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Abstract
Southeast Hubei province is an important iron–copper production base in China, which has produced a large number of mine 
tailings from mining activities. Although they contain a certain amount of iron or copper as secondary mineral resources, the 
mine tailings and related acid wastewater can lead to environmental pollution through sand blowing or seepage. For effective 
resource utilization and environmentally conscious development, rapid evaluations of the spatial distribution, type, and age 
of mine tailings are of national importance. Using spectral features, which are determined by the structure and composition 
of tailings, we develop an all-band tailing index, a modified normalized difference tailing index (MNTI), and a normalized 
difference tailings index for Fe-bearing minerals (NDTIFe). The all-band tailings index reflect the micro-structure and overall 
high reflectivity of mine tailings by comprehensively utilizing information from each band of Landsat 8 data. The MNTI 
and NDTIFe provide enhanced tailings composition information from the perspective of anion (carbanion and hydroxy) 
and cation (mainly ferric ion) contents, respectively. A tailing extraction model (TEM) is built using these three indexes to 
extract mine tailing information in Huangshi city. The TEM proposed in this paper can successfully and rapidly extract mine 
tailings information with an extraction precision of 84% in the research area.

Keywords  All-band mine tailing index · Modified normalized difference tailing index · Normalized difference tailing index 
for Fe-bearing minerals · Tailing extraction model

Introduction

In recent years, lasting environmental problems caused by 
the exploitation of mineral resources, such as abandoned 
open mining pits, dumps, and tailing pools, are attracting 
increasing scientific concern. Mining-related environmen-
tal problems are clearly illustrated by surface landscape 
destruction, land form changes, ecological degradation, 
heavy metal pollution of soils, and water body pollution 
(Chevrel et al. 2002). Specifically, secondary Fe-bearing 
mineral oxides and acidic mine drainage water left behind 
by mining activities have resulted in vegetation, soil, and 
water pollution. Remote-sensing technology can be used to 

monitor mine environmental problems by monitoring the 
open mining pit, waste dumps, tail sands, weathering and 
oxidation processes, oxidation products (mainly secondary 
iron oxides), and pollution of the acidic mining waste water.

Remote-sensing image is a commonly tool in mining 
pollution research. Popular methods of identifying mining 
pollution are based on imaging spectrum technology (Shang 
et al. 2009; Swayze et al. 2000; Riaza and Müller 2010; Fer-
rier 1999; Choe et al. 2008; Mars and Crowley 2003; Raj 
et al. 2015), non-imaging spectrum technology (Irene et al. 
2005), multispectral technology (Ciampalini et al. 2013; 
Morais 2012; Dogan 2008, 2009; Elsayed Zeinelabdein and 
Albiely 2008; Schimmer 2008), etc. Research shows that 
the spectral features of secondary iron oxide lie between the 
visible and near-infrared band (0.43–1.3 μm) and exhibit 
strong reflection in the red band and strong absorption in 
the near-infrared, blue, and green bands (Sklute et al. 2018; 
Wang et al. 2011). The spectral features of the secondary 
pollutants of carbonate and hydroxyl minerals lie in short-
wave-infrared wavelengths (1.9–2.4 μm) and exhibit weak 
absorption near 2.3 μm. The visible–near-infrared spectrum 
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based on the multispectral remote-sensing technique is often 
utilized to extract the iron oxide information of hematite, 
magnetite, and goethite minerals. Commonly used remote-
sensing image enhancement methods include the ratio 
method(Madani 2009; Ducart et al. 2016), principal compo-
nent transformation method (Shalaby et al. 2010), false color 
composite method (Dehnavi et al. 2010), and decorrelation 
stretch of HIS method (Al Rawashdeh et al. 2006).

