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Abstract
Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral
cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this
information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method
that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-
weightedMRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard
T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for
intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions.
Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from
dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we
quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 Tand 3 T data using a priori information on their
relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for
7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical
profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles
computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical
myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.
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Introduction

The cerebral cortex has a distinct laminar structure and the
different layers are associated with different neuronal func-
tions. To better understand how neurological and psychiatric
diseases affect the brain it is not only important to determine
which of the cortical brain regions are implicated but also to
determine which of the layers may be involved in these re-
gions (Charney et al. 2013). The layers of the cortex can be
defined on the basis of the size, shape, and arrangement of
neuronal cell bodies, known as cytoarchitecture (Brodmann
1909; von Economo and Koskinas 1925) or by the presence of
myelinated nerve fibers, referred to as myeloarchitecture
(Vogt and Vogt 1903). The cerebral cortex can be parcellated
into regions with the same cyto- or myeloarchitecture
(Nieuwenhuys 2013). Studying the cytoarchitecture, however,
usually requires invasive staining methods and can therefore
only be applied post-mortem in humans (Zilles and Amunts
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2015). In contrast, the myeloarchitecture can be non-
invasively studied in vivo using magnetic resonance imaging
(MRI), rendering MRI well-suited to study large groups of
patients and/or healthy subjects. This is particularly important
when studying psychiatric diseases, where the enrolment of
large groups is necessary because of the expected small effect
sizes associated with this type of research.

Different types of MRI contrasts can be used to study the
myeloarchitecture including T1 contrast, for which the signal
variation in grey matter is for a large part explained by myelin
concentration (Eickhoff et al. 2005; Lorio et al. 2016; Stüber
et al. 2014). Other possible contrasts that can reveal laminar
structure include T2*-weighted magnitude or phase images,
which are putatively sensitive to iron or ferritin (Duyn et al.
2007; Duyn and Schenck 2016; Fukunaga et al. 2010).Much
effort has been put into high-field high-resolutionMRI myelin
mapping, especially in the occipital and primary visual area
(Abdollahi et al. 2014; Clark et al. 1992; Sereno et al. 2013;
Trampel et al. 2011), the auditory cortex (Wasserthal et al.
2014) and sensorimotor cortex (Weiss et al. 2011), and recent-
ly, whole brain (Fracasso et al. 2016). In addition, sensorimo-
tor (Sanchez-Panchuelo et al. 2012; Sánchez-Panchuelo et al.
2014) and auditory (De Martino et al. 2015; Dick et al. 2012)
cortical regions have been investigated with functional MRI,
also in relation to local myelination (Lutti et al. 2014).
However, scanning large groups of subjects using ultra-high
field MRI is not straightforward because of the limited avail-
ability of ultra-high field scanners as well as the additional
financial costs involved.

A large body of studies that used MRI conducted at con-
ventional field strengths (e.g. 3 T) revealed cortical thinning
in, for instance, schizophrenia (Van Haren et al. 2011;
Wheeler et al. 2014; Xiao et al. 2015), depression (Tu et al.
2012) and bipolar disorder (Elvsashagen et al. 2013; Lan et al.
2014). Although the resolution of scans that were used to
measure cortical thickness was considered fine enough to
compute the inner (white matter) and outer (pial) boundary
of the cortex, it was too coarse to obtain information on indi-
vidual layers, leaving the question whether this thinning was
due to a mechanism that affects all cortical layers of a partic-
ular region similarly, or that specific cortical layers were more
affected than others. The highest resolution that can be
achieved for these standard T1-weighted (T1-w) MRI scans
is primarily determined by the available scanning time and the
static magnetic field strength on which the scanner operates
and is typically in the order of 0.8–1.0 mm isotropic for 3
Tesla (T). A number of studies have usedMRI at conventional
field strength to obtain information on the laminar structure.
These studies, however, required special types of MRI scans,
with long acquisition times (Glasser and Van Essen 2011;
Mangeat et al. 2015), only focussed on a particular part of
the brain (Bridge et al. 2005; Walters et al. 2003), or did not
directly image the layers but only inferred the involvement of

certain layers by comparing the thickness of adjacent gyri and
sulci in a particular brain region (Wagstyl et al. 2015).

Here we propose a new fully automatic post-processing
method to extract information on myeloarchitecture from a
T1-w scan that is routinely acquired at 3 T. This method (de-
scribed in detail in the BMethods^ section) combines
deconvolution and profile realignment to compute one de-
tailed average T1-w based signal profile per brain region, as-
suming equal laminar organization within that region of
interest.

We start out with a basic simulation to demonstrate that
application of this method to a simulated T1-w volume results
in a detailed average profile that contains information on sig-
nal characteristics and to assess the sensitivity of the method
to potential artefacts such as deconvolution-related Gibbs
ringing.

For further assessment of the method we acquired whole
brain T1-w scans from three healthy volunteers that were
scanned both at a 3 T and a 7 T scanner. For 3 T a standard
T1-w acquisition protocol (3T-T1) was used while for 7 T a
novel whole-brain, high-resolution (0.5 mm isotropic) T1-w
MPRAGE sequence (MS7T) was used that is adapted to be
sensitive to myelin content within grey matter (Fracasso et al.
2016). This scan was previously validated with histology
(Fracasso et al. 2016) and therefore considered apt to validate
the profiles computed from the standard 3 T T1-w scans.

In particular, the primary visual cortex (V1) is used to as-
sess (MRI) acquisitions and methods that focus on
myeloarchitecture (Hopf 1955, 1956, 1957; Waehnert et al.
2016). The reason for this is that in V1, layer 4 (containing
the myelinated band called the outer line of Baillarger and in
V1 also known as the stria of Gennari; see Supplementary Fig.
S1) is heavily myelinated and even visible to the naked eye.
The signal fromV1 is often contrasted to that of the secondary
visual cortex (V2) which lies adjacent to V1 but has a different
laminar organization. Besides comparing V1 with V2, we
included V7, which is a (occipital) visual area as well but
has a lower myelin content compared to V1 and V2 (Glasser
and Van Essen 2011). Four primary motor and sensorimotor
regions were also included in this study. Three of these regions
(BA1, BA2, BA3b) lie within the primary somatosensory cor-
tex and one region (BA4) is part of the motor cortex.

In a first quantitative analysis we use hierarchical crisp
clustering based on dynamic time warping to determine if
profiles computed in 3 T data cluster in a way similar to the
profiles computed in 7 T data. In a second quantitative analy-
sis we compare the profiles computed for the visual areas
using prior knowledge. Here we expect that the signal mea-
sured in the middle of the profile is the highest for V1 because
of the line of Gennari in V1, followed by the signal measured
at the same location for V2. For V7we expect that the signal is
relatively lowest. If the clustering patterns are significantly
similar (first analysis) and the relative signal differences are
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significant (second analysis) for 7 T profiles as well as 3 T
profiles (and with the same ordering) then we consider this as
an indication that 3 T profiles indeed bear information similar
to 7 T profiles. In a third analysis we assess the possible
influence of acquisition-related Gibb’s ringing.

