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Abstract
Deep learning has shown prominent superiority over other machine learning algorithms in Single Image Super-Resolution
(SISR). In order to reduce the efforts and resources cost on manually designing deep architecture, we use differentiable
neural architecture search (DARTS) on SISR. Since neural architecture search was originally used for classification tasks,
our experiments show that direct usage of DARTS on super-resolutions tasks will give rise to many skip connections in the
search architecture, which results in the poor performance of final architecture. Thus, it is necessary for DARTS to have made
some improvements for the application in the field of SISR. According to characteristics of SISR, we remove redundant
operations and redesign some operations in the cell to achieve an improved DARTS. Then we use the improved DARTS
to search convolution cells as a nonlinear mapping part of super-resolution network. The new super-resolution architecture
shows its effectiveness on benchmark datasets and DIV2K dataset.
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1 Introduction

As a branch of computer vision [20], image super-resolution
technique reconstructs a higher-resolution image from the
observed lower-resolution counterpart, which is known as a
notoriously challenging ill-posed inverse procedure. Benefit
from the strong capacity of extracting effective high-level
abstractions which bridge the low-resolution (LR) space and
high-resolution (HR) space, many SISR methods [19, 21,
22, 33] based on deep neural network have applied in this
field recently.
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Designing a good neural network architecture is time-
consuming and laborious, in order to reduce the efforts and
resources cost on manually designing network architecture,
scholars and researchers put their attention on neural
architecture search (NAS). Neural architecture search [24,
31, 45] is currently a popular method for searching
for an effective architecture, which has been applied to
image classification [44], image segmentation [39], object
recognition [45] and other fields. The key problem of SISR
methods based on deep neural network is to search a deep
neural network architecture with better performance for SR.

Generally speaking, NAS contains reinforcement learning
(RL) [44, 45], evolutionary algorithm (EA) [31], gradient
descent (GD) [4, 39], Bayesian optimization [29] and so
on. Compared with most NAS methods based on mentioned
above, DARTS as a prominent representative of GD-based
methods, greatly reduces the training time and hardware
resources [25]. This leads us to apply DARTS to search for a
cell-based architecture instead of the nonlinear mapping part
in super-resolution network. However, in original DARTS,
with the increase of training rounds, the entire proxy network
tends to choose more skip-connect operations in searched
architecture, which leads to the collapse of the model, and
it is demonstrated by out experiments that this problem
is even more serious when we apply DARTS directly to
super-resolution tasks. Therefore, it is necessary for DARTS
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to have made some improvements for the application in
the field of SR. In this paper, we optimize the connec-
tion between the intermediate nodes and the output node of
the cell. Because SISR task requires huge memory and is
difficult to overfit, we remove pooling operations to accel-
erate training procedure. The entire proxy network prefers
to choose many skip connection operations in searched
architecture, so we add identity mapping in convolutions
operations to avoid aforementioned phenomenon.

2 Related works

Single image super-resolution refers to the task of restoring
high resolution images from one low-resolution observa-
tions of the same scene. At present, Image super-resolution
research can be divided into three main categories:
interpolation-based, reconstruction-based and learning-
based methods. The early methods are interpolation-based
methods, such as bicubic interpolation [18] and Lanczos
resampling [11], are very fast and simple but it also has
some obvious shortcomings. Firstly, it assumes that the
change in the gray value of a pixel is a continuous and
smooth process, but in fact this assumption is not com-
pletely true. Secondly, during the reconstruction process,
SR images are calculated based on only a pre-defined con-
version function, and image degradation model is not taken
into account, which often results in blurred, jagged and
other phenomena in the restored images. Considering the
upper problems, reconstruction-based SR methods [8, 27,
35, 40] start from the degradation model of the image.
It is assumed that the high-resolution image undergoes
proper motion transformation, blurring, and noise to obtain
a low-resolution image. This method restricts the generation
of super-resolution images by extracting key information
from low-resolution images and combining prior knowl-
edge of unknown super-resolution images. It can generate
flexible and sharp details, but also brings some problems.
With the scale factor increases, the performance of many
reconstruction-based methods degrades rapidly, and these
methods are usually time-consuming.

