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Abstract
This paper narrows the gap between previous literature on quantum linear algebra and practical data analysis on a quantum 
computer, formalizing quantum procedures that speed-up the solution of eigenproblems for data representations in machine 
learning. The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input 
matrix’s size, for principal component analysis, correspondence analysis, and latent semantic analysis. We provide a theoreti-
cal analysis of the run-time and prove tight bounds on the randomized algorithms’ error. We run experiments on multiple 
datasets, simulating PCA’s dimensionality reduction for image classification with the novel routines. The results show that 
the run-time parameters that do not depend on the input’s size are reasonable and that the error on the computed model is 
small, allowing for competitive classification performances.

Keywords  Quantum computing · machine learning · Data analysis · Data representations · Singular value decomposition · 
Principal component analysis · Correspondence analysis · Latent semantic analysis

1  Introduction

Quantum computation is a computing paradigm that prom-
ises substantial speed-ups in a plethora of tasks that are com-
putationally hard for classical computers. In 2009, Harrow, 
Hassidim, and Lloyd Harrow et al. (2009) presented quan-
tum procedures to create a quantum state proportional to 
the solution of a linear system of equations �� = � in time 
logarithmic in the size of � . This result has promoted fur-
ther research on optimization, linear algebra, and machine 
learning problems, leading to faster quantum algorithms for 
linear regressions (Chakraborty et al. 2019), support vec-
tor machines (Rebentrost et al. 2014a), k-means (Kerenidis 

et al. 2019a), and many others (Biamonte et al. 2017). Fol-
lowing this research line, in this work, we focus on quantum 
algorithms for singular value based data analysis and rep-
resentation. When handling big data, it is crucial to learn 
effective representations that reduce the data’s noise and help 
the learner perform better on the task. Many data representa-
tion methods for machine learning, such as principal com-
ponent analysis (Partridge and Calvo 1997), correspondence 
analysis (Greenacre 1984), slow feature analysis (Kerenidis 
and Luongo 2020), or latent semantic analysis (Deerwester 
et al. 1990), heavily rely on singular value decomposition 
and are impractical to compute on classical computers for 
extensive datasets.

We have gathered and combined state-of-the-art quantum 
techniques to present a useful and easy-to-use framework 
for solving eigenvalue problems at large scale. While we 
focus on machine learning problems, these subroutines can 
be used for other problems that are classically solved via an 
SVD of a suitable matrix. More specifically, we formalize 
novel quantum procedures to compute classical estimates 
of the most relevant singular values, factor scores, factor 
score ratios of an n × m matrix in time poly-logarithmic in 
nm, and the most relevant singular vectors sub-linearly in 
nm. We show how to use these procedures to obtain a clas-
sical description of the models of three machine learning 
algorithms: principal component analysis, correspondence 
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analysis, and latent semantic analysis. We also discuss how 
to represent the data in the new feature space with a quantum 
computer. We provide a thorough theoretical analysis for all 
these algorithms bounding the run-time, the error, and the 
failure probability.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our notation and discusses the relevant 
quantum preliminaries. Section 3 presents the novel quan-
tum algorithms. In Section 4, we show applications of the 
algorithms to principal component analysis, correspondence 
analysis, and latent semantic analysis. Section 5 presents 
numerical experiments assessing the run-time parameters. 
Finally, we provide detailed information on the experiments 
and extensively discuss related work in quantum and classi-
cal literature in the appendix.