Methods

Outline of the Method

The inner (white to grey matter) and outer (pial) boundaries of
the cortex are computed from the T1-w scan acquired at 3 T
using FreeSurfer (Fischl 2012). These boundaries are then
superimposed on an upsampled and 3D–deconvoluted version
of the original 3 T scan (see Fig. 1) after which a set of signal
profiles is computed for each cortical region. The
deconvolution step increases the detail in extracted profiles
at the expense of a reduction in signal to noise ratio (SNR).
To compensate for possible misalignment between profiles,
the set of profiles are aligned using parametric time warping
(ptw) (Eilers 2004; Gerretzen et al. 2015) and then averaged
(increasing SNR) resulting in one average profile. With ptw,
one profile is selected as the best representative for the set of
profiles, and all other profiles are then shifted and scaled lin-
early towards this best representative profile. A major advan-
tage of ptw is that it is computation friendly both in terms of
memory usage and computation time (Eilers 2004), and is
therefore well-suited to align large sets of profiles.

Additional bootstrapping is applied over the alignment and
averaging procedure to both increase stability and to be able
to assess stability of the average profile. These steps are ex-
plained in more detail, below. The software is currently under
development but the code used in this study is available on
request.

Deconvolution

Deconvolution is a mathematical operation that removes
‘blurring’ effects and was performed as follows. First, the
resolution of the original volume (either 3T-T1 or MS7T)
was doubled in all three directions using nearest neighbour
interpolation. Next, 3D deconvolution was applied using the
Parallel Iterative 3D Deconvolution toolbox (Wendykier
2009) (implemented in ImageJ / FIJI) with the following set-
tings: Wiener Filter Preconditioned Landweber method; 1 it-
eration; 3DGaussian-shaped point spread function (PSF) with
a full-width at half maximum of 5 voxels in a volumewith size
25x25x25 voxels (Fig. 1f); anti-ringing step on; divergence
detection on; gamma = 0. The anti-ringing step reduces ring-
ing at the boundaries of the volume.

Cortical Profile Sampling

Cortical profiles for a selected brain region were sampled
using a combination of Freesurfer and in-house developed
software that was written in R (R Core Team 2014), and in
C using the minc software library (http://www.bic.mni.mcgill.

Fig. 1 Result of deconvolution of 3 T and 7 T scans, coronal slice. Effect
of deconvolution shown in a coronal section of the occipital lobe for one
participant for the area of interest displayed in the white rectangle in (a).
The four panels on the right indicate the area of interest in an original (a)
and deconvoluted (b) 3 T T1w 0.8 mm isotropic scan and in an original
(d) and deconvoluted (e) 7 T myelin-sensitive T1w 0.5 mm isotropic

scan. Freesurfer white (red) and pial (yellow) surfaces are overlaid.
Insets display signal intensity sampled along displayed orange ruler
(marked by the white arrow), with 3DSlicer 4.4.0, which is 4.2 mm in
length and runs from white matter to CSF. Please note that this sample is
drawn in a 2D projection and is not necessarily perpendicular to the
cortical mantle. (f) depicts the PSF used
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ca). Freesurfer label files were created using the thresholded
Brodmann Area (BA) map for the regions BA1, BA2, BA3b,
BA4a, V1 and V2 (Desikan et al. 2006; Fischl et al. 2004,
2008). The label for V7 was created using the PALS B12
Visuotopic atlas (https://surfer.nmr.mgh.harvard.edu/fswiki/
PALS_B12). These label files were used to create pairs of
coordinates on the inner and outer boundary of the cortex
(linkage nodes, see (Lerch and Evans 2005)). Thus, a signal
profile is here defined as the T1 signal measured along a
straight line running from a point on the inner boundary to
the corresponding point on the outer boundary (where the
correspondence by the points is created by the expansion of
the outer surface from the inner surface). Information on local
cortical curvature was retrieved from the standard Freesurfer
output. Cortical thickness was calculated based on the
Euclidian distance between inner and outer boundary coordi-
nate pairs. Intensity values were sampled at 100 equidistant
points along a profile running from the inner to the outer
boundary using linear interpolation. The sampling of data
points was extended in both directions of the profiles with
30 points in each direction to allow for small shifts and scaling
during the alignment of the set of profiles.

Profile Alignment

As previously argued (Koopmans et al. 2011), simply averag-
ing over a set of profiles results in a loss of detail. This may be
due to small errors made during boundary extraction (e.g. white
to gray matter boundary), for example due to suboptimal scan
quality (e.g. subject motion), which could lead to suboptimal
placement of inner and outer boundaries and thereby to trans-
lations and scaling deviances of profiles. Another reason may
be the fact that differences in cortical curvature induce differ-
ences in relative thickness of the individual layers. That is, the
superficial layers are thinner in gyri compared to the deeper
layers (and vice versa for the sulci) (Waehnert et al. 2014).

To correct for the effects of the former — the translation
and scaling deviances— we developed a procedure based on
parametric time warping (ptw) (Eilers 2004) using the ‘ptw’
package implemented in R (Gerretzen et al. 2015). The effects
of the latter can be mitigated by averaging only over profiles
that were computed for brain areas with a similar cortical
curvature. We therefore included only profiles for a region
for which the corresponding cortical curvature was within
±1 standard deviation from the mean cortical curvature of that
region. Further homogenization is obtained by only including
profiles from parts of the region with a similar cortical thick-
ness. Here, ± 0.5 standard deviation from the mean thickness
was used as selection criterion. We note that alternative
methods to correct for local cortical curvature exist and may
be used in future implementations, for instance methods based
on the heat conduction equation (Annese et al. 2004, 2005), a

laplacian equation (De Martino et al. 2013) or the equi-
volume model (Waehnert et al. 2014).

To prevent loss of detail in the computed average cortical
profile, a highly accurate alignment of the set of profiles is
required. Here the computation of the alignment transforma-
tions using parametric time warping was not performed directly
on the profile data but on a version of the profiles from which
the contribution of the slowly varying signal baseline was re-
moved. This was done to ensure that the alignment is based on
local changes in signal intensities that may represent laminar
information rather than the less informative slowly varying
baseline of the profiles. For this, we modelled the baseline
using a cubic spline with the degrees of freedom set to 7 and
subtracted the baseline from the original signal resulting in the
version of the profile used to compute the transformations.