With the development of machine learning, machine
learning is widely used in different fields, such as
intelligent transportation systems [14], recommendation
[13, 41], data translation [23], extubation failure [6] and
dynamic reconfiguration [12]. Besides, deep learning is
widely used in super-resolution reconstruction algorithms.
Learning-based method [5, 9, 10, 19, 21, 22, 32–34]
uses a large amount of training data to learn a certain
correspondence between the low-resolution image and the
high-resolution image, and then predicts the high-resolution
image corresponding to the low-resolution image based on
the learned mapping relationship. Learning-based method

has a better performance, but the design of neural network
requires a lot of manpower, computing resources and time.

In order to reduce the efforts and resources cost on man-
ually designing architecture, neural architecture search has
attracted the attention of researchers. Most NAS approaches
can be categorized in two modalities: macro search and
micro search. Macro search algorithms aim to directly disco-
ver the entire neural network, reinforcement learning (RL)
[44, 45], evolutionary algorithm (EA) [31] and Bayesian
optimization [29] are the representatives, but these meth-
ods need long training time and high resource consumption.
Micro search algorithms aim to discover neural cells and
design a neural architecture by stacking many copies of
the discovered cell. Since NASNet [45] successfully search
neural cells on NASNet search space, more researchers pro-
pose their methods [4, 26, 43] based on NASNet search
space. Notably, DARTS is simpler than many existing
approaches as it does not involve any controllers [1, 30, 44],
hypernetworks [3] or performance predictors [24] . Besides,
DARTS reduces structure search time to several GPU days,
its simpler than many existing approaches. Considering that
the current application of deep learning in super-resolution
is mainly to learning the mapping relationship between
low-resolution images and corresponding high-resolution
images, using DARTS to search a nonlinear mapping net-
work is a very worthwhile thing to try. In summary, con-
sidering training time and resource consumption, we use a
simpler neural architecture search method (DARTS) to find
an efficient architecture for super-resolution tasks.

3 Original DARTS for SR tasks

3.1 Preliminary of differentiable architecture search

For the case of convolution neural networks, DARTS [25]
searches for a normal cell and a reduction cell to build
up the final architecture. A cell is a directed acyclic graph
constructed by N nodes. Each node xi is a feature map in
cell, and each edge (i, j) is associated with some operation
O(i,j), which are used to change xi . For convolution
cells, each cell has two inputs and one output. Two
inputs are the outputs of previous two cells. The output
of the cell is obtained by applying a reduction operation
(e.g. concatenation) to all intermediate nodes in the cell.
Each intermediate node is computed based on all of its
predecessors, the details are shown in Fig. 1.:

xi =
∑

j<i

O(j,i)xj (1)

where O(j,i) means an operation on xj , summing all the
obtained feature maps to get xi . In DARTS, the author
specifies that feature map of each intermediate node is
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Fig. 1 An overview of DARTS:
a Operations on the edges are
initially unknown. b Continuous
relaxation of the search space by
placing a mixture of candidate
operations on each edge. c Joint
optimization of the mixing
probabilities and the network
weights by solving a bilevel
optimization problem. d
Inducing the final architecture
from the learned mixing
probabilities. This figure quoted
from DARTS

obtained by operating the feature map of all previous nodes.
Therefore, the task of learning the cell is transformed into
learning operations on its edges.

Suppose O is a collection of all operations (e.g.,
convolution, zero, skip-connection) where each operation
represents some function o to be applied to xi . The blending
weights for node i and node j are represented by the vector
α(i,j).To make the search space continuous, the categorical
choice of a particular operation is relaxed as a softmax over
all possible operations:

ō =
∑

o∈O

exp(α(i,j)
o )

∑
o′∈O exp(α(i,j)

o′ )
o(x) (2)

Where α
(i,j)
o and α

(i,j)

o′ mean an operation’s weight on
edge (i, j), o(x) means an operation to be applied to
feature map x. The weight represents the importance of the
operation. The larger the weight value, the more important
the operations is.

In the following, the author refers to α as the
encoding of the architecture and the get the corresponding
operations based on the learned blending weight α. For
the search procedure, we denote Ltrain and Lval as
the training and validation loss respectively. Then the
architecture parameters are learned with the following bi-
level optimization problem:

min Lval(w
∗(α), α) (3)

s.t . w∗(α) = argminw Ltrain(w, α) (4)

In DARTS, the author proposed an approximate iterative
optimization procedure where w and α are optimized by
alternating between gradient descent steps in the weight and
architecture space respectively. The details are shown in
Table 1.

