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Abstract Spatially land-cover models are necessary for

sustainable land-cover planning. The expansion of human-

built land involves the destruction of forests, meadows and

farmlands as well as conversion of these areas to urban and

industrial areas which will result in significant effects on

ecosystems. Monitoring the process of these changes and

planning for sustainable use of land can be successfully

achieved by using the remote sensing multi-temporal data,

spatial criteria and predictor models. In this study, land-

cover change analysis and modeling was performed for our

study area in central Germany. An integrated Cellular

Automata–Markov Chain land change model was carried

out to simulate the future landscape change during the

period of 2020–2050. The predictive power of the model

was successfully evaluated using Kappa indices. As a

consequence, land change model predicts very well a

continuing downward trend in grassland, farmland and

forest areas, as well as a growing tendency in built-up

areas. Hence, if the current trends of change continue

regardless of the actions of sustainable development,

drastic natural area decline will ensue. The results of this

study can help local authorities to better understanding the

current situation and possible future conditions as well as

adopt appropriate strategies for management of land-cover.

In this case, they can create a balance between urban

development and environmental protection.

Keywords Land-cover change � Markov chain � Cellular
automata � Multi criteria evaluation

Introduction

Many interacting components affect the global environ-

ment change and land-cover change is probably one of the

most important components which has a significant impact

on ecological systems (Vitousek 1994). Land-cover has

long been faced with changes and probably will change in

the future as well (Ramankutty and Foley 1998). These

changes are occurring in different scales (local to global)

and in different time periods (days to millennia) (Town-

shend et al. 1991).

Regional and/or local mapping of land-cover changes is

important because it can provide input data for environ-

mental models dealing with topics such as species distri-

butions, climate change and sustainable development

policies, or spatial planning and flood risk assessment

(Castella 2007; Funkenberg et al. 2014; Kuenzer et al.

2014; Leinenkugel et al. 2013; Pompe et al. 2008).

The unprecedented rate of land change has become a

major concern around the world that’s why this issue has

affected the environmental services and biodiversity at the

global level. Both anthropogenic and natural forces are

responsible for these changes in Earth’s surface. Anthro-

pogenic forces such as urban expansion and the destruction

of forests and meadows for economic purposes (develop-

ment of agricultural land); and natural forces such as fire,

flood and tsunami; have changed the type of land-cover and

land-cover all over the world. In recent decades, the

changes caused by anthropogenic forces have found a

faster pace than natural variations. This is because tech-

nological development and population growth are the two

main factors which are responsible for the anthropogenic

changes and has been unprecedented growth in past two

decades. As a result, human has significantly changed

almost all the world’s ecosystems or is going to change
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them; and therefore the capacity of ecosystems to provide

goods and services is going to be reduced (Lambin and

Meyfroidt 2011).

Due to the rapid and unprec-edented land-cover changes

in recent decades, negative consequences such as decline of

biodiversity (Balmford et al. 2001; Pimm and Raven 2000;

Sala et al. 2000), soil erosion (Sidle et al. 2006), destabi-

lization of watersheds (Rai and Sharma 1998), increasing

levels of greenhouse gas emissions (Macedo et al. 2013),

water pollution, and air pollution (Houghton 1994) have

increased. Also, substantial evidence has been emphasized

that land-cover changes significantly influence the geo-

graphical distributions of species and the rate of changes in

distribution (Jetz et al. 2007; Pompe et al. 2008). Land-

cover changes can affect dispersal of plant species directly

through changing the quality and quantity of habitat suit-

ability and indirectly via increasing, decreasing, or elimi-

nating dispersal barriers.

Understanding land change trends has been a matter of

interest and concern among landscape planners and ecol-

ogists (Bagan and Yamagata 2012; Deng et al. 2008). The

prediction of land-cover change is a frequently required but

difficult process. Effective analysis of land-cover changes

require a considerable amount of data about the Earth‘s

surface. Remote sensing prepares a great source of data,

from which updated land-cover maps and changes can be

analyzed and predicted efficiently. With recent advances in

geographic information systems (GIS) and remote sensing

tools and modules enable researchers to predict future land-

cover changes effectively.

Several statistical and geospatial models have been used

to model land-cover change, including logistic regression

models (Hu and Lo 2007), neural networks (Basse et al.