To align a complete set of profiles, first, a single profile was
selected for which the weighted cross correlation is highest
with all other profiles (a standard function in the ptw package).
This profile was then regarded as the best representative profile
of the set of profiles and was subsequently used as target profile
to which all other profiles were aligned. Shift and linear scale
transformation values were calculated using ptw with weighted
cross correlation (triangle width parameter set to 20) as optimi-
sation metric (Bloemberg et al. 2010; Meerts et al. 2004). The
parameter search space was not restricted. The alignment pa-
rameters were applied to the original cortical profiles, and miss-
ing values, created at the beginning or end of a profile that has
been shifted inward, were replaced with the respectively first or
last value of the original profile. After alignment, the individual
profiles were averaged, resulting in one average cortical profile.

Bootstrapping

One concern may be that of model shine-through, meaning that
the shape of the average profile is largely determined by the
shape of the target profile. Although such model shine-through
would not render the method invalid (as the choice of the target
profile is purely data-driven) it may reduce stability as the
choice of the target profile becomes crucial. To increase stabil-
ity of the computed average profile, bootstrapping was applied
over the alignment and averaging step. A total of 500 bootstrap
samples were created. For each bootstrap sample, a random set
of profiles (with the same number of profiles as the original set)
was drawn with replacement from the original set of profiles.
This sample was then aligned to the best reference profile se-
lected from this sample and averaged, yielding an average pro-
file. Finally, computing the mean over the 500 average profiles
resulted in one bootstrap analysis mean (BAM) profile.

An additional advantage of the bootstrap procedure is that
is it can be used to obtain information on the level of stability
of features that reflect the level of detail along the BAM pro-
file. One could select salient features, compute them for each
bootstrap sample average profile and then determine their
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distributions. For example, local maxima (‘peaks’) and mini-
ma (‘valleys’) detected for each bootstrap sample average
profile can serve as salient features. These peaks and valleys
are computed from a smoothed version of the input (cubic
spline, degrees of freedom set to 15) to remove possible
noise-related minima and maxima, and are defined as the po-
sitions where the second derivative equals zero. The distribu-
tion of the peaks and valleys computed over the 500 bootstrap
sample average profiles can then be used to assess the stability
of the peaks and valleys in the corresponding BAM profile.

Simulation Experiment

To assess the feasibility of the method we created a 3D spher-
ical model (isotropic voxel size 0.5 mm, 200x200x200 voxels)
of the cortex serving as ground truth (Fig. 2a). A volume was
created with a sphere containing 10 consecutive shells with
different intensity values (800, 700, 600, 680, 600, 680, 600,
550, 450, 400, respectively) and a background value of 200 to
simulate a cortex with two high signal intensity bands. A cross
section of this cortex model is shown in Fig. 2b.

The ground truth cortical profile (the dashed black line) was
computed by averaging 360 equally distributed (with a 1 degree
interval) profiles within the middle slice (slice #100). To simulate
scanner-induced noise the model was blurred with an isotropic
3DGaussian blurring kernel (sigma = 1mm) followed by down-

sampling (1 mm isotropic voxels) after which Rician noise was
added (SNR 10% of the background signal). The result is shown
in Fig. 2c.

To mimic variations due to suboptimal pial and/or white mat-
ter boundary detection, the begin and end coordinates of the 360
individual profiles were varied by adding an offset (modelled
with Gaussian noise, sigma 0.2 mm) to the in-plane coordinates
of the individual profiles yielding the second sampling scheme
shown in Fig. 2d. The 3D deconvolution step used in the com-
putation of the average profiles (for both sampling schemes) was
identical to the one described above. Note that, although the
profiles were sampled from a single (2D) slice, we must use a
3D model to be able to apply the 3D deconvolution step. To
generate the BAM profile (the red solid line) and to assess the
stability of the result, bootstrapping was applied as described
above.

To assess the contribution of the deconvolution and alignment
step separately, BAM profiles were also generated with the ap-
plication of alignment only or deconvolution only.

Participants

Three healthy volunteers (all male, mean age 28.8 years (SD=
1.0)) participated in the study after having signed informed con-
sent. All experimental procedures were conducted in accordance
with the 1964 Declaration of Helsinki (most recently amended in

Fig. 2 Results of simulation experiment. The black solid line shown in
(a) represents the ground truth cortical profile and the red solid line
represents the computed BAM profile. The intermediate steps are
shown with dashed lines: the blue line represents sampling without
alignment nor deconvolution, the green line represents alignment only,
and the orange line represents deconvolution only. The mid-slice of the
noise-free and noisy model volume is shown in (b) and (c) respectively.

The applied realistic sampling scheme is shown in (d), in which white
lines represent lines along which the profile is sampled, here in 360
samples with normal distributed random variation in coordinates of both
begin and endpoints. (e) displays distributions of peaks and valleys posi-
tions detected from the bootstraps samples for the computed BAM profile
(the red solid line)
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2008, Seoul), and approved by the ethics committee of the
University Medical Center Utrecht.

MRI Image Acquisition

The 3 T MRI T1-w data were acquired using a 3 Tesla Philips
Achieva scanner (Philips Healthcare, Best, Netherlands), with an
8-channel head coil, and a 3D MPRAGE sequence (number of
excitations per inversion 180; TR/TE 10 ms/4.6 ms; flip-angle
8°; FOV 240x240x160 mm; 200 slices, 0.8 mm isotropic voxel
size; SENSE parallel imaging factor 1.4 (RL) and 1.7 (AP) in
both phase-encoding directions; inversion time 964.4 ms; gradi-
ent non-linearity correction; total scan duration 602 s), hereafter
referred to as 3T-T1.

The 7 TMRI T1-w data were acquired using a 7 Tesla Philips
Achieva scanner (Philips Healthcare, Best, Netherlands) with a
32-channel receive head coil (Nova Medical, Wilmington, MA,
USA). First, a conventional T1-w 3D–MPRAGE scan was ac-
quired (voxel size 0.8 mm isotropic, number of excitations per
inversion 300; TR/TE 7ms / 2.9ms; flip-angle 8°; inversion time
1200 ms; time delay between inversion pulses 3500 ms; FOV
200x250x190.4; acceleration using SENSE 2.8; 238 slices; total
scan duration 296.3 s). This scan has the same resolution and a
similar contrast to the scan acquired at 3 T and served as an
‘intermediate’ scan to register the 3 T scan with the 7 T scans.
Second, a 3D proton density (PD) scan was acquired (voxel size
1.0 mm isotropic, TR/TE 5.7 ms / 2.8 ms; flip angle 1°; FOV
200x250x190; SENSE 1.8 (anterior-posterior) × 1.8 (right-left);
190 slices; total scan duration 49 s) which was used to correct the
7 T T1-w scans for B1 field inhomogeneities (Marques et al.
2010; Van de Moortele et al. 2009). Next, three myelin-
sensitive T1-w MPRAGE scans were acquired (voxel size
0.5 mm isotropic, number of excitations per inversion 300; TR/
TE 7.5 ms / 3.5 ms; flip-angle 8°; inversion time 1200 ms; time
delay between inversion pulses 6000 ms; FOV 200x250x180;
SENSE 2.5 (anterior-posterior) × 2.5 (right-left); 360 slices; total
scan duration 446.3 s, see (Fracasso et al. 2016)). These three
myelin-sensitive scans were aligned and averaged to increase
SNR. No correction for gradient non-linearity was applied for
the 7 T scans. To increase homogeneity, this average scan was
then divided by a smoothed version (12 mm FWHM Gaussian
kernel) of the PD scan resulting in one scan towhichwe hereafter
refer to as MS7T.