This research analyzes the spectral characteristics of mine 
tailings sand based on its structure and composition. We 
used the principal component transform method and the ratio 
method to enhance the high reflection spectral characteris-
tics, which reflect tailings sand structural features, and the 
absorption–reflection spectral characteristics, respectively. 
The aim of this paper is to extract mine tailings pond quickly 
and automatically by the spectral figure of the tailings from 
remote-sensing images.

Study area and research data

Study area

Southeast Hubei, China, has a northern subtropical monsoon 
climate, which is warm and wet, with abundant rainfall, and 
a substantial number of natural water bodies, such as riv-
ers, lakes, and ponds. Formation of metallic ore deposits 
in the area is mostly related to volcanic activity. These ore 
deposits are typical Skarn-type deposits controlled by car-
bonates (Guo et al. 2011) and are relatively concentrated in 
Tieshan, Tonglvshan, Jinshandian, Lingxiang, Tongshankou, 
Jilongshan, and Fengshan. The area is the traditional pro-
duction base of iron and copper in China, with relatively 
concentrated ore fields comprising medium to small-scale 
ore deposits. The area has a 50-year exploitation history of 
modern mining and ore-processing (Liu et al. 2010), which 
has resulted in more than 500 tailings of various sizes in the 
region (Liu et al. 2009a, b). Although we did not investi-
gate the specific location, area, storage capacity, and major 
source minerals of each tailing pond, ore dressing and smelt-
ing activities are generally performed nearby due to cost 
saving reasons; thus, the distribution of tailing ponds formed 
by dressing and smelting processes typically correlates well 
with the exploitation location of ore resources.

Huangshi city in Huibei Province was chosen as the study 
area, which is a well-known resource-based city in China 
(Fig. 1) and is located at 29°31′ to 30°19′N and 114°30′ 
to 115°30′E. The landforms around Huangshi consist of 
low mountains, hills and basins, with the lowest elevation 
of 8.7 m and a highest of 862 m. This city contains both 
natural vegetation and artificial vegetation. Natural vegeta-
tion includes subtropical evergreen broad-leaved forest and 
mixed evergreen and deciduous broad-leaved forest, with a 

few regions of broad-leaved deciduous forest, subtropical 
coniferous forest, and bushwood; artificial vegetation con-
tains mainly of rice and vegetable fields. The city, which is 
famous for its iron resources, also has many iron ore mines 
that have produced a large number of open pits, solid-waste 
dumps, and a series of tailing ponds. Tailing ponds cause 
the most serious environmental pollution; tailings and 
acidic mine waste water in the ponds continually pollute the 
surroundings through sand blowing or seepage. After the 
tailing ponds were abandoned, the dried tailings were typi-
cally transported inshore or to higher ground due to gradual 
evaporation of water content. In bad weather, such as strong 
wind, pollutants such as metal ion and dust are transported 
large distances in the air (Fig. 2a).

In recent years, the demand for ore resources has 
increased rapidly along with economic development; con-
sequently, a number of small ore dressing industries have 
appeared in the study area (Fig. 2b, c). In general, such 
industries discharge their tailings directly into nearby 
ponds or low-lying areas. Such tailing ponds have very poor 
facilities without no impermeable layer (Fig. 2d) allowing 
acidic mine waste water to continuously diffuse into the 
surrounding environment by seepage. Therefore, the rapid 
and accurate identification and location of tailing ponds in 
remote-sensing images is key for environmental evaluations, 
environment management, and the secondary development 
and application of resources.

Data

To extract mine tailing information in the study area, we 
produced a tailing extraction model using Landsat-8 OLI 
images obtained from USGS. The Landsat-8 OLI images 
were acquired on October 15, 2014, with a medium spatial 
resolution of 30 m. In the study, we used the blue, green, 
red, near-infrared (NIR), shortwave-infrared (SWIR) 1, and 
SWIR 2 spectral bands which cover the visible–near-infra-
red and shortwave-infrared spectral range. Pre-processing, 
including radiation correction and geometric correction, was 
performed using ENVI 5.3 and ERDAS 2016 (Xu and Tang 
2013).

