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contributes to the accumulation of unwanted proteins (bio-
chemical fluid) in the brain associated with AD (Brzecka et 
al. 2018). Similarly, fewer sleep postural transitions were 
found in patients diagnosed with PD (Uchino et al. 2017). In 
addition, improper sleep posture can be fatal; for example, 
sleep in the prone position can lead to the sudden death of 
epilepsy patients (Liebenthal et al. 2015). These examples 
show the importance of an automated sleep posture moni-
toring system. Such a monitoring system can inform care-
givers to adjust the sleep posture of a patient and provide 
overall sleep posture statistics to doctors for better manage-
ment of patients.

Technological advancements in the Internet of things 
(IoT) and machine learning (ML) have been used to cre-
ate several sleep monitoring systems (Fallmann and Chen 
2019). Primarily, these sleep monitoring systems can be 
divided into two categories. The first category employs 
wearable and on-bed sensors resulting in discomfort while 
sleeping (Guillodo et al. 2020). The second category 

1  Introduction

During sleep, people exhibit different sleep postures, i.e., 
sleeping on the lateral positions (right or left side), and 
supine or prone positions. Several research studies have 
demonstrated that monitoring bodily spatial movements 
during sleep can have an impact on physical and mental 
health. Particularly, sleep posture is a marker of disease 
progression. Sleep postures can suggest the progression 
of Alzheimer’s disease (AD) and Parkinson’s disease 
(PD). For instance, sleep in the supine or prone position 

	
 Abbas Z. Kouzani
kouzani@deakin.edu.au

1	 School of Engineering, Deakin University, Geelong,  
VIC 3216, Australia

2	 School of Mathematical and Physical Sciences, University of 
Technology Sydney, Ultimo, NSW 2007, Australia

Abstract
Sleep posture is closely related to sleep quality, and can offer insights into an individual’s health. This correlation can 
potentially aid in the early detection of mental health disorders such as depression and anxiety. Current research focuses 
on embedding pressure sensors in bedsheets, attaching accelerometers on a subject’s chest, and installing cameras in 
bedrooms for sleep posture monitoring. However, such solutions sacrifice either the user's sleep comfort or privacy. This 
study explores the effectiveness of using contactless ultra-wideband (UWB) sensors for sleep posture monitoring. We 
employed a UWB dataset that is composed of the measurements from 12 volunteers during sleep. A stacking ensemble 
learning method is introduced for the monitoring of sleep postural transitions, which constitute two levels of learning. At 
the base-learner level, six transfer learning models (VGG16, ResNet50V2, MobileNet50V2, DenseNet121, VGG19, and 
ResNet101V2) are trained on the training dataset for initial predictions. Then, the logistic regression is employed as a 
meta-learner which is trained on the predictions gained from the base-learner to obtain final sleep postural transitions. In 
addition, a sleep posture monitoring algorithm is presented that can give accurate statistics of total sleep postural transi-
tions. Extensive experiments are conducted, achieving the highest accuracy rate of 86.7% for the classification of sleep 
postural transitions. Moreover, time-series data augmentation is employed, which improves the accuracy by 13%. The pri-
vacy-preserving sleep monitoring solution presented in this paper holds promise for applications in mental health research.
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employs contactless vision-based sensors. Vison-based sen-
sors use a camera and an ML algorithm to record videos and 
extract sleep postures. The deployment of cameras in users’ 
bedrooms is privacy-intrusive and sometimes can have poor 
accuracy in monitoring body posture. For example, a body 
covered with a blanket, or low lighting are the typical cases 
where vision-based sensors fail to work. An ideal system 
should be non-intrusive, contactless, and work under low 
illumination. Recent research in wireless signals has paved 
the way for the development of ultra-wideband (UWB) 
technology for sleep posture monitoring. This allows the 
contactless patient monitoring, which means while apply-
ing UWB radars, patients don’t need to wear any sensor on 
their body.

In this research, we employ a UWB dataset and develop 
an ML model which outperforms the recently published 
framework (Piriyajitakonkij et al. 2020) for the classifica-
tion of sleep postural transitions. Our ML model employs 
the processing of time-domain features through a pre-
trained deep convolutional neural network (DCNN). We 
combine the predictions through stacking ensemble learn-
ing to optimize the results, which significantly enhances the 
accuracy of sleep postural transitions.

This paper provides the following contributions:

1.	 Investigation of the links between sleep postures with 
mental health.

2.	 Development of a state-of-the-art ML model for the 
classification of sleep postural transitions that outper-
form the accuracy of a recently published framework 
(Piriyajitakonkij et al. 2020) by 13%.

3.	 Development of a sleep posture monitoring algorithm 
that can give accurate statistics of total sleep postural 
transitions.

