Signal, Image and Video Processing (2024) 18:6055-6062
https://doi.org/10.1007/s11760-024-03293-z

ORIGINAL PAPER O‘)

Check for
updates

Open-set marine object instance segmentation with prototype
learning

Xing Hu' - Panlong Li' - Hamid Reza Karimi? - Linhua Jiang? - Dawei Zhang'

Received: 14 September 2023 / Revised: 26 October 2023 / Accepted: 13 May 2024 / Published online: 28 May 2024
© The Author(s) 2024

Abstract

The ocean world is full of Unknown Marine Objects (UMOs), making it difficult to deal with unknown ocean targets using the
traditional instance segmentation model. This is because the traditional instance segmentation networks are trained on a closed
dataset, assuming that all detected objects are Known Marine Objects (KMOs). Consequently, traditional closed-set networks
often misclassify UMOs as KMOs. To address this problem, this paper proposes a new open-set instance segmentation model
for object instance segmentation in marine environments with UMOs. Specifically, we integrate two learning modules in the
model, namely a prototype module and an unknown learning module. Through the learnable prototype, the prototype mod-
ule improves the class’s compactness and boundary detection capabilities while also increasing the classification accuracy.
Through the uncertainty of low probability samples, the unknown learning module forecasts the unknown probability. Exper-
imental results illustrate that the proposed method has competitive known class recognition accuracy compared to existing

instance segmentation models, and can accurately distinguish unknown targets.

Keywords Instance segmentation - Prototype learning - Marine objects - Open-set conditions

1 Introduction

The Earth’s surface is covered by more than 70% ocean,
which includes numerous biological species and natural
resources. Human exploration of the ocean has been ongoing,
and with the development of modern exploration technology,
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such as underwater robots, many previously unknown areas
of the ocean have been uncovered. However, only 5% of the
ocean floor has been explored so far, with 95% remaining
unknown due to the vastness of the ocean. Currently, artifi-
cial intelligence has empowered deep learning-based marine
image analysis, which has become a popular research topic.
Various aspects of marine analysis, such as marine object
detection [1, 2], and marine animal segmentation [3], have
made significant progress. However, when a well-trained
model encounters a "new class" or "different knowledge",
it tends to misclassify the objects. In other words, the model
assigns them to pre-defined categories [4]. Unknown Marine
Objects (UMOs) with unknown categories frequently appear
in real ocean scenes, making it challenging not only to label
many known categories [5] but also to identify the locations
of UMOs. Traditional detection or segmentation models,
such as Mask RCNN [6], SOLO [7], and YOLOX [8], are
unable to handle these "unknown classes". In practical sys-
tems, for the sake of performance and safety, it is crucial
to make every effort to reject unknown objects to prevent
irreparable losses caused by classification errors, such as
misidentifying a peculiar-looking branch as an underwater
robot. To address the problem of object instance segmen-
tation of marine environment objects with UMO, an open
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instance segmentation model with prototype learning is pro-
posed. This model aims to improve the misclassification
issue encountered by traditional closed-set models when they
encounter unknown objects. In the proposed model, we first
separate the known objects of different categories in the
feature space as much as possible, while minimizing the fea-
ture differences between individual classes to obtain a robust
closed set classifier. Then, on this basis, the unknown prob-
ability is predicted by low score samples. Specifically, we
integrate a prototype module and an unknown learning mod-
ule into the Mask-RCNN model, which imparts the model
with the capability for open-set detection. The advantage of
utilizing a prototype is that it can enhance the classifica-
tion accuracy of closed-sets and identify the open world [9].
By adding a prototype module, known classes become more
compact in the feature space, while the unknown learning
module optimizes the uncertainty of low-probability sam-
ples within the classifier. During the actual testing stage, the
unknown probability of an instance determines whether it is
detected as an unknown object. To validate the effectiveness
of our method and assess the actual impact of each module,
we use the Trashcan dataset and the CH-DUTUSEG dataset
to detect closed sets and open sets. The results of the model
under different datasets demonstrate significant progress in
the open-set index while ensuring closed-set accuracy. Our
model reduces the error of taking an unknown class as a
known class. The main contributions of this paper are high-
lighted as follows:

e This study introduces prototype learning into the open
set instance segmentation model, thereby enhancing the
accuracy of the model.

e An unknown learning module is incorporated, and the
optimization of the unknown boundary is achieved by
training low-scoring samples, thereby enhancing the
models capacity for identifying unknown objects.

e Given the limited availability of marine life datasets, we
extract samples from the existing marine dataset DUT-
USEG and curate a novel dataset called CH-DUTUSEG
for the purpose of model validation.