Composition and structure of tailings

Compositional features of tailings

The composition of the tailings in the study area is shown in 
Table 1. The metallic mineral content is 9–10% and the SiO2 
content is 30–40%, which mainly exists in the form of iron 
oxides and rock debris. The major metallic minerals in the 
tails include pyrite, hematite, magnetite, and siderite. The 
main non-metallic mineral is quartz; silicate minerals such 
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as anorthose and potassium feldspar and a small amount of 
carbonate minerals such as calcite and dolomite also exist. 
The tailings sand is rust red on a true-color remote-sensing 
image (Fig. 3).

Structural features of tailings sand

After the crude ore is crushed and ground during dressing 
and smelting processes, the grain size reaches the mm or 
μm scale. Grains below 0.074 mm account for 70–90% of 
all tailings particles, and the weighted average grain size 

is approximately 0.03–0.05 mm (Hong and Kong 2003). 
Because of the fine grain size, a substantial amount of tail-
ings sand exists in the form of suspended particles. Tail-
ings particles are either in the dried, slurry, or solution state 
according to their composition and evaporation periods 
(Fig. 4). The reflectivity of dry tailings sand is higher than 
that of mud tailings sand, which contains a small amount 
of water, but the overall reflectivity is typically low. On a 
remote-sensing image, the color of dry tailing sand is bright 
and the color of slurry tailing sand is dark. As the water 
reflectance decreases with increasing wavelength in the 

Fig. 1   Geographical location of the study area and tailing characteristics.(image color composite using red, green, and blue bands based on 
Landsat 8 data)
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visible–near-infrared–shortwave-infrared region, the slurry 
tailings sand reflectance decreases compared to that of dry 
tailings sand. The reflectance of slurry tailings sand is simi-
lar to that of dry tailings sand in the visible–near-infrared 
region; however, it is 7.5% lower in the shortwave-infrared 
range, as is shown in Fig. 5.

Spectral characteristics of tailings and other 
background features

High reflection characteristics

The fine-grained structural features indicate that tailings have 
relatively high reflectivity in the visible and near-infrared 

bands (Baranoski et al. 2014). When the volume is constant, 
the reflection or absorption of solar radiation energy by a 
ground object depends on its size (Schimmer 2008). A larger 
object will absorb solar radiation due to a relatively long 
inner light path, resulting in a decrease of reflectivity; while 
a smaller object will reflect more solar radiation due to a 
larger surface area, resulting in an increase of reflectivity. 
Therefore, the ratio between the superficial area and the vol-
ume of the ground object is an important factor determining 
the solar radiation reflected by a ground object. Extremely 
small grain is a significant feature of tailings, i.e., the ratio 
between superficial area and volume is very large. This char-
acteristic greatly enhances the ability of tailings to reflect 
solar radiation, resulting in their relatively high observed 
reflectivity.

Fig. 2   Examples of simple and crude tailing ponds

Table 1   Major composition of 
iron ore tailings in the study 
area

Unit of measurement: Cu–Pb: μg/g, TFe–SiO2 %; (tailings composition determined by the Wuhan Mineral 
Resources Supervision and Testing Center of the Ministry of Land and Resources)

Sample name Original no. Indoor no. Cu Zn Pb TFe SiO2

Iron tail sand Fe-1 A124030001 532.5 149.4 25.73 9.53 32.59
Iron tail sand Fe-2 A124030002 655.7 140.75 20.3 9.88 38.32
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Spectral features of anions group in tailings sand

The anion group contained in tailings has spectral fea-
tures which are predominantly CO3

2− ion and OH− ions. 

