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Abstract Bayesian decision theory was invented by Leonard Savage, who is on
record as saying that it would be “preposterous” and “utterly ridiculous” to apply
his theory except in a small world. But modern Bayesians proceed as though
Savage’s theory is always the rational way to make choices in all circumstances.
What is a small world? Why did Savage restrict his theory to small worlds? Where
did Savage think priors come from? What are the implications for behavioral
applications? How could Savage’s theory be generalized to apply to at least some
large worlds? This paper offers some partial answers to such questions.
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1 Axiomatic Method

A standard methodology in decision theory is to propose axioms from which
theorems can be deduced about how rational decisions should be made. Such a
definition-axiom-proof-theorem format closes the mind to factors that are not
written into the formalism. When nothing that matters is omitted, the success of the
approach speaks for itself across the whole scientific spectrum. But what if axioms
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that have been found to work well in one kind of environment or with one kind of
agent are held to apply in all environments and for all agent types without any
further evidence?

To set the scene, it may be helpful to review how such a question plays out with
the first of all axiom systems—Euclidean geometry. The historical focus has
always been on the Parallel Postulate in Euclid’s system, just as the focus is on the
Sure-Thing Principle in Savage’s axiom system.' The postulate implies among
much else that the angles of a triangle add up to 180°. Experiments that Greek
geometers could have carried out locally would have confirmed this prediction very
closely.

If the earth were flat, the same would be true no matter how large a triangle we
drew upon its surface. But the angles of a triangle drawn upon a round earth can sum
to a lot more than 180°. Euclidean geometry therefore fails when applied outside the
“small world” for which it was originally constructed. To insist otherwise is to
proceed as though the earth were flat.”

Geometry on the surface of the earth is better approximated by a (Riemannian)
axiom system in which Euclid’s assumption that there is exactly one line through a
given point parallel to a given line is replaced by the assumption that there are no
such parallel lines. Flat-earthers are more successful when they follow Isaac Newton
in taking for granted that Euclidean geometry holds in outer space, but even here
they are in trouble close to a gravitating body, where the angles of a triangle add up
to less than 180° because the geometry of space is then better approximated by a
(Lobachevskian) axiom system in which there are many lines parallel to a given line
through a given point.

The lesson is not only that axioms need to be tailored to the environment in
which they are to be applied, but that implicit assumptions taken for granted when
an axiom system is formulated need to be reviewed when considering modifications
intended to widen the range of application of the system. This paper argues that
Savage’s (1954) chose to restrict his theory of rational choice to what he called a
small world because he was anxious to avoid this kind of mistake, but that modern
Bayesianism has fallen headlong into the errors he sought to evade by proceeding as
though his descriptive theory of subjective probability can be reinterpreted as a
prescriptive theory of logical probability without any need for further foundational
discussion—the same error made by Immanuel Kant when he used Euclidean
geometry as his leading example of a synthetic a priori.®

The paper therefore holds that the widely held belief among economists that
rational learning always consists of no more than Bayesian updating is a castle in
the air created by ignoring everything in Savage’s theory not given formal
expression. But no books need be burned. Bayesian decision theory remains
available as a modelling tool that is arguably as good or better than any other

! Or the more elegant independence or replacement axioms more usually quoted nowadays.

2 Not that Greek scientists were unaware that the world is round. Eratosthenes came up with a pretty
good estimate of its diameter by measuring the length of shadows at noon at different places in Egypt.
Aristarchus even knew that the planets orbit the sun.

3 A synthetic a priori is something that might be wrong but we somehow know is right without needing
any evidence.
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currently on offer.* All we need to give up is the claim that Bayesian decision theory
is the only rational way to make decisions in all situations. Otherwise posterity will
classify us with the flat-earthers who could not see that there might be more than
one geometry.

2 Probability

This section reviews the theory of probability from the perspective of the preceding
section. As Gillies (2000) explains, there are multiple ways in which probabilities
can be interpreted, depending on the context in which the concept is to be applied.
Other possibilities are canvassed in the literature, but this paper considers only
objective, subjective and logical probabilities.

