes during growth and the final size of the structure:

dynamicity = b (20)
NtotaL
where D is the number of nodes that are deleted during the course of the experiment.

A set of simulation runs with different parameterizations is performed. Every run starts
with the root node and its immediate children. For a stop condition of a run, we keep track of
the structure’s size and always record the maximum it has ever reached up to now. The stop
occurs 50 timesteps after the last increase in the recorded value. Reaching this stop condition
in a limited time is guaranteed by setting the consumption term of the nodes (¢) to a positive
value that constrains the size of the structure. Since all the sensor-dependent parameters are
zero, in the following we, respectively, use 8, p, and w to indicate B, p., and w.. Note that
without the sensory information, the successin produced in all the leaves is equal.

Table 3 shows the different parameter values used in the simulations. For each parame-
terization, we perform 25 independent repetitions. Here, if all the children of a node have a
resource value below 1 (thge) = 1), they will be deleted altogether with a high probability
(95%). The probability of adding children to a leaf i is proportional to its share of the resource
(R;i /Rroot)- To prevent several leaves from growing at the same time, we keep the candidate
leaves in a pool. In each timestep, only one of them is selected randomly to realize the growth.

Figure 12 shows the asymmetry and the dynamicity of the different setups and the corre-
sponding structures’ sizes. The bars represent the values averaged over all repetitions, and
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Fig.12 Asymmetry and dynamicity of VMC structures with different parameterizations. The colored bars (top
part) represent the values averaged over all the repetitions and the whiskers represent the standard deviations.
The red dots represent the number of nodes in the structure at the end of each run. The gray bars (bottom part)
indicate the values of each parameter (Color figure online)

the whiskers represent the standard deviations. As seen in the figure, @ = 0 leads to relatively
symmetric structures with a medium nodes’ number and low dynamicity. The reason is that
without any input (sensor) or constant production rate, no successin is produced. Therefore,
independent of other parameters, there is no difference between the thickness of vessels,
leading to an equal distribution of the resource. The minimal asymmetry seen in the figure
is only due to the transient effect of the randomness in the selection of leaves for growth.

Looking at the setups with 8 < 1, the structures are symmetric. This is inline with the
results of the analysis in Sect. 3.3, implying that 8 < 1 is a sufficient (but not necessary)
condition for the tendency toward growing symmetrically (when all other conditions are
equal).

For values w > 0, p > 0.5, 8 > 1, the structures are asymmetric with low dynamicity.
With the high value of 8 = 10, dynamicity is minimal, reflecting the low amount of deletion
during the growth process.

Forvaluesof p < 0.5 = % (where n = 2is the number of children of a node), the structures
are symmetric except for the setup with w > 0, p = 0.25, = 10. This exception seems
to be deviating from the theoretical analysis® in Sect. 3.3, which stated that the necessary

8 Note that the analysis assumed convergence of values which is not necessarily the case for all setups.
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condition for a tendency toward asymmetry is p > % and therefore predicting symmetry for
p < % The same effect (high asymmetry and deviation from the theory) can also be seen for

other values of p < % (an example will be shown below). The reason for this unpredicted
behavior is the delay in the update of the values within the structure. It is more clear when
looking at the extreme case of p = 0. In this case, no successin passes from one level to the
next. Thus all connections get a successin of zero, except the ones behind the leaves. Hence,
as soon as a leaf becomes an interior node, the connection’s thickness decays. Now, consider
a growth scenario starting from the initial structure (the root and its two children). In the
beginning, the two leaves get the same share of the resource, thus equal chances for growth.
With the first growth event (at either branch), the connection weight of the grown node starts
to decay toward zero (with the rate «), and its share of the resource follows. However, the
node continues to distributing its resources among its children, and that might be enough to
allow them to grow as well. For a while, the grown branch keeps growing as it has more leaves
with enough resources and thus higher chances for further growth. Meanwhile, the resources
increase significantly at the non-grown side as the first connection to the grown side reaches
zero. Therefore, the single leaf starts growing, which again goes through the same process of
connection decay and resource distribution among children as they emerge. In parallel, the
former large branch loses its nodes due to a shortage of resources at the leaves. The deletion
continues until there are no leaves left at that branch, except a child of the root. This node is a
leaf attached to the root, thus a large successin and connection thickness, pulling the resource
and growth at that side. This way, the fluctuating asymmetry between the two main branches
continues. The fluctuation can be recognized by looking at the measure of dynamicity and the
size of the structure. Figure 12b shows comparatively large dynamicity values and fewer nodes
(smaller structures) for all setups with @ > 0, p = 0.25, B > 1. Recall that the dynamicity
reflects the ratio between the deletion rate during the growth process and the structure’s size.