2014; Pijanowski et al. 2002), Markov chains (Kamusoko

et al. 2009), and cellular automata (CA; Poelmans and Van

Rompaey 2010). These approaches are often combined

together to create a hybrid model.

In this research, we applied a cellular automata–Markov

chain model (CA–Markov) to simulate future land-cover

changes. Both CA and the Markov chain model have great

advantages in the study on land-cover changes (Sang et al.

2011). Markov-Chain model is one of the most widely used

methods for quantifying the probability of land-cover

change from state A to state B (e.g. forest to built-up area)

in discrete time stages. These probabilities then enter into

the CA model to predict spatial changes over a specific

time period (Mitsova et al. 2011; Yang et al. 2012). CA–

Markov model is based on the initial distribution and

transition matrix; it assumes that the drivers, which have

created the current situation for the region land-cover, will

continue to operate as before in the future (Guan et al.

2011). In many studies, the combination of remote sensing

and GIS are effectively used in CA–Markov model (Mit-

sova et al. 2011; Subedi et al. 2013).

The objective of this study is to simulate future land-

cover changes based on the CA–Markov model in our

study area which is located in central Germany. Firstly,

transition matrices are computed from the land-cover maps

(1990, 2000 and 2010) using the Markov model to forecast

area change of land-cover. Secondly, an integration eval-

uation procedure is used to generate transition suitability

maps based on change drivers. Finally, transition matrix

and transition suitability map are implemented in the CA–

Markov model to simulate spatial distribution of land-

cover from 2010 to 2050.

Materials and methods

Study areas

The study area is located in central Germany and covers

690000 hectares (Fig. 1). Elevation ranges from 114 to

982 m.a.s.l, with higher elevations concentrated in the

Grosser Beerberg Mountain located in the Thuringian

Forest. The predominant climate is of the continental type

with an average annual rainfall of 604 mm, and an average

annual air temperature of 8.6 �C (based on monthly

recording data of 18 stations, in the Free state of Thuringia

from 1960 to 1990). The soil parent material is mainly

calcareous. The landscape maps presented five classes:

forest, built-up area, grassland, farmland, and water bodies

(lakes, rivers, ponds, and reservoirs).

Modeling framework

In this section, we describe the main components used for

the land-cover changes in future. The process occurs in a

raster data environment, most often a grid of uniform cells

of a specified resolution. The workflow that was carried out

in this study consists of: (1) land-cover mapping of 1990,

2000 and 2010 using the classification of satellite images,

(2) computation of transition area matrix derived from a

Markov process, indicating the number of pixels to be

expected to change each land-cover class to another class

over a specified time interval (1990–2000, 2000–2010); (3)

getting transition suitability images by Markov chain and

multi-criteria evaluation (MCE) model (These suitability

images imply the suitability of each cell for a particular

land-cover); (4) Evaluating the predictive power of the

model by comparing the difference between the actual and

projected maps of year 2010; and finally, (5) land-cover

change simulation using CA–Markov module for 2020,

2030, 2040, and 2050.
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Land-cover mapping

A temporal coverage of Landsat TM and ETM ? im-

ages (USGS Global Visualization Viewer) from 1990 to

2010 was collected. Using the landsat images in 1990,

2000 and 2010, the land-cover maps were generated for

the three corresponding years. To remove the distor-

tions, noises, and errors produced during the imaging

process, pre-processing techniques (both geometrically

and atmospherically) were applied to all the images.

After geometric and atmospheric corrections, the land-

cover maps were derived from object-based support

vector machine (SVM) classification method (Duro

et al. 2012). The object oriented classification approach

avoids the so-called salt-and-pepper effect that com-

monly results when pixel-based remote sensing classi-

fication approaches are used. The landscape maps

presented five classes: forest, built-up area, farmland,

grassland, and water bodies.

Generating transition area matrix

In this study, two pairs of land-cover images (1990–2000

and 2000–2010) were applied to calculate the transition

area matrices of land-cover types during the two corre-

sponding periods. Each matrix records the number of pixels

that are expected to vary from a class to another class in a

specified period in the future. This part of the model

according to the trends observed in the past, is used to

estimate the replacement rate of one class by another class

These matrices are obtained using the Markov Chain model

with a proportional error of 0.1. The transition area

matrices for the year 2010 were created by overlaying the

1990 and 2000 classifications and delineating the change

between the two time periods on a class-by-class basis.