Objective probability The small world for which Kolmogorov (1950) tailored his
famous probability axioms is the set of long-run frequencies.” Kolmogorov’s world
is small, but still large enough to accommodate the expected utility theory of Von
Neumann and Morgenstern (VN&M), whose own small world consists of rational
agents who choose between gambles of the form

PPy | Ps| | Pu
G = (1)
Q| Q| Qs | Qn

in which Q; is an event to which a probability can be objectively assigned (as a long-
run frequency), and P; is the outcome for a decision-maker that results when Q;
occurs. Betting in a casino is an obvious context. If an agent’s preferences among
such gambles satisfy VN&M’s (Von Neumann and Morgenstern 1944) consistency
axioms, then the agent will necessarily choose as though maximizing the expected
value of a utility function defined over the set of all relevant outcomes.
Subjective probability Ramsey (1931) invented what might be called a theory of
revealed or attributed belief, in which Alice’s beliefs are deduced from her betting
behavior—just as her preferences are deduced from her buying behavior in
Samuelson’s (1947) later theory of revealed preference.

4 In particular, no criticism is offered of Bayesian statistics when the prior used is defended on the
empirical grounds that similar priors have worked out well in similar contexts in the past. No criticism at
all is directed at the use of Bayesian decision theory in game theory, as a game counts as a small world in
Savage’s sense almost by definition.

5 von Mises (1928) offers a formal account of such long-run frequencies. de Finetti (1974, p. 124)

gleefully points out that von Mises’ long-run frequencies do not satisfy Kolmogorov’s countable additivity
axiom, but Binmore (2009, Chapter 6) shows how strengthening von Mises convergence requirement can
eliminate this imperfection. Although we follow Kolmogorov in this paper in taking probabilities to be
countably additive, nothing significant would change if we followed de Finetti (and the later Savage) in
assuming only finite additivity.
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If Alice’s betting behavior satisfies certain consistency requirements,® the theory
of subjective probability argues that she will act as though she believes that each
relevant state of the world has a probability. These probabilities are said to be
subjective, because Alice’s beliefs may be based on little or no objective data, and
so there is no particular reason why another person’s subjective probabilities should
resemble hers.

The axiom systems usually quoted nowadays in support of the subjective
interpretation of probability are derived from that of Savage (1954), which extends
the VN&M theory of expected utility to cases in which the events in a gamble (1)
may not have objective probabilities. Horse-racing is usually quoted as a relevant
context where objective probabilities are unavailable.

A person who honors the consistency requirements of Savage’s axiom system

necessarily behaves as though maximizing expected utility relative to a utility
function defined on a set of relevant outcomes and a (subjective) probability
measure defined on a set of relevant states of the world. The theory is usually called
Bayesian decision theory because probabilities are updated using Bayes’ rule as
described in Sect. 4.
Logical probability A logical probability for a proposition is a measure of the
rational degree of belief it derives from the available evidence. A full-blown theory
of logical probability would solve the age-old problem of scientific induction, and
so allow an objective assessment of questions like: What happens inside a black
hole? Is there life elsewhere in the universe? What will Trump do next? Will
economists soon be replaced by robots?” How much will cabbages sell for next
week?

In considering the difference between subjective and logical probabilities, it is
important to recognise that logical probabilities are like truth values in logic—they
are objective to the extent that they are the same for everybody. Treating Savage’s
subjective probabilities as though they were logical probabilities therefore faces the
problem that something that might be different for different people is treated as
though it were necessarily the same for everybody. This error is built into the
“Principal Principle” of the philosopher Lewis (1980), which says that credences
must coincide with chances when the latter are to be found. Here the chance of an
event is its objective probability and its credence is its subjective probability.®

If there were a viable theory of logical probabilities, they would doubtless have to
coincide with objective probabilities in the small world where the latter exist, but
there is no reason why Alice’s subjective probabilities should coincide with the
objective probabilities of events, even when she knows what they are. Gambling in

6 The requirements include the very strong assumption that Alice always be ready to take one side or the
other of any bet. One can then summarize the consistency requirements by saying that such an Alice must
be invulnerable to Dutch books (a collection of bets that guarantees that she will lose no matter what
happens). One cannot but wonder whether there has ever been a financier or industrialist who felt subject
to such a constraint!

