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Abstract
Processing and analyzing time series datasets have become a central issue in many domains requiring data management
systems to support time series as a native data type. A core access primitive of time series is matching, which requires
efficient algorithms on-top of appropriate representations like the symbolic aggregate approximation (SAX) representing
the current state of the art. This technique reduces a time series to a low-dimensional space by segmenting it and discretizing
each segment into a small symbolic alphabet. Unfortunately, SAX ignores the deterministic behavior of time series such
as cyclical repeating patterns or a trend component affecting all segments, which may lead to a sub-optimal representation
accuracy. We therefore introduce a novel season- and a trend-aware symbolic approximation and demonstrate an improved
representation accuracy without increasing the memory footprint. Most importantly, our techniques also enable a more
efficient time series matching by providing a match up to three orders of magnitude faster than SAX.

Keywords Time series databases · Time series analysis · SAX · PAA

1 Introduction

Time series are the prime data source for data-mining tasks
in many domains requiring efficient and thus usually native
support by an underlying data management platform [18].
In order to devise complex analytical scenarios, time series
data types require a storage model, a query language, and
optimization mechanisms. One of the most relevant access
primitives in time series system is the retrieval of similar
time series which is commonly referred to as time series
matching [18]. Due to the high number of measure values,
time series are considered a high dimensional data type.
This makes the distance calculation required for matching
very time and memory consuming. Therefore, time series
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are not directly matched against each other but represented
and compared in a low-dimensional space allowing the ap-
proximation of their true (Euclidean) distance [1].

Based on this idea, researchers have been developing
representation techniques for time series for the past three
decades. Among these techniques, the symbolic aggregate
approximation (SAX) from Lin et al. is of particular inter-
est [5]: First, this technique segments a time series into
intervals represented by their mean value, the so-called
Piecewise Aggregate Approximation (PAA). Second, it dis-
cretizes each mean value by mapping it to a discrete symbol.
Thus, SAX provides a small representation and a fast dis-
tance measure enabling it for time series matching. More-
over, its distance measure has the important property to
lower-bound the Euclidean distance measure, i.e., it allows
for pruning observations based on the representation, with-
out the need to load all high-dimensional time series into
memory and calculate their Euclidean distance.

However, SAX suffers from two shortcomings. First, it
assumes that the PAA of a normalized time series is nor-
mally distributed with the same standard deviation, which
is over-simplistic [2] and negatively impacts the represen-
tation accuracy. Second, SAX ignores the deterministic be-
havior of a time series like a season, i.e., a cyclical re-
peated behavior, or a trend, i.e., a long-term change in the
mean level. For example, production or consumption time
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series from the energy domain exhibit daily, weekly, or
yearly seasons, while sales or price time series within the
economy domain often exhibit an increasing or decreasing
trend. SAX does not take these features into account with
again negative consequences for the representation accu-
racy.While several SAX extensions including more features
have been proposed in the literature, no approach considers
global features before segmentation, i.e., features that arise
from the deterministic behavior of a time series.

Therefore, this work focuses on representation tech-
niques based on SAX that aim to solve these shortcomings
and significantly improve time series matching.

In the following, we introduce the season- and trend-
aware symbolic approximations, sSAX and tSAX natively
considering then season and trend of recorded time series.
Both techniques provide a more accurate representation
with the same representation size as SAX allowing a more
accurate and efficient time series matching. In summary,
we make the following contributions:

� We start with an overview of SAX and review existing
extensions. While all extensions provide lower-bounding
distance measures, most of them increase the representa-
tion size (Sec. 2).

� We introduce sSAX and tSAX providing a higher match-
ing accuracy with the same memory footprint as SAX
(Sec. 3).

� We evaluate the techniques of time series matching. We
summarize our experimental setting, present, and dis-
cuss our results (Sec. 4). The most remarkable result
to emerge from this evaluation is that on large datasets
(100GB), sSAX returns exact matches up to three orders
of magnitude faster than SAX.

� Finally, we summarize and provide insights into future
work in Sec. 5.

2 State of the Art

In the following, we compare the original SAX with some
relevant extensions by formally defining the terms time se-
ries dataset and time series matching along with its con-
straints listed in [5].

2.1 Preliminaries

Throughout the paper, we use the following definition of a
time series. A time series x is a vector of values x which
are measured at discrete time instances t:

xT = .x1; :::; xt ; :::; xT / where x 2 RT ; t 2 N>0: (1)

A time series is therefore (1) finite with a fixed length T ,
(2) complete, i.e., without null values, and (3) equidistant,

i.e., the distance between two time instances is constant.
Moreover, (4) it is normalized, i.e., its values have a sample
mean of zero and a sample variance of one.

The goal of time series matching is to retrieve the most
similar series out of a time series dataset compared to a
query time series. A time series dataset is a set of I time
series with the same length: X = fx1; :::; xi ; :::; xI g where
i 2 N>0; i � I .
The most similar time series exhibits the lowest Eu-
clidean distance to the query which is: dED.x; x0/ =qPT

t=1.xt − x0
t/

2. Usually, time series are not directly
compared using the Euclidean distance, since a time series
dataset may be large (many individual values) and calcu-
lating the Euclidean distances would require substantial
effort.