This article is structured as follows: In Sect. 2, we review
related work. In Sect.3, we provide a detailed introduction
to the prototype module and unknown learning module. Sec-
tion4 discusses the experimental details and main results.
Finally, in Sect. 5, we summarize our work.

2 Related work

Application of Deep Learning in Ocean Target Analysis.
With the development of deep learning technology, numerous
scholars have investigated the application of deep learning in
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the marine field. In 2020, Tseng et al. [10] realized the auto-
matic measurement network of fish body length using a CNN
network. Siddiqui et al. [11] proposed a visual method based
on deep learning to classify fine-grained fish. Reus et al.
[12] presented a machine learning approach that uses CNN
to estimate the coverage rate of seagrass by describing sea-
grass patches and superpixels. Ma et al. [13] utilized a fusion
algorithm to collect and integrate face image resources from
videos, trained a face recognition model using R-CNN, and
developed an application platform for crew face recognition
and positioning analysis on ships. Wang et al. [14] provided
an overview of recent developments in marine biological
identification and a detailed analysis of the benefits and draw-
backs of deep learning in this area. In order to address the
issue of underwater degradation, Chen et al. [15] proposed an
underwater scene semantic segmentation network (USSSN),
which may minimize artifacts and preserve the integrity of
foreground objects while enhancing photos. These examples
indicate the growing maturity of deep learning models in the
marine field.

Instance Segmentation Model. The fundamental idea of
instance segmentation involves first detecting instances in
an image and then generating a segmentation mask for each
detected instance. Among these methods, Mask RCNN [6]
evolved from Fast RCNN [16] by incorporating a mask
branch into the target detection network to predict instance
segmentation results. PointRend [17] treats instance segmen-
tation as a rendering problem in image processing, producing
superior masking results compared to Mask RCNN. Another
idea of two-stage instance segmentation is to perform pixel-
level semantic segmentation first, followed by classification
through clustering and other post-processing techniques [18].
Influenced by the research on single-stage target detec-
tion, single-stage instance segmentation model has also been
explored. YOLACT [19] uses different layers to generate
mask coefficients and prototype masks, maintaining spatial
consistency and near real-time speed. Using the concept of a
class activation diagram to build the case activation layer and
sparse the corresponding connection, Cheng et al. [20] intro-
duced an unique instance segmentation technique in 2022.
However, these closed-set instance segmentation algorithms
typically require strong supervision and struggle to reject
unknown objects.

Open Set Recognition. The Open Set Recognition (OSR)
proposal aims to overcome the limitations of models in
real-world situations. OSR models are classified as either
generative or discriminative depending on the modeling form
[21]. SVM [22, 23] was first used in the discriminant model
to minimize the risk of open sets and optimize the space
occupied by unknown classes. With the development of
deep learning, Zheng et al. [24] takes advantage of RPN’s
insensitivity to categories, and takes some candidate frames
with high confidence and no labeled information as open
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set position objects, and then discriminates open set objects
by clustering. Through comparative learning and incremen-
tal learning, Joseph et al. [25] introduced a new field of
open-world object detection and achieved open-set object
detection. In the generation model, Neal et al. [26] used
GAN:Ss to expand the training set samples, and generated the
synthetic open set samples for model training. However, there
are still some practical differences between the generated
samples and the open set samples. Prototype learning is also
widely used in open set identification, among which Yang
et al. [9] first applied prototype learning to convolutional
networks, which proved that the integration of prototypes
improved the robustness of closed set classification and made
it possible to identify unknown samples. Lu et al. [27] pro-
posed a new framework for prototype mining and learning,
and made open set identification after considering the multi-
attributes of prototype sets.

3 Methodology
3.1 Preparations

Our model design is based on two basic premises: 1) the real
ocean scene is full of "unknown" possibilities, and open-
set recognition is suitable for ocean scenes. 2) when faced
with "unknown" objects, the traditional model will mis-
classify the objects, as shown in Fig. 1. Therefore, we use
D = (x,y),x € X,y €Y to represent the scene dataset,
where x represents a sample instance and y = (c, b, m) rep-
resents the label of this sample instance, including category
¢, detection box b, and segmentation mask m. To reflect the
complexity of the ocean scene and the open-set encountered
in the test as much as possible, we use the Dy, data set to
train our model, in which Dy, ,;, contains the known class
K, which is expressed as Cx = 1, ..., K. We use Dy data
set to test our model, in which D;,;; contains known class k
and other classes Cy that did not appear in training, which
can be expressed as Cy = K + 1. Our goal is to make the
model detect not only the known classes in D;;, but also the
location of unknown classes, thus reducing the probability of
the wrong classification.