Figure 13 shows the asymmetry, dynamicity, and the number of nodes for a parameter
sweep experiment on the values of p. The experiment uses a setup with = 0.1, 8 = 10,
and o = 0.9. As seen in the figure, around the critical value of p = 0.5 = % (where n = 2
is the number of children of a node), the behavior changes from high dynamicity and small
structures (few nodes) to large and stable structures. The measured asymmetry increases both
above and below the critical value. Above that, the asymmetry and the number of nodes grows,

but the dynamicity declines. That means, if p > %, large stable structures grow increasingly

asymmetric for higher values of p. Below the critical value (p < %), the high asymmetry, the
tiny number of nodes, and high dynamicity indicate fluctuations of small unstable structures
with a few nodes repeatedly growing and disappearing again on one side or the other.

5.2 Decision making performance of the collective system

The addition and deletion events in this section follow a probabilistic implementation as
described before. Due to the probabilistic nature, every growth trajectory shows fluctuations in
the number of nodes of the two sides of the structure. Likewise, the resources assigned to each
side change. The assignment of more resources to one side is called a decision of the structure
for choosing that side. Figure 14 shows examples of decisions represented as the fraction of
the resource on the left side of the structure. The fraction is calculated as fi, = Ry./(RL+ RR),
where Ry, and Rg are the resource at the left and the right side, respectively.

As expected from the previous section, the behaviors for the various settings demonstrated
in Fig. 14 are different. For example, Fig. 14a shows unstable decisions with a large amplitude
of quick variations in the amount of the resource allocated to each side. With the setting used
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Fig. 13 Asymmetry, dynamicity, and number of nodes for VMC structures with different transfer rates (p) in
setups with w = 0.1, 8 = 10, « = 0.9

in Fig. 14b, the decision fluctuates slowly and with a small amplitude. Thus the resource
allocated to the sides does not converge during the experiment. In Fig. 14c, the structure
quickly chooses one side to grow by assigning most of the resource to it from the early steps.
The example of Fig. 14d shows some fluctuations in the amount of the resource and a final
convergence to one of the two sides.

The presented behaviors are a result of the competition for the limited resource provided at
the root, i.e., Ryoo- In the following, we investigate the influence of Ry, on the performance
of the decision making of the structures. For that, we used the parameter settings of the
experiment from Fig. 14d, which exhibits some dynamics with a period of fluctuations and
eventual convergence to a decision. We define performance as the difference between the
resources at the two sides, after a fixed period:

Performance = |Ry, — Rr|/(RL + RR) 21)

where Ry and R are the amount of resource allocated, respectively, to the left and the
right sides of the structure after 250 timesteps. The performance is measured for a set of
different values of Ry, We repeat the measurement in every setting for 9000 independent
runs. Figure 15 shows the median performance of the tested Ryoo; values. The inset image
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Fig. 14 Example trajectories of f1, = Ry /(R + RR), the fraction of resource assigned to the left side of the
structure for different parameter settings. In all examples Ryoot = 20 and all the sensor-dependent parameters
are set to zero
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Fig. 15 Performance of the decision for one side of the structure with different values of Rroot. The triangular
dots represent median performance of 9000 independent runs for each setting. All the sensor-dependent
parameters are set to zero. The inset image shows the performance computed based on the number of nodes
at the end of the run instead of the resource values

shows the performance computed based on the number of nodes at the end of the run instead
of the resource values (i.e., the asymmetry measure |NT, — Nr|/NtoTAL))-