This information is used as the input of the Markov model

to assist in determining the possibility of conversion of any

pixels of a land-cover class (e.g., forest) to other land-cover

classes (e.g., field) and vice versa.

Fig. 1 Location and land-cover (true color image) of study area for the year 2010
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Generating transition potential maps

Preparing suitability maps for land-cover classes is difficult

in terms of data and information availability. Incorporating

all types of factors or constraints that exist within the study

area seems is impossible. In this paper, transition potential

maps of land-cover types were extracted by using GIS

algorithms, multi-criteria evaluation (MCE), and fuzzy

membership functions. Firstly, two drivers including

neighborhood interaction (Euclidean distance to the same

type cell) and conditional probability image were selected

to compute transition potential maps of forest, grassland

and farmland areas. As a rule of thumb, the pixel closer to

an existing land-cover class has the higher possibility to

change into that particular class. Since this rule cannot be

applied to all situations (Ahmed and Ahmed 2012), the

conditional probability images are used for each category

to reduce uncertainty in the transition potential maps. The

conditional probability images show, to what extent, each

pixel in the next time period will likely belong to the

designated category; and since this probability is condi-

tional on their current state, they are referred to as condi-

tional probability images. Therefore, these images are a

visual presentation of the transition probability matrix (El-

Hallaq and Habboub 2015). Restrictions for forest, grass-

land, and farmland were the built-up areas and water

bodies. Finally, four typical biophysical and proximate

drivers including slope, distance from nearest road,

neighborhood interaction, and distances from water bodies

were selected to compute transition potential map of built-

up areas (Table 1). Also, water bodies considered as

restriction area for built-up lands. Studies have shown that

these ancillary data are closely related to the probability of

urban changes (He et al. 2013; Yang et al. 2014).

Since Markov chain does not locate the occurrence of

land-cover transitions, GIS algorithms, multi-criteria eval-

uation (MCE), and fuzzy membership functions were

applied to determine the suitability and locations of tran-

sitioning cells. The fuzzy sets create a standardized mea-

sure and avoid the selection of a priori unknown Boolean

restrictions or cut-off values (Eastman 2006). Hence, the

fuzzy membership functions (e.g., sigmoidal monotonic

decrease function) were used to rescale driver maps into

the range 0–255, where 0 represents unsuitable sites and

255 represents the most suitable sites. Also, analytic hier-

archy process (AHP), as part of MCE, was applied to

determine the weights of driving factors by means of

pairwise assessments (Malczewski 1999). The AHP

method allows weighting of land-cover transition potential

on the basis of a set of potential maps (e.g., magnitude of

slope), and incorporates growth constraints. The AHP

affords a comprehensive and rational framework to solve

the decision problem, characterizing and quantifying its

elements, correlating the related elements towards overall

goals, and evaluating alternative solutions. This GIS-based

AHP is a strong tool because of its high ability to incor-

porate different types of heterogeneous variables and its

simplicity to gain the weights of suitable variables (Hafeez

et al. 2002; Ying et al. 2007). This model has a unique

advantage when the quantification and comparison of

important variables is difficult, or where the establishment

of communications between working team members

becomes problematic by their various specializations, ter-

minologies, or perspectives. Because the areas of water is

small, transition potentials to water is not computed. A set

of transition potential maps are displayed in Fig. 2.

Model evaluation

The evaluation of a model is an important step in the

modeling process although there is no consensus on the

criteria to assess the performance of landscape change

models (Pontius 2000). The model is evaluated to detect

whether the projected land-cover map is giving any abrupt

Table 1 Extracted weights

based on AHP and fuzzy

standardization for built-up

areas

Factors Functions Control points Weights

Distance from roads J-shaped 0–50 m highest suitability 0.28

50–1500 m decreasing suitability

[1500 m no suitability

Distance from water bodies Linear 0–100 m no suitability 0.15

100–7500 m increasing suitability

[7500 m highest suitability

Distance from built-up areas Linear 0–100 m highest suitability 0.38

100–5000 km decreasing suitability

[5000 km no suitability

Slope Sigmoid 0 % highest suitability 0.19

0–15 % decreasing suitability

[15 % no suitability
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result or not. To validate the operation of a model the