At the same time, we consider that a picture may contain
samples of both known class Cg and unknown class C [28].
So, we have made the following preparations: Try to avoid
unknown objects in training, and then better distinguish back-
ground class Cp from unknown class Cy .

3.2 Model architecture
Considering the high accuracy and robustness of Mask

RCNN model, we use Mask RCNN as our baseline archi-
tecture. During baseline learning, we found that the baseline

fanimal_eol

(a)

Fig. 1 Incorrect classification. a A branch is classified as an eel; b a
branch is classified as a remotely operated vehicle (ROV); and ¢ a plastic
bag is classified as a fish

tends to classify unknown objects as background or known
classes with low scores. This demonstrates that while the
classic model has some rejection potential, it will result in
incorrect classification since it lacks significant separation
potential for unidentified class traits. To enhance feature sep-
aration and unknown identification. According to Fig. 3, we
add a prototype module and an unknown learning module to
the foundation network.

3.3 Prototype module

In this section, we introduce the feature learning module,
which makes different categories more separated and the
same category more compact through the learnable proto-
type, according to Fig.2. We classify features according to
their distance scores from different prototypes. We use m; to
represent the prototype, where i € 1, 2, ..., K represents the
known class index corresponding to the prototype. Quanti-
tatively, we use the Euclidean distance between features and
different prototypes to measure the probability score. Where
the Euclidean distance is:

d(f(x),mi) = | f(x) —mil2 ey

Among them, f(x) represents the features extracted in
the early stage, and d(f(x), m;) represents the Euclidean
distance from the sample features to the corresponding pro-
totype. As shown in Fig.2, during the training process, the
features should be as close as possible to the corresponding
prototype, hence we define loss; as:

N
1
lossg = T Z}d(f,-, m;)? )
J=

where N is the total number of features. At the same time,
we introduced classification loss to strengthen the model’s
robustness and improve the separation of the prototype. The
stability of the feature during training is aided by classifi-
cation loss, which bases its label judgment on the distance
between each feature and the prototype, as shown in Fig. 2.
The Euclidean distance of each feature and each category
prototype is calculated to get a distance distribution matrix D:
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Fig.2 Prototype module

Dij = —d(f;, mi)* )

where i € 1,2,...,K and j € 1,2,..., N. In addition, a
background class prototype is kept around to filter out neg-
ative samples. Then the cross-entropy loss is applied on D,
the lossy:

exp(Di) ) @

| X

loss) = —— Y; xlo (—
! N ; ! & Zil(:o exp(D;)
We also consider the impact of some atypical points. Fig-
ure? illustrates how some feature points could be rather
distant from the associated prototype, which could result
in incorrect classification. Therefore, in order to penalize
the incorrect classification of boundary samples, we include
a prototype region module. We select some low-scoring
foreground and background samples (the number of Weak
Samples is M) to make cross entropy loss and loss function:

M
1 D,

loss) = —— Z Y; xlog <;xp#) @)
M j=1 Zi:o exp(D;)

Finally, we define the prototype loss function as:

loss, = o1 % lossq +lossy + 02 x [oss) 6)

It is worth noting that in a closed-set detection environment,
we need only determine the category score based on the cor-
responding distance, as follows:

5i(x) o< =l f(x) — m; ||

Yy = arg max s (x) (7)

The s; above represents the score of the feature, and y rep-
resents the label measured by the sample x. In the open-set
environment, if we only rely on the threshold of measure-
ment to debug the model, it is bound to make the model, like
the traditional model, unable to consider the accuracy of the
closed set and the ability of open set recognition. Therefore,
we consider adding an unknown learning module to ensure
both as far as possible.
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3.4 Unknown learning module

This section focuses on how to make the model learn the
ability to judge the unknown without sample data. Based
on the premise mentioned above, we find that traditional
networks tend to classify unknown objects into low-scoring
backgrounds or low-scoring known categories. Based on the
analysis of the above phenomena, we believe that the tradi-
tional network has a certain ability to identifying unknown
objects. It’s just that the traditional model regards space as
a global and closed-set, and can’t reject unknown objects.
Therefore, we extend the K + 1 classifier to the K +2 (includ-
ing unknown probability) classifier in training. Our focus is
on the uncertainty of low-scoring samples in the learning and
training process.