2.2 Original SAX

The original SAX [5] reduces the dimensionality of a time
series (number of data points) in two steps: First, the seg-
mentation into mean values by piecewise aggregate approx-
imation (PAA) reduces the dimensionality in the time do-
main. Second, the discretization into symbols by symbolic
aggregate approximation (SAX) reduces the dimensional-
ity in the value domain. As such, PAA is a prerequisite of
SAX, which is defined as follows.

Let W 2 N>0 be the number of segments per time series,
and W divides T . The PAA Nx is the vector of mean values
of a time series:

NxT = . Nx1; :::; Nxw ; :::; NxW /; where (2)

Nxw =
W

T

T
W wX

t= T
W

.w−1/+1

xt : (3)

Although PAA reduces a time series in the time domain,
it still contains real values taking a considerable amount
of memory. Therefore, the time series is further reduced
utilizing SAX.

Let A be the size of an alphabet (A 2 N>0) and let
bT = .b1; :::; ba; :::; bA−1/ be a vector of increasingly sorted
breakpoints that split the original domain into A intervals
� − 1; b1Œ; :::; Œba−1; baŒ; :::; ŒbA−1; 1Œ.

SAX bx is the vector of symbols, i.e. the mean values
discretized into the alphabet A:

bxT = .bx1;bx2; :::;bxw ; :::;bxW /; where (4)

bxw =

8<
:
1 −1 < Nxw < b1

a 9a W ba−1 � Nxw < ba

A bA−1 � Nxw < 1
: (5)
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Fig. 1 Time series with PAA and SAX representations

SAX reduces each mean value to a discrete symbol usu-
ally visualized with alphabetic characters in order to stress
their discrete nature. Ideally, the symbols of a dataset are
equiprobable s.t. they make full use of the alphabet capacity.
To achieve this, mean values should be N .0,1/-distributed
[5]. Consequently, breakpoints are set s.t. the area under the
normal distribution N .0,1/ from Œba−1; baŒ equals 1=A.

Distance measures for PAA and SAX are defined as fol-
lows:

dPAA. Nx; Nx0/ =
q

T =W

vuut WX
w=1

. Nxw − Nx0
w/2 (6)

dSAX.bx;bx0
/ =

q
T =W

vuut WX
w=1

cell.bxw ;bx0
w/2; with (7)

cell.a; a0/ =
�
0 ja − a0j � 1
bmax.a;a0/ − bmin.a;a0/+1 otherwise

: (8)

Figure 1 shows an example time series x (blue line,
T = 16) and its PAA representation (red segments, W = 4).
Given an alphabet A = 4 and respective breakpoints at 0.00
and ˙0.67 (black horizontal lines), its SAX representation
is bxT = .a; a; c; d/. The figure also shows a second time
series x0 (orange line) whose SAX representations is bx0T =
.d; c; d; c/. The Euclidean distance between x and x0 is
approx. 6.71, the PAA distance is approx. 6.44, and the
SAX distance is approx. 3.02.

2.3 Properties

Efficient time series matching exhibits five properties. Sub-
sequently, we describe and review these properties regard-
ing SAX.

a) Representation Size: The representation size of a time se-
ries should be small compared to its original size to al-
low efficient processing: SAX reduces the time series to
W segments that are further reduced to symbols of an
alphabet of size A resulting in a representation size of
W � ld.A/. In Fig. 1, the SAX symbols ofbx need 4 � ld.4/

= 8bits, which is small compared to the original time se-
ries x needing 16 � 32 = 512bits, assuming an original
floating-point value is stored with 32bits.

b) Representation Time: The transformation of a time series
into its representation should be fast: SAX involves one
pass over the data, carrying out segmentation and dis-
cretization simultaneously. Thus, SAX allows for a fast
transformation into a low-dimensional space. The time
series have to be already normalized.

c) Distance Storage: The distance calculation should not in-
cur a substantial storage overhead: SAX distance calcula-
tion involves the pairwise comparison of SAX symbols.
Instead of frequently recalculating these distances, Lin
et al. store each symbol combination in a lookup table of
size A2 �32bits [5]. For a typical alphabet size of A = 256,
the size of the lookup table is 262kB, which is only cal-
culated once for the dataset.

d) Distance Time: Time series matching can only benefit
from a representation technique if the comparison be-
tween representations is faster than in the high-dimen-
sional space: The SAX distance calculation involves one
lookup for each segment, i.e. in total W lookups for com-
paring two time series, which is faster than the Euclidean
distance where the calculation requires a value-by-value
comparison of the two time series of length T � W .

e) Lower-bounding Distance: A distance measure is lower-
bounding if the distance of two representations is always
smaller or equal to the true Euclidean distance of the
original time series: This property allows for pruning dur-
ing time series matching, because there is no need to eval-
uate the Euclidean distance, if the representation distance
between a query and an observation is too large. PAA
and SAX distance measures have been proven to lower-
bound the Euclidean distance [6, 14].