7 The probability is exactly 42.9% according to today’s London Times.

8 Elsewhere I have mistakenly taken for granted that Lewis intended a credence to be a logical
probability, since the Principal Principle is plainly false if credences are no more than subjective
probabilities for the reasons given in the next paragraph.
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casinos is an obvious example. Alice may well place her bets at Roulette in an
entirely consistent manner and hence reveal subjective probabilities for where the
little ball will end up that differ from their objective values. If asked why, she would
likely say—in common with most gamblers—that she was feeling lucky that day.
One may think that she is really playing for the thrill that some people get from
gambling, but if Alice’s betting behavior satisfies Savage’s axioms, her subjective
probabilities are no less respectable than those of people who consistently play to
minimize their objective expected loss.

In any case, it needs to be said that nothing follows from the claim that if there
were an adequate theory of logical probability it would coincide with theories of
objective or subjective probability. An argument that derived a logical theory this
way would be circular. Kolmogorov’s axioms similarly lack any leverage here.
They work for objective and subjective probabilities, but the need to provide new
arguments if they are also to describe rational degrees of belief is often overlooked
altogether—the error of the flat-earthers of Sect. 1. Personally, I am skeptical that a
viable theory of rational degrees of belief is possible at all when restricted to such a
limited tool as a probability measure.

3 Savage’s Small World

The expression small world used in this paper is borrowed from Savage (1954, p.
16). Why did Savage (1954) restrict the application of his theory to small worlds?
Modern authors commonly have no such compunction. Bayesianism is nowadays
taken to be the doctrine that Savage’s axioms always apply—that rationality
requires employing Bayesian decision theory everywhere.

Savage insisted his theory be applied only in a small world because his axioms
capture only a thin notion of rationality, which demands no more than that decisions
be made consistently with each other. But why be consistent? After all, physicists
know that quantum theory and relativity are inconsistent where they overlap, but
they live with this inconsistency rather than abandon the accurate predictions that
each makes within its own domain. Physicists strive to create a “theory of
everything” from which such inconsistencies have been removed, but everybody
recognizes that this is a problem of immense difficulty. Physicists and other
scientists would therefore seem committed to a thick theory of rationality that
somehow weighs the virtue of consistency against the vice of inaccuracy.

Savage’s formal theory says nothing whatever about accuracy. It simply
describes what systems of bets ensure that a Dutch book cannot be made against
Alice on the assumption that she is somehow bound to take one side or the other of
any bet. How accurate Alice’s subjective probabilities may be is left entirely
hanging in the air. In brief, Savage’s theory merely provides a descriptive theory for
a certain kind of idealized decision-maker. But what Alice would prefer—and a
theory of logical probability would provide—is a prescriptive theory that tells her
how best to choose among those bets that are available.

Savage nevertheless attached much importance to having opinions that are
consistent with each other. A major reason is that by exploring what she would
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believe in the future if various hypotheses were to be realized, Alice is able to test
whatever unformalized set of considerations—usually characterized as gut
feelings—she relies on when deciding what to believe in the present. If these
future contingent beliefs turn out to be inconsistent (in that they together violate
Savage’s axioms) then she has grounds for distrusting her gut feelings and refining
them until the inconsistency is removed.

Savage’s famous encounter with Maurice Allais in Paris illustrates the point.
When it was pointed out that his answers to what is now called the Allais paradox
were inconsistent, he revised them until they became consistent. Luce and Raiffa
(1957, p. 302) summarize Savage’s views as follows:

Once confronted with inconsistencies, one should, so the argument goes,
modify one’s initial decisions so as to be consistent. Let us assume that this
jockeying—making snap judgments, checking up on their consistency,
modifying them, again checking on consistency etc—Ileads ultimately to a
bona fide, prior distribution.