2 � Quantum preliminaries and notation

2.1 � Notation

Given a matrix � , we write �i,⋅ to denote its ith row, �
⋅,j for its 

jth column, and aij for the element at row i, column j. We 
write its singular value decomposition as � = ���T . � and 
� are orthogonal matrices, whose column vectors �i and �i 
are respectively the left and right singular vectors of � . � is 
a diagonal matrix with positive, non-negative, entries �i : the 
singular values. The row/column size of � is the rank of � 
and is denoted as r. We use �i to denote the ith eigenvalue of 
the covariance matrix �T� = ��2�T  , and �(i) = �i∑r

j
�j

 to 

denote the relative magnitude of each eigenvalue. Using the 
notation of Hsu et al. (2019) for correspondence analysis, 
we refer to �i as factor scores and to �(i) as factor score ratios. 
Note that �i = �2

i
 and �(i) = �2

i∑r

j
�2
j

 . We denote the number of 

non-zero elements of a matrix/vector with nnz(). Given a 
scalar a, |a| is its absolute value. The �∞ and �0 norm of a 
vector � are defined as ‖�‖∞ = maxi(‖ai‖) , ‖�‖0 = nnz(�) . 
If the vector norm is not specified, we refer to the �2 norm. 
The Frobenius norm of a matrix is ‖�‖F =

�∑r

i
�2
i
 , its 

spectral norm is ‖�‖ = max�∈ℝm
‖��‖
‖�‖ = �max , and finally 

‖�‖∞ = maxi(‖�i,⋅‖1) . A contingency table is a matrix that 
represents categorical variables in terms of the observed 
frequency counts. Finally, when stating the complexity of an 
algorithm, we use Õ instead of O to omit the poly-logarith-
mic terms on the size of the input data (i.e., 
O(polylog(nm)) = Õ(1) ), on the error, and the failure 
probability.

2.2 � Quantum preliminaries

We represent scalars as states of the computational basis of 
Hn , where n is the number of bits required for binary encod-
ing. The quantum state corresponding to a vector � ∈ ℝ

m is 
defined as a state-vector �t�⟩ = 1

‖v‖
∑m

j
vj�j⟩ . Note that to 

build �t�⟩ we need ⌈logm⌉ qubits.

Data access  To access data in the form of state-vectors, we 
use the following definition of quantum access.

Definition 1  (Quantum access to a matrix) We have quantum access 
to a matrix � ∈ ℝ

n×m , if there exists a data structure that allows 
performing the mappings �i⟩�0⟩ ↦ �i⟩��i,⋅⟩ = �i⟩ 1

‖�i,⋅‖
∑m

j
aij�j⟩ , 

for all i, and �0⟩ ↦ 1

‖�‖F

∑n

i
‖�i,⋅‖�i⟩ in time Õ(1).

By combining the two mappings we can create the state 
��⟩ = 1

‖�‖F

∑n

i

∑m

j
aij�i⟩�j⟩ in time Õ(1).

Kerenidis and Prakash (2017, 2020a) have described one 
implementation of such quantum data access. Their imple-
mentation is based on a classical data structure such that 
the cost of updating/deleting/inserting one element of the 
matrix is poly-logarithmic in the number of its entries. In 
addition, their structure gives access to the Frobenius norm 
of the matrix and the norm of its rows in time O(1). The cost 
of creating this data structure is Õ(nnz(�)) . This input model 
requires the existence of a QRAM (Giovannetti et al. 2008). 
While there has been some skepticism on the possibility of 
error-correcting such a complex device, recent results show 
that bucket-brigade QRAMs are highly resilient to generic 
noise (Hann et al. 2021).

Sometimes it is desirable to normalize the input matrix 
to have a spectral norm smaller than one. Kerenidis and 
Prakash (2020a) provide an efficient routine to estimate the 
spectral norm.

Theorem  1  (Spectral norm estimation (Kerenidis and 
Prakash 2020a)) Let there be quantum access to the matrix 
� ∈ ℝ

n×m , and let 𝜖 > 0 be a precision parameter. There 
exists a quantum algorithm that estimates ‖�‖ to additive 
error �‖�‖F in time Õ

�
log(1∕�)

�

‖�‖F
‖�‖

�
.