1.1  Sleep posture linkage with neurological and 
sleep disorders

The development of many neurological diseases is asso-
ciated with aging, including Parkinson's disease (PD), 
Alzheimer's disease (AD), dementia, etc. Because the pro-
duction of proteins and protein waste removal in the aging 
brain is impaired (Kress et al. 2014). Our brain produces 
proteins for brain functioning and after doing useful work, 
the proteins need to be extracted from the brain. Abnormal 
deposition of amyloid-β (Aβ) (Murphy and LeVine Jan. 
2010) and α-synuclein (Snyder and Wolozin 2004) in the 
brain triggers a cascade of events leading to neuroinflam-
mation and neuronal cell death, which are termed as AD and 
PD, respectively. During the night, sleep serves as a vital 
function for the removal of protein waste from our brain 

through the brain glymphatic system. Body posture contrib-
utes to proper functioning of the brain's glymphatic system. 
The lateral position is found to be the best for the removal 
of protein waste from brain (Lee et al. 2015), which is the 
most common during sleep. In addition, sleep posture has 
also been associated with sleep quality (Cary et al. 2021), 
and poor sleep quality is a common feature of sleep dis-
orders such as sleep apnea (Sleep Quality: How to Deter-
mine if You’re Getting Poor Sleep, Sleep Foundation 2021). 
Accordingly, monitoring of sleep postures may give useful 
insights into the progression of AD, PD, and sleep disorders.

1.2  Sleep posture linkage with mental health

We have discussed how sleep postures can impact the pro-
gression of AD and PD. Both diseases affect physical and 
mental health. AD is known as the main cause of dementia 
(Brzecka et al. 2018), which can deteriorate mental health. 
People with early stages of AD are prone to depression, and 
with the progression of this disease, memory loss worsens, 
and decision-making becomes more difficult. Neuropsy-
chiatric conditions such as depression, anxiety, etc., are the 
core features of AD, which are noticeable during the devel-
opment, and throughout the span of illness (Lyketsos et al. 
2011). Progression of AD is linked with cognitive decline, 
which eventually results in loss of independence and a 
shorter survival period. Moreover, Tori et al. (2020) studied 
the relationship between dementia and psychiatric disorders 
and found that subjects with dementia were more likely to 
suffer from at least one psychiatric disorder. As compared 
with the general population, depression and other mental 
illnesses are common in patients suffering from PD (Ishi-
hara and Brayne 2006). Similarly, researchers observed that 
patients suffering from PD are also diagnosed with anxiety 
and major depressive disorder (Alamri 2015). In terms of 
sleep disorders, Pye et al. (2021) found an increased level of 
physical activity during sleep and a lower sleep regularity 
index in depressed subjects. Figure 1 shows the linkage of 
sleep postures with mental health.

Table 1 gives the strong linkage of sleep posture with 
mental and physical health conditions. On-bed sleep pos-
tures and sleep postural transitions can give useful insights 
into the progression of neurological disorders and can help 
diagnose potential mental illness in patients. Based on the 
studies discussed above, it can be said that individuals who 
sleep in supine or prone positions are more likely to suffer 
from mental health issues as compared with those who sleep 
in lateral positions.	
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2  Related work

Research work on sleep posture monitoring is categorized 
into wearable posture monitoring and contactless posture 
monitoring methods.

2.1  Wearable posture monitoring

The wearable sleep monitoring methods mostly consist of 
smart band and smartwatch devices equipped with sensors 
to track breathing, heart rate, and oxygen saturation among 

Table 1  Relationship between sleep posture and mental health
Disorder Effect 

of sleep 
postures

References Association 
with mental 
disorder

Findings

Alzheim-
er’s 
Disease

Frequent 
sleep in 
a supine 
or prone 
position

Lyketsos et 
al.(2011)

Depression 
and Anxiety 
Disorder

Neuropsychiatric conditions such as depression, and anxiety are the core features of 
AD, which are noticeable during the development and throughout the span of illness.

Contador-Cas-
tillo et al. (2009)

Depression Depression is the most familiar disorder in AD, which is associated with significant 
memory impairment in non-demented patients.

Garcez et al. 
(2015)

Depression AD is associated with psychiatric comorbidities such as deficits in cognition. 
Moreover, subjects may suffer from behavioural variations such as depression, mood 
swings, etc.

Steffens et al. 
(2009)

Depression Diagnosed dementia patients are more likely to suffer from depression disorder.

Thielscher et al. 
(2013)

Depression Subjects with neurological diseases are also at high risk of developing mental disor-
ders as 51.4% of subjects suffer from depression after 1 year of the diagnosis of AD.

Piccinni et al. 
(2012)

Bipolar 
Disorder

Alteration of biochemicals in the brain might accelerate the risk of cognitive decline 
in bipolar patients.

Kessing and 
Andersen (2004) 

Bipolar 
Disorder

Number of depressive episodes is linked with the progression of dementia.

Drange et al. 
(2019)

Bipolar 
Disorder

Authors have found genetic overlap between AD and bipolar disorder.

Parkin-
son’s 
Disease

Prolonged 
sleep-
ing in a 
supine 
position, 
loss of 
axial 
move-
ment, 
and less 
frequent 
nocturnal 
turnovers

Richard (2005) Anxiety 
Disorder

Estimation suggests that up to 40% of subjects with PD may encounter anxiety, 
while the actual prevalence rates are still uncertain.

Tandberg (1996) Depression In PD, depression is among the most common neuropsychiatric symptoms which 
occur to some degree in up to 50% of patients with PD.

Tori et al. (2020) Depression, 
Anxiety, etc.

Subjects with dementia were more likely to experience at least one psychiatric 
disorder.