A representation technique that competes with SAX should
provide similar properties. Moreover, by including other
features it should give a higher representation accuracy and
a more efficient time series matching.

2.4 SAX Extensions

Several SAX extensions have been proposed in the litera-
ture. We briefly review them regarding their representation
and distance properties and summarize them in Table 1 to-
gether with SAX.

ESAX [7] extends SAX by taking not only the mean
value but also the extreme values of each segment into ac-
count, which triples the representation size. Consequently, a
lookup table would have a size A6, which is huge compared
to SAX.

1d-SAX [9] (1) segments a time series, (2) applies a
piecewise linear approximation (PLA) representing each
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Table 1 Properties of Representation Techniques

Technique Representation Distance

Size (bit) Time Storage
(32bits)

Time LB

SAX W � ld.A/ 1 A2 W X
ESAX 3 � W � ld.A/ 1 A6 W X
1d-
SAX

W � ld.A/ 2 W � A W (X)

TFSA W �.ld.T /+66/ 3 0 W X
SAX_SD W �.ld.A/+32/ 1 A2 W X
sSAX W � ld.A/ 1 A2

seas +A2
res 4WL X

tSAX W � ld.A/ 2 A2
tr + A2

res W + 1 X

segment by mean level and slope, (3) discretizes these fea-
tures using SAX, and (4) interleaves them to one representa-
tion. This requires a lookup table of size W �A and makes an
asymmetric comparison between the original-valued query
and the discretized dataset.

TFSA [15] represents a time series by trends of segments.
The approach also uses non-discretized features leading to
an increased representation size: The segments have differ-
ent lengths requiring algorithms to pass three times over a
time series for the split detection. The distance computation
is based on the representation without a lookup table.

SAX_SD [16] represents every segment by its mean value
(discretized like SAX) and its standard deviation (non-dis-
cretized), leading to an increased representation size. The
distance calculation is performed with a lookup table for the
mean value and directly on the standard deviation feature.

Table 1 comprises the following observations. a) Rep-
resentation Size: All SAX extensions except 1d-SAX in-
crease the representation size. For an unbiased evaluation
of representation accuracy, it should be equal. b) Represen-
tation Time: 1d-SAX and TFSA need several passes over
the dataset for the representation, which may be considered
an acceptable penalty because the calculation still has lin-
ear complexity. c) Distance Storage: The distance storage
often uses a lookup table with a small size that provides
a fast distance calculation. d) Distance Time: The distance
calculation needs W lookups for all techniques. For fea-
tures other than the mean value, the distance calculation
has additional costs. An evaluation requires an optimized
distance function of each technique which is not part of this
work. e) Lower-bounding Distance: The distance measures
of ESAX, TFSA, and SAX_SD lower-bound the Euclidean
distance measure. Although PLA is lower-bounding [3], it
is not clearly stated for 1d-SAX.

Subsequently, we propose our symbolic approximations
including the lower-bounding distance measures. In con-
trast to the SAX extensions mentioned above, they provide
a higher representation accuracy while having the same rep-

resentation size as SAX, which is already represented in the
lower part of Table 1.

3 Season- and Trend-aware Symbolic
Approximation

Time series from many domains such as weather, energy,
or economy, exhibit deterministic behavior. The wind speed
is often stronger in winter, while the solar irradiation has
a strong daily season. In energy consumption, human be-
havior comes into play, where weekly patterns may be ob-
served. Finally, economic time series may exhibit a trend
from increasing sales.

As mentioned in the previous section, SAX has been ap-
plied to datasets agnostic to the existence of trends and/or
seasons, whether they were synthetic [5, 6] or real-world
datasets [11]. As a consequence, ignoring the deterministic
behavior reduces the representation accuracy. We propose
sSAX and tSAX that are aware of the time series’ season
and trend, respectively. Each technique is described along
with its time series model, representation, distance mea-
sure, and properties. The underlying representations can be
efficiently computed within a preprocessing step which is
also required by SAX to normalize the time series.

3.1 Season-aware Symbolic Approximation - sSAX

sSAX is aware of the season of a time series by assuming
the existance of a seasonal component in the time series.
The remaining part of the time series forms the residuals
that are unstructured information.

3.1.1 Time Series Model

A season-aware time series model is shown in Eq. 9, where
seas is the seasonal and res is the residual component of
the time series x:

x = seas + res: (9)

A season repeats its behavior after L values (season
length). We adopt the additive season model, which is a
common assumption in many domains and can also be used
to represent multiplicative seasons. The season is extracted
by averaging all values at the same seasonal position l [4].
This technique allows us to provide a fast representation and
a lower-bounding distance measure. A seasonal feature �l

(1 � l � L) is given by:

�l =
L

T

T=LX
k=1

x.k−1/�L+l (10)
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Fig. 2 Time series with sea-
son. a Time series. b Season.
c Residuals

a b c

where T=L is the number of seasons in the time series that
are iterated by k. The resulting features � form the season
mask.