As shown in Table 1, in DARTS, the architecture α

and the weight w of the neural network are optimized
by alternate iteration. In the gradient back propagation
phrase, the neural network weights w are updated with
the loss of the training set, and the architecture α is
updated with the validation loss. In step k, given the
current architecture αk−1, the proxy network obtains wk by
moving wk−1 in the direction of minimizing the training
loss Ltrain (wk−1, αk−1). Then, keeping the weights wk

fixed and updating the architecture so as to minimize the
validation loss after a single step of gradient descent w.r.t
the weights:

Lval(wk − ε∇wLtrain(wk, αk−1), αk−1) (5)

where ε is the learning rate for this virtual step.
After get the continuous architecture α, we retained 2

strongest predecessors for each intermediate node, where
the strength of an edge is defined as:

maxo∈O,o �=zero

exp(α(i,j)
o )

∑
o′∈O exp(α(i,j)

o′ )
(6)

Table 1 The algorithm of
bilevel optimization in DARTS
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Then we replace every mixed operation as the most likely
operation by taking the argmax. More technical details can
be found in original DARTS paper.

3.2 The phenomenon of performance drop caused
by intractable skip connections

In PDARTS [7], a severe issue underlying DARTS has
been found. Namely, after a certain searching epoch, the
number of skip connections increases dramatically in the
selected architecture, which results in poor performance of
the selected architecture. why it happens? From another
perspective, the authors relaxed the categorical choice
of a particular operation as a softmax over all possible
operations in DARTS. This weighted sum resembles a
basic residual model in ResNet [15, 16], which states that
the identity mapping ensures that information is directly
propagated back to any shallower layers. In other words,
it is helpful to train a deeper neural network. In ResNet
experiments, they showed that the learned residual functions
in general have small responses, suggesting that identity
mapping provide reasonable preconditioning. Therefore,
the skip connection’s corresponding architectural weight
increases much faster than other operations’ architectural
weights. The identity mapping part and residual function
part in residual module work together to reach a better
result, but the final architecture is obtained by picking only
the top-performing ones among all operations which break
this cooperation.

In image classification task, it has been observed in
DARTS that lots of skip connections are involved in the
selected architecture, which make the architecture shallow
and the performance poor. To see if there is the same
problem in super-resolution tasks, we run DARTS two times
with different random seed. In super-resolution DIV2K
dataset, the alpha value of skip connection become very
large when the number of search epochs is large, and

thus the number of skip-connect increases in the selected
architecture as shown in the blue line in Fig. 2. Following
DARTS, we select 8 top-performing operations per cell. The
number of dominate skip connection operations (highest
softmax (α) among all operations in that edge) occupies a
large part of all operation searched by DARTS. In addition,
in left picture of Fig. 2, all top-performing operations
in selected architecture are skip connections, it indicates
that the proxy network has not learned useful operations.
Considering the above situation, we need to prevent search
for too many skip-connect operations in search stage.

4 ImprovedDARTS for super-resolution tasks

In this chapter, we adjust the search space based on the char-
acteristics of some notable super-resolution networks. After
that, we describe our proposed SR network architecture
based on differentiable architecture search. We ultimately
present the proposed network and compare this network
with the baseline.

4.1 Remove redundant operations

Like the search space proposed in DARTS, we search for
a basic cell structure and then stack it to construct the
final convolutional neural network, which is used as a
nonlinear mapping part of the super-resolution network.
In some super-resolution networks [21, 22], a large initial
channel means that convolution operation can get more
feature maps, thereby saving more information about LR
images and getting higher quality SR images. Reduction
cell will increase the number of channels to be output,
if the initial channel number if too large, the usage of
reduction cell will result in out of memory. In addition,
the length and width of the feature output will be halved,
which will result in information loss and more upsampling

Fig. 2 The number of skip connections accounts for a large portion of all operation searched by DARTS. Train and validation PSNR are also
drawn to show the level of convergence
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operations. Therefore, in order to ensure that the initial
channel is relatively large, we removed the reduction cell in
experiment.

For SISR tasks, since the input LR image and the
output HR image are strongly correlated, and the LR
image is down-sampling by the HR image. Since pooling
operations often leads to the information loss, so they may
harm the final performance. Of course, removing redundant
operations speeds up the search architecture stage. To
reduce the size of parameter in cells, unlike the output of
cell in DARTS, the output of cell in our search space is the
mean of feature maps of all intermediate nodes in the cell.