simulated map compares with the real conditions. This

method has been favored in other studies such as by Araya

and Cabral (2010) who used it to verify the accuracy of a

model predicting land-cover change. The comparisons

between the actual map of 2010, which was obtained

through remote sensing techniques, and the projected map

of year 2010, which observed using changes between 1990

and 2000 images, has been performed using Kappa varia-

tion statistics. Kappa is a very popular and well recognized

map comparison index (Long and Giri 2011). The kappa

statistics assess the model accuracy in terms of the quantity

of cells properly classified along with the location of the

cells.

Three kappa statistics are introduced here: the tradi-

tional kappa (Kstandard) which is a measure of the simulated

layers’ ability to attain perfect classification, a modified

general statistic over Kstandard (Kno) which shows the

proportion of pixels classified correctly relative to the

expected proportion classified correctly with no ability to

specify quantity or location, and Klocation index that is able

to distinguish locational accuracy of pixels in the simula-

tion. Its range is from 0 (random location) to 1 (perfect

location specification) (Pontius 2000).

CA–Markov model

CA–Markov modeling is a hybrid modeling technique that

binds the strengths of a spatially explicit, deterministic

modeling framework with a stochastically based temporal

framework. This model is a combination of Markov chain

and CA models which has become a robust method in

terms of dynamic spatial phenomenon’s simulation and

future land-cover change prediction in time and space

based on their current state and on ancillary information

which may drive future transitions among land-cover

Fig. 2 Transition potential maps of land-cover type in 2010
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classes. These results can in turn be used for theoretical

constructions and for scenario-based projections by recal-

ibrating the ancillary data. Markov Chain is a strong model

for predicting land change demand when changes and

processes in the land-cover are ambiguous to explain. This

model is one in which the future state of environment can

be analyzed solely according to the previous state. Markov

chain model is a stochastic process model that describes

how likely one state is to change to another state and use

this as the basis to project future changes. This is possible

through the development of a transition probability matrix

of land-cover change from time to time, which represents

that the nature of the change can still be used to predict the

next period. In this model, the transition probability can be

seen for each phenomenon, but no information is supplied

on the spatial distribution of these phenomena. Thus, the

CA is used to characterize the spatial characters. CA model

is comprised of a regular lattice framework where any cell

in the lattice is in one of a defined number of states. These

states either remain in their current state or change at every

iteration or time step into a different state (O’Sullivan and

Unwin 2003). The changes are initiated by a set of deter-

ministic rules that are defined prior to the execution of this

process. There are four parameters needed to run CA: (1) a

cellular (or grid) space, (2) a neighborhood definition, (3) a

set number of states, and (4) a set of transition rules. The

strength of CA is that it can robustly simulate processes

that play out across time and space in human and in natural

systems. As such they offer a useful framework for

exploring system interactions (White and Engelen 1994).

Hence, CA manages spatial dynamics via local transition

rules, while Markov processes depict temporal dynamics of

land-cover classes based on transition probabilities (see

Eastman 2006; for more information).

To generate future land-cover maps, the suitability

images are coupled with base land-cover and the transition

matrices in a process called multi-object land allocation.

This process compares all pixels and their suitability for

each land-cover class. Each pixel has the potential to be

populated by each land-cover class during the simulation

(except by restricted and unchangeable area). The class

which has the highest suitability at that pixel will be the

class that is chosen given the prior spatial constraints of the

CA and the temporal step to be classified for the stated time

period. The process executes for each land-cover class and

runs through the process several times at each time period.

By subtracting the least likely pixels to be included in each

land-cover class, the process continues until the correct

number of pixels has been identified for the land-cover

class under investigation. Because this process has random

elements, an iterative process was used to create the

potential land-cover class for each period. In order to gauge

which areas are most likely to be another area, several

iterations of this process were run and then combined into a

frequency image. This image is the overlay of all the

iterations for a given land-cover class at a given time

period and shows the proportion of times each cell was

classified as a given land-cover class.