In Fig. 15 we see very poor performances for very low values of Ryoo¢. The performance
moves up with the increase in Ry, and after an optimum value for Ryqor (~ 40 in this case),
it drops again and then stabilizes (relatively high comparing to the performance of very low
values of Ryoot). The shape of the curve is similar to the generic diagram of system perfor-
mance over system size for multi-robot systems discussed in Hamann (2018a). The available
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(a) (b)

Fig.16 Two example systems with larger (a) and smaller (b) system sizes. The leaves of the left and right sides
are visualized with blue and orange colors, respectively. All leaves produce the same amount of successin,
Sieaf - A recently grown node is depicted by dark red. The amount of successin reaching the root from the left
and the right side are represented by Sy, and Sg. The change in successin reaching the root due to the growth
of a node is larger in a small system compared to a large system (Color figure online)

resource (Ryoot) is representative of the system size as it is nearly linearly proportional to
the final number of nodes in the structure. The reason for this proportionality is that every
non-leaf node holds a constant fraction of the resource (the consumption term).® The shape
of the performance curve is similar to multi-robot systems with low interference between the
robots, for example, due to a body-less (point-like) simulation of robots (Hamann 2018a).
That is consistent with the fact that in the current system, we have not implemented any
physical effects that could cause physical interactions and potentially lead to interference
between the nodes.

As discussed in Sect. 3, the preconditions for a tendency toward asymmetric growth in
VMCis B > land p > %, where n is the number of children in every growth event. Both
conditions are satisfied in the settings that are used here with n = 2, p = 0.8, = 2. Such
a tendency to asymmetry is the positive feedback effect of growth and means further growth
at branches with more nodes.

Although the positive feedback leads to reinforcement of asymmetries and higher per-
formance, it has a smaller effect in larger systems compared to smaller ones. The following
example makes it more clear by comparing two systems of the same symmetric conditions
but different sizes. (Figure 16 illustrates two example systems.) Let G be a perfect binary
tree of depth r. After a growth event at the right branch and assuming an identical successin
production of Siear at all the leaves, the successins at the main left and right branches are:
S = Q"N Sieat, Sr = (271 —=142p)p" Sieat. Hence the proportional successin differ-
ence between the left and the right branches is (SR —S1.) /(SR +SL) = 2p—1)/(2"—1+2p).
The r is larger in a bigger system, and therefore, such a system has a lower proportional dif-
ference. In other words, the effect of a change diminishes as a result of the long path to the
root. In a small system, a change has a higher effect on resource distribution in favor of the
larger branch. That leads to a higher positive feedback effect and amplification of growth and
facilitates decision making.

The decrease in the positive effect of growth when increasing the system size can explain
the lower performance of the larger systems demonstrated in Fig. 15. However, where the

9 The number of non-leaves is linearly proportional to the number of leaves in such a graph, e.g., in a 2-branch
tree graph (as used here) the number of non-leaves equals the number of leaves minus one.
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system is too small (very small Ryqot), the robustness of the positive feedback effect is reduced.
That is because the amplification effect has two sides: a change in the resource distribution
and growth in the system can be either due to positive feedbacks following the previous
growth events or due to random fluctuations. Random fluctuations are easily amplified at
first and lead to a difference between two sides of the system. However, when the resource is
too little, the amplification of the first events cannot continue long enough to produce many
new leaves at the majority side. The reason is that after a few steps, the leaves of the majority
branch get too little resource that limits their chance of growth (negative feedback). That
makes their conditions similar to the leaves of the other branch. Thus the next growth events
rely mainly on random fluctuations. As mentioned above, changes have a greater impact on
smaller systems. Besides, with tiny resources, the early termination of growth in the majority
branch, the difference between the leave numbers (i.e., the options for random growth) of
the two branches never gets large. Therefore, when growth occurs at the minority side due
to a random event, it is hard to be compensated by the majority side. Thus the change at the
minority side might be reinforced and make it the new majority, which is again unstable. It
can explain the poor performances of the tiny systems, seen in Fig. 15.