Alamri (2015) Anxiety 
Disorder

Researchers observed that patients suffering from PD are also diagnosed with anxi-
ety and major depressive disorder.

Sleep 
Disorder

Increased 
level of 
physical 
activity

Pye et al. (2021) Depression Compared with control subjects, subjects with current depression had higher activity 
during sleep and post-midnight hours and a lower sleep regularity index.

Fig. 1  Sleep postures relationship 
with mental health
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for sleep posture monitoring. A UWB radar transmits low-
power signals and observes the reflections from the sur-
rounding environment through a receiver. The received 
signal at the receiver can be represented by Piriyajitakonkij 
et al. (2020):

zk (t) =

Npath∑

i=1

skix (t− τki) + n (t)� (1)

where zk (t)  is the received signal which represents the slow 
time index k, while t is the fast time index, which represents 
the time of arrival of each reflected signal. x and ski  are the 
original pulses sent from the transmitter, τki  is a time delay, 
and n (t) represents noise. Similarly, Npath  is the number 
of traveling paths and i represents the ith path of traveling 
pulses.

The UWB dataset utilized in this research is collected by 
Piriyajitakonkij et al. (2020), where they have collected two 
datasets with a different number of subjects. We considered the 
dataset which contains more realistic scenarios. This dataset is 
collected from 12 subjects and a detailed description of the sub-
jects is given in Piriyajitakonkij et al. (2020). The dataset con-
sists of over 816 samples from all subjects, which are labeled 
manually by using video recordings, and each sample contains 
only one sleep postural transition. The dataset is further divided 
into two sessions: Session I was recorded where all the objects 
remained motionless in an environment, while Session II con-
tained a swinging fan. In addition, to replicate the realistic set-
tings, subjects were instructed to execute random actions such 
as moving their head, body, and limbs, using smartphones, and 
lying motionlessly. This class is termed as background (BG), 
which can help identify sleep and awake situations. In total, the 
dataset contains five classes, which are supine to side (SUSI), 
side to supine (SISU), supine to prone (SUPR), prone to side 
(PRSU), and background (BG).

3.2  Data processing

(a) DC Suppression: UWB data is a multivariate time series 
data that includes slow time indices and range bins. Range 
bins may unavoidably contain DC noise. The possible way 
of DC noise elimination is by averaging its value through all 
slow time indices N:

Rmn = Rmn −
1

N

N−1∑

i=0

Rmi � (2)

Rmn  is subtracted from its mean along with the slow time 
index, before storing in Rmn , where m and n represent the 
rows and columns of the matrix.

others (Li et al. 2017). Some devices are also equipped with 
an accelerometer to estimate sleep postures. For example, 
Qian et al. (2015) and Chang and Liu (2011) used an accel-
erometer to monitor sleep postures. They attached an accel-
erometer to the subject’s chest and determined the person’s 
orientation by combining the acceleration along three dif-
ferent axes. These monitoring devices are however invasive 
and cumbersome as users need to wear a device on their 
bodies during sleep. Therefore, non-wearable sleep posture 
monitoring is preferred.

2.2  Contactless posture monitoring

Contactless posture monitoring methods are categorized as 
on-bed sensing, vision sensing, and wireless sensing. On-
bed sensing consists of sensors that are embedded into the 
bed, such as pressure mats (Liu et al. 2014; Hsia et al. 2008; 
Ostadabbas et al. 2014; Pouyan et al. 2013; Xu et al. 2015). 
However, patients’ movement may shift the placement of 
pressure mat, which needs to be re-adjusted for accurate 
sleep posture monitoring. Vision-based sensing employs 
infrared or normal cameras for data collection. Cameras 
record videos to monitor users’ sleep for the prediction 
of posture (Grimm et al. 2016; Liu and Ostadabbas 2017; 
Akbarian et al. 2019). However, cameras are privacy intru-
sive. Normal cameras require ambient light for their effi-
cient working. Infrared and normal cameras cannot monitor 
sleep while a blanket is on (Deng et al. 2018).

In contrast, radio frequency sensors can even see through-
wall to detect human movements due to their high pene-
tration ability (Adib et al. 2015). These sensors can work 
without privacy breaches and do not require ambient light 
for their operation. In the literature, few studies employed 
radar-based systems for sleep posture monitoring (Piriyajita-
konkij et al. 2020; Yue et al. 2020; Barsocchi 2013; Liu et al. 
2018). They analysed the collected data and processed them 
through ML algorithms to detect sleep postures and postural 
transitions. Moreover, UWB gave promising results with a 
lot of benefits e.g., UWB can work through a wall due to its 
high penetration properties, provides a high degree of secu-
rity with a low probability of detection, and delivers greater 
signal strength in adverse situations, etc. (Introduction to 
Ultra-Wideband Communications 2022).

3  Proposed model

3.1  Overview of UWB sensor and dataset

The proposed radar-based model uses a dataset collected 
with the XeThru X4M03 UWB sensor from Novelda 
(XeThru X4M03 Development Kit—SensorLogic 2021) 
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applied to the training dataset, and further details can be 
seen in Piriyajitakonkij et al. (2020) and Um et al. 2017.