If we have ‖�‖ , we can create quantum access to 
�� =

�

‖�‖ = �
�

�max
�T  in time Õ(nnz(�)) by dividing each 

entry of the data structure. Once we have quantum access to 
a dataset, it is possible to apply a pipeline of quantum 
machine learning algorithms for data representation, analy-
sis, clustering, and classification (Rebentrost et al. 2014b; 
Kerenidis et al. 2020a; Wang 2017; Allcock et al. 2020; 
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Kerenidis et al. 2019a; Kerenidis and Luongo 2020). Since 
the cost of each step of the pipeline should be evaluated 
independently, we consider Õ(nnz(�)) to be a pre-processing 
cost and do not include it in our run-times.

We conclude this section by stating a useful claim that 
connects errors on classical vectors with errors on quantum 
states.

Claim 2  (Closeness of state-vectors (Kerenidis and Prakash 2020a)) 
Let � be the angle between vectors �, � and assume that 𝜃 < 𝜋∕2 . 
Then, ‖� − �‖ ≤ � implies ‖��⟩ − ��⟩‖ ≤

√
2

�

‖�‖.

Useful subroutines  We state two relevant quantum linear 
algebra results: quantum singular value estimation (SVE) 
and quantum matrix-vector multiplication.

Theorem  3  (Singular value estimation (Kerenidis and 
Prakash 2020a)) Let there be quantum access to � ∈ ℝ

n×m , with 
singular value decomposition � =

∑r

i
�i�i�

T
i

 and 
r = min(n,m) . Let 𝜖 > 0 be a precision parameter. It is possible 
to perform the mapping �b⟩ = ∑

i �i��⟩i ↦
∑

i �i��⟩i��i⟩ , such 
that | �i

�(�)
− �i| ≤ � with probability at least 1 − 1∕poly(m) , in 

time Õ( 1
�
) where �(�) = min

p∈[0,1]
(‖�‖F,

�
s2p(�)s2(1−p)(�

T )) 

and sp(�) = max
i

‖�i,⋅‖
p
p . Similarly, we can have |�i − �i| ≤ � 

in time Õ(�(�)
�
).

Unlike previous results with Hamiltonian simulations 
(Rebentrost et al. 2014b), this algorithm enables performing 
conditional rotations using the singular values of a matrix 
without any special requirement (e.g., sparsity, being square, 
Hermitian, etc.). By choosing the same matrix 
��⟩ = 1

‖�‖F

∑n

i

∑m

j
aij�i⟩�j⟩ =

1

‖�‖F

∑k

i
�i��⟩i��⟩i as starting 

state �b⟩ , we obtain a superposition of all the singular values 
entangled with the respective left and right singular vectors 
1

‖�‖F

∑r

i
�i��⟩i��⟩i��i⟩ . In this case, the requirement 

r = min(n,m) is not needed anymore as �b⟩ = ��⟩ can be 
fully decomposed in terms of � ’s right singular vectors.

This algorithm uses phase estimation. In this work, we 
consider this algorithm to use a consistent version of phase 
estimation, so that the errors in the estimates of the singular 
values are consistent across multiple runs (Ta-Shma 2013; 
Kerenidis and Prakash 2020a).

Theorem  4  (Matrix-vector multiplication (Chakraborty 
et al. 2019) (Lemma 24, 25)) Let there be quantum access to 
the matrix � ∈ ℝ

n×n , with �max ≤ 1 , and to a vector � ∈ ℝ
n . 

Let ‖��‖ ≥ � . There exists a quantum algorithm that creates 
a state  ��⟩ such that  ‖��⟩ − ���⟩‖ ≤ �  in  t ime 
Õ(

1

�
�(�) log(1∕�)) , with probability at least 1 − 1∕poly(n) . 

Increasing the run-time by a multiplicative factor Õ
(

1

�

)
 one 

can retrieve an estimate of ‖��‖ to relative error �.

Data output  Finally, to read out the quantum states, we state 
one version of amplitude amplification and estimation, and 
two state-vector tomographies.