7 T to 3 T Image Registration

Because the 3T-T1 andMS7Tscan differ in contrast and may be
slightly deformed with respect to each other, as they were ac-
quired on different scanners, the intermediate scan (see above)
was used to optimise the registration. The registration was per-
formed using ANTs (Avants et al. 2011) and prior to the regis-
tration all scans were corrected for effects of B0 inhomogeneity
using N4 (Tustison et al. 2011). To correct for possible head

motion between scans, first, a linear (rigid and affine) transfor-
mation was computed that registers the intermediate scan to the
MS7T scan using mutual information as optimisation metric.
Next, the intermediate scan was registered to the 3T-T1 scan
using a combination of linear (rigid and affine) registration with
cross correlation as optimisation metric followed by nonlinear
(SyN) warping with cross correlation as optimisation metric.
The transformations were combined and then used to align the
MS7T to the 3T-T1 scan, using Hamming windowed sinc
interpolation.

Cortical Segmentation and Surface Construction

FreeSurfer was used for a cortical segmentation of and automatic
inner (white/grey matter) boundary and outer (pia mater) bound-
ary delineation in 3 T data (v5.3.0, http://surfer.nmr.mgh.harvard.
edu/) (Fischl 2012). The results were visually inspected andman-
ually corrected if needed. In order to use the inner and outer
boundaries that were computed from the 3T-T1 scan to sample
the MS7T scan the latter was registered towards the former.

Regions of interest were created by default by FreeSurfer’s
recon-all pipeline. The thresholded Brodmann Area annotation
(except for V7) from FreeSurfer was used (Fischl et al. 2008).
The distinction of these areas in the atlas and annotation relies on
information from ten post-mortem brains, and made generaliz-
able to other brains on basis of cortical folding. Note, however,
that cytoarchitecture cannot be measured withMRI but that clas-
sification of cytoarchitecture can only be inferred via
cytoarchitecture-myeloarchitecture correspondence, and is espe-
cially difficult in long stretches of cortex such as BA 1,2,3 and 4.

Contribution of Deconvolution and Alignment

The method combines deconvolution and profile realignment.
To investigate the effect of the different processing steps, the
automatic procedure was applied with and without
deconvolution of the volume, and with and without parametric
time warping (ptw) alignment of the profiles, to the 3T-T1 and
MS7T scan for one subject (PP3) in the left V1 region.

Clustering

To quantitatively assess the reproducibility for BAM profiles
computed from the 3 Twith respect to the 7 T data, we perform
two different analyses. In the first (fully data-driven) analysis
we use a hierarchical crisp clustering algorithm based on the
dynamic time warping distance (DTW) implemented in
dtwclust (https://cran.r-project.org/ package = dtwclust). The
aim is to determine to what extent the 7 T BAM profiles
contain information specific to the various brain regions and
to determine if clustering of the 3 T data produces similar
results. The DTW distance is a stretch-insensitive measure of
the ‘inherent difference’ between two profiles (Giorgino 2009),
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operating on information from the complete BAM profiles. An
advantage of using DTW-based clustering is therefore that it
does not require us to define salient features beforehand, mak-
ing these results more generalizable. This type of clustering
does however require us to determine the number of clusters
beforehand. Because the primary goal is to determine to what
extent the BAM profiles computed from 3 T scans contain
similar information to the 7 T BAM profiles we decided to
use the GAP statistic to compute the optimal number clusters
for the BAM profiles computed at 7 T. The cluster pattern
obtained for the 7 T BAM profiles will then serve as ground
truth for the clustering results obtained with the same number
of clusters for the 3 T data. The amount of overlap between 7 T
and 3 T cluster patterns is then computed using the adjusted
Rand index (ARI) (Rand 1971; Vinh et al. 2010). The ARI is
bounded above by 1, and scaled in such a way that 0 represents
the amount of overlap obtained by chance. Please note that the
ARI is not bounded at 0 but can be negative as well.

To determine the level of significance of the amount of
overlap we use randomization sampling with replacement
(1000 samples for the 3 T clustering) to compute a distribution
for the bootstrap ARI values under the null hypothesis. If the
ARI of the original cluster pattern is larger than 95% of the ARI
values in the distribution then the overlap is deemed signifi-
cant). We consider this an indication that 3 T BAM profiles are
indeed similar to the BAM profiles computed at 7 T. Note that
here we use randomization testing with replacement instead of
permutation testing. For each sample, the original BAM labels
are assigned to 42 profiles that are randomly selected (with
replacement) from the original set of 3 T BAM profiles after
which clustering is applied and the ARI between the resulting
clustering pattern and the 7 T clustering pattern is computed.
The reason for this is that the computed distance function for
clustering is invariant under permutation of the profiles and as a
consequence the same profiles will form the same clusters,
although the cluster number itself may change. Of further note
is that because ARI is not a true distance measure (Vinh et al.
2010) we cannot use it to compute for instance effect sizes or to
directly compare clustering results from 7 T data and 3 T results
with respect to a third ground truth clustering.

V1 Versus V2 Versus V7 Comparison

In the second analysis we do use a priori knowledge on differ-
ences between V1 and V2 as well as known differences in
myelin concentration between higher order (V7) and lower
order (V1, V2) visual cortices. The major difference between
adjacent areas V1 and V2 is that layer 4 in V1 is heavily my-
elinated (the line of Gennari) (Glasser and Van Essen 2011).
This difference is often used to assess myelin-sensitive MRI
scan sequences (Fracasso et al. 2016). Here we investigate if
this difference (expected to be maximal at approximately the
center of the profiles) can be detected both in 7 T and 3 T data.

For this we compute the pairwise distance (V1 - V2) at the
center of the profiles (X = 50) and compute if it is significantly
larger than zero for both 7 T and 3 T data.