Carbonate ion spectra mainly range from 2.33–2.37 to 
2.52–2.57 μm (equivalent to the Landsat-8 SWIR 2), and 
indicate strong absorption, e.g., the absorption band of 
siderite is 2.35 μm and 2.56 μm. The spectral absorption 

Fig. 3   Rust red color of tailing 
sand on a true-color remote-
sensing image

Fig. 4   Tailings sand showing the range of exit forms in ponds: a slurry; b solution; and c dried

Fig. 5   Spectral curves for 
typical surface features in the 
Landsat 8 image
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characteristics of OH− are mainly due to stretching vibra-
tion. The specific absorption location is related to the 
OH−-linked metal ions. For example, minerals containing 
Fe–OH groups have clear absorption characteristics (e.g., 
jarosite) at 2.24–2.30 μm (equivalent to the Landsat-8 SWIR 
2) (Mazhari et al. 2017). Therefore, the shortwave-infrared 
band from Landsat-8 images can be used to enhance tailings 
sand information related to anion content.

Spectral features of cations in tailing sand

The cations contained in tailings have spectral features 
which are predominantly Fe3+ ions, which have distinct 
characteristic bands in the visible–near-infrared–shortwave-
infrared wavelengths (approximately 0.45–2.35 μm); absorp-
tion characteristics are exhibited in blue, green, and near-
infrared bands, and reflection characteristics are exhibited 
in red and shortwave-infrared bands. Based on the measured 
iron oxides in the tailings sand and the specific character-
istics of the Landsat-8 image, the iron oxides have two dis-
tinct absorption bands and reflection peaks in the Landsat-8 
spectral wavelength range. The first absorption site is located 
at 0.52–0.60 μm (equivalent to the Landsat-8 green band), 
the second absorption site is located at 0.8–1.0 μm (equiva-
lent to the Landsat-8 near-infrared band), while the reflec-
tion peaks are located at 0.63–0.69 μm (equivalent to the 
Landsat-8 red band) and 1.55–1.75 μm (equivalent to the 
Landsat-8 SWIR 1). In conclusion, in the spectral region of 
the Landsat-8 image, there are two bimodal spectral features 
with relatively high reflectance values, so the visible and 
near-infrared–shortwave-infrared bands of the Landsat-8 
image can be used to enhance tailings sand information 
related to cation content.

Spectral characteristics of the other features 
in the image

The surface features in the study area predominantly 
include tailings, vegetation, residential buildings, natural 
water bodies, and roads. To analyze the spectral features 
of these objects, 350 samples of dry and wet tailings, for-
est, farmland, road, residential buildings, and water bodies 
were randomly selected, and a spectrum curve was formed 
for each category using statistics from 50 samples (Fig. 5). 
The reflectance of dry tailings in the Landsat-8 OLI images 
after atmospheric correction is the highest in visible-to-
shortwave-infrared wavelengths, while that of wet tailings is 
slightly lower, but far higher than that of natural water bod-
ies. In the visible wave band, the reflectivity of all ground 
objects except natural water bodies increases with increas-
ing wavelength. The reflectivity of the dry and wet tailings 
increases more rapidly, i.e., the slope of the spectral curves 
is larger. The reflectivity of vegetation and residential areas 

exhibits weak absorption in the red band, so the slope of the 
spectrum curve in the visible wave band range is small. In 
the near-infrared–shortwave-infrared wavelength range, the 
reflectivity of all features decreases with increasing wave-
length except for dry tailings, whose reflectivity increases 
slightly (due to the combined action of the ferric iron and 
carbonate ions in the dry tailings sand). The rate of veg-
etation reduction is highest, followed by roads, residential 
areas, wet tailings, and water bodies. The spectral character-
istics in the visible, near-infrared, shortwave-infrared bands 
are recognizable for all ground objects in the study area. Due 
to tailings’ structure and components of its major anionic 
and cationic, a tailing sand index can be established by the 
visible–near-infrared and shortwave-infrared spectral char-
acteristics using Landsat-8 image.