Theorem 5  (Amplitude amplification and estimation (Bras-
sard et al. 2002; Kerenidis et al. 2019c)) Let there be a uni-
t a r y  t h a t  p e r f o r m s  t h e  m a p p i n g 
Ux ∶ �0⟩ ↦ sin(�)��, 0⟩ + cos(�)��, 0⟂⟩ , where ��⟩ is a gar-
bage state, in time T(Ux) . Then, sin(�)2 can be estimated to 
multiplicative error � in time O( T(Ux)

�sin(�)
) or to additive error � 

in time O( T(Ux)

�
) , and ��⟩ can be generated in expected time 

O(
T(Ux)

sin(�)
).

Theorem 6  (�2 state-vector tomography (Kerenidis and 
Prakash 2020b; Kerenidis et al. 2019c)) Given a unitary 
mapping Ux ∶ �0⟩ ↦ ��⟩ in time T(Ux) and 𝛿 > 0 , there is 
an algorithm that produces an estimate � ∈ ℝ

m with ‖�‖ = 1 
such that ‖� − �‖ ≤ � with probability at least 1 − 1∕poly(m) 
in time O(T(Ux)

m logm

�2
).

Theorem  7  (�∞ state-vector tomography (Kerenidis 
et  al.  2019b)) Given access to a unitary mapping 
Ux ∶ �0⟩ ↦ ��⟩ and its controlled version in time T(Ux) , 
and 𝛿 > 0 , there is an algorithm that produces an estimate 
� ∈ ℝ

m with ‖�‖ = 1 such that ‖� − �‖∞ ≤ � with probability 
at least 1 − 1∕poly(m) in time O(T(Ux)

logm

�2
).

3 � Novel quantum methods

Building from the previous section’s techniques, we formal-
ize a series of quantum algorithms that allow us to retrieve 
a classical description of the singular value decomposition 
of a matrix to which we have quantum access.

3.1 � Estimating the quality of the representation

Algorithms such as principal component analysis and corre-
spondence analysis are often used for visualization or dimen-
sionality reduction purposes. These applications work better 
when a small subset of factor scores have high factor score 
ratios. We provide a fast procedure that allows verifying if 
this is the case: given efficient quantum access to a matrix 
� ∈ ℝ

n×m , it retrieves the most relevant singular values, fac-
tor scores, and factor score ratios in time poly-logarithmic 
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in the number of elements of � , with no strict dependencies 
on its rank.

The main intuition behind this algorithm is that it is pos-
sible to create the state 

∑r

i

√
�(i)��⟩i��⟩i��i⟩ . The third reg-

ister, when measured in the computational basis, outputs 
the estimate �i of a singular value with probability equal to 
its factor score ratio �(i) . This enables sampling the singular 
values of � directly from the factor score ratios’ distribution. 
When a matrix has a huge number of small singular values 
and only a few of them that are very big, the ones with the 

greatest factor score ratios will appear many times during 
the measurements. In contrast, the negligible ones are not 
likely to be measured. This intuition has already appeared in 
literature (Gyurik et al. 2020; Cade and Montanaro 2018). 
Nevertheless, the analysis and the problem solved in these 
works are different from ours. In the context of data repre-
sentation and analysis, this intuition has only been sketched 
for sparse or low rank square symmetric matrices by Lloyd 
et al. (2014), without a precise formalization. We thoroughly 
formalize it for any real matrix.

Theorem 8  (Quantum factor score ratio estimation) Let there 
be quantum access to a matrix � ∈ ℝ

n×m , with singular 
value decomposition � =

∑
i �i�i�

T
i
 . Let � , � be precision 

parameters. There exists a quantum algorithm that runs in 
time Õ

(
1

�2
�(�)

�

)
 and estimates:

•	 all the factor score ratios 𝜆(i) > 𝛾 , with probability at least 
1 − 1∕poly(r) , such that ��(i) − �(i)� ≤ 2�

�i

‖A‖2
F

 , with prob-
ability at least 1 − 1∕poly(n);

•	 the corresponding singular values �i , such that 
|�i − �i| ≤ � with probability at least 1 − 1∕poly(n);

•	 the corresponding factor scores �i , such that 
��i − �i� ≤ 2�

√
�i with probability at least 1 − 1∕poly(n).