3.5  Machine learning model

To extract significant features from the input data, our study 
incorporates pre-trained DCNN (transfer learning) models 
for training, and then a stacking ensemble learning model is 
used for the combination of predictions of all models, to get 
the final outcome. Transfer learning models are trained on a 
different type of images, and hence, the transfer learning mod-
els are considered best for image recognition tasks. The dataset 
used in this study is multivariate time series data, which can be 
represented by a 2D array similar to an image. Therefore, the 
transfer learning models for the classification tasks are deemed 
appropriate. In addition, the dataset contains 816 samples 
which are split into 478, 272, and 68 samples for training, vali-
dation, and testing, respectively (Piriyajitakonkij et al. 2020). 
While data augmentation is only applied on training data to 
prevent overfitting.

For implementation of our model, we employed six 
ImageNet pre-trained DCNN’s: VGG16 (Simonyan and 
Zisserman 2015), ResNet50V2 (He et al. 2016), Mobile-
Net50V2 (Howard et al. 2017), DenseNet121 (Huang et al. 
2017), VGG19 (Wen et al. 2019), and ResNet101V2 (Benali 
Amjoud and Amrouch 2020). The fully connected layers are 
replaced with custom-built layers. For example, in VGG16 
and VGG19, the last fully connected layer was replaced by 
a layer consisting of 16 neurons with ReLU activation and 
a 0.5 dropout rate before being finally connected to the out-
put layer, which contains five neurons, responsible for the 
multi-class classification. The five classes are SUSI, SISU, 
SUPR, PRSU, and BG. Similarly, ResNet50V2 and Mobile-
Net50V2 have 32 neurons in the fully connected layer with 
ReLU activation, and DenseNet121 and ResNet101V2 have 
64 and 16 neurons in the fully connected layer with ReLU 
activation, respectively. A dropout rate of 0.45 is used along 
with the last four models.

All configurations of classification layers were selected 
by performing the different iteration runs, which include 
different settings of the number of neurons in the layer and 
the dropout rate. Moreover, it was observed that the model 
with more than two hidden layers is prone to overfitting. It is 
worth mentioning that the dataset used in this study consists 
of a low number of images and performing data augmenta-
tion helps avoid overfitting. We aimed to keep the number of 
neurons in the second last layer as small as feasible without 
sacrificing model performance to avoid overfitting. Finally, 
we concatenated all outputs from individual models to an 
average ensemble and weighted average ensemble model 
and created the dataset for the stacking ensemble model. 
Figure 2 shows the overview of complete procedure of our 

(b) Background Suppression: Slow time indices contain 
the information of the objects present in the environment, 
which also include the interested target such as an active 
human. This is termed as static clutter. Data in each slow 
time index is subtracted with their average along fast time 
to suppress the static clutter:

Ymn = Rmn −
1

M

M−1∑

i=0

Rin � (3)

Rmn  is subtracted by its mean along with the fast time 
index, before storing in Ymn .

3.3  Feature extraction

(a) Time Difference (TD): Typically, the objects in a bed-
room-like environment are stationary. Therefore, the differ-
entiation along the slow time axis Y d  suppress the static 
objects information in the signal and in return, the remain-
ing information represents a moving human:

Y d
mn = Ym,n+1 − Ymn � (4)

where every Y d
mn  is a difference between Ym,n+1 and Ymn , 

which denotes the pulses with different slow time axis from 
range bin m.

(b) Range Selection: Typically, the range of UWB sen-
sors is small. For this experiment, the step size between 
range is 5.14 cm and 40 range bins were selected in a range 
of about 2 m which contains information about the human 
body in the environment. The selection algorithm finds a 
position of cropping window, where the summation of the 
slow time difference energy is maximized:

max
I,F

·
F∑

m=I

·
N−1∑

n=0

·
(
Y d
mn

)2
� (5)

where I and F are the initial and final range bins of the crop-
ping window, respectively. A cropped signal is then stored 
in the (F − I + 1) × N matrix.

3.4  Data augmentation

Deep learning normally suffers from overfitting as it 
requires a large training dataset for training. However, in 
the case of human participants, data points are usually small 
due to the availability of a limited number of subjects. To 
eradicate this problem, Range Shift (RS), Time Shift (TS), 
Magnitude-Warping (MW), and Time-Warping (TW) were 
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accurate predictions compared to the best base-learners 
(Wolpert 1992).

In this paper, we have applied the data pre-processing to obtain 
the time domain sleep postural transition data, which is used 
to train base classifiers. Then, the stacking ensemble method 
is implemented to integrate the results of base classifiers to 
improve the overall performance. The stacking ensemble 
model combined the outputs of multiple transfer learning mod-
els for the prediction of sleep postural transitions. The general 
algorithmic process of stacking ensemble method can be seen 
in Algorithm 1.

Algorithm 1  Stacking_ensemble_model

A stacking generalization model is presented in Breiman 
(1996), which can be written as Eq. (6). The regression model 
requires a function f  that maps an input vector x ∈ Pd  onto 
the corresponding continuous label valuey ∈ P . Since a train-
ing data set {(xi, yi) , ..., (xn, yn)}  is used to findf , the task 
falls into the category of a supervised learning problem. The 

proposed stacking ensemble model, including all the steps 
from input to final predictions.