In contrast to primary visual regions, higher order visual re-
gions like V7 have a lower myelin content (Glasser and Van
Essen 2011). For cortical profiles computed from myelin-
sensitive MRI scans this should result in relatively fast drop-off
in signal intensity in the direction from thewhitematter boundary
towards the pial boundary. Here we will measure the differences
between the V7 profile and the primary visual regions V1 and
V2 at the same position (X = 50) as in the previous comparison.
Before assessing the intensity value of a BAM profile at that
position, the BAM profiles were first aligned to each other.

Gibbs Ringing

One concern may be that the peaks or valleys in the average
profiles are not linked tomyeloarchitectural properties but that
they are in fact the product of Gibbs ringing as these artefacts
show up as decaying bands in the vicinity of sharp transitions
in the image (e.g. cortex boundaries) and could be
misinterpreted as laminar information. Gibbs ringing is not only
of concern in post-processing (in the deconvolution step) but
especially in image acquisition.

For acquisition-related Gibbs ringing the ‘size’ of the rings
(that is, the frequency of the decaying over- and undershoot) is
directly related to the voxel size of the original scan (Haacke
and Brown 1999). Because the voxel size of the MS7Tscan is
0.5 mm isotropic and 0.8 mm isotropic for the 3T-T1 scan one
would expect that artificial peaks (and valleys) due to Gibbs
ringing would be systematically found at different locations
along the cortical depth when comparing the average profiles
between the 3 T and 7 T scans. To determine if there is a
systematic difference in peak locations between 3 T and 7 T
average profiles we computed the distance for two different
peaks with respect to the rightmost valley (distance I and
distance II in Fig. 6) in V1. Values for distance I and distance
II are computed for both 3 T and 7 T profiles. If these values
show a significant difference between 3 T and 7 T (computed
using a paired t-test) then this is an indication that peaks (or
valleys) are due to acquisition-related Gibbs ringing.

Results and Discussion

Simulation Experiment

In Fig. 2 the results of the simulation are shown to demonstrate
the feasibility of the method. Simply averaging without re-
alignment or deconvolution (the blue dashed line) results in
a low-detailed BAM profile in which the two separate high-
intensity bands seen in the model (black solid line) cannot be
identified. Averaging without realignment (but with
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deconvolution) is depicted by the orange dashed line while the
result of averaging with realignment but without the
deconvolution step is depicted by the green dashed line. The
red solid line denotes the BAM profile computed using the
proposed method. In this average profile two peaks can be
detected which coincide with the high intensity bands in the
model. Note, however, that in the BAM profile an additional
small peak is found on the left.

The distribution of the peaks and valleys computed for each of
the 500 bootstrap samples that were used to generate the BAM
profile are presented in Fig. 2e. These peak and valley distribu-
tions give us information onwhich of the peaks and valleys in the
BAM profile can be reliably detected and may be linked to true
physical properties of the cortex. Note for instance that for this
simulation there is virtually no overlap between peaks and val-
leys suggesting that their positions are relatively constant and
they could therefore serve as salient features.

Comparing the average model profile (black solid line) with
the reconstructed BAM profile (solid red line) suggests that no
artificial peaks or valleys are introduced. However, we do see a
slight over- and undershoot of the signal in the immediate vi-
cinity of a sharp signal change (at depth X = 23). This shows
that one should interpret peaks and valleys adjacent to a very
large signal intensity change (for T1-w contrast typically the
pial or white matter boundary) with caution. Besides this peak,
no other spurious peaks or valleys were found, indicating that
the effects of Gibbs ringing due to deconvolution are limited.

From the ground truth (the black solid line) it can be seen
that there are three small peaks and two small valleys in the
declining slope on the right side of the profile, with X = 155 at
its centre. The reconstructed BAM profile actually fails to
show the middle of three small peaks (i.e. a false negative)
although it can be observed from the peak/valley distribution
(panel e) that the peak is found in a considerable number of the
bootstrap profiles (the second green peak from the right).
Apparently, this small peak is averaged out in the BAMprofile
suggesting that, although the method can be used to detect the
larger maxima, more subtle details may still be missed.

We note that (especially for the in vivo data) a one-to-one
correspondence between peaks and valleys over the bootstrap
profiles may not exist as the number of peaks and valleys per
bootstrap profile may vary. Therefore, it is not straightforward
to use the peak/valley distributions to calculate for instance
confidence intervals for a specific peak or valley location in
the BAM profile and for this reason we just present the histo-
grams of peaks and valleys found.

Contribution of Deconvolution and Alignment

The results of applying the automatic procedure to the left V1
for subject 3 (PP3) with and without deconvolution, and with
and without alignment, and applying the bootstrap analysis are
shown in Fig. 3. The BAM profiles computed with ptw

alignment only (Fig. 3b and f) show a more pronounced local
maximum for both the 3T-T1 and MS7T scans (with MS7T
showing a more pronounced local maximum than 3T-T1) than
the BAM profiles computed without deconvolution or ptw
alignment (Fig. 3a and e). Figure 3c and g show the results
when averaging is done over the profiles extracted from the
deconvoluted scans but without the ptw alignment step.
Especially for MS7T this appears to result in a more pro-
nounced curvature of the BAM profile in comparison to the
BAM profiles shown in Fig. 3a and b. Finally, Fig. 3d and h
show the BAM profiles computed with deconvolution and ptw
alignment. Both figures show more detail (e.g. multiple peaks)
suggesting that it is indeed the combination of deconvolution
and realignment that leads to substantial more detail in the
computed BAM profiles. However, similar to the profiles
shown in 3a–c and 3e–g it is evident that the peaks are more
pronounced in Fig. 3h in comparison to 3d, suggesting that the
7 T data is (as expected) of better quality. Note that the peaks
may be displaced when comparing the rightmost column
(where both alignment and deconvolution are applied) with
the other profiles in the other columns. This is because the best
reference profiles (chosen for the alignment in each bootstrap)
are likely to differ (both in location and scaling) between the
BAM profiles shown in the rightmost column (where align-
ment is applied) and the rest. The location of a best reference
profile with respect to the cortex is determined by the estimated
inner and outer cortical boundaries computed with Freesurfer,
which may not always be completely correct. Although the
effect of the chosen reference profile on the shape of final
BAM profile is limited (thus limited model shine-through) this
is most likely not the case for the absolute location and size of
the BAM profile. This also applies to the comparison of BAM
profiles from 3 T versus 7 T.