The proof consists in bounding the run-time, the error, 
and the probability of failure of Algorithm 1.

Proof  By the definition of quantum access, the cost of step 
2 is Õ(1) . The singular value estimation in step 3 can be 
performed using Theorem 3 in time Õ

(
�(�)

�

)
 , such that 

‖�i − �i‖ ≤ � with probability at least 1 − 1∕poly(n) . A 
measurement of the third register at step 4 can output any �i 
with probability �(i) = �2

i∑r

j
�2
j

.

Theorem 7 guarantees that with O(1∕�2) measurements 
we can get estimates |�(i) − �i| ≤ � . In particular, Kerenidis 
et  al. (2019b) estimate that N = 36 log(r)∕�2 measures 
should suffice for our goal.

Alternatively, we could consider the measurement pro-
cess as performing r Bernoulli trials: one for each �

(i)
 , so that 

if we measure �i it is a success for the ith Bernoulli trial and 
a failure for all the others. Given a confidence level z, it is 
possible to use the Wald confidence interval to determine a 
value for N such that |�(i) − ��i

N
| ≤ � with confidence level z, 

where ��i
 is the number of times that �i has appeared in the 

measurements. In this case, it suffice to choose N =
z2

4�2
 

[Schuld and Petruccione (2018), Section 5.1.3]. Having 
|�(i) − �(i)| ≤ � means measuring all the �i whose factor 
score ratio is greater than �.

We now proceed with the error analysis. We can compute 
�i = �

2

i
.
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If we keep the error analysis at the first order and consider 
that �i =

√
�i  ,  we can conclude the bound as 

��i − �
2

i
� ≤ 2�

√
�i . Similarly, we can compute �(i) =

�
2

i

‖A‖2
F

.

The parameter � is the one that controls how big a factor 
score ratio should be for the singular value/factor score to be 
measured. If we choose � bigger than the least factor scores 

(1)
|�i − �

2

i
| ≤ |�i − (�i ± �)2| = |±2��i + �2| ≤ 2��i + �2.

(2)��(i) − �(i)� =
��

i
− �

i
�

‖A‖2
F

≤ 2�
�
i

‖A‖2
F

.

ratio of interest, the estimate for the smaller ones is likely to 
be 0, as |�(i) − 0| ≤ � would be a plausible estimation.

Often in data representations, the cumulative sum of 
the factor score ratios is a measure of the quality of the 
representation. By slightly modifying Algorithm 1 to use 
Theorem 7, it is possible to estimate this sum such that 
�∑k

i
�(i) −

∑k

i
�(i)� ≤ k� with probability 1 − 1∕poly(r) . How-

ever, a slight variation of Algorithm IV.3 for spectral norm 
estimation in Kerenidis and Prakash (2020a) provides a more 
accurate estimation in less time, given a threshold � for the 
smallest singular value to retain.

Theorem 9  (Quantum check on the factor score ratios’ sum) 
Let there be quantum access to a matrix � ∈ ℝ

n×m , with 
singular value decomposition � =

∑
i �i�i�

T
i
 . Let �, � be pre-

cision parameters, and � be a threshold for the smallest sin-
gular value to consider. There exists a quantum algorithm 
that estimates p =

∑
i∶�i≥�

�(i) , where |�i − �i| ≤ � , to rela-
tive error � in time Õ

�
�(�)

�

1

�
√
p

�
.

Proof  As discussed in the previous proof, the cost of prepar-
ing the state at step 2 is Õ

(
�(�)

�

)
 . The complexity of step 3 

is Õ(1) , as it is an arithmetic operation that only depends on 
the encoding of ��i⟩ . Step 4 consists in uncomputing step 2 
and has its same cost. Finally, the cost of amplitude 

estimation, with relative precision � , on the last register 

being �0⟩ is equal to O
�
T(U4)

1

�
√
p

�
 , where p =

∑
i∶�i≥�

�2
i∑r

j
�2
j

 is 

the probability of measuring �0⟩ (Theorem 5). The overall 

complexity is proven: Õ
�

�(�)

�

1

�
√
p

�
.