3.1.2 Representation

Similar to SAX, the transformation in the low-dimensional
space is carried out in two steps: the season-aware PAA
reduces the time series in the time domain, the season-
aware SAX subsequently reduces the value domain.

The season-aware PAA (sPAA) combines the season
mask and the PAA of the residuals in a single represen-
tation. While PAA ignores the season of the time series
by taking the mean value of a segment, sPAA explic-
itly extracts this season beforehand. Formally, the sPAA
representation is the vector, where W � L divides T :

NxT
sPAA = .�1; :::; �l ; :::; �L; res1; :::; resw ; :::; resW /: (11)

This representation is based on real numbers and is fur-
ther reduced by discretization of sSAX. Let Aseas, Ares 2
N>0 be the sizes of two alphabets and let bseas and bres

be the respective vectors of breakpoints splitting the real
numbers into Aseas and Ares intervals. Then, the sSAX rep-
resentation is the vector bxsSAX:

bxT
sSAX = .b�1; :::;b� l ; :::;b�L; cres1; :::; cresw ; :::; cresW / (12)

i.e., b�l / cresw is �l / resw discretized into Aseas / Ares.
The breakpoints are retrieved by two heuristics. We

quantify the influence of the season on the time series by
the season strength [13]: R2

seas = 1 − var.res/=var.x/:

Assuming, (1) the season strength of the dataset is known,
(2) the time series are normalized, and (3) the residu

Table 2 Distance Measures

Technique d*PAA d*SAX

sSAX
q

T
W �L

qPL
l=1

PW
w=1.�l − � 0

l + resw − res0

w/2
q

T
W �L

qPL
l=1

PW
w=1cell.b� l ;b� 0

l ; bresw; bres0

w/2

tSAX
qPT

t=1.��1 + ��2 � .t − 1/ + �resb.t−1/=.T=W /c+1/2
q

ct .b�;b�0/2 + T
W

PW
w=1cell. bresw; bres0

w/2

al and seasonal component are independent of each other,
the following equations estimate the standard deviation of
the season and the residuals:

sd.res/ =
q
1 − R2

seas (13)

sd.seas/ =
q
1 − sd.res/2 (14)

where R2
seas is the mean season strength of the dataset. Con-

sequently, we set the breakpoints bseas s.t. the area under
normal distribution N .0; sd.seas// is split into equiprob-
able regions 1=Aseas. Regarding the residuals, we also as-
sume normally distributed mean values. After season ex-
traction, the residual component has less influence and its
variance does not achieve 1 as assumed by Lin et al. [5].
Hence, we set the breakpoints bres s.t. the area under normal
distribution N .0; sd.res// is split into equiprobable regions
1=Ares.

Figure 2 shows a time series (T = 8) with L = 4
(Fig. 2a). Averaging the 1st and 5th value yields �1 = −1.525.
Averaging all positions yields the season mask (Fig. 2b,
red crosses). The residuals (Fig. 2c) remain after subtract-
ing the seasonal component from the time series. With
W = 2, the sPAA is NxT

sPAA � (–1.525, 0.075, 0.845, 0.610,
–0.124, 0.124) (red crosses and bars). The season strength
is R2

seas � 97.9%. With Aseas = Ares = 4, the breakpoints
are at ˙0.67 (season) ˙0.098 (residuals) and 0.0 (both).
Thus, bxT

sSAX = .a; c; d; c; a; d/.

3.1.3 Distance

The distance measures of sPAA and sSAX are shown in
Table 2. sSAX relies on a lookup table keeping the pre-
calculated distances of the season and residual symbols,
using bseas and bres as breakpoints. However, this look
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up table for four symbols may get large, which leads to an
equivalent formulation for two smaller lookup tables. Let
cs.a; a0/ = ba − ba0+1 be a lookup table where ba are the
breakpoints of the given feature. Then cell.b�;b� 0; cres; cres0/
can be calculated by:

cell.b�;b� 0; cres; cres0/

=

8<
:

cs.b�;b� 0/ + cs.cres; cres0/ cs.b�;b� 0/ � −cs.cres; cres0/
cs.b� 0;b�/ + cs.cres0; cres/ cs.b� 0;b�/ � −cs.cres0; cres/
0 otherwise

(15)

3.2 Trend-aware Symbolic Approximation - tSAX

Similar to sSAX, tSAX is aware of the trend of a time series
and captures this behavior in a trend component.

3.2.1 Time Series Model

A trend-aware time series model is shown in Eq. 16, where
tr is the trend and res is the residual component of the time
series x. Again we adopt an additive combination:

x = tr + res: (16)

Linear regression extracts the trend component of the
time series. This technique is efficient and allows for the
lower-bounding property of subsequent distance measures.
It estimates two features �1 (base value) and �2 (slope)
forming the trend-aware time series model:

x = �1 + �2 � .t − 1/ + res (17)

where tT = .1; :::; t; :::; T / is the vector of time instances.
Linear regression selects these features s.t. they minimize
the sum of squared residuals. Moreover, it yields two im-
portant properties: the sum of the residuals is always zero
and the trend component and the residuals are uncorrelated.
�1 and �2 are interdependent because the time series is nor-
malized1. Therefore, �1 and �2 are combined to a single
trend feature � representing the angle between the x-axis
and the trend component:

� = arctan.�2/: (18)

3.2.2 Representation

Similar to SAX, the trend-aware symbolic approximation
transforms a time series in two steps, the trend-aware PAA

1 The interested reader finds the proof in an extended version of this
paper: https://arxiv.org/abs/2105.14867.

reduces the time domain, the trend-aware SAX reduces the
value domain.