Tailing sand indexes and extraction model

All‑band tailing index

The all-band tailing index is based on all wave bands of the 
Landsat-8 image. Through a principal component analysis 
(PCA) of Landsat-8 images, we choose the principal com-
ponent that can best highlight the spectral characteristics of 
the tailings to extract their information. PCA is a powerful 
tool for enhancement all bands of Landsat-8 and reducing 
correlation and redundancy (Mazhari et al. 2017).

The transform module of ENVI 5.3 was used to perform 
the principal component analysis. The results of the princi-
pal component analysis of the blue, green, red, near-infrared, 
SWIR 1, and SWIR 2 of Landsat-8 OLI images are shown in 
Table 2. Of the six principal components, PC5 components 
are used to extract tailing sand information using compre-
hensive information for each band of the Landsat-8 OLI 
images. If appropriate threshold values are set for PC5, tail-
ings sand with other features can be effectively separated.

Modified normalized difference tailings sand index 
in the near‑infrared–shortwave‑infrared spectral 
band

In the Landsat-8 near-infrared–shortwave-infrared spectrum, 
the reflectance of dry tailings sand increases slightly with 
increasing wavelength, while that of other objects decreases, 
and the reflectance of vegetation decreases the fastest. In 
the near-infrared band, the reflectivity of vegetation is much 
higher than that of tailings sand and other features; however, 
when the wavelength is longer than 1.4 μm, the reflectivity 
of vegetation is lower than that of tailings, roads, residential 
areas, etc., and only higher than that of water. To enhance 
the spectral difference between tailings and other objects, a 
Modified Normalized Difference Tailings Index (MNDTI) is 
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proposed based on Landsat-8 OLI images of near-infrared 
and shortwave-infrared spectral bands, as shown in formula 1:

where c is a constant used to expand the gray value range of 
MNDTI and enhance the amount of quantitative information.

Normalized difference iron stain index of tailings 
sand in the visible spectral band

The main metal component of the tailings is iron, which is rust 
red in the simulated true-color remote-sensing images due to 
oxidation of the iron (Fig. 3). The mechanism of extracting 
iron stain information from remote-sensing images is based on 
the spectral response characteristics of ferric ions in the vis-
ible and near-infrared regions. The specific reflections of ferric 
ions in the red band (0.63–0.69 μm) are high, while those in 
the blue band (0.45–0.52 μm), green band (0.52–0.62 μm), 
and near-infrared band (0.76–0.90 μm) are low with stronger 
absorption. In Fig. 5, the spectral characteristics of typical 
features in the study area are significant in the visible–near-
infrared region of the Landsat-8 OLI images, and the reflec-
tivity spectral curves of all objects show an increasing trend 
with increasing wavelength. However, the rate of increase dif-
fers; that is, the slope of the spectral curve is different. The 
slope of the reflectance spectral curve for dry and wet tail-
ings sand is greatest in the visible–near-infrared region. The 
reflectivity of vegetation changes the least in the visible region 
(green peak–red valley); however, it increases most rapidly 
in the red–near-infrared region, i.e., the maximum slope of 
the reflectivity curve is located in the red and near-infrared 
range. The slope of the reflectivity curve for residential areas 
and roads is smaller, while that of water bodies is the small-
est. Therefore, to enhance tailings information, we used the 
red band and blue band of Landsat-8 to establish the NDTIFe 
(normalized difference tailings index of Fe-bearing minerals) 
based on the spectral characteristics of trivalent iron ions. The 
NDTIFe index is shown in formula (2):

(1)MNDTI = (NIR −SWIR2)∕(NIR + SWIR2) ∗ c,

(2)NDTIFe = (RED −BLUE)∕( RED + BLUE) ∗ c,

where c is a constant used to expand the gray value range 
of the NDTIFe and enhance the amount of quantitative 
information.