4.2 Adding identity mapping on convolution
operations

Since the proxy network tends to choose skip connection
as dominant operation in all operations, we decided to add
residual block unit in search space. Instead of adding extra
residual module in search space, we add identity mapping
in original convolution operations in DARTS. Besides, by
stacking residual block unit, some notable networks [21, 22]
have achieved good performance on SR tasks, it indicates
that residual module is useful. Like residual block, we
add skip connection to convolution neural network (The
details are shown in Fig. 3). In image classification task,
the architecture will prefer to search many skip-connection
operations that cause the collapse of the final model.
Adding skip connection in convolution operations not only
improves the performance, but also avoid choosing more
skip-connection in architecture search stage. Then we use

experiments to verify that this method can really bring about
an improvement in the effect.

For comparison, like we did before, we run two times
with different random seed, the number of skip connections
keep steady in Fig. 4. In next section, we use experiment
to verify that searched architecture performance better.
Compared with result got by Original DARTS in Fig. 3, the
result says that choosing more skip connections gets higher
PSNR value during the search phase. In architecture search
phase, an edge consists of six competitive operations, the
entire proxy network has a better performance. Whereas,
the final architecture is obtained by picking only the top-
performing ones among all operations, which result in the
performance drop of final architecture. In the experiment
part, we verifies that the results of Improved DARTS are
better than Original DARTS.

4.3 The architecture of the proposed network

At the begin of the neural network, we use convolution
operations extract low-level features. Then we use cell
structure that can be searched by DARTS to serve as a
nonlinear mapping part of super-resolution network (Fig. 5).
The network searched by DARTS also has skip-connection,
so it can make the network deeper. After that, we use
element-wise addition to fuse the low-level features and the
high-level features got by nonlinear mapping part of super-
resolution network. Finally, we use subpixel upsampling
to get corresponding HR images. During the forward
propagation of the entire network, the dimensions of the
features remain the same.

Fig. 3 Comparison of
convolution operations in
original DARTS and ours
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Fig. 4 The number of skip connections keeps steady as training epochs increase. Train and validation PSNR are also drawn to show the level of
convergence

5 Experiments and results

The experiment includes two parts: architecture search and
architecture evaluation. In the first part we use DARTS to
search a cell structure (including the connection method
and the operation used for the connection). In architecture
evaluation phrase, we train the searched model from scratch
in the training process. For testing, we use five standard
benchmark datasets. The SR results are evaluated with
PSNR and SSIM [38] on Y channel of transformed YCbCr
space.

5.1 PSNR/SSIM for measuring reconstruction quality

PSNR and SSIM are quantitative criteria in most super-
resolution papers. Given two images X and Y both with N
pixels, peak signal-to-noise ratio is defined as:

PSNR = 10 ∗ log10
MAX2

I

MSE
= 20 ∗ MAXI√

MSE
(7)

Where MSE is the mean square error between the original
image and the SR image, MAXI indicates the maximum
value of the image color (8-bit sample point is represented
as 255). PSNR value evaluates the quality of the image by
comparing the gray value difference of the corresponding
pixels of two images. The higher the PSNR value, the better
the image obtained by super-resolution Structural similarity

index (SSIM) is defined as:

SSIM(X, Y ) = (2μxμy + C1)(2σXY + C2)

(μ2
X + μ2

Y + C1)(σ
2
X + σ 2

Y + C2)
(8)

where μX and μY represent the mean values of the images
X and Y , and σX and σY represent the standard deviations
of the images X and Y . σXY represents the covariance
of the images X and Y , C1 and C2 are constant. SSIM
evaluates the similarity of the two images from three
aspects: brightness, contrast, and structure. SSIM is a
number between 0 and 1. The larger the SSIM value, the
better the super-resolution effect.

5.2 Architecture search

We include the following operations in O: 3 × 3 and 5 × 5
proposed separable convolutions, 3 × 3 and 5 × 5 proposed
dilated separable convolutions, skip-connection and zero.
All operations are of stride one (if applicable) and the
convolved feature maps are padded to preserve their spatial
resolution. We use Conv-ReLU-Conv order for proposed
separable convolution and dilated separable convolution.