The trend-aware PAA (tPAA) representation is the vec-
tor of the trend feature and the mean values of a residual
component:

xT
tPAA = .�; res1; :::; resw ; :::; resW /: (19)

Let Atr; Ares 2 N>0 be the sizes of two alphabets. Let
btr and bres be the respective vectors of breakpoints that
split the real numbers into Atr and Ares intervals. The tSAX
representation is the vector bxtSAX:

bxT
tSAX = .b�; cres1; :::; cresw ; :::; cresW / (20)

where b� and cresw denote the discretization of � and resw

into the alphabets Atr and Ares.
Due to normalization, � is bounded by �max:

j�j � �max; where �max = tan−1
p
1=var.t/: (21)

�max that is reached if the time series is a perfect trend
with zero residuals. Using this observation and the assump-
tion that each trend is equiprobable, we set the breakpoints
btr s.t. the uniformly distributed area between Œ−�max; �max�

is split into regions of probability 1=Atr. Regarding the
residuals, we adopt normally distributed mean values simi-
lar to SAX. After extracting the trend, the residual com-
ponent has less influence. We quantify the influence of
the trend on the time series by the trend strength [13]:
R2

tr = 1 − var.res/=var.x/. Assuming that (1) the trend
strength of the dataset is known and (2) the time series
are normalized, the standard deviation of the residuals is
estimated by:

sd.res/ =
q
1 − R2

tr (22)

where R2
tr is the mean trend strength of the dataset. Thus, we

set bres s.t. the area under normal distributionN .0; sd.res//
is split into equiprobable regions 1=Ares.

Figure 3 shows a time series (Fig. 3a, T = 8) with a
trend (Fig. 3b) and residuals (Fig. 3c). With W = 2, the
tPAA is NxT

tPAA � .0.387;−0.02,0.02/ (� and red bars). The
trend strength is R2

seas � 99.2%. With Atr = Ares = 4, the
breakpoints are at ˙0.19 (trend) ˙0.06 (residuals) and 0.0
(both). Thus, bxT

tSAX = .d; b; c/.

3.2.3 Distance

The distance measures of tPAA and tSAX are again shown
in Table 2. Let us note �f = f − f 0 as a shorthand
for the difference between a feature of time series x and
x0. The tSAX distance measure relies on a lookup table

K

https://arxiv.org/abs/2105.14867


Datenbank Spektrum (2021) 21:225–236 231

Fig. 3 Time series with trend.
a Time series. b Trend. c Resid-
uals

a b c

ct for the trend feature using btr as breakpoints. The mea-
sure expresses the minimum distance of two trend compo-
nents represented byb� andb�0. For the residuals, tSAX relies
on the lookup table cell from SAX using bres as breakpoints
(Eq. 8).

3.3 Properties of Representation Techniques

We review the properties of sSAX and tSAX (Table 1).

a) Representation Size: The alphabets Aseas, Atr, and Ares

are chosen s.t. the representation size of sSAX and tSAX
equals the representation size of SAX. If they are not a
power of 2, we allow interleaving [9].

b) Representation Time: For sSAX, the representation needs
a single pass over the time series because season mask
and residuals can be calculated simultaneously. tSAX
needs an additional pass for the linear regression.

c) Distance Storage: Both representations need two lookup
tables of size A2

res and A2
seas/A

2
tr. The alphabet sizes deter-

mine the memory cost for the distance calculation.
d) Distance Time: The sSAX distance measure needs at

most 4 � W � L lookups instead of W lookups due to the
combinations of season and residual symbols. Although
sSAX may use fewer segments for the residuals than
SAX does for the time series, it leads to more lookups.
The tSAX distance measure needs only a single lookup
for the trend and W lookups for the residuals.

e) Lower-bounding Distance: Most importantly, dsPAA,
dtPAA, dsSAX, and dtSAX are lower-bounding1.

4 Experimental Evaluation

We compare our techniques sSAX and tSAX to the com-
petitors SAX and 1d-SAX and evaluate their representation
accuracy as well as their accuracy and efficiency for time
series matching.

4.1 MatchingMethods

Besides the evaluation of the representation accuracy, it
is relevant to investigate the performance of time series

matching, which we conduct with respect to exact and ap-
proximate matching.

Exact matching returns the time series of a dataset that
has the minimum Euclidean distance to the query time se-
ries. We compute the representation distances between the
query and all time series in the dataset and sort them in as-
cending order. Thereafter, the Euclidean distance from the
observations is calculated in the order of their representa-
tion distance, keeping track of the “best-so-far” observation
until it’s distance is less than the representation distance of
the next observation. Such an early stop is possible due
to the lower-bounding property: subsequent observations
never have a Euclidean distance below the “best-so-far”
distance.