3.6  Ensemble model

Ensemble learning leverages the opportunity to combine the 
information from several classifiers to make the model more 
generalized and robust. In addition, variance and bias are 
also reduced, which results in minimizing the error. More-
over, another important aspect of the ensemble model is that 
the pattern learned by another classifier could be used for the 
correction of the feature space regions that may have been 
inaccurately learned by one of the classifiers. Hence, these 
attributes make ensemble models the best option for com-
plex classification and regression problems (Géron 2019).

(a)	 Average Ensemble Model: After prediction through 
each model, we implemented the average ensemble 
learning technique to compute the average of predicted 
classes by comparing the predictions of all models one 
to one achieving an accuracy of 69.6% among all sepa-
rately trained models.

(b)	 Weighted Average Ensemble Model: To increase the 
efficiency of the ensemble model, we used the weighted 
average technique by assigning weights to all mod-
els. In ensemble learning, different models are good at 
predicting particular features, and a weighted average 
allows the use of models according to their needs. We 
used the grid search to find the best match from models 
to apply the weighted average. We obtained the maxi-
mum accuracy of 76.3% by performing a grid search 
with different weights of all trained models.

(c)	 Stacking Ensemble Model: A stacking ensemble method 
is an effective approach because it combines multiple 
classification models through a meta-classifier. It has 
two levels of learning: base learning and meta-learning. 
The base learners are trained on the training dataset 
while the meta-learner is trained on the outputs of the 
base learners, and then the trained meta-learner is used 
to make predictions on the test dataset (Breiman 1996). 
Generally, a stacking ensemble model can obtain more 

Fig. 2  Overview of the proposed 
machine learning framework
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3.8  Complexity analysis of the proposed model

It is crucial to understand computational and spatial com-
plexity, particularly given the practical implications of the 
proposed model in sleep postural transition monitoring. This 
analysis focuses on two main aspects: computational com-
plexity, which addresses the algorithm's time efficiency, and 
space complexity, which relates to the memory requirement.

3.8.1  Computational complexity

(a)	 Preprocessing and Feature Extraction

�The time complexity of the preprocessing and feature 
extraction stages of the proposed model involves mul-
tiple linear operations. The DC suppression process 
has a complexity of O(N) , where N  is the number of 
slow-time indices, indicating a linear relationship with 
the size of the dataset. Similarly, the background sup-
pression step has a complexity of O(MN) , where M  
and N  are the slow- and fast-time indices, respectively. 
This indicates linear complexity with regard to both 
indices. The time difference calculation also consisted 
of a linear complexity pattern characterized by O(MN)

. Additionally, the range-selection process demonstrates 
a linear complexity of O(F − I), where F  and I  rep-
resent the final and initial range bins, respectively, indi-
cating that the complexity is directly proportional to the 
range-bin difference.

(b)	 Base learners

�In the context of our base learners, which are transfer-
learning-based DCNN models, the training complexity 
for each network is denoted by O(T ∗ P 2 ∗D). where T  
is the total number of training iterations, P  is the num-
ber of parameters in the network, and D  is the dataset 
size. When considering all six base learners collectively, 
the total time complexity is effectively six times the 
complexity of a single learner, thus 6 ∗ O(T ∗ P 2 ∗D)

. All base learners’ ‘trainable’ attribute is set to ‘False’, 
so the primary computational load during training origi-
nates from the forward pass. The base learner models 
employ a Flatten layer followed by a Dense layer with 
16–32 neurons, a Dropout layer, and a final Dense layer 
with softmax activation. The computational complexity 
of these layers is significantly lower than the base of all 
transfer learning models. The Flatten layer reshapes the 
data but does not require complex computations. The 
Dense layers are composed of matrix multiplications, 
and their complexity is proportional to the number of 

machine learning problem is formulated as a minimization 
problem of the form:

min
f

·
n∑

i=1

l (f (xi, yi)) + λr (f ) � (6)

The first term of the objective calculates the quality of the 
function f . The second term of the objective calculates the 
complexity or roughness of the function f .

3.7  Sleep postural transitions monitoring algorithm

To show the effectiveness of our proposed model, we have 
developed a sleep posture monitoring algorithm that can give 
accurate statistics of total sleep postural transitions during a 
night, initial and final sleep posture, and total time spent in the 
most frequent sleep posture. This sleep analysis can give use-
ful insights to caregivers and physicians to track the disease 
of a patient. As we argued earlier, sleep postures can risk the 
progression of AD and PD (Brzecka et al. 2018; Uchino et al. 
2017). Moreover, frequent changing of sleep posture is linked 
with poor sleep, and Pye et al. (2021) also revealed that sub-
jects having depression has higher on-bed activities. Research 
highlights the strong linkage of AD, PD, and sleep disorders 
with mental health, which can be seen in Table 1.

Algorithm 2 gives the pseudo-code of our sleep postural 
transitions monitoring algorithm, where D denotes the random 
testing samples on which we tested the trained models. We iter-
atively tested multiple times and stored the results in an array L. 
For full night sleep posture monitoring, we have added the time 
delay, which can enable the system to capture the sleep posture 
after every 60 s. For example, if a person slept for 8 h, then a 
total of 480 times, the system would capture the sleep postures 
and give the overall indication of total sleeping time, number of 
sleep postural transitions, most frequent sleep posture, and time 
spent in that posture as well.