It is to this unformalized massaging process that Savage (1954, p. 16) is referring
when he says that it would be both “preposterous” and “utterly ridiculous” to use
his theory except in situations in which the decision-maker can look before she
leaps. For only in a sufficiently small world can Alice examine every bridge that she
might conceivably have to cross in advance of knowing what route she will find
herself following in the future. I have borrowed this geographical metaphor from
Savage, but it fails to capture the enormity of the cognitive task Alice would usually
face in seeking to examine the implications of all possible future information she
might receive when seeking to massage her contingent snap beliefs into consistency.
In the large world of scientific endeavor, where we cannot even guess what future
state spaces may be thought reasonable, it is evidently quite impossible.

4 Bayes’ Rule

Savage’s theory reduces statistical inference to applying Bayes’ rule for updating
conditional probabilities. It is ironic that his theory was first called Bayesian for this
reason by classical statisticians in a feeble attempt at ridicule.

Kolomogorov’s definition of a conditional probability makes

__prob(Eand F)
prob (E |F) = “prob (F) (2)
Bayes’ rule then follows because
prob(E | F) prob (F) = prob(F | E) prob (E). (3)

Why this approach to conditioning on new information and not another approach,
perhaps involving more than simply updating a single measure? The answer
depends on the small world in which Kolmogorov’s definition is to be applied.
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Objective probability Granted the experimental validity of the law of large numbers,
no doubts about Kolmogorov’s definition arise in the small world of long-run
frequencies, as the following example illustrates.

A fair dice is to be rolled. Alice wins in the event E that the dice shows less than
3 or less. What is her probability of winning, conditional on the event F that the
result is odd? Roll the dice 6n times. If n is large enough, it is very likely that each
number on the dice will appear in the record about n times. If Alice now deletes all
the even numbers, she will be left with a record containing about 3n odd numbers.
She will lose when one of these numbers is 5, and win when it is 1 or 3. The number
of times that the latter event occurs is about 2n. The frequency with which Alice
wins when the dice shows an odd number is therefore about 2n / 3n. It is for this
reason that Kolmogorov joined the rest of the world in endorsing the traditional
definition that makes prob(E | F) =2
Subjective probability The reasons why Bayes’ rule holds in the small world of
objective probability are easily understood. But the same reasons will not suffice for
other contexts in which probability is useful.

Savage (1954, p. 43) therefore had to find another argument to justify

Kolmogorov’s definition for the small world of subjective probability. The
argument is tucked away in Section 3.5 of his book, where he implicitly employs
the Sure-Thing Principle to defend the proposition that Alice’s preferences over
pairs of gambles given that F has occurred should be taken to be the same as her
preferences over pairs of gambles that each yield the same outcome if F does not
occur and otherwise are determined by equation (1) with Q; replaced by Q; N F.
Kolmogorov’s definition then follows because his axioms imply that the preference
relation over gambles that his theory takes as its primitive determines a subjective
probability measure uniquely (up to a set of measure zero).
Logical probability Why will Savage’s argument not suffice for logical probabil-
ities? A clue is provided by its dependence on the Sure-Thing Principle—whose
various incarnations as independence or replacement axioms are usually fingered as
being too strong by those seeking to generalize the theory. However, the crux is
whether it can be rational for Alice ever to change her mind when the state space
with which she begins is replaced by a new state space B as a result of her receiving
a new piece of information (Howson 2000).9

Suppose, for example, that E and F are subsets of B, which is itself a subspace of
a state space C. Are there situations in which it might make sense for Alice to hold
that E is more likely than F when her state space is C, but that F' is more likely than
E when her state space becomes B?