In short, one can see the performance as the effectiveness of the positive feedback on the
asymmetry that leads to a majority decision. For high values of R0, the negative contribu-
tion of the length of the main branch reduces the performance, whereas, for very low values of
Rroot, the performance is low because the negative feedback (limitation of resource) cancels
out the positive feedback in early stages and therefore the random fluctuations are the main
contributors to the dynamics. The performance peak is where the two effects balance each
other.

6 Discussion

We performed the theoretical analysis of VMC in the absence of any environmental effects.
The results demonstrated an intrinsic tendency of the VMC for shorter paths. However, they
also showed that with an appropriate parameterization (high transfer rate p and competition
intensity ), a tendency toward larger branches and asymmetric growth is also possible.
These tendencies, in combination with environmental inputs, determine the morphological
behaviors and dynamics of the structure. For example, they may determine how the structure
grows in a multimodal environment and how it behaves for local and global optima. The
primary effect of environmental inputs is their influence on the production of successin in
the leaves, which in turn influences the growth. As a result, the structure grows further in
regions with more favorable environmental inputs. However, the behavior of the structure
in terms of exploitation vs. exploration depends on the parameterizations. The parameters
determine the structure’s tendency to explore various options (toward symmetry), to stick
to older decisions, or to exploit the current best choices. The exploitation of the current
best options means growing further in the local optima of the environment, i.e., growing
branches that are currently in favorable regions. A tendency toward sticking to older decisions
(historical choices) is the preference for following decisions that are made in the past, i.e.,
larger branches. A branch can be chosen to grow because it is large, even if it is not in a
favorable region anymore. The actual decision of the structure depends on both the parameters
and the gradients of inputs in the environment. We present an example of such tendencies
in a physical experiment in Sect. 4.4, where we test a set of different parameters. With
B =1, p = 0.99, the structure clearly exploits the current environment, preferring the leaf
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with the highest light value. With 8 = 2, p = 0.99, the structure prefers to stick to old
decisions by choosing the two longest branches, with a preference for the one receiving
more light. In the light conditions of the given environment, with 8 = 1, p = 0.74, the
structure prefers the shortest branch. With 8 = 2, p = 0.74, however, the first choice in these
conditions is the branch with the highest amount of light, which is a medium-sized branch.
The second choice is a longer branch with slightly less light than the third choice, showing
a tendency toward old decisions (preference for longer branches) rather than picking the
currently better options. An example of such a tendency to stick to taken decisions, known
as apical dominance, exists in plant morphogenesis, where a growing tip suppresses the
outgrowth of new branches behind it (also) by consuming the necessary resources (Sachs
2006; Kebrom 2017). Further investigation of parameters, in particular, the sensor-dependent
parameters, will provide more information about the behaviors where different tendencies
are combined. Moreover, future investigations are required to demonstrate the adaptivity of
the structures in response to environmental changes and the reaction time of adaptation.

In the simulation studies in Sect. 5.1, we demonstrated the effects of different parameteri-
zations in the dynamical and morphological behaviors of the structures. An interesting point
is the effect of the transfer rate p on the structure’s dynamic behavior. Low values of p < %
(where n is the number of children of a node) lead to unstable small structures where a small
number of nodes appear and disappear quickly, causing large fluctuations in small structures.
On the other hand, high values of p > % lead to stable and large structures. The reason
for this difference in behaviors lies in the fact that with p < %, the transfer of information
(successin) from children to parents is too inefficient. For example, consider two nodes A
and B with the same parent P, where A is a leaf and B has » child leaves. Let’s assume that all
the leaves produce the same amount of successin, Sieaf. The successin transferred from A to
P is Siear, while the successin transferred from B to P is pnSiear < Siear (With p < %). That
prevents the vessel system, i.e., the memory of the system stored spatially, from reflecting
the structure’s shape and status. That means the distribution process is uninformed about the
current structure and therefore cannot build upon the previous steps which leads to insta-
bility. Once the transfer rate allows a monotor}ic correlation between the structure’s status