Tailing sand extraction model

The all-band tailing sand index enhanced tailings sand and 
water body information in the whole spectral range of Land-
sat-8 OLI images for the visible–near-infrared–shortwave-
infrared band, the MNDTI index enhanced anion information 
(carbonic ion and hydroxy information) of tailing sand in the 
near-infrared–shortwave-infrared region, and the NDTIFe 
index enhanced cationic information (iron-stained informa-
tion) in the visible band region. All three indexes enhanced 
tailing sand information in different ways by increasing the 
spectral difference between tailings sand and other background 
objects. By setting appropriate field values for the above 
indexes, a tailings extraction model (TEM) was established, 
as shown in formula (3):

where k1, k2, k3, k4, k5, and k6 are all constants, which can 
be set to a unified threshold in the same study area according 
to ground object and image features.

Experiments and results

To verify the effectiveness of the proposed TEM, we use 
the tailings shown in Fig. 1 as a typical sample area to 
calculate the eigenvalues for PC5, MNDTI, and NDTIFe. 
When calculating MNDTI and NDTIFe, c is 1000. Table 3 
shows the statistical values of all types of feature sam-
ples. In Table 3, the mean PC5 values for wet tailings and 
water bodies are approximately 232.130 and − 38.895, 
respectively, and those of other ground objects are shown 
in Table 3. There is no overlap between the characteristic 
values of woodland, farmland, residential areas, roads, etc. 

(3)
TEM = (k1 < PC5 < k2) and (k3 < MNDTI < k4)

and (k5 < NDTIFe < k6),

Table 2   Principal component characteristics after PC transform

Characteristics of the 
principal components

Blue band Green band Red band Near-infrared band Shortwave-infra-
red band 1

Shortwave-
infrared band 
2

PC1 − 0.16184 − 0.24489 − 0.34283 − 0.3615 − 0.607711 − 0.544345
PC2 0.16627 0.158008 0.284183 − 0.87295 − 0.036795 0.321304
PC3 − 0.32667 − 0.46242 − 0.53228 − 0.25946 0.52837 0.222814
PC4 0.163707 − 0.03523 − 0.39717 0.176539 − 0.538989 0.70181
PC5 − 0.70345 − 0.31947 0.52884 0.078961 − 0.244169 0.239953
PC6 − 0.56374 0.773263 − 0.28456 − 0.0506 0.005596 0.026307
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As a result, we can use PC5 to identify wet tailing sand. 
The NDTIFe index is better for identifying dry tailings 
sand, because they have a value near 392.399 and there 
is no overlap between the feature values of woodland, 
farmland, residential area, roads, and water bodies. The 
characteristic mean values of MNDTI for dry tailings sand 
samples are approximately 330.92 with minimal overlap 
from the other features such as forest land, cultivated land, 
residential areas, and roads. The characteristics mean val-
ues of MNDTI for wet tailings sand samples are around 
261.633, and also show minimal overlap with other fea-
tures such as forest land, cultivated land, residential areas, 
roads, and water bodies. Thus, MNDTI can be used as a 
supplementary index to extract tailings sand information.

Information related to the tailings reservoir around 
Yangxin rock was extracted using the statistical charac-
teristics and experimental results of the study area, where 
k1, k2, k3, k4, k5, and k6 were 125, 359, 200, 265, 330, 
and 455, respectively. Given the mixture of pixels of the 
Landsat-8 multispectral image with a resolution of 30 m, 
the extraction results of a single pixel were abandoned, 
and the final result is shown in Fig. 6.

By combining the Google Earth high-resolution image 
with actual field survey data, 25 tailings were randomly 
chosen to verify the TEM. The results show that 21 tail-
ing reservoirs are correctly extracted, with only four 
incorrectly extracted reservoirs; therefore, the extraction 
accuracy of the tailings is approximately 84%. Of the four 
misjudged tailings, one is an open pit, one is a solid-waste 
heap, which both have similar reflectivity and spectral 
curves to the tailings, and the other two are engineering 
activities operations with higher reflectivity.