Approximate matching returns the time series with the
minimum representation distance as an approximate match.
If there are several observations with minimum representa-
tion distance, it returns the observation with the minimum
Euclidean distance.

For the efficiency evaluation, we include the results
of naive time series matching, i.e., the query is matched
against the dataset with the Euclidean distance directly.

4.2 Datasets

The representation techniques are evaluated on synthetic
time series datasets with configurable characteristics as well
as on two real-world time series datasets (see Table 3 for
dataset dimensions).

Season: A Season dataset contains 1,000 random walk
time series, each of which is overlaid with a season mask of
length 10. In compliance with [11], the time series length
varies between 480 and 1,920. All time series of a dataset
have the same season strength fixed between 1 and 99%,
with a tolerance of 0.5 percentage points (pp) in both di-
rections.

Trend: A Trend dataset contains 1,000 random walk time
series overlaid with a trend. Similarly to Season, the time
series length varies between 480 and 1,920. All time series
of a dataset have the same trend strength between 1 and
99% with a tolerance of 0.5pp.

K



232 Datenbank Spektrum (2021) 21:225–236

Table 3 Dataset Dimensions

Dataset Dataset Size I Length T

Season 1,000 [480; 960; 1,440; 1,920]

Trend 1,000 [480; 960; 1,440; 1,920]

Metering 5,958 21840

Economy 6,400 300

Season
(Large)

[6,510,417; 13,020,833] 960

Metering: The Metering dataset is the result of the Smart
Metering Project initiated from the Irish Commission for
Energy Regulation [12] and contains the electricity con-
sumption of households and SMBs in Ireland between
7/2009 and 12/2010 measured in kW/h at a 30min. granu-
larity. All time series exhibit seasonal components but lack
a strong trend. The sSAX is evaluated with respect to the
daily season (season length of 48), which has an average
season strength of 18.3%.

Economy: The Economy dataset contains about 100,000
time series from different domains. It originates from the
M4-Competition to systematically evaluate the accuracy of
forecast methods [8]. Each time series has a specified inter-
val (year, quarter, month, other) and exhibits a trend com-
ponent. In compliance with the time series dataset (Sec. 2),
only time series with the same length are selected, i.e., 6,400
time series measured for 25 years with monthly granularity.

Season (Large): For the efficiency evaluation, we include
two Season datasets with a size of 50 and 100GB. The time
series length is fixed to 960 values and the season strength
of a time series may vary. We select datasets such that
their season strength is on average 10.0% (weak), 50.0%
(medium), and 90.0% (strong).

For the accuracy evaluation, each time series of a dataset
acts as query and is matched against the remaining time
series. For the efficiency evaluation on Season (Large), we
randomly select up to 50 query time series for each dataset.
We limit an experiment to four hours. Since the runtime
differs for each query, each technique is evaluated with the
same set of queries.

4.3 Output Variables

We employ four output variables to assess the accuracy and
efficiency of our symbolic approximations techniques:

Tightness of Lower Bound: The representation accuracy
is evaluated with the tightness of lower bound (TLB) in
accordance with [5]. The TLB is the ratio between the rep-
resentation distance and the Euclidean distance as follows:
TLB.x; x0/ = d*SAX.bx;bx0

/=dED.x; x0/, where d*SAX is ei-
ther dSAX, d1d-SAX, dsSAX, or dtSAX. To evaluate the TLB
of a time series dataset, the mean TLB of all time series
combinations is calculated.

Pruning Power: Exact matching is improved by pruning
observations to terminate linear search earlier. The pruning
power (PP) expresses the fraction of observations that can
be pruned without evaluating their Euclidean distance [3].
A PP of 0 means that no observations are pruned, a PP
close to 1 means that the linear search terminates after very
few observation.

Approximate Accuracy: Approximate matching is im-
proved if the approximate match is closer to the Euclidean
distance of the exact match. We introduce the output vari-
able approximate accuracy (AA) which is the quotient of
the Euclidean distance between the query and the exact
match and the Euclidean distance between the query and
the approximate match. An AA of 0 means that the approx-
imate match is very inaccurate, an AA of 1 means that the
approximate match is as accurate as the exact match.

Runtime: The efficiency of time series matching is eval-
uated with the runtime. We measure the wall-clock time in
seconds for the calculation of the representation distances
and the Euclidean distances.

4.4 Configurations

Table 4 summarizes all possible configurations for the num-
ber of segments W and the alphabet size A for each dataset
and each representation technique. The representation size
is fixed, which sets the alphabet Ares of sSAX and tSAX
in accordance to Aseas and Atr. 1d-SAX uses the alphabet
Aa for the base value of a segment and the alphabet As for
the slope [9]. Alphabet sizes less or equal to 4 are ignored
since they evidently cause a high accuracy loss. We limit
the size of a lookup table to 4 M b, which corresponds to
an alphabet size of 1,024. The standard deviation of sSAX
and tSAX to discretize the residuals is derived from the
component strength (Eqs. 13 and 22).