Our convolutional cell consists of N = 7 nodes, and
the output of the cell is the mean of the feature maps of
all intermediate nodes in the cell (input nodes excluded).
The rest of the setup follows DARTS [25]. We took a half
of the training data in DIV2K dataset as validation set and

Fig. 5 Neural architecture of
super-resolution
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Fig. 6 a The searched result from Original DARTS. b The searched result from Improved DARTS

the other used was used as training data. In order to find
a suitable architecture faster, we chose a small network
with only 8 cells at this stage. The network is trained using
DARTS for 50 epochs, with batch size 16 and the initial
number of channels 64. We use SGD optimizer to optimize
the weight w of the network, with momentum 0.9, initial

learning rate 1e − 2 and the regularization 1e − 3. At the
same time, we use the Adam optimizer to adjust architecture
α, with initial learning rate 3e − 4, the momentum β =
(0.9, 0.999), and the regularization 1e − 3. It took 8 hours
on one NVIDIA TITAN Xp GPU. The searched results are
shown in Fig. 6.

Fig. 7 The two pictures (a) and (c) represent the loss and PSNR(dB) values of the original DARTS trained on the DIV2K dataset. The two pictures
(b) and (d) represent the loss and PSNR(dB) values of the improved DARTS trained on the DIV2K dataset
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Table 2 Public benchmark test results (PSNR (dB))

Dataset Bicublic A+ SRCNN VDSR SRResNet Original DARTS Ours

Set5 28.42/0.8104 30.28/0.8603 30.48/0.8628 31.35/0.8838 32.05/0.8910 32.21/0.8949 32.21/0.8958

Set14 26.00/0.7027 27.32/0.7491 27.49/0.7503 28.01/0.7674 28.53/0.7804 28.66/0.7823 28.61/0.7832

B100 25.96/0.6675 26.82/0.7087 26.90/0.7101 27.29/0.7251 27.57/0.7354 27.51/0.7323 27.61/0.7384

Urban100 23.14/0.6577 24.32/0.7183 24.52/0.7221 25.18/0.7524 26.07/0.7839 25.96/0.7687 26.26/0.7932

Bold indicates the best performance

5.3 Architecture evaluation

5.3.1 Evaluation on DIV2K dataset

DIV2K [37] is a large collected dataset of RGB images with
a large diversity of contents. The DIV2K is divided into 800
training image, 100 validation images, and 100 test images.
As the test dataset ground truth is not released, we report and
compare the performance on the validation dataset. We train
our model with 800 training images and use 10 validation
images in the training process.

We used a 20-layer large network and trained for 300
epochs, with input patch size 192, and initial channel 256
and batch size 16. Initial learning rate is set to 1e-4 and
is dropped by half for every 200 epochs. We augment the
training data with random horizonal flips and 90 rotations.
We pre-process all the images by subtracting the mean RGB
value of DIV2K dataset. We train our model with ADAM
optimizer by setting β = (0.9, 0.999), and ε = 1e − 8.
Because super-resolution model is hard to converge, so we
removed the regularization part and dropout layer. It took
5 days on three NVIDIA TITAN Xp GPUs. The result is
shown in Fig. 7. Compared with our baseline model EDSR,
the authors use 32 residual blocks and 256 filters to get
the best performance, and the model parameters of their
model is 43M. While in our proposed model, the parameters
of our model is 26.68M. For training, we use the RGB
input patches of size 48 × 48 from low-resolution image
with the corresponding high-resolution patches. Under the
same input condition as above, the flops of EDSR is
1853 GFLOPS and the flops of our proposed model is
1162 GFLOPS. Other models do not clearly give model
parameters and flops, so we don’t compare with them here.

5.3.2 Benchmark results

We provide quantitative and qualitative comparisons.
Besides DIV2K validation set, we evaluate our proposed
model on four standard benchmark datasets: Set5 [2], Set14
[42], B100 [28], and Urban100 [17]. We compare our model
with some notable methods including SRCNN [9], A+ [36],
VDSR [19] and SRResNet [21]. We only compare our

model with others on scale 4. For comparison, we measure
PSNR on the y channel. In Table 2, we provide a summary
of quantitative evaluation on several datasets. Our model
shows significant improvement than other models. Except
for PSNR, we also introduce SSIM as another parameter
to measure the performance of the model on benchmark
datasets. On more complex datasets B100 and Urban100,
improved DARTS is better than original DARTS.

6 Conclusion

In this work, we have presented a novel cell-based super-
resolution method using very deep networks. We redesign
convolution operations including dilation convolution and
separable convolution by adding skip-connection. By
removing unnecessary operations from search operation
set, we shortened the search time of the architecture.
Our proposed SISR model surpasses some notable works.
Moreover, neural architecture search offers a feasible way
for engineers to compress existing popular human-designed
models.
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