(e.g., shape) and the vessel system, i.e., p > , distribution and growth can be performed

accordingly. This is a situation that leads to stability. The change from instability to stability

and the explosion of size makes p an interesting parameter with a critical value at p = L

As discussed in the previous section, the diagram of decision making performance ag;inst
the common resource (Fig. 15) displays similarities with the generic diagram of system
performance over system size in multi-robot systems (Hamann 2018a). In general, one can
draw an analogy between the collective process of growth in a VMC structure and a collective
decision making process in a multi-robot system or a swarm of agents. As an example,
consider a multi-robot decision making scenario where the robots are confronted with two
choices. In the beginning, the individual robots choose one of the two possibilities with
equal probability because any potential effect of interactions has not yet appeared. With
the robots being the system’s limited resource, the resource is initially distributed more
or less equally between the two options. Over time, the distribution may change due to
fluctuations and interactions between the robots and may drive the system to make a collective
decision choosing one of the options over the other. The robots in this scenario are both the
distributed limited resource and the active agents that carry out the distribution via a collective
dynamic process. On the other hand, in the VMC system, the concept of resources distribution
is more explicit. In an example VMC, the growing system distributes a limited resource
between its two sides (left/right branches). The resource is materialized as the nodes that
form the structure—recall that a constant amount of resource (the consumption term) is kept
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Fig. 17 Feedback loops for the + -
resource stored on a path or
branch

A: resource
stored on a
path/branch

B: available
resource

4+

(consumed) within every non-leaf node, making the nodes representatives for that amount of
resource; and a leaf node may trigger the growth of new nodes or its own removal, depending
on the amount of resource it holds. In other words, the nodes act both as the representatives of
the resource and the active agents carrying out the process of growth and distribution. Similar
to the robotic scenario, the system begins with an equal resource distribution among the two
options. Over time and via the system’s fluctuations and interactions among the competing
nodes, the distribution may vary and eventually reach a state where most of the resource is
allocated to one side of the system for a long time.

Being inspired by plant morphogenesis, VMC acts on the branching of structures consist-
ing of addable and removable components. It implements exploration of the environment as
well as the reinforcement of most favorable branches while losing the least favorable ones.
These concepts are shared with self-organized path formation by swarms of mobile agents.
As an example, consider the pheromone trails connecting the nest of ants to patches of food
(Detrain and Deneubourg 2006; Perna et al. 2012), which has inspired many researchers of
artificial life and swarm robotics over the last years (e.g., Campo et al. 2010; Dorigo et al.
1996; Payton etal. 2001; Sperati et al. 2011). Initially, the individual scout ants that have found
a food source lay pheromone in their randomly chosen path to the nest. The pheromone acts
as a volatile memory that is stored spatially in the environment. It is perceived by other ants
and guides them to the food source. The other ants reaching the food, in turn, lay pheromone
on their way back to the nest, generating positive feedback leading to reinforcement of the
shortest paths between the nest and the food sources. The role of the mobile agents (e.g.,
ants) in path formation is fulfilled in VMC by the flows passing through the connection paths
that are imposed by the nodes of the directed graph. The positive feedback generated by the
reinforcement of favorable paths for ants is similar to the positive feedback generated by
the flows of successin in favorable branches of a VMC system. In both systems, the positive
feedback collectively building up the paths is counteracted and stabilized by the negative
feedback (Sumpter 2006). If the food source at the end of a path is limited, it can act as a
negative feedback causing the ants to leave the path and form new ones. Another negative
feedback more interesting here is the limitation of the number of ants as the limited resource
for the structure of the paths. It is similar to the limited resource distributed among the differ-
ent branches in the VMC. To make the role of the resource in the feedback loops more clear,
Fig. 17 illustrates two variables that influence each other: (A) the resource stored on a path
or branch contributing to the thickness of its segment (the path or branch); (B) the available
resource that is not yet settled. The positive feedback is a direct effect of A on itself, but the
negative feedback of A goes through B, i.e., the “available resource,” as shown in Fig. 17. The
positive feedback in the path formation of ants is influenced negatively by the volatility of
the pheromones. In VMC, the positive feedback effect decreases by the negative contribution
of the branches’ length due to the transfer rate p < 1 (as discussed in the previous section).