When comparing results shown in Fig. 3 with the simula-
tion (Fig. 2) one can see that in the simulation the various
computed profiles do line up with the ground truth.
However, the presented simulation is a rather basic simulation
and is included to show the feasibility of the proposed method
and to show that effects of Gibbs ringing on the final BAM
profile are limited. The fact that the peaks found in the simu-
lation using the full procedure are nicely aligned with the
ground truth may actually reflect the basic nature of the sim-
ulation. The noise in the in vivo data may be of a more com-
plex nature and the variation in laminal makeup within a
Brodmann area is likely larger than zero (as is assumed in
the simulation). For example, in the simulation experiment
alignment without deconvolution results in a fairly good (al-
beit less pronounced) approximation of the ground truth while
in the in vivo data (shown in Fig. 3) this is clearly not the case.
We further note that we chose not to realign the bootstrap
results before averaging them to compute the final BAM pro-
file although such a ‘second-level’ realignment step could be
included. The motivation for this choice is that the histograms
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(shown at the bottom of each panel) now also include the
inherent variability of location of the model profiles.

Average Profiles 7 T and 3 T Data

In Fig. 4 the BAM profiles computed for the cortical areas
BA1, BA2, BA3b, BA4a, V1, V2 and V7 are shown for all
subjects and for both MRI field strengths. For four regions
(BA1, BA2, BA3b, BA4a), a theoretical T1 model profile
signal is available (Supplementary Fig. S2; (Dinse et al.
2015)) shown in the top row of the image for reference pur-
poses. Dinse et al. (2015) used prior knowledge on both
cytoarchitecture (e.g. cell density) and myeloarchitecture (lo-
cal myelin content) to model a T1-signal profile per brain area.
For V1 a reference profile is provided that is based on high
resolution post-mortem MRI (See Supplemental Fig. 1). For
V2 and V7 no reference profile is available. Note that because
of the use of a best representative profile as target profile for
alignment the absolute positions of peaks and valleys found in
BAM profiles computed for the same area may differ between
subjects and scanners. The comparison of BAM profiles
should therefore be made on relative features (e.g. relative
distances between minima and/or maxima).

Most of the BAM profiles display multiple peaks and val-
leys. The general impression is that, except for BA1 and BA2,
the middle peak is present in the BAM profiles both at 7 Tand
at 3 T. Particularly in the average profiles computed for V1
acquired at 7 T, where this middle peak appears to be more

pronounced compared to other cortical areas. This is in con-
cordance with the model profile obtained from the work from
Dinse and colleagues.

We do, however, recognize that besides similarities there
are also marked differences between the profiles computed for
3 T and 7 T data. For example, for BA1 in the left hemisphere
we see two peaks in the 7 T profiles in subjects #2 and #3
while there is only one peak in the corresponding 3 T profiles.
For the right hemisphere in BA3 the profiles for 3 T and 7 T
data look different, especially for subjects #1 and #2. For BA2
(left hemisphere) the 7 T profiles show more detail than the
3 T profiles. A similar observation can be made for BA4a,
were especially for subject #3 the middle peak cannot be de-
tected for 3 T while for 7 T the middle peak can be clearly
detected for all three subjects. Overall, it appears the profiles
computed 3 T and 7 T data are more similar for the left hemi-
sphere than for the right hemisphere. The histograms comput-
ed for 7 Tsuggest that, for most areas, peaks and valleys occur
in groups of four. For the 3 T histograms the pattern is less
consistent. In sum, this qualitative comparison clearly sug-
gests (as could be expected) that the profiles computed for
7 T are more detailed and more consistent over subjects and
hemispheres than the profiles computed for 3 T data.

Between 20 and 25% of the FreeSurfer profiles are selected
for processing due to the thickness and curvature constraints.
For detailed information on the initial number of FreeSurfer
profiles and the selected number of profiles per region, see
supplementary Table S1.

Fig. 3 Results of method applied on in vivo data in V1. Top row displays
3 T results, with displaying BAM profiles and corresponding peak and
valley histograms of (a) non-deconvoluted nonaligned data, (b) aligned,
non-deconvoluted data, (c) non-aligned, deconvoluted data; (d) aligned

deconvoluted data; bottom row (e)–(h) depict result of identical process-
ing, but for 7 T data. Note that the histograms are scaled to the maximum
number of peaks or valleys
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Clustering Results

Maximum global GAP statistics computed for 7 T data sug-
gest that the best number of clusters is 4 (See Fig. 5a). The
results for the hierarchical dtw-based clustering of the 7 T and
the 3 T data, using four clusters (k = 4), are shown in Fig. 5b.
The ARI computed for 3 Tclustering with 7 Tclustering as the
reference is 0.270, which is significantly larger (p < 0.0005)
than zero (reflecting the amount of overlap by chance) sug-
gesting that indeed 3 T and 7 T profiles bear similar informa-
tion. We note for the sake of completeness that the ARI

computed between the 7 T and 3 T clustering patterns with
seven clusters (k = 7) is 0.147 (1000 randomization samples;
p = 0.011), which is still significant. When assessed with per-
mutation testing, the significance level for ARI computedwith
four clusters reaches p < 0.00005 and with seven clusters p =
0.003.

From the clustering pattern for 7 T presented in Fig. 5c it
can be seen that areas V1, V2 are grouped in the same cluster
implying that these areas have similar features and contain
similar information. Indeed, from previous literature it is
known that the areas are similar in terms of local myelin

Fig. 4 Results from seven cortical areas. BAM profiles of areas BA1,
BA2, BA3b, BA4a, V1, V2 and V7. The model profiles for BA 1, 2, 3b
and 4a are provided as an indication of the expected myelin
concentrations and were based on the model profiles presented in
(Dinse et al. 2015), where PP denotes participant. Here both x- and y-

axis of these model profiles are inverted to match the signal intensity and
cortical depth measurement in our data. Original figures are provided as
supplementary Fig. S1 (V1) and S2 (BA1–4). Note that the left V1 profile
shown for subject #3 is a scaled version of the profile as shown in Fig. 3h
in order to align it with the corresponding profiles for subjects #1 and #2
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content and that the main difference between V1 and V2 is the
presence of the line of Gennari in V1. The question is whether
this difference can be reliably detected and used to further
distinguish between V1 and V2 at 7 T, and to what extent this
can be done at 3 T. Note that BA3b is also part of this cluster,
and is like V1 and V2 also a primary sensory cortex. We
further observe that V7 is clustered together with BA2.
From the reference profiles shown in Fig. 4 it is not immedi-
ately clear which of the primary somatosensory regions (BA1,
BA2, BA3b) has a higher myelin concentration but from the
profiles plotted in Fig. 4 it appears that indeed BA2 has a
lower overall T1 signal compared to BA1 and BA3b.
Primary motor cortex BA4a appears to form a separate cluster.
This is in concordance with information from the reference
profiles where it can be seen that BA4a is expected to have the
overall highest T1-signal over the profile. These observations

hold to a large extent for the clusters computed for the 3 T
scans. However, one should keep in mind that the fact that the
cluster pattern for 3 Tare similar to the 7 Tcluster pattern does
not imply that the clusterings are based on the same profile
features. Dynamic time warp clustering is not based on salient
features (e.g. peak and valley positions) but takes the complete
profile into account. Therefore, we cannot rule out that differ-
ent weightings of profile features for 3 T and 7 T could still
lead to a similar clustering.