Results

Land-cover classification and accuracy assessment

An object-oriented image analysis was applied to produce a

multi-temporal land-cover geographic database for the

3 years under study. In order to use the derived maps for

further change analysis, the classification accuracy were

estimated. To assess the accuracy of classified images, we

gathered ground truth data (training and validation data)

based on Quickbird images available in Google Earth

(http://earth.google.com). For whole of study area, a sam-

ple of ground truth points randomly collected within the

area covered by high resolution Quickbird images, overlaid

selected points on the Quickbird images in Google Earth,

and then grouped these points to appropriate classes based

on visual interpretation. A point was considered as an

especial class if land-cover patches covered at least one

Landsat pixel (30 9 30 m). Based on visual interpretation

of the Landsat images, the training sites were carefully

determined and restricted to homogeneous regions where

class membership was stable between 1990 and 2010. We

optimized the training sample dataset until we achieved

maximum stable accuracy. This optimizing task was car-

ried out by removing training samples that may have been

sources of error or collecting new samples to obviously

misclassified categories. Finally, we used a sample of 1374

points were mapped from Quickbird images. We split all

ground truth points into training (85 %) and evaluation

(15 %) data. Overall accuracies for the extract land-cover

maps of 1990, 2000 and 2010 were, respectively, 89.75,

92.36 and 93.54 %, thus indicating the suitability of the

classified remote sensing images for effective and reliable

land-cover change analysis and modeling. We finally used

100 % of the ground truth data to produce land-cover maps

of the whole study area. Figure 3 illustrates the produced

land-cover maps.

Analysis of landscape metrics

Analysis of land-cover area changes in Table 2 indicate

that from 1990 to 2010, built-up areas increased from 2.8 to

5.5 %. For the period between 1990 and 2000, around

7000 ha have been changed to built-up lands, and

10,980 ha within the period 2000–2010. The built-up land

was continuously increased, and the farmland, grassland
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and forest were continuously decreased. Grasslands

decreased significantly from 337.5 ha (4.89 %) to 277.5 ha

(4.02 %) during 1990–2010. During this period, forest area

decreased from 223400 ha (32.38 %) to 222550 ha

(32.26 %). Also, farmlands reduced by 2.75 % from 1990

to 2010. Overall, farmlands lost around 11220 ha in this

time period. The area of water increased a little.

Analysis of transition matrix

Transition matrices generated by the Markov model pro-

vide information about the amount of change and likeli-

hood of change occurring before the final CA–Markov

model was produced. In this section, transition potentials

were computed based on land-cover conditions during the

periods 1990–2000 and 2000–2010 to show how each land-

cover was projected to change. Transition area matrices

were compared to the total known areas of land derived

from the classifications. The transition probability matrices

give the likelihood of transition between phenomena over

time (Table 3). The data on the diameter of transition

probability illustrate the probability of a phenomenon

remaining the same, while the off-diagonal data depict the

change potential from one phenomenon to another (Guan

et al., 2011). For example, the Markov transition proba-

bility matrix shows that the probability of future changes of

grassland to forest from 1990 to 2000 is 13.3 %. This

probability of change decreased reasonably to 10.9 % in

2010. Table 3 illustrates that for both periods, farmland

and grassland possessed the highest likelihood of trans-

forming into built-up areas. Overall, one trend is that over

both periods the probability of remaining in the same class

increased. Water bodies experienced the biggest increase

between the first and second projections. After 10 years,

there is an 89.7 % chance a current water pixel will still be

water however after twenty years that value increases to

97.1 %.

Land-cover modeling and validation

Evaluation of model was performed by comparing the

simulated map of 2010 with the real land-cover map of

2010 based on Kappa variations. The change trajectories

between the observed and simulated land-cover classes for

the year 2010 are shown in Fig. 4, in which five land-cover

classes have relative errors lower than 5 %.