Black swan events If Alice has exhaustively examined in advance the implications
of all possible new pieces of information she might receive—as is taken for granted
in Savage’s small world—then such a change of mind would clearly be irrational.
But suppose she has not carried through such an exhaustive analysis because her
world is too large for such an analysis to be possible for all future events. As Simon

° Renyi (1955) and Popper (1959) and others consider the possibility of replacing Kolmogorov’s axioms
with a “relativized” system in which all probabilities are conditional, thereby leaving room for deviations
from (2). Unfortunately, discussion seems to center around Popper’s notion of probability as “causal
propensity”.
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(1976) argues, she will then need to decide (by some process for which we currently
have no formal model) how best to use whatever cognitive or computing capacity
she has at her disposal.'® She will then presumably explore the implications of
events that she thinks likely more deeply than those she thinks lie just on the edge of
possibility. But she would be foolish not to bring her computing capacity to bear
again when an event later occurs whose implications she had not previously
explored adequately because of her computing constraint. In doing so, she may be
lucky enough to enjoy an Archimedean eureka moment, after which anything might
happen.

We are talking now about what Taleb (2007) calls black swan events. The credit
crunch of 2007-2008 provides the most spectacular recent examples, but Shackle
(1949) was drawing attention to the inevitability of such surprising events in
macroeconomics and finance long before. One cannot evade their implications for
rational decision theory by saying that experts should bring more computing power
to bear. Doubtless the experts would have done better if they had tried harder, but it
is in the nature of large worlds that they exhaust our capacity to fully plumb their
depths. Nobody, for example, would argue that Isaac Newton should have explored
the possibility that velocities near the speed of light do not add linearly, or that a
photon might be in two places at the same time.

So where does this leave Bayes’ rule for logical probabilities? The economics
literature—where Bayesianism is most entrenched—actually offers no defense at
all. Nobody seems to notice that this elephant is missing from the room when
reinterpreting Savage’s subjective probabilities as logical probabilities. Adopting a
definition-axiom-proof-theorem format has closed our minds to the unmodeled
massaging process that Savage assumed Alice to have completed before his axioms
could reasonably be applied.

Many scholars would respond by saying that no defense is needed—that rational
degrees of belief must be represented as probabilities and Kolmogorov’s definition
of a conditional probability comes as part of the package. But to insist that a theory
of rational degrees of belief one must always require that prob(ENF) =
prob (E | F)prob (F) is to proceed as though the event F and the “conditional
event” E | F are independent—which is exactly what must not be taken for granted
if F is a black-swan event.

5 How are Priors Chosen?

Bayesian updating transforms a prior probability distribution into a posterior
distribution. Such an updating procedure guarantees that consistency is preserved.
But what of accuracy? Bayesianism addresses this question by quoting theorems
which guarantee that the posterior distribution converges on the “true” probability

10 In game theory at least, one cannot wave away such problems by assuming that Alice can costlessly
carry out all computations instantaneously. It then sometimes matters that some propositions are
mathematically undecidable (Binmore 2009, p. 147).
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distribution as the sample size increases.'' This response makes good sense when
the probabilities in question are objective, and so it is reasonable to take for granted
the existence of a true distribution from which new information is sampled. But
even in the small world of objective probabilities, the rate of convergence of
posterior probabilities on their true values will depend on the choice of prior. In the
large world of logical probabilities, there is no guarantee that it is even meaningful
to speak of a “true” probability distribution. Either way, the choice of prior is a
problem for Bayesian decision theory.

Within Savage’s theory of subjective probability, the choice of prior emerges

from the massaging process that Alice uses to organize her initial disorganized
impressions usually referred to as gut feelings. My reading of Savage’s approach
goes like this (Binmore 2009, p. 130).
Savage on constructing priors Everybody would presumably agree that it would be
better for Alice to consult her gut feelings when she has more evidence rather than
less. For each possible future course of events, she should therefore ask herself what
subjective probabilities her gut would come up with after experiencing these events.
In the likely event that these posterior probabilities turn out to be inconsistent with
each other, she should then take account of the confidence she has in her current
snap judgements to massage her posterior probabilities until they become consistent.
After the massaging is over, Alice would have eliminated the possibility of being
surprised by a black-swan event. She would already have taken account of the
impact that all future information might have on the unformalized internal model
that she uses in determining her beliefs. She would not only have adjusted the
subjective probabilities she attaches to events in the small world with which she
begins, but potentially expanded her state space to a larger small world in light of
the new possibilities that black-swan events commonly suggest (Gillies 2001;
Williamson 2003).