Discussion

In this study, Landsat-8 OLI remote-sensing images were 
used to swiftly find and locate tailings ponds in the study 
area based on the spectral features of different components 

of the tailings and other ground objects. In remote-sensing 
images, the differences in the spectral features between tail-
ings and other ground objects were derived from differences 
in their structures and components. Therefore, an enhanced 
image analysis was performed on these aspects.

Based on PCA analysis, considering the spectral charac-
teristics of tailings sand and other objects and their response 
characteristics in the Landsat-8 OLI image, PC5 is chosen 
as all-band tailing index for the following reasons. (1) The 
principal component factor loading of the near-infrared band 
should be as low as possible to effectively enhance tailings 
sand information and restrict vegetation information. This 
is because the reflectance of tailings in the near-infrared 
band of Landsat-8 OLI images is lower than that of veg-
etation, but higher than the reflectance of vegetation and 
other objects in other bands. (2) The principal component 
factor loading of the red band should be high to effectively 

Table 3   Statistical values of different feature samples

Tails index Statistics Dry tailings Wet tailings Woodland Farmland Residential area Road Water

PC5 MIN − 160.219 125.003 − 10.709 − 52.967 − 106.191 − 128.858 − 59.238
MAX 146.812 358.802 78.863 104.026 92.205 53.510 − 20.108
Mean 7.806704 232.130 29.224 20.612 − 16.404 − 34.138 − 38.895

MNDTI MIN 196.634 51.517 492.017 403.459 − 74.935 − 39.748 2.205
MAX 515.24 593.085 685.792 647.086 376.559 233.905 662.338
Mean 330.125 261.633 632.562 556.031 98.773 42.36 509.893

NDTIFe MIN 330.92 0 80.189 128.991 103.081 179.416 − 18.568
MAX 454.61 289.855 211.409 294.729 282.387 271.118 179.924
Mean 392.399 175.48 150.088 219.948 204.149 222.343 44.71

Fig. 6   Tailings extraction model results for Yangxin Rock
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enhance the ferric contamination information of tailings 
sand, because the reflectance of ferric ions in the tailings 
sand is higher in the red band. (3) The principal compo-
nent factor loading of SWIR 2 should be high to effectively 
enhance the carbonate ions information of tailings sand. This 
is because there is stronger absorption in SWIR 2 due to 
the composition of carbonate ions. (4) While ensuring that 
the characteristic principal components satisfy the first three 
conditions, the red band should represent the positive load, 
and the blue, green, and shortwave-infrared bands should 
represent the negative loads, which correspond to the rel-
evant reflection and absorption characteristics of the tailings 
sand components. The principal component analysis showed 
that all-band tailing indexes using PC5 had enhanced the 
high reflection features resulted in the structures of tailings 
while simultaneously considering the spectral characteristics 
resulted in tailings components.

MNDTI enhanced the spectral information of carbonates 
group using NIR and SWIR 2 band, as the spectral diagnos-
tic absorption features are in the shortwave-infrared bands 
(Bedini 2009; Baissa et al. 2011; Mazhari et al. 2017). The 
MNDTI index is improved from NDWI (Mcfeeters 1996) 
and MNDWI (Xu 2005) water body information extraction 
indexes, which effectively extract tailings sand information 
and can be used for tailings containing minimal water. The 
MNDWI index was based on McFeeters’s NDWI index and 
fully considers the sharp reflectivity increase in the near-
infrared-to-shortwave-infrared spectral wavelength of build-
ings; therefore, it uses SWIR 1 (TM/ETM+ band 5) instead 
of the near-infrared band used by the NDWI index. The 
MNDWI index was modified based on the spectral charac-
teristics difference in the visible, near-infrared, and short-
wave-infrared spectral wavelengths between tailing sand and 
other ground objects in the study area. While the reflectivity 
of features such as vegetation and water bodies decreases 
more rapidly in shortwave-infrared bands, which of the tail-
ings changes slightly in the same bands, therefore, SWIR 2 
is selected instead of SWIR 1, which is used in the MNDWI 
index. The MNDTI index can effectively inhibit informa-
tion related to vegetation, water bodies, and buildings, while 
enhancing that related to tailings. Furthermore, to distin-
guish MNDTI from the normalized tailings index proposed 
by Schimmer (2008), our tailings index constructed in the 
near-infrared–shortwave-infrared region is referred to as 
the improved model. The normalization tailings index pro-
posed by Schimmer mainly utilizes the characteristics of no 
vegetation growth on the surface of the tailings reservoir, 
which is based on the normalized vegetation index, only 
using the near-infrared and red band of the TM image. How-
ever, the modified normalized tailings index (MNDTI) takes 
full advantage of the spectral characteristics of tailing sand 
composition in the near-infrared–shortwave-infrared bands, 
which is sensitive to the identification of water features, such 