Models with accuracies in excess of 80 % are typically

considered very strong predictive tools (Araya and Cabral

2010). The Kstandard value was 87.6 %, which verifies the

accuracy of this model. Pontius (2000) states that the Kno

value is a better alternative than Kstandard for assessing the

overall accuracy of the model. The model performed very

well in its overall ability to predict land-cover map of 2010

(Kno = 91.5 %), and the Klocation value of 92.2 % indicates

that the model provides a reasonable representation of

location. Also, visual interpretation of the results (Fig. 5)

Fig. 3 Time series of land-cover maps for 1990–2010

Table 2 Distribution of land-

cover classes (in hectare) and

percentage of changes for

1990–2010

Year Change in land-cover structure

1990 2000 2010 D %1990–2000 D %2000–2010 D %1990–2010

Forest 223,400 222,810 222,550 -0.26 -0.12 -0.38

Water 4460 4530 4550 1.57 0.44 2.02

Grassland 33,750 31,390 27,750 -6.99 -11.60 -17.78

Farmland 408,490 404,370 397,270 -1.01 -1.76 -2.75

Built-up land 19,840 26,840 37,820 35.28 40.91 90.63
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shows that there is an evident similarity between the real

and simulated maps for the year 2010. Therefore, based on

the Kappa values obtained, the CA–Markov model can be

used to simulate future land-cover conditions.

In this research, patterns and tendency of land-cover

changes were modeled according to the preceding land-

cover states. Although probabilities of land-cover transition

are determined on a per category basis, the spatial distri-

bution of phenomena in this analysis is lacking. Hence, the

Markov model needs to be integrated with the CA model in

order to add spatial characters to the model and to over-

come this inherent limitation. In effect, by defining the

land-cover map of 2010, the transition suitability maps

derived from MCE analysis and Markov model (condi-

tional probability images), transition area matrices of the

land-cover maps of 2000–2010, a contiguity filter selection

(5 9 5 Moore neighborhood kernel) to define neighbor-

hood interactions, and one iteration per year were

employed to predict the future changes in 2020–2050. The

contiguity filter down-weights the suitability of pixels that

are far from existing areas of each land-cover class. The

role of this filter is to ensure that the best choices for land-

cover transformation are limited to cells that are both

inherently suitable and in close proximity to existing areas

of that land-cover class; this gives preference to contiguous

suitable areas. In each iteration, pixels with the highest

transition probability to transfer from one category to

another category turn into a new category; while pixels

with lower probabilities remain unchanged. If 10 iterations

are selected for the model, the model allocates one tenth of

all cells which are expected to be transferred to another

category during each repetition (Eastman 2006). The multi-

objective land allocation (MOLA) procedure was used to

resolve the land allocation conflicts. All land-cover classes

act as claimant phenomena and contend for land within the

host class (Eastman 2006).

The outcome of this process was a rendering of a

potential land-cover distribution at the specified time of

40 years into the future at four steps of 10 years. Ten years

for each time step was chosen as it corresponded to the

time step by which the transition matrix was constructed

(between the years 2000–2010). Firstly, 2010 year is set as

starting year; transition area matrix of 2000–2010 periods

is used to simulate 2020 year land-cover change; then,

2020 year is set as starting year; transition area matrix of

2000–2010 periods is used to simulate 2030 year land-

cover change; thirdly, 2030 year is set as starting year;

transition area matrix of 2000–2010 periods is used to

simulate 2040 year land-cover change; finally, 2040 year is

set as starting year; transition area matrix of 2000–2010

periods is used to simulate 2050 year land-cover change.

The forecasted land-cover maps for 2020 to 2050 are dis-

played in Fig. 6.

Table 3 Transition probability

matrix of land-cover types for

the periods 1990–2000 and

2000–2010

Land-cover type Forest Built-up land Farmland Grassland Water bodies

1990–2000

Forest 0.9346 0.0087 0.0193 0.0349 0.0025

Built-up land 0.0102 0.9276 0.0428 0.0118 0.0076

Farmland 0.0046 0.0602 0.8686 0.0657 0.0008

Grassland 0.1332 0.0417 0.061 0.7627 0.0014

Water bodies 0.078 0.0185 0.0056 0.0001 0.8978

2000–2010

Forest 0.9247 0.003 0.0404 0.0295 0.0024

Built-up land 0.0094 0.9643 0.0076 0.0122 0.0065

Farmland 0.0107 0.0341 0.9076 0.0475 0.0001

Grassland 0.1095 0.0424 0.0496 0.7982 0.0003

Water bodies 0.0135 0.0083 0.005 0.0017 0.9715

Fig. 4 Actual and simulated land-cover classes for the year 2010
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Analysis of simulation results

Our results indicate that 5.5 % of the entire study area has

been occupied as a built-up area in 2010, which will

increase to 10.5 % by 2050, while for the other land-cover

types (except water class), descending rate will observe by

2050 (Table 4). For example, grassland area was seen to

decline from 27750 ha (4 %) to 15,730 ha (29.3 %) during

2010–2050. Also, for the other two land-cover classes,

similar trends were observed, i.e. from 222,550 ha

(32.3 %) to 217410 ha (32.5 %) and 397270 ha (57.6 %)

to 379510 ha (55 %) for forest and farmland, respectively.