The end-product of Alice’s massaging process is therefore a bunch of

consistent posteriors defined on a state space that she will never need to revise.
With the consistency axioms of Savage’s theory of subjective probability, her
massaged posteriors can all be deduced by Bayes’ rule from a single prior. In this
story, Bayes’ rule is therefore reduced to a mere book-keeping tool that saves
Alice from having to remember all her massaged posterior probabilities. The
prior that Savage attributes to Alice therefore squeezes all the juice that can be
squeezed from the disorderly set of impressions with which she comes to the
problem.
Bayesianism and priors It is ironic that the avowed prophet of Bayesianism should
advocate a procedure that reverses what Bayesianism recommends. Instead of
deducing her prior from a massaged set of posteriors, the latter takes for granted that
Alice begins with a prior and simply deduces her posteriors by updating using
Bayes’ rule.

There is no consensus on where such a logical prior comes from, but scholars
who see Bayesianism as embodying the essence of rational learning usually argue
that we should place the choice of prior at a time in the past when Alice is

' Provided the state space is finite and the prior attaches positive probability to all states.
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completely ignorant.'> An appeal is then sometimes made to the “Harsanyi
doctrine”, which says that different rational agents independently placed in a
situation of complete ignorance will necessarily formulate the same common prior
(Harsanyi 1977). But even if one accepts this doubtful principle, one is left
wondering what this “rational prior” would look like.

In practice, some version of Laplace’s principle of insufficient reason is usually
employed.'? Others take this position further by arguing that the complete ignorance
assumption implies, for example, that the rational prior will maximize entropy
(Jaynes and Bretthorst 2003). We are then as far from Savage’s view on
constructing priors as it is possible to be. Instead of using all potentially available
information in the small world to be studied in formulating a prior, one treats all
such information as irrelevant.

The literature offers many examples that draw attention to the difficulties implicit
in appeals to versions of Laplace’s principle. Similar objections can be made to any
proposal for choosing a logical prior that depends only on the state space. Even in
small worlds we seldom know the “correct” state space. In a large world, we have
to update our state space as we go along—just as physicists are trying to do right
now as they seek to create a theory of everything.'*

In brief, Bayesianism has no solid answer to the question of where logical priors
come from. Attempts to apply versions of the principle of insufficient reason fail
because they take for granted that the state space is somehow known a priori beyond
any need for revision. The same goes for any proposal that makes the prior a
function of the state space alone. But how can Alice be so certain about the state
space when she is assumed to know nothing whatever about how likely different
states may be?

6 Rational Versus Behavioral

Economists pursue theories of rationality partly because they hope that they will
assist in predicting how real people make economic decisions. It seems to be
generally agreed that people frequently do behave as rational theories predict in
market situations, but the advent of experimental economics has dealt a body blow
to the idea that economic theories of rationality are good at predicting individual
decision-making as was once taken for granted (Smith 1991; Kahneman and
Tversky 1981). Expected utility theory is particularly unsuccessful (Friedman et al.
2014).

This section argues that there is nevertheless a positive role for theories of
rationality in modeling individual behavior provided that the theories are not overly
refined (Binmore 1975). However, it is necessary to give up the ambition of finding

12 Bayesian statisticians choose whatever prior has worked out well in similar problems in the past. They
might therefore be seen as using history as an (imperfect) substitute for Savage’s massaging process.

13 Equal probabilities should be assigned to two events if no reason exists to suppose that one is more
likely than the other (de Laplace 1902).

14 Binmore (2016) proposes the beginnings of a theory in which the state space may be updated.
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one single behavioral theory that applies to all agents (Stahl 2014). That is to say, it
is not only the world in which a problem is set that needs to be small, but the class of
agents to which a theory is to be applied.