Algorithm 2  Sleep_posture_monitoring_algorithm
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tuning and efficient data storage formats have been utilized 
to effectively manage memory requirements. It is important 
to mention that the introduction of time-domain data aug-
mentation techniques is beneficial for model performance 
but also contributes to the memory load, particularly in the 
training phase.

4  Experiments

In this section, comparison methods are employed to evalu-
ate the proposed model. As the dataset used contains a mov-
ing object, and subjects were instructed to perform different 
sorts of activities (which is added as the BG class). This class 
also reflects that the subject is not sleeping, which helps to 
identify whether a person on-bed is sleeping or not. In other 
words, the overall sleeping time can also be calculated. 
Here, various state-of-the-art methods based on multi-view 
learning (Piriyajitakonkij et al. 2020), weighted range-time 
frequency transform (WRTFT) (Ding et al. 2018; Chen et al. 
2019) are used to evaluate the proposed technique. In addi-
tion, we have also implemented the average and weighted 
average ensemble models, which are used to compare the 
performance of stacking ensemble model.

Model Evaluation: We implemented four extra models 
to evaluate the performance of our model i.e., TD-CNN, 
WRTFT-CNN, Support vector machine (SVM), and CNN-
LSTM. Firstly, TD-CNN and WRTFT-CNN were imple-
mented to see their performance individually, both models 
were trained separately. TD-CNN and WRTFT-CNN were 
employed in the same settings, but they differ in input data 
shape. Convolutional layers were composed of three con-
volutional filters with 64, 32, and 16 neurons, max pooling, 
batch normalization, and dropout layers, respectively. All 
filters were set with the size of 2 by 3, followed by ReLU 
activation, and five output neurons placed in the output layer 
followed by softmax activation. To prevent overfitting, both 
models were trained on augmented training data.

SVM is used with a radial basis function kernel. By per-
forming grid search we found the best parameters for SVM, 
which gives the value of C and gamma {0.01, 0.1, 1, 10, 
100} and {0.01, 0.1, 1, 10, 100}, respectively. In addition, 
we also implemented a CNN model with long short-term 
memory (LSTM) (Maitre et al. 2021). In this model, the bot-
tom layers of CNN are replaced by LSTM to see the perfor-
mance of CNN-LSTM on the UWB dataset. All evaluation 
models were implemented five times with random states. 
To regularize the models, before output layer, we employed 
the dropout and batch normalization on the convolutional 
and hidden layers. Dropout, batch size, and constant learn-
ing rate varied according to fine-tuning requirements of the 
models.

neurons and input. The Dropout layer does not signifi-
cantly affect computational complexity as it randomly 
sets input units to 0 at each update during training. For 
instance, the VGG16 and VGG19 models are known 
for their sequential layering, and their complexity is 
dependent on the input size, number of iterations, and 
filters. In contrast, architectures such as ResNet50V2 
utilize skip connections, slightly reducing complexity 
despite the increased depth. Transfer learning models 
can be computationally intensive to train due to their 
depth; however, once trained, the saved models can 
be deployed without requiring further extensive com-
putational resources. Our training was expediated by 
Google Colab Pro services, which provided fast GPUs 
and high RAM, ensuring the process was as time effi-
cient as possible.

(c)	 Stacking meta-learner

�The stacked ensemble model combines the outputs 
from the base models and involves training a meta-
classifier, which incurs additional computational costs. 
However, these are reduced by the parallelizable nature 
of ensemble methods, allowing efficient computation, 
particularly when dealing with high-dimensional data 
typical of sleep-posture datasets.
�The prediction complexity of stacked ensemble model is 
O(N ∗M), where N  is the number of samples and M  
is the number of base learners. The training complexity 
of the meta-learner is represented as O(T ′ ∗ P ′2 ∗N ′) , 
where T ′  represents the number of training iterations, 
P ′  the number of parameters in the meta-learner, and 
N ′  the size of the prediction dataset.

3.8.2  Spatial complexity analysis

(a) Data storage
For data storage, spatial complexity involves storing raw 

ultra-wideband (UWB) data and preprocessed data. Raw 
UWB data storage has a complexity of O(M ∗N) , while 
the storage of preprocessed data, which is contingent upon 
the number of selected range bins, is O(F ∗N).

(b) Model parameters
The spatial complexity of the model is mainly due to the 

memory required to store the parameters of each DCNN 
model and the meta-classifier. Because of the complexity 
and sophistication of these networks, the parameter space 
is substantial. The space complexity of the model param-
eters includes those for the base learners and meta-learner. 
The maximum space required for the six DCNN base learn-
ers is O(6 ∗ P ) . The parameter space complexity of the 
meta-learner is denoted as O(P ). Methods such as model 
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base-level classifiers. For example, if the validation accu-
racy stops increasing at some point while training accuracy 
continues to increase, is a sign of overfitting. In the pro-
posed model, we performed several iterations to prevent 
overfitting by fine-tuning the model (decreasing the model 
complexity and using an augmented dataset), which makes 
it more generalized.