Discussion and conclusion

The study reported here investigated land-cover changes

over three time periods, 1990–2000, 2000–2010 and

2010–2050 using multi-temporal remote sensing data and

GIS. Our results indicate that built-up areas dramatically

increased by 90.6 % from 1990 to 2010. Overall, 17,980 ha

have been changed to built-up areas in this time period.

This suggests that the development of urban and rural areas

in the past two decades has been a high pace. Araya and

Cabral (2010) reported such a high rate of growth in their

study area between the years 1990 to 2006. It highlights the

fact that an increase in built-up area could be interpreted as

a decrease in natural lands (Nature land = Total land area–

(Farmland area ? Built-up area); Lambin and Meyfroidt

2011). Table 2 shows that natural areas decreased from

254,852 ha in 1990 to 237,950 ha in 2010. For example

forest lost 850 ha of its cover from 1990 to 2010. Degra-

dation and loss of natural and semi-natural lands has

become a profound concern which almost has affected the

entire Western and Central Europe (CBD 2010; GBO3

2010; Poschlod et al. 2005; Riecken et al. 2008).

The results of this study revealed that between the years

1990–2010, grasslands have lost a greater percentage of

their area compared with forest lands. Table 2 shows that

grasslands have lost 17.7 % of their land, while forests

have lost just 0.38 percent in the same period. These results

confirmed the high vulnerability of grasslands in European

regions. The grasslands are decreasing in our study area,

while previous studies warned that grassland deterioration

could have a significant impact on ecosystem services (i.e.

the carbon cycle, regional economy and climate) (Angell

and McClaran 2001; Le Houérou 1996; Wen et al. 2013).

Despite the fact that grasslands are the habitat for more

than 50 % of vascular plant species in Central Europe

(Lind et al. 2009), the European Topic Centre for Biolog-

ical Diversity (ETC-BD) reports that grasslands are among

the endangered habitats in the European regions and only

20 % of them are in a favorable conditions (EU-COM

2009; Siehoff et al. 2011).

The U.S. office of Military Government (Settel 1946)

reported that after the Second World War, timber exports

from Germany were particularly heavy, and forest area

dramatically decreased consequently. But with change of

national and regional policies the rate of deforestation

started to decline (FAO 2011). The effect of this policy

change is also visible in the results of this study, so that

deforestation in the second decade (2000–2010) was almost

half (0.44) of the first decade (2000–1990), while a

downward trend has accelerated in grasslands so that in the

second decade, this area declined approximately 1.67 times

more than the first decade.

Seen from Fig. 7, area change results show that built-up

patches will increase in area by the year 2050. The built-up

Fig. 5 a Actual map and b simulated map of land-cover type in 2010
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areas are predicted to gain about 34,660 ha. Whiles

grasslands and forest areas would lose 12,020 and 5140 ha,

respectively, in the same period. Seen from Fig. 6, spatial

distribution results indicate that all land-cover classes

would exhibit the concentrated spatial distribution patterns;

urban built-up land would expand to suburban, because

farmlands in the suburban areas would rapidly convert into

built-up land.

In total, results from CA–Markov models indicated a

decrease in natural areas. The natural areas are expected to

cover 31.5 % of our study area in year 2050, which means

a 4.7 % decrease in comparison with its current

Fig. 6 Simulated map of land-cover type from 2020 to 2050

Table 4 Absolute quantities for land-cover classes (in hectare) for

2010–2050

Built-up land Forest Water Farmland Grassland

2010 37,820 222,550 4552 397,270 27,750

2020 43,740 220,870 4630 394,710 25,990

2030 52,690 219,510 4680 388,940 24,120

2040 64,120 218,660 4730 382,150 20,280

2050 72,480 217,410 4810 379,510 15,730

Fig. 7 Area change of land-cover classes from 2010 to 2050
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distribution. These results clearly showed the high degree

of habitat loss and landscape fragmentation in study area

which can break habitat connectivity and create a land-

scape mosaic of suitable, less suitable, and unsuit-

able habitat patches for species (Wiens et al. 2009). Due to

the occurrences of less suitable habitats for establishment

of species, the competition between species might increase.