4.5 Soft- and Hardware

All representation techniques are implemented using R
[10]. For the runtime evaluation, matching methods are im-
plemented in C compiled with GCC 6.3.0. Experiments run
on a machine with Intel(R) i7 Processor 6660U@2.60GHz,
20GB of RAM, 1TB HDD, and 500GB SSD. Each time
series is stored as a binary file on disk. Time series repre-
sentations and lookup tables are kept in-memory, while time
series are read from disk without system cache buffering.

4.6 Representation Accuracy

We evaluate the representation accuracy utilizing the TLB
(Fig. 4) keeping the representation size constant for each
dataset; the possible configurations are given in Table 4.
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Table 4 Configurations of Rep-
resentation Techniques

Synthetic W A or Ares Aseas or Atr Size/bit

SAX [32; 40; 48; 96] [1,024; 256; 101; 10] – 320

sSAX [24; 48; 48] [1,024; 32; 64] [256; 256; 9] 320

tSAX [32; 40; 48; 96] b2b..320 − ld.Atr//=W /c [32; 128; 1,024] 320

Metering W A or Ares Aseas or Atr Size/bit

SAX [455; 520; 728; 910] [256; 128; 32; 16] – 3,640

sSAX 455 [191; 165; 142; 123] [16; 64; 256; 1024] 3,640

Economy W A, Aa, or Ares Atr or As Size/bit

SAX [10; 12; 15; 20; 30] [256; 101; 40; 16; 6] – 80

1d-SAX [10; 12; 15; 20] b2b..80 − ld.As/ � W /=W /c [8; 16; 32] 80

tSAX [10; 12; 15; 20; 30] b2b..80 − ld.Atr//=W /c [16; 64; 256; 1,024] 80

On the synthetic datasets, we compare the TLB of SAX
to sSAX and tSAX (Figs. 4a and 4b), grouped by time se-
ries length and component strength. Each cell presents the
difference in percentage points (pp) between the mean TLB
of the most accurate sSAX/tSAX and SAX configuration.
Figure 4a shows that sSAX gains accuracy compared to
SAX with up to 86pp. The longer the time series and the
stronger the season, the higher is the accuracy gain. Without
a season (R2

seas = 1%), a small amount of the representation
size is assigned to represent the season, nonetheless. There-
fore, sSAX is slightly less accurate than SAX. tSAX gains
accuracy by only 1.2pp and has very slight losses in the ab-
sence of a trend (Fig. 4b). The gains of tSAX are lower than
expected for two possible reasons: (1) The distance of dis-
cretized mean values from SAX already captures the global
trend of a time series and, (2) the normalization transforms
the time series such that the change in the mean level be-
comes smaller. Therefore, tSAX has not much room for
improvement.

a b

dc

Fig. 4 Increase of TLB compared to SAX. a Season. b Trend. c Me-
tering. d Economy

Figures 4c and 4d illustrate the results for the real-world
datasets showing the min and max mean TLB reached with
the chosen configurations. On the Metering dataset, the best
sSAX configuration gains up to 9.9pp compared to the best
SAX configuration (Fig. 4c). Thus, taking the season into
account leads to a much higher representation accuracy. On
the Economy dataset, we include 1d-SAX in our compari-
son, which is the only trend-aware SAX extension that has
the same representation size as SAX. Overall, tSAX has
a better representation accuracy than 1d-SAX, as it better
takes advantage of the available representation size. tSAX
performs on par compared to the best SAX (Fig. 4d). Since
1d-SAX already performs worse than SAX on the Econ-
omy data, we omit the comparison on Trend and use the
original SAX as our baseline.

4.7 Exact Matching

For exact matching, we evaluate pruning power (Fig. 5) and
efficiency/runtime (Table 5).

We begin with the pruning power. On the synthetic
datasets, sSAX and tSAX exhibit a gain in pruning power
compared to SAX. Remarkably, sSAX improves the prun-
ing power up to 99pp in the presence of a strong season
(Fig. 5a). With no season, sSAX has a negligibly worse
pruning power. The gains of tSAX are very limited, again
(Fig. 5b).

This behavior is confirmed on the real-world datasets. On
Metering, sSAX gains 3.8pp in pruning power (reaching
6.6% in Fig. 5c). sSAX can prune 393 time series while
SAX only prunes 274 of the 5,958 time series. On Economy,
the best SAX configuration already has a very high pruning
power (Fig. 5d) with 97.4%. tSAX outperforms 1d-SAX
and performs on par with SAX.

With respect to runtime efficiency, Table 5 details the
runtimes for both disks (HDD, SSD) on the Season (large)
datasets with 50GB and 100GB. The runtime is broken
down into one part for calculating the representation dis-
tances including result ordering (Repr.) and in a second part
for accessing the time series and calculating the true dis-
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a b

dc

Fig. 5 Increase of pruning power compared to SAX. a Season.
b Trend. c Metering. d Economy

tances (Raw). For each season strength, the sum of both
parts indicates the mean runtime per query. Calculating
the representation distances is independent of the season
strengths.