Ellsberg paradox The Ellsberg paradox is widely regarded as a final nail in the
coffin of expected utility theory. One version involves an urn that contains 10 red
balls and 20 balls that are black or white in an unknown proportion. Ellsberg
(1961a, b) suggested that decision-makers asked to express preferences between
various reward schedules that depend on which ball is drawn at random from the urn
would not behave as Bayesianism recommends. Many experiments have confirmed
this conjecture in a variety of settings.'”> As a result, it is now regarded as a stylized
fact that most people have an inbuilt aversion to ambiguity over probabilities
(Wakker 2017). But the Ellsberg world seems about as small as a world can get. So
what behavioral role can there be for Savage’s theory of expected utility if it does
not even work here?

A possible answer relies on Kahneman and Tversky’s (1981) demonstration of
the importance of framing in economic experiments. Because of the applications
that experimenters have in mind, the framing employed in many Ellsberg
experiments poses the decision problem in precisely the kind of large-world setting
to which Savage thought it ridiculous that his theory be applied. He would therefore
not have been surprised to find that his theory did not work in such experiments. But
what of small-world settings? Binmore et al. (2012) then find very little ambiguity
aversion.'® Charness et al. (2013) and Stahl (2014) similarly report little ambiguity
aversion.

But such failures to observe much ambiguity aversion do not arise because of a
triumph of expected utility theory. For expected utility theory to perform reasonably
well, it also seems necessary to screen the subject pool using some other rationality
criterion. For example, Halevy (2007) screens out subjects who do not understand
how to simplify compound lotteries. Voorhoeve et al. (2016) screen out subjects
who do not consistently give the same answer to questions that differ only in their
framing.

In brief, it would seem premature to deny Bayesian decision theory any
behavioral role at all. However, to make it work, we need not only to restrict the
domain of application to a world that Savage would regard as small, but also to
restrict the class of agents to those who pass some kind of rationality test. But most
worlds of interest are large, and most people behave irrationally much of the time.

15 In particular, if offered a choice between winning if a red ball is drawn and winning if a black ball is
drawn, subjects usually prefer the former.

16 The crucial factor seems to be minimizing the possibility that the experimenter may be manipulating
the supposedly random draw behind the scenes. Pulford (2009) reports that merely asking subjects
whether they trust the experimenter increases ambiguity aversion.
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7 Ambiguity

Although Bayesianism is the prevailing orthodoxy in economics, its failures in the
laboratory have fueled an ongoing literature in which alternatives to the Bayesian
axioms are proposed and evaluated. The leading proposals tackle the problem of
determining where the prior comes from by relaxing the requirements from which
the existence of a unique prior follows. Theories with multiple priors then become
possible, with the result that all probabilities are liable to be ambiguous. Such
ambiguities are usually dealt with by computing the expected utility of a gamble for
each prior and then aggregating the resulting collection of expected utilities
somehow. Motivated by the ambiguity aversion reported in experiments on the
Ellsberg paradox, the most popular aggregating method is to take the minimum
value of the collection of expected utilities (Gilboa 2004).

Savage’s restriction of his theory to small worlds is seldom mentioned in such
attempts to generalize his theory to situations in which probabilities may not be
uniquely determined. The position taken is that a fully informed Alice is wholly
characterized by her VN&M utility function and her prior. Assuming her utility
function is fixed, her ignorance can then only be about which prior should be
employed.

Such a formulation in terms of multiple priors takes for granted that probabilities
are logical, but Savage’s probabilities are subjective. What happens if we reverse
Bayesianism’s assumption that one starts with a prior, and return to Savage’s idea
that a massaging process is required to convert Alice’s original disorderly
impressions into a consistent set of posteriors from which a single prior can be
deduced?

If we add the all-too-likely proviso that Alice may not be able to bring the
massaging process to a determinate conclusion, her problem ceases to be that of
choosing between various probability distributions. We have no reason to suppose
that her attempt to massage away inconsistencies in her snap judgements will end up
with anything so simple as a set of possible priors between which she is unable to
distinguish. She needs some new way of organizing her thoughts when probability is
inadequate as a measure of her degree of belief in some events. Knight’s (1921)
notion of uncertainty is wide enough to capture this possibility, but it is necessary to
live with the fact that ambiguity is nowadays often used as a synonym for Knightian
uncertainty.