During the training process, we select an equal number of
low-scoring known samples and background samples as the
training data. We define the probability score of each class
of K 4 2(including background and unknown probability) as
follows:

K+1
su = exp(sof 1)/ () exp(softj) — exp(softe))
j=0
K+1
si = exp(soft;)/ »_ exp(soft)), i € [0, K] ®)
j=0

In the above formula, "soft" represents the score assigned
by the extended classifier, while "c" denotes the actual label
of the training sample. We utilize features from low prob-
ability samples that resemble those from unknown samples
to establish the boundary for unknown samples. Given this
information, the loss function is defined as follows:

loss = —log(s;)

loss, = —y *xlog(s,)

lossy = loss; + T xlossy, ©)

where y is the degree factor of unknown probability to
the probability of unreal tag, indicating the possibility of
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unknown in tag, and t is the coefficient. We set y =
(1—5)T s to optimize the unknown probability score, where
s is the true label probability.

3.5 Detection optimization and prediction

According to Sects. 3.3 and 3.4, in this section, we will outline
our open model, as shown in Fig.3. Firstly, to address the
issue of feature separation and compactness, we have added a
prototype module. Secondly, to enable the model to learn the
ability to distinguish the unknown, we added the unknown
learning module. We define the loss function of the whole
detection part as:

[0SSgecr = lossy) + lossy (10)

Firstly, the object category is assigned based on the pre-
diction score:

i arg max (soft;) > soft,
1<i<k

Y, = (11)
K +1, arg max (soft;) < soft,
1<i<k

If it is known, we determine the category label of the
known class based on the distance score of the prototype to
ensure the highest possible detection accuracy for the known
class. The relationship between probability and distance is
as follows:

K

si = pxexp(D;)/ Y exp(D;) (12)
i=0

Here, p represents the degree coefficient of the closed set,
which describes the influence of the open set on the score of
the closed set. We set p = 1.

4 Experiment
4.1 Experimental setup

Baseline Method. We use the two-stage Mask RCNN net-
work as the baseline for comparison. Simultaneously, we
integrate ablation experiments to select specific experimen-
tal parameters in order to explore the influence of different
modules on the result.

Validation Metrics. Our goal is to maximize the model’s
accuracy in detecting known categories, approaching the
performance in a closed-set scene, while ensuring stable
identification of unknown categories. Given the above objec-
tives and specific scenarios, we use the Mean Average
Precision (mAP) to assess the test accuracy of known classes.
At the same time, based on our research on open-sets and the

(d) " (t)

Fig.4 Among them, Figures a, b, and ¢ are samples from the Trashcan
dataset, and Figures d, e, and f are samples from the CH-DUTUSEG
dataset

concept of open-set classification, we use Absolute Open-Set
Error (AOSE) to measure the number of unknown errors of
model classification. Furthermore, we consider the relation-
ship between open and closed sets and use Wilderness Impact
(WI) to measure the degree to which unknown objects are
misclassified as known categories, where W1 = (px/pruu —
1).

Datasets. To evaluate the model’s effectiveness in real-
world marine applications, we conduct experiments using
the Trashcan dataset and the CH-DUTUSEG dataset. Fig-
ure4 provides an overview of the datasets. The Trashcan
dataset has 6065 training and 1147 testing images with 8
non-garbage and 14 garbage classes. Analyzing this dataset,
we used 8, 14, and 22 categories to verify the prototype
module functionality and Trashcan8-14 and Trashcan14-8 as
two benchmarks to verify open-set performance. We select
400 images containing 1191 instances from the DUT-USEG
dataset as the CH-DUTUSEG dataset.

Setup Details. We use ResNet-50 and Feature Pyramid Net-
work (FPN) as the backbone of the improved model and
baseline. Regarding hyperparameter settings, we set o] to
0.001, o2 to 0.0001, 7 to 0.1, and T to 1.15. For optimizer
and learning rate settings, we use an SGD optimizer with an
initial learning rate of 0.08, a momentum of 0.9, and a weight
decay of 0.0001.

4.2 Main results

Firstly, we verify the positive effect of adding a Prototype
module on Trashcan and CH-DUTUSEG, in which the test
set only contains known classes. The results are shown in
Table 1.