The stacking ensemble accuracy of 86.7% is enhanced 
by the base-learner models, as demonstrated in their PR and 
ROC area under the curves (AUCs). VGG16 and VGG19 
demonstrate strong class differentiation, with VGG19 show-
ing better precision. ResNet variants provide high ROC 
AUCs, indicating robust classification despite potential 

5  Results

Initial tuning of models including epochs, optimization 
method, learning rate, and construction of fully connected 
layer were found through controlled iterations and the final 
performance of the models on validation and test data-
set is reported. The matrices to evaluate the performance 
of the proposed model were confusion metrics, F1 score, 
accuracy, precision, and recall. Accuracy, precision-recall 
(PR), and receiver operating characteristic (ROC) curves of 
transfer learning models are presented in Figs.  3, 4, 5, 6, 
7, and 8. These plots are used to access the overfitting in 

Fig. 7  Training, PR, and ROC 
curves of VGG19
 

Fig. 6  Training, PR, and ROC 
curves of DenseNet121
 

Fig. 5  Training, PR, and ROC 
curves of MobileNet50V2
 

Fig. 4  Training, PR, and ROC 
curves of ResNet50V2
 

Fig. 3  Training, PR, and ROC 
curves of VGG16
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sleep postural transitions; (ii) TD-CNN and (iii) WRTFT-
CNN give 67.9% and 59.4% accuracy, respectively, but 
both of the models suffered from overfitting; (iv) SVM and 
(v) CNN-LSTM showed poor performance by achieving 
an accuracy of 29% and 32%, respectively. The stacking 
ensemble model demonstrates good effectiveness as using 
the same dataset achieves higher accuracy and outper-
forms the previous methods with an improvement of 13% 
(Piriyajitakonkij et al. 2020) and 26% (Ding et al. 2018), 
respectively.

5.1  Contextualizing the problem with evidence

5.1.1  Evidence-based justifications

 Recent studies have underscored the importance of sleep 
postures in mental health, particularly in relation to depres-
sion (Pye et al. 2021), anxiety (Alamri 2015), bipolar disor-
der (Drange et al. 2019), and neurological disorders, such as 
Alzheimer's (Lyketsos et al. 2011) and Parkinson's diseases 
(Tori et al. 2020). The high accuracy of our model in the 
classification of sleep postures (86.7%) is crucial in this con-
text. It provides a non-invasive, privacy-preserving method 
for the early detection of potential mental health problems, 
which is a significant step beyond current monitoring meth-
ods. By accurately monitoring sleep postural transitions, we 
can potentially identify the early signs of sleep-related disor-
ders that can lead to mental illness. The performance of our 
model is not only statistically significant, but also clinically 

precision deficits in distorted datasets. MobileNetV2, which 
is moderately accurate, provides an architectural advantage 
for mobile deployment. DenseNet121 demonstrated excel-
lent predictive performance, but the potential limitation 
could be computational intensity. The ensemble benefits 
from the compensatory effects of model diversity, address-
ing individual model precision challenges and class imbal-
ance, though attention to computational demands remains 
essential for practical deployment.

Accuracy Comparison and Significance of Results: In 
general, the stacking ensemble model achieved an accuracy 
of 86.7%. This is not just a numerical achievement; it repre-
sents a substantial improvement in detecting and monitoring 
sleep postures, directly correlating to mental health predic-
tions. Compared to previously published framework on the 
same dataset (Piriyajitakonkij et al. 2020), our model shows 
a 13% improvement in accuracy, underscoring its potential 
in clinical applications. The weighted average ensemble 
model achieved accuracy of 76.3% followed by the average 
ensemble model, 69.6%. The classification reports and con-
fusion matrices are presented in Figs. 9 and 10, respectively. 
By analyzing the matrices, it is evident that the overall recall 
was lowest for the SUSI class, and highest for the BG class, 
in all cases. This essentially means that the model misclassi-
fied SUSI as SUPR and SISU.

The performance of our model is compared to five exist-
ing models (see Fig. 11) to evaluate its effectiveness: (i) the 
multi-view learning (Piriyajitakonkij et al. 2020) where the 
authors reported the accuracy of 73.7% for monitoring of 

Fig. 9  Classification report of 
a average ensemble model, b 
weighted average ensemble 
model, and c stacking ensemble 
model

 

Fig. 8  Training, PR, and ROC 
curves of ResNet101V2
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Fig. 11  Accuracy comparison of 
different machine learning mod-
els with the proposed model

 

Fig. 10  Confusion matrices 
of a MLV (Piriyajitakonkij et 
al. 2020), b average ensemble 
model, c weighted average 
ensemble model, and d stacking 
ensemble model
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(Garcez et al. 2015). On average, a normal person changes 
sleep posture around 40 to 50 times during the night, which 
could vary in certain situations (Naitoh et al. 1973). So, we 
can conclude if a person is having way more sleep posture 
changes during the night, then the individual is suffering 
from a sleep disorder. Similarly, if a patient diagnosed with 
AD or PD is having less or no sleep postures changes at all 
and prolonged sleep in a supine or prone posture, then AD 
and PD are progressing much faster.