In this paper, we implemented the VMC with a single root for each graph and in tree-like
structures. However, the algorithm allows the implementation of several roots and multi-input
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nodes (i.e., nodes with several incoming connections). The only restriction is to avoid directed
cycles in the graph. If the graph contains several roots, each is an independent starting point
for the resource. The resource provided by the roots may differ from one another. Their value,
whether in a multi- or single-root structure, can be either constant or variable. A variable one
may reflect a dynamic environmental parameter (e.g., the quality of ground) or a function
of internal qualities, e.g., the amount of successin that reaches the root. Variable resources
allow for more complex scenarios, i.e., structures growing in crowded areas receive less
resource at their roots because they share an environmental source. Another interesting topic
to explore is to consider non-tree-like structures. For example, VMC can grow a structure
starting from one or several roots. During the process of growth, nodes that are very close to
each other can merge. A similar process is possible in some plants where a growing tip can
fuse into an existing branch (Slater 2018). A multi-input node receives the resource from all
of its parents. Various strategies can be followed regarding the successin distribution among
multiple parents, e.g., the successin can be equally divided or divided as a function of the
vessel thickness or the received resource. Future investigations will determine the properties
of each strategy.

Here, in the simulation studies, we implemented the VMC with no external interactions
between the nodes, i.e., the only interactions occur via the vessel system. In general, however,
VMC can be embodied in the structures that allow external (e.g., physical) interaction of
nodes. For example, nodes can hinder the growth of nearby leaves by acting as an obstacle
or casting a shadow on the lower levels. In a physical implementation, the growth of new
nodes may increase the weight imposed on the lower branches. It may affect the parents via
sensors or bending under pressure and repositioning of children. Despite the deterministic
implementation of the algorithm, fluctuations in the environment, electronics, and humans
may also contribute to the variations and stochasticity. The VMC does not make many
assumptions on the system that hosts its graph. Thus, in principle, it can be implemented
in various types of systems, with different sensors and connectivity options as well as and
environmental interactions.

7 Conclusion

In this paper, we presented theoretical, numerical, and physical experimental studies of some
of the dynamic and structural behaviors of VMC. The knowledge gained from these studies
facilitates the process of choosing parameters for different applications of VMC according to
various requirements of the given tasks. VMC is a dynamic transportation network consisting
of agents that collectively decide which paths to expand further or to shrink by taking into
account the given environment. The investigations of the dynamics indicate an intrinsic
tendency of VMC to favor shorter paths. They also demonstrate the tunable tendency of VMC
for exploration, exploitation, or sticking to old decisions. Furthermore, the parameter study
revealed a critical effect of the transfer rate of successin, which is a parameter influencing
information transfer (discussed in Sect. 6). The study showed a transition from instability to
stability and an explosion of the network size at the critical value of the transfer rate.

In VMC, a collective of agents control the distribution of a shared resource among itself,
and this distribution, in turn, affects the organization of the collective. Here we have pointed
to the similarity between the diagram of decision making performance against the amount of
shared resource in the VMC (Fig. 15) and the generic diagram of system performance versus
system size in collective robotic systems. We also discussed parallels between VMC and
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other collective systems in terms of resource distribution, transportation networks, collective
decision making, and feedback loops (Sect. 6). In general, similarities are shared across
different types of natural and artificial systems, from animal collectives, through vascular and
neural networks, to traffic systems and collective robotics. Such a unified viewpoint paves
the way for a deeper understanding of these systems and exploring alternative methods to
design artificial systems, e.g., novel types of artificial neural networks or collective decision
making systems. By presenting evidence on similarities between VMC and various other
systems, this paper suggests potential benefits of approaching these systems from a shared
viewpoint, which is collective resource distribution.
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