Since the sum of factor score ratios p is a measure of the 
representation quality, in problems such as PCA, CA, and 
LSA, this is usually a constant number bigger than 0 (i.e., 
often in practice, p ∈ [0.3, 1] ). This makes the term 

√
p neg-

ligible in most of the practical applications. Moreover, we 
further modify Algorithm IV.3 to perform a binary search of 
� given the desired sum of factor score ratios.
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Theorem 10  (Quantum binary search for the singular value 
threshold) Let there be quantum access to a matrix 
� ∈ ℝ

n×m . Let �, � be precision parameters, and � be a 
threshold for the smallest singular value to consider. Let 
p ∈ [0, 1] be the factor score ratios sum to retain. There 
exists a quantum algorithm that runs in time 
Õ
(

�(�) log(�(�)∕�)

��

)
 and outputs an estimate � such that 

�p −∑
i∶�i≥�

�(i)� ≤ � , where |�i − �i| ≤ � , or detects whether 
such � does not exists.

The proof consists in proving the correctness and the run-
time of Algorithm 3.

Proof  The algorithm searches for � using � as an estimate 
between 0 and 1. The search is performed using sign(p� − p) 
as an oracle that tells us whether to update the lower or upper 
bound for �.

The algorithm terminates when |p� − p| ≤ �∕2 or when 
it is not possible to update � anymore (i.e., there are not 
enough qubits to express the next � ). In this last case, there is 
no � that satisfies the requisites and the algorithm returns −1.

In the first case, instead, we need to guarantee that 
�p −∑

i∶�i≥�
�(i)� = �p − p� � ≤ � . Since we run amplitude esti-

mation with additive error �∕2 we have |p� − p� | ≤ �∕2 , and 
we require |p� − p| ≤ �∕2 to stop. This two conditions entail

If we want � to be comparable with the singular values of � 
and use � for the binary search, we have to use Theorem 3 
with error �(�)

�
 , meaning that Step 6 can be done in time 

O(�(�)∕�) . The total cost of the inner loop has to be evalu-
ated at the end of Step 9, which runs in time O(�(�)

��
).

The maximum number of updates of � is bounded by the number 
of qubits that we use to store the singular values 𝜎̂i . This is given by 
the logarithm of the error used in Step 6, and is O

(
log

(
�(�)

�

))
.

The run-time of this algorithm is bounded by 
Õ
(

�(�) log(�(�)∕�)

��

)
.

Using the quantum counting algorithms of Brassard et al. 
(2002) after step 3 of Algorithm 2, it is possible to count the 
number of singular values retained by a certain threshold �.

(3)|p − p� | ≤ ||p − p� | + �∕2| ≤ �.
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Corollary 11  (Quantum reduced rank estimation) Let there 
be quantum access to a matrix � ∈ ℝ

n×m , with singular 
value decomposition � =

∑r

i
�i�i�

T
i
 and rank r. Let � be a 

precision parameter, and � be a threshold for the smallest 
singular value to consider. There exists a quantum algorithm 
that estimates the exact number k of singular values such 
t h a t  �i ≥ �  ,  w h e r e  |�i − �i| ≤ �  ,  i n  t i m e 
Õ
�

�(�)

�

√
(k + 1)(r − k + 1)

�
 with probability at least 2

3
.

Similarly, given a parameter � , it is possible to produce 
an estimate k such that |k − k| ≤ �k in time Õ

(
�(�)

��

√
r

k

)
 with 

probability at least 2
3
.

Estimating the number of singular values retained by � is 
helpful. When the singular values are dense around � , this 
Corollary, together with Theorem 9, can help the analyst 
evaluate trade-offs between big p and small k. On the one 
hand, the bigger p is, the more information on the dataset 
one can retain. On the other hand, the bigger k is, the slower 
will the algorithms in the next section be.