V1 Versus V2 Versus V7 Comparison

The signal difference between V1 and V2 measured at the
middle (X = 50; Fig. 5e/f) of the BAM profiles per subject
and per hemisphere is significant for both 7 T data (t(df =
8.4) = 10.1; p < 0.00001) and 3 T data (t(df = 5.9) = 13.1;

Fig. 5 Results from crisp clustering with dynamic time warping distance.
In (a) the GAP score plots are shown for both 7 Tand 3 T data. Clustering
results (with k = 4) for BAM profiles computed from seven areas, for 7 T
data and 3 T data are shown in (b). The colour of each block indicates the
belongingness of each BAM profile to which cluster. BAM profiles are

presented according to participant (PP) and left and right hemisphere (lh,
rh) per column, and according to area per row. (e) displays BAM profiles
from three participants, two hemispheres, of V1, V2 and V7, at 7 T. Error
bars indicate +/− 1 SD at the centre of the profile. (f) displays similar
BAM profiles, but at 3 T

Neuroinform (2018) 16:181–196 191



p < 0.00002). The signal difference between V7 and V2 mea-
sured at the same position is also significant for both 7 T data
(t(df = 7.4) = 8.8; p < 0.00005) and 3 T data (t(df = 6.3) = 3.3;
p < 0.015). In sum, the results from both analyses strongly
suggest that indeed profiles computed from 3 T scans bear
information similar to 7 T profiles albeit that the differences
between profiles for the V1, V2 and V7 are more pronounced
in the 7 T data.

Gibbs Ringing

Acquisition-related Gibbs ringing in the MS7T volume has
been previously assessed by Fracasso and colleagues
(Fracasso et al. 2016) by drawing profiles through white mat-
ter at a white-gray matter boundary. The authors based their
assessment on the rationale that if profiles sampled through
gray matter showmaxima that were due to Gibbs ringing, that
same ringing would have to be present in cortical profiles
sampled from white matter. Based on their results Fracasso
and colleagues concluded that Gibbs ringing could not explain
the reported peaks in gray matter.

Here we performed an additional analysis to investigate the
possible role of acquisition-related Gibbs ringing. Based on
the bootstrap results for peaks and valleys locations two dis-
tances (denoted I and II in Fig. 6) are computed between two
peaks and the rightmost valley for the average profiles of V1.
The results are reported in Table 1. To take possible scaling
differences into account we also compared the fractions I/II

computed for 3 T and 7 T scans (combining left and right
regions). The mean distances for I and II (left and right com-
bined) are for 3 T: 0.19 (SD = 0.03), 0.62 (0.10) and for 7 T:
0.18 (0.04) and 0.54 (0.09) respectively. Themean fraction I/II
computed for 3 T scans is 0.31 (SD = 0.03) and for 7 T 0.33
(0.44). The results for the paired t-tests between 7 T and 3 T
data are t = 0.39, p = 0.71 for distance I, t = 0.96, p = 0.39 for
distance II and t = −0.20, p = 0.85 for fraction I/II. Note that
that these measures are all relative measures (distances or
fractions between distances) and are therefore invariant to
possible effects of model shine-through.

The absence of a significant difference itself can of course
not serve as proof for a limited effect of acquisition-related
Gibbs ringing. In particular because it can be argued that the
statistical power (n = 6) is very low. But as the difference in
distance in case of Gibbs ringing should be around 38% (vox-
el size 0.5 vs 0.8) one could expect that it can be detected with
these small group sizes. Therefore, we think that in combina-
tion with the evidence put forward in (Fracasso et al. 2016) the
fact that there is no significant difference in the various dis-
tances computed from 3 T and 7 T volumes with different
voxel resolutions may at least serve as an indication that these
peaks are not the product of acquisition-related Gibbs ringing.

Limitations

The central question in this study was: BAre cortical profiles
computed from conventional 3 T scans using the proposed
method (to a certain extent) similar to cortical profiles com-
puted from this particular 7 T MRI acquisition that has previ-
ously been validated with histology?^ and the generalizability
of the results presented herein is therefore limited to these
particular scans. However, we do not want to imply that this
particular 7 T scan acquisition is the best possible solution
available to study cortical myeloarchitecture (and is the
ground truth) as the quality of a scan does not only depend

Fig. 6 Overview of distances used in assessment Gibbs ringing. This
figure depicts the distances I and II, as measured in x-steps, divided by
the total 100 steps between white-gray matter and pial boundary, between
the rightmost minima and first two peaks to the left of that minima.
Results are shown in Table 1

Table 1 Distance measures

Subject Volume Hemisphere Distance I Distance II Ratio II/I

1 3 T Left 0.21 0.57 0.3684211

Right 0.18 0.63 0.2857143

7 T Left 0.14 0.53 0.2641509

Right 0.21 0.61 0.3442623

2 3 T Left 0.25 0.62 0.4032258

Right 0.22 0.61 0.3606557

7 T Left 0.14 0.36 0.3888889

Right 0.19 0.57 0.3333333

3 3 T Left 0.21 0.59 0.3559322

Right 0.16 0.54 0.2962963

7 T Left 0.18 0.51 0.3529412

Right 0.29 0.68 0.4264706
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on the main magnetic field strength of the scanner but is the
result of a complex interplay of many factors, including the
use of high-performance RF coils, characteristics of the gra-
dient system and chosen image contrast. The fact that a 3 T
profile is similar to 7 T profile does therefore not automatical-
ly imply that the 3 T profile is free of artefacts, for instance, as
both scans are based on T1-weighted contrast and therefore
T1-related artefacts common to both scan types may remain
unnoticed.

Although the results of the quantitative analyses presented
here suggest that the proposed automatic method indeed
yields similar cortical profiles for 3 T compared to 7 T, we
do recognise that at the individual profile level marked differ-
ences between 3 T and 7 T are found. The general impression
from the qualitative analyses is that the 7 T profiles are more
pronounced (showing clearer peaks and valleys) and are more
consistent over subjects and hemispheres. This could be ex-
pected as the 7 Tscans are not only of higher resolution but are
also optimised for contrast within the cortical gray matter.
Thus, if possible, the obvious choice is to use a dedicated
MRI acquisition to investigate cortical myeloarchitecture.
However, if this is not possible (because of the large number
of subjects involved or because the scans already have been
acquired) then the proposed method may be of use to study (to
a certain extent) cortical myeloarchitecture at a group level.
Furthermore, we would like to stress that we do not claim that
the proposed method measures cytoarchitecture and that the
proposed method will have the same limitations that apply for
T1-weighted MRI when used to study myeloarchitecture.