Therefore, in the future, this model could be used as a 
contactless monitoring tool for monitoring patients with 
AD, PD, and sleep disorders in their own homes. This will 
help extract useful information about sleep and sleep pos-
tural transitions. In addition, it also gives some insights into 
the mental health conditions of a patient as AD, PD, and 
sleep disorders have a link to a range of mental health dis-
orders. For example, Tori et al. (2020) findings reveal that 
patients suffering from neurological disorders also suffer at 
least one mental disorder.

6.1  Comparison with recent works

Our study introduces a novel approach in the field of sleep 
posture monitoring, particularly in terms of the technology 
and dataset used. This is in contrast to the methods employed 
in recent research, as we will discuss, with a focus on the 
uniqueness and benefits of our UWB radar-based methodol-
ogy. Our work also stand out from recent studies as it has 
a strong focus on clinical implications in mental and neu-
rological disorders. Table 2 summarizes recent studies in 
the field, which include a camera-based monitoring method 
used by Li et al. (2022) that achieved 91.7% accuracy in 
classifying three sleep postures. However, this method raises 
significant privacy concerns, potentially incurs higher costs, 
involves setup complexity, and may not be suitable in vari-
ous home settings. Another study by Mlynczak et al. (2020) 
reported an 86% accuracy using a wearable tracheal audio 
device for binary level sleep apnea classification. The use 
of wearable sensors can be uncomfortable and may hinder 
natural sleep patterns. Our contactless wireless monitoring 
system offers a significant advantage in terms of preserving 
privacy, ensuring comfort and convenience, allowing for 
continuous and natural sleep.

Jeng et al. (2021) achieved an 85% accuracy with a chest 
wearable device in classifying four sleep postures. The use 
of a chest wearable device may be affecting natural sleep 
posture and behaviour, potentially affecting data accuracy. 
While Islam and Lubecke (2022) also employed radar tech-
nology, specifically continuous-wave radar, achieving an 
85% accuracy. However, their study did not focus on the 
clinical aspects of the sleep posture. Our research not only 
offers an improvement in accuracy (86.7%) for classification 

relevant. For instance, the ability to accurately monitor lat-
eral sleep posture, which facilitates the glymphatic system 
of the brain, aids in protein waste removal (Lee et al. 2015). 
It is crucial to prevent neurological disorders, such as AD 
and PD. This opens new avenues for preventing neurologi-
cal disorders and is a substantial step in the early diagnosis 
and intervention strategies for these disorders.

5.2  Interpreting the results in mental health 
context

5.2.1  Clinical implications of results from precision, recall, 
and confusion metrices

The model's accuracy and recall rates demonstrate its ability 
to accurately identify true sleep postural transitions, which is 
an essential feature of any tool used in a mental health diag-
nostic or therapeutic environment. The confusion matrices, 
and accuracy comparisons (Figs.  10, 11) demonstrate our 
model's ability to differentiate sleep postural transitions, a 
key factor in diagnosing and addressing sleep-related men-
tal health issues.

6  Discussion

In this study, a stacking ensemble deep learning model was 
developed to recognize sleep postural transitions. The reli-
able results of our model support the use of an ensemble 
approach, which allows using multiple models at the same 
time. We can see from the results that our model outper-
formed the state-of-the-art frameworks. In addition, our 
findings also support the feasibility and further implemen-
tation of UWB radar-based systems for contactless moni-
toring of patients with AD and PD. The dataset utilized in 
this study was collected by Xethru UWB radar, which is 
cost-effective and user-friendly. Moreover, in this research, 
we developed two algorithms for sleep postural transitions 
monitoring. In the first algorithm, stacking ensemble learn-
ing algorithm classifies each postural transition and the 
second algorithm provide accurate statistics of total sleep 
postural transitions including initial and final sleeping pos-
ture. These can give doctors and caregivers useful informa-
tion about the sleeping behavior of a patient. As research 
highlights, different sleep postures can risk the progression 
of AD and PD (Brzecka et al. 2018; Uchino et al. 2017), and 
frequent on-bed turnovers are linked with poor sleep quality 
(Pye et al. 2021). As Table 1 highlights the linkage of sleep 
postural transitions with mental health, this research not only 
provides an opportunity to identify AD and PD at earlier 
stages but may also help diagnose psychiatric comorbidi-
ties such as depression, bipolar disorder, and schizophrenia 
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7  Conclusion

This paper presented a model for the monitoring of human 
sleep postural transitions. The proposed stacking ensem-
ble learning model outperformed previous state-of-the-art 
model by 13% and attained a maximum accuracy of 86.7%. 
This supports the utilization of UWB sensors for the con-
tactless monitoring of patients in hospitals and in-home 
scenarios. Specifically, this model can be used to monitor 
the progression of AD, PD, and sleep disorders, as research 
demonstrates their strong link with sleep postures. In addi-
tion, we also developed a sleep postural transition monitor-
ing algorithm, which can provide accurate information on 
sleep postures such as the total number of sleep postural 
transitions at night, most frequent sleep posture, and total 
time spent in frequent sleep posture. We believe that this 
work can serve as a solution for sleep posture monitoring, 
helping clinicians and patients to address this need. In sum-
mary, the implementation of this sleep postural transitions 
monitoring model enables the early diagnosis of a range of 
mental health conditions of patients suffering from AD, PD, 
and sleep disorders.
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