The comparison findings in the above table indicate that
adding a prototype module will increase the model closed set
accuracy. We then compared the improved model to the base-
line on the Trashcan8-14 and Trashcan14-8 datasets. Table 2
shows the comparison results on the Trashcan dataset. Table 3
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Table 1 Test accuracy of different methods

Datasets Methods AP? AP™
Trashcan-8 Baseline 58.68 56.57
Baseline+PM 60.78 58.75
Trashcan-14 Baseline 63.00 57.38
Baseline+PM 65.37 58.96
Trashcan MaskRCNN [29] 55.40 55.30
Sparselnst [20] - 56.05
Baseline+PM 60.55 56.21
CH-DUTUSEG Baseline 59.05 48.93
Sparselnst [20] - 50.99
Baseline+PM 60.36 51.16

Table 2 Comparison results of different models on Trashcan subset

Datasets Methods AP AP™  WI AOSE
Baseline 5642 5473 0429 2624
OWODI25] 56.13 - 0259 1589

Trashcan 8-14  Baseline+PM  56.92 5497 0.348 2130
Baseline+UL  56.70 54.88 0.266 1630
Ours 57.08 5539 0.26 1591
Baseline 61.69 56.17 0.279 1675
OWODI25] 61.05 - 0.147 881

Trashcan 14-8  Baseline+PM  64.31 58.02 0.227 1361
Baseline+UL 5994 5522 0.148 888
Ours 6191 5626 0.171 1030

Table 3 Comparison results of different models on CH-DUTUSEG

Datasets Methods AP? AP™ Wi
Baseline 57.75 47.68 0.112
OWODI25] 57.86 - 0.092

CH-DUTUSEG Baseline+PM 58.98 49.95 0.105
Baseline+UL 57.59 46.94 0.087
Ours 61.09 52.72 0.097

shows the comparison results on the CH-DUTUSEG dataset.
As the CH-DUTUSEG dataset has fewer samples, we only
used WI as the measurement metric.

Through the above comparison, we find that the accuracy
of known classes is greatly improved by adding a proto-
type module, and the open set ability of models is improved
by adding an unknown learning module. Finally, our model
demonstrates an overall improvement compared to the base-
line. Figure 5 below shows our prediction results on Trashcan.
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Fig.5 The comparison of results between baseline (top) and improved
models (bottom)

Table 4 The influence of

different feature dimensions dim AP? APT
2 37.81 33.53
14 63.28 58.09
100 65.37 58.96
512 63.09 57.69

Table 5 The impact of T setting T Apb AP™  WI
on the results

1 6176 5579 0.171
1.15 6191 5626 0171
1.5 61.64 5641 0.19
Table 6 The effect of closed-set degree coefficient p on results
o AP? AP™ WI
1 61.91 56.26 0.171
1 —soft, 60.5 55.47 0.162
(1 —soft,) = (1 +soft,) 61.29 55.94 0.172

4.3 Ablation experiments

In this section, we explore the optimal performance of the rel-
evant modules and investigate the optimal hyper-parameters
in the experiments and their possible effects. Regarding the
prototype module, we discuss the potential layer’s dimen-
sions (i.e., constructed feature dimensions) impact on known
class accuracy. We trained and tested on Trashcan8-14. The
results are shown in the table below:

According to the results in the above table, we find that the
dimension depth of the prototype features has a very impor-
tant influence on the accuracy of the model. Considering the
accuracy, we make it deeper than the feature dimension of the
classification layer. Regarding the unknown learning module,
we investigate the impact of the T setting on the results. We
conducted training and testing on the Trashcan14-8 dataset.
The results are presented in the table below:

Finally, we analyze the effect of p settings on the model by
conducting training and testing on the Trashcan14-8 dataset.
The results are displayed in the table below:
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5 Conclusions

This paper proposes a novel method for open-set instance
segmentation in ocean scenes. Building upon the baseline
model, we introduce two learning modules, the prototype
module, and the unknown learning module. These modules
are designed to enhance the accuracy of closed-set clas-
sification, allowing the model to maintain stable accuracy
in identifying known classes while effectively recognizing
unknown classes in open-set scenes. The performance of
the model is evaluated on Trashcan and CH-DUTUSEG
datasets, demonstrating improved classification accuracy for
closed sets and enhanced recognition capability for open sets.
Finally, misclassification still exists in the improved model.
This is because there is a good chance that unknown samples
will be classified incorrectly as background samples. The
focus of the following study will be on feature separation
between background samples and unknown samples.
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