as water bodies, wetlands, tailing sand, and other objects 
such as vegetation and buildings.

NDTIFe enhanced the spectral information of 
Fe3+-bearing minerals using visible bands, as the spectral 
diagnostic absorption features of Fe3+-bearing minerals are 
in visible–near-infrared wave bands (Zabcic et al. 2014; 
Jakob et al. 2016; Mazhari et al. 2017), NDTIFe is based 
on visible bands. Ultimately, the blue band is selected to 
establish the NDTIFe in the three strong absorption bands 
(blue, green, and near-infrared) for the following two rea-
sons. (1) The MNDTI index is established based on the near-
infrared band and SWIR 2; therefore, to make full use of 
the spectral information of Landsat-8 images, the NDTIFe 
index ignores the near-infrared band to avoid information 
redundancy. (2) The NDTIFe index chooses the blue band 
and discards the green band, which can effectively restrict 
vegetation and road information while enhancing the spec-
tral differences between tailings sand, water bodies, and resi-
dential areas. NDTIFe index is sensitive to the identification 
of Fe3+-bearing minerals.

Combining the three indexes, the TEM was established to 
acquire tailing information in Huangshi City using Landsat-8 
OLI images. The tailing pond extraction method proposed in 
this study is a time- and money-saving tool when compared 
to conventional geological mapping techniques (Mezned 
et al. 2016; Mazhari et al.2017). In addition, Landsat-8 OLI 
images are free, compared to expensive hyperspectral data 
(Murphy and Monteiro 2013; Zabcic et al. 2014) and high 
spatial resolution data (Mezned et al. 2016).

However, we did not extract all the tailings in Huang-
shi City. As the resolution of the Landsat-8 multispectral 
images is only 30 m, very small tailings cannot be effectively 
extracted. Furthermore, the silicate contained in tailings can-
not be extracted. The spectral features of silicate are in the 
thermal infrared wave bands (Matar and Bamousa 2013; 
Pour et al. 2017); however, the resolution of these bands of 
Landsat-8 is 100 m, which is much bigger than tailings in the 
study area. The next step in our research will explore how to 
combine hyperspectral images with high spatial resolution 
images to extract small-scale tailing reservoirs and study 
the response of soil and vegetation after water seepage of 
tailing reservoirs.

Conclusion

A tailing extraction model (TEM) was established by com-
bining the all-band tailing sand index (mainly PC5), the 
MNDTI index, and the NDTIFe index. Compared with 
NDTI, the TEM fully considers iron stain, carbonate ion, and 
water information of the tailing sand, which are all important 
components. The TEM increases tailings information whilst 
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effectively restricting vegetation information by enhancing 
the reflectivity differences between tailings sand and water 
bodies, buildings, roads, and other major features. The TEM 
can rapidly and effectively locate a tailings pond in south-
east Hubei province, providing accurate data support for the 
rational exploitation and utilization of mineral resources, as 
well as for monitoring and management of the ecological 
environment in mining areas.
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