It is expected that competition among species significantly

reduce their migration speed (Meier et al. 2012; Urban

et al. 2012). Increasing competition and declining emi-

gration, can lead to disappearing endangered species. Pre-

vious studies (Kinezaki et al. 2010; Meier et al. 2012)

indicated that landscape changes will have a strong role in

reducing the distribution areas of species in the coming

decades, especially at a local scale (Engler et al. 2011;

Pearson and Dawson 2003) like our study area.

Although the model used in this study has so well per-

formed the simulation, there are a number of uncertainties

in the projections of land-cover classes in the future, which

are described as follows: First, it is important to note that

some differences are evident between the observed and

simulated land-cover maps of 2010. Accuracy of simulated

land-cover changes will undoubtedly undergo image clas-

sification results (Araya and Cabral 2010). Although,

object-based SVM is a very efficient classification method

in handling complex class distributions (Huang et al. 2002;

Pal and Mather 2005), but the classified images are

somewhat erroneous. This misclassification can be con-

sidered as an uncertainty source in such studies.

Second, inadequate suitability maps for modeling the

land-cover classes and the shape of the contiguity filter

used in this study have been another source of uncertainty

discussed in various studies (Araya and Cabral 2010; Sun

et al. 2007). The suitability maps used in this study have a

great influence on the land-cover simulations. This is

because they are used as rules during the modeling process.

Different suitability maps will lead to different rules that in

turn may produce utterly different results. Further

research is required to investigate the sensitivity of the

predictions to the suitability maps.

Third, although this study confirmed that the procedure

used in the analysis of the Markov chain is an effective

method to calculate the transition probabilities of land-

cover classes; these procedures assumed that transition

probabilities do not change over time. In other words, the

land-cover changes in the future in this model form up on

the basis of land-cover patterns that have been identified in

the past. This issue causes uncertainty in the simulation of

land-cover changes because the model is not able to assess

the new processes occurring on land-cover structures. For

example our results show that from 1990 to 2010, the

transition probabilities from various lands to built-up areas

were extremely high and future land changes simulated

based on these transition probabilities. But the evidence

suggests that the reality will be something else. After the

fall of the Berlin Wall in 1990, the need for modernization

and spatial expansion in eastern regions (Former East

Germany) was absolutely essential (Braun et al. 2012). As a

result, a new framework for planning the urban develop-

ment, termed ‘‘Critical Reconstruction’’, was implemented

in these areas (Neill and Schwedler 2001; Tölle 2010). The

implementation of this policy caused open and empty areas

within cities and many lands (i.e. agricultural lands) in the

countryside to be converted quickly into industrial and

urban areas after the year 1990 (Loeb 2006). Therefore,

transition probability from other lands to built-up areas was

extremely high in eastern regions (such as our study area)

during these years. But, at present, the majority of these

changes are over and it predicts that urban development

(transition probability to built-up area) would significantly

reduce in the coming years.

Finally, predicting future landscape changes would be

full of uncertainty due to unpredictable events (such as fires

and floods), effects of climate change (Vittoz et al. 2009),

possible changes in managerial attitudes, and potential

uncertainty which coming from simulator models.

Our analysis demonstrates that the integration of GIS,

remote sensing, and land change modeling offers an

enhanced understanding of the futures and trends that

landscape will face. Facing to declining problems of natural

lands, the simulated future land-cover maps can serve as an

early warning system for understanding the future effects of

land-cover changes. In sum, these notable relevant findings

can also be considered as a strategic guide to land-cover

planning, and help local authorities (policy makers, urban

planning, natural resources managers and land-cover man-

agement organizations) better understand a complex land-

cover system and develop the improved land-cover man-

agement that can better balance urban expansion and eco-

logical environment conservation. To determine whether

the patterns of projected landscape change are specific to

our study area, this technique should be empirically repe-

ated and needs more comparative studies.
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