3.2 � Extracting the SVD representation

After introducing the procedures to test for the most relevant 
singular values, factor scores and factor score ratios of � , 

we present a routine to extract the corresponding right/left 
singular vectors. The inputs of this algorithm, other than the 
matrix, are a parameter � for the precision of the singular 
vectors, a parameter � for the precision of the singular value 
estimation, and a threshold � to discard the non interesting 
singular values/vectors. The output guarantees a unit estimate 
�i of each singular vector such that ‖�i − �i‖ ≤ � , ensuring 
that the estimate has a similar orientation to the original vec-
tor. Additionally, this subroutine can provide an estimation of 
the singular values greater than � , to absolute error �.

Theorem 12  (Top-k singular vectors extraction) Let there be 
efficient quantum access to a matrix � ∈ ℝ

n×m , with singular 
value decomposition � =

∑r

i
�i�i�

T
i
 . Let 𝛿 > 0 be a preci-

sion parameter for the singular vectors, 𝜖 > 0 a precision 
parameter for the singular values, and 𝜃 > 0 be a threshold 
such that � has k singular values greater than � . Define 
p =

∑
i∶�i≥�

�2
i∑r

j
�2
j

 . There exist quantum algorithms that 

estimate:

•	 The top k left singular vectors �i of � with unit vectors 
�i such that ‖�i − �i‖2 ≤ � with probability at least 

1 − 1∕poly(n) , in time Õ
�

‖�‖
�

1√
p

�(�)

�

kn

�2

�
;
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•	 The top k right singular vectors �i of � with unit vectors 
�i such that ‖�i − �i‖2 ≤ � with probability at least 

1 − 1∕poly(m) , in time Õ
�

‖�‖
�

1√
p

�(�)

�

km

�2

�
.

•	 The top k singular values �i , factor scores �i , and factor 
score ratios �(i) of � to precision � , 2�

√
�i , and � �i

‖�‖2
F

 
respectively, with probability at least 1 − 1∕poly(m) , in 

time Õ
�

‖�‖
�

1√
p

�(�)k

�

�
 or during any of the two proce-

dures above.

The proof consists in proving the time complexity and the 
error of Algorithm 4.

Proof  Like in the previous proofs, the cost of preparing the 

state at step 4, is Õ
�

1√
p

�(�)

�

�
 , where Õ

(
�(�)

�

)
 is the cost of 

singular value estimation and Õ
�

1√
p

�
 is the one of ampli-

tude amplification. Step 5 is a conditional rotation and simi-
larly to step 3 it has a negligible cost. The next step is to 
analyze the amplitude amplification at 6. The constant C is 
a normalization factor in the order of Õ(1∕�(�(k))) where 
�(�(k)) =

�max

�min
 is the condition number of the low-rank matrix 

�(k) . Since for construction �min ≥ � , we can bound the con-
dition number �(�(k)) ≤

‖�‖
�

 . From the famous work of Har-
row, Hassidim and Lloyd Harrow et al. (2009) we know that 
applying amplitude amplification on the state above, with 
the the third register  being �0⟩ ,  would cost 

T(U6) ∼ Õ(�(�(k))T(U5)) ∼ Õ

�
‖�‖
�

1√
p

�(�)

�

�
.

This last amplitude amplification leaves the registers in 
the state

where �i ∈ [�i − �, �i + �] and �i

�i±�
→ 1 for � → 0.

When measuring the last register of state 6 in the compu-
tational basis, we measure ��i⟩ and the first two registers 
collapse in the state ��⟩i��⟩i . It is possible to perform vector-
state tomography on ��⟩i��⟩i , using Theorem 6 on the first 
register to retrieve �i , or on the second one to retrieve �i . The 
costs are O( n log n

�2
) and O(m logm

�2
) , respectively. Using a cou-

pon collector’s argument (Erdős and Rényi 1961), if the k 
states ��i⟩ are uniformly distributed, to get all