The table reveals that sSAX is (1) faster for all datasets
from HDD even when there is only a weak season strength
and (2) faster for all datasets from SSD for a significant
season strength. The most striking result to emerge from
the data is that sSAX is up to three orders of magnitude
faster for time series with a strong season, since much
more time series can be pruned from the dataset. On
HDD, sSAX requires approximately 17sec for querying
the 100GB dataset, due to the increased pruning power. A
naïve matching of a query without representation technique
would require 1.7h (50GB on SSD) and 3.85h (100GB
on SSD). Due to space limitations, we only present the

Table 5 Matching Efficiency on Season (Large)

HDD R2
seas = 10.0% R2

seas = 50.0% R2
seas = 90.0%

Size Technique Repr. Raw Sum Raw Sum Raw Sum
50Gb SAX 1.80 135.82 137.61 1,801.12 1,802.92 6046.75 6048.55

sSAX 8.67 41.76 50.43 0.54 9.21 0.08 8.75
100Gb SAX 3.69 73.61 77.30 4181.02 4184.72 13,423.47 13,427.16

sSAX 16.86 4.77 21.63 1.09 17.95 0.11 16.97

SSD R2
seas = 10.0% R2

seas = 50.0% R2
seas = 90.0%

Size Technique Repr. Raw Sum Raw Sum Raw Sum
50Gb SAX 1.84 4.05 5.89 101.61 103.45 850.81 852.65

sSAX 9.12 0.71 9.83 0.04 9.16 0.02 9.14
100Gb SAX 3.80 8.29 12.09 115.14 118.95 1,088.80 1,092.60

sSAX 17.99 1.05 19.04 0.07 18.06 0.02 18.02

efficiency results for sSAX. Since tSAX does not achieve
such a high pruning power compared to SAX, the number
of compared time series is very close which also leads to
very similar execution times of tSAX and SAX.

4.8 Approximate Matching

For approximate matching, we evaluate the accuracy of an
approximate match compared to the exact match utilizing
the AA (Fig. 6).

Figures 6a and 6b show the increase of AA on the
synthetic datasets by time series length and component
strength. The longer the time series and the stronger the
deterministic component, the higher the gains of sSAX and
tSAX over SAX. sSAX reaches up to 47pp improvement on
Season (Fig. 6a). tSAX only reaches minor improvements
on Trend with up to 0.14pp (Fig. 6b). On datasets with
a high component strength, both representations reach an
AA of � 99%. sSAX and tSAX reach this accuracy thanks
to their accurate representation. SAX reaches this accuracy
since most observations have the same representation. So,
SAX re-evaluates their Euclidean distance to the query in
order to retrieve the most accurate approximate observa-
tion. Thus, it reaches a slightly higher AA, mainly due to
the evaluation of the Euclidean distance.

On the real-world datasets, sSAX and tSAX show a sim-
ilar behavior. All sSAX configurations outperform SAX on
Metering, and the best sSAX configuration is up to 1.3pp
more accurate than the best SAX configuration (Fig. 6c).
Exact search shows that the time series are very similar re-
garding the Euclidean distance, as also shown by the prun-
ing power of 6.6% in Fig. 5c. However, the approximate
match already reaches 91.5% of the exact match accuracy.
Although tSAX provides a higher approximate accuracy
than 1d-SAX (95.4% vs. 84.2%), it is slightly behind the
best approximate accuracy of SAX (96.9%) (Fig. 6d).

Table 5 shows the details of the efficiency evaluation
and reveals that approximate matching with sSAX is slower
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Fig. 6 Increase of approximate accuracy compared to SAX. a Season.
b Trend. c Metering. d Economy

compared to SAX due to an increased number of lookups.
However, these approximate matches are much more accu-
rate, as Fig. 6 suggests.

5 Conclusion and FutureWork

We have proposed two novel symbolic approximations
sSAX and tSAX to improve representation accuracy and
time series matching compared to state-of-the-art tech-
niques. Our evaluation shows that considering the deter-
ministic features during time series matching is worth the
effort. It improves the representation accuracy, especially if
the deterministic component is strong, and the accuracy of
exact and approximate matching. Moreover, exact match-
ing with sSAX is more efficient by up to three orders of
magnitude. Even if exact matching was carried out with
indexes based on SAX such as iSAX and its successors
[11, 17], it could not avoid the disk access for Euclidean
distance calculation. While sSAX provides significant im-
provements, the improvements of tSAX are interestingly
far less significant.

In the future, we will concentrate on representing combi-
nations of deterministic components since time series usu-
ally exhibit (several) seasons simultaneously in combina-
tion with an (potentially non-linear) trend. Additionally,
trend and season patterns are not always stable. So, main-
tenance strategies for the representations are also an inter-
esting future research direction.

Furthermore, recent work has focused on indexes based
on SAX for matching billions of time series [17]. However,

the authors analyzed rather short time series (T � 640) and
our approximations have the potential to efficiently index
and match much longer time series thanks to their higher
representation accuracy.
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