There is a large literature on how to proceed in situations when probability is
thought inadequate, in which Schmeidler (1989) has taken a leading part. Much of
this literature works with “imprecise probabilities” represented by the interval
between a lower and an upper probability (Binmore 2009, p. 90). One may then
hope to construct a decision theory in which expected utility is replaced by some
way of assessing a gamble (1) in terms of the upper and lower probabilities of the
events Q;.

Various axiom systems have been proposed to this end, in which Savage’s
axioms are tweaked to see what emerges. But seldom is there any attempt to
establish a context within which it is appropriate to apply one set of axioms rather
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than another. The remainder of this section is therefore devoted to proposing a
scenario in which Savage’s concept of a small world can be used to explain where
Alice’s upper and lower probabilities for an event might come from, and why no
other properties of the event should be regarded as relevant.

After a black-swan event Suppose that Alice has followed Savage’s advice and so
massaged her way to a subjective probability measure defined in some small world.
She now updates her probabilities using Bayes’ rule until surprised by a black-swan
event—an event that she had not previously considered or thought relevant to her
decision problem. It is now necessary for her to refine her state space lest she be
surprised by similar shocks in the future. But how does she quantify her beliefs
about the new events that now need to be assessed?

In the immediate aftermath of the black-swan event, she will have nothing to
guide her at all beyond the beliefs that are summarized by her current subjective
probabilities defined on the events of her original small world. Binmore (2016)
proposes that these events be regarded as an algebra of measurable sets within her
new state space. The new events of which she had not previously taken account are
then regarded as unmeasurable. Their inner and outer measures with respect to her
old subjective probability can then be identified with her new lower and upper
probabilities.'”

It remains to ask how gambles in which some of the determining events may be
unmeasurable should be evaluated. In an attempt to minimize deviations from the
Bayesian orthodoxy, Binmore (2016, 2017) proposes axioms that result in the
gamble being assessed in terms of an average of the upper and lower probabilities of
the relevant events.'® The result is something quite far from expected utility theory,
which is perhaps not so surprising when one takes account of the fact that
unmeasurable sets can have very paradoxical properties.'’

In brief, taking Knight seriously about the difference between risk and
uncertainty would seem to call for a great deal more than some tinkering with
the Bayesian axioms. At the very least, we need some kind of classification of large
worlds so that new decision theories can be tailored to the context in which they are
to be applied.

'7 In a finite space, the inner measure of a set is simply the measure of its largest measurable subset. Its
outer measure is the measure of its smallest measurable superset. For example, in the Ellsberg paradox,
the algebra of measurable sets would be {(), R, ~ R, B}, where R is the event that a red ball is drawn. The
largest measurable subset of the unmeasurable event W that a white ball is drawn is @), and so the inner
measure of W is 0. The smallest measurable superset of Wis ~ R, and so the outer measure of W is 2/3.

'® Either a weighted arithmetic or geometric mean. The latter is more attractive as ambiguity aversion
comes built in and Bayes’ rule survives for updating upper and lower probabilities.

' For example, in the Banach-Tarski paradox, a solid sphere is split into five unmeasurable subsets that
can be reassembled into a sphere of twice the volume of the original sphere.
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8 Conclusion

This paper argues that playing around with axioms without asking when it makes
sense to apply one set of axioms rather than another is an unpromising approach to
the general problem of scientific induction—to which very naive defenders of
Bayesianism think their creed is a solution.

Even restricting the type of problem to be considered to its barest bones poses
problems comparable to those faced by Fermat and Pascal when they groped their
way toward the concept of probability. It took several hundred years before their
hard-won insights were finally set in stone by Kolmogorov’s axiom system. In
refusing to open our minds in the same kind of way that the founding fathers of
probability theory opened theirs when they turned their minds to solving various
gambling problems, we risk making the same mistakes as flat-earthers like
Immanuel Kant who thought Euclid’s axioms were beyond criticism. The time for
closing down debate with axioms is after the conceptual issues have been addressed
and the context in which the theory is to be applied is properly understood.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
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