Methodological Considerations

Although the results of these initial experiments are promising
several aspects of the method require further investigation. For
instance, in the current implementation an isotropic Gaussian
kernel with a fixed size (in voxels) was used in the
deconvolution step. It can be argued that this point spread
function itself does not adequately describe the effects of scan-
ning at a lower image resolution and that other types of
deconvolution kernels (e.g. different shapes, sizes) may be
more appropriate. We note, however, that here our goal was
not to model the effect of differences in scanner resolution per
se but merely to increase image detail. The use of a Gaussian
blurring kernel has the advantage that it mitigates the potential
problem of introducing Gibbs ringing artefacts when applying
deconvolution (Chandrawansa et al. 2000). Initial experi-
ments (data not shown) suggested that the chosen kernel pa-
rameters are adequate for this proof of concept.

For the other parameters for the Wiener filter Landweber
parallel deconvolution algorithm (besides the choice of the
PSF) we chose the provided default settings but other settings
may improve the results further. For example, here we chose
to disable the preconditioner which may lead to a speed up of

convergence but could introduce artefacts. The application of
the anti-ringing step is merely done as a precaution to limit
spurious effects caused by features in the close vicinity of the
volume’s boundaries.

The resolution of the 3 T T-weighted scans in the current
study is relatively high (0.8 mm isotropic) in comparison with
scans typically acquired in large scale studies (e.g. 1 mm iso-
tropic) and one could question if the proposed method would
work for lower resolution scans. But successful application of
the method will probably not only depend on resolution but
for instance also on SNR and T1-weighting. We did however
perform initial experiments (Supplementary Fig. S3), suggest-
ing that resolution itself appears not to be a critical factor and
the method can be applied in scans with lower resolutions.

The proposedmethod averages over sets of cortical profiles
but here we did not address the issue of optimal set size.
Determination of the optimal set size is not straightforward
as it depends amongst others on the homogeneity and thick-
ness of the cortical layers in the area of interest, the quality of
the cortex delineation, SNR and scanner resolution. If a set is
too small then the effects of noise will be insufficiently miti-
gated. On the other hand, there is the risk that a set is too large.
In that case the cortical architecture of the sampled region is
insufficiently homogeneous leading to less detail. Further re-
search is needed to determine optimal (and minimal) set size
for the various brain regions. Of further note, the sampling of
the cortex, which in the current study was done along straight
lines, could be improved in future implementations by using
sampling schemes that correct for cortical mantle curvature.
For instance, corrections based on the heat conduction equa-
tion (Annese et al. 2004; Annese et al. 2005). This would
increase the number of profiles included per region and as a
consequence profiles could be computed for smaller regions
enabling the possibility to incorporate more detailed atlases
(Glasser et al. 2016; Hagmann et al. 2008).

Deconvolution is usually implemented using a Fourier
transformation – a mathematical operation carried out in the
complex domain. MRI data is complex-valued but usually only
the magnitude image is stored and the phase image is ignored.
This phase image however may contain additional information
leading to better deconvolution results. For future studies one
may therefore consider to save the phase images as well.

Possible applications of the proposed method can be found
in studying the frequently reported cortical thinning in psychi-
atric diseases. One strategywould be to determine a number of
characteristic points (e.g. peaks and valleys; one close to white
matter, one approximately at the center of the profile and one
close to the pial surface) for the BAM profiles and then define
a relative measure based on these characteristic points. For
example, the fraction between center to white matter distance
and center to pial distance. Then, for ROIs for which group-
related differences in thickness were found, a group compar-
ison using this relativemeasure can be conducted to determine
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if the effects of thinning are evenly distributed over all layers
or whether the thinning can be attributed to the deeper or more
superficial layers. We previously outlined such an approach to
study effects of schizophrenia (Mandl et al. 2015).

We note that the proposed method may not only be useful to
study psychiatric diseases but can also be used to study the de-
veloping brain. For instance, brain development is accompanied
by widespread cortical thinning (Van Soelen et al. 2012) and the
question is if this thinning reflects neuronal pruning (selective
removal of neurons and connections) or that it actually reflects
white matter encroachment (where the myelin concentration of
the deeper layers increases). In case of pruning the cortex actually
thins but in case of encroachment the cortex only appears to
become thinner as the deep layers show a T1 signal similar to
white matter. Applying the proposed method in a longitudinal
study design could be used to determine which of the two expla-
nations is correct.

In the current study we focused on the similarities and differ-
ences in average cortical profiles computed from T1-w scans but
the proposed automatic method is not limited to T1-w contrast
per se. Similar to the use of the cortical boundaries computed on
the 3T-T1 to process the MS7T scan, the cortical boundaries can
be used to process other types of contrast (e.g. multi T1 (T1 with
multiple inversion times), T2, T2*, diffusion-weighted) scans
from the same subject, provided that an accurate alignment can
be obtained. In particular composition analysis based onmulti T1
mapping is potentially interesting as it is an alternative way to
obtain layer specific information at low resolution and may be
combined with the proposed method in the current study
(Lifshits et al. 2017).

Summary

Herewe introduced a new automaticmethod to compute detailed
average profiles for cerebral cortical regions from T1-w scans
routinely acquired at a clinical 3 T MRI scanner in vivo (3T-
T1). To validate this new method, we compared BAM profiles
for various cortical regions (BA1, BA2, BA3b, BA4a, V1 and
V2) computed from 3 T T1-w scans, with BAM profiles com-
puted from 7 T myelin-sensitive T1-w scans (MS7T). The com-
puted BAM profiles for the 3T-T1 and MS7T scans result in
similar clusterings. As expected, a significant higher relative sig-
nal at the center of the profile (the approximate location of the
line of Gennari) is found for V1 compared to V2 for both 3 Tand
7 T data. Moreover, comparison of the BAM profile for V7
(which has a lower myelin concentration than V1 and V2) with
the V1 and V2 profiles indeed shows a relatively fast signal drop
from the white matter boundary and a significant lower signal at
the middle of the BAM profile for both 3 T and 7 T data.
Comparison of peak positions in BAM profiles of V1 computed
from 3 T and 7 T scans suggests that the peaks have a location
that is irrespective of volume resolution and are therefore not the
result of Gibbs ringing.

In conclusion, although the exact relation between the infor-
mation extracted from the average cortical profile and the
myeloarchitecture of the cortex requires further clarification, the
results of our study suggest that this information obtained at 3 T
is in good agreementwith information obtained at ultra-high field
MRI and can be used to study various architectural aspects of the
cortex. The proposed fully automatic method therefore is a step
forward to study the myeloarchitecture of the human cortex
in vivo using scans routinely acquired on clinical MRI scanners,
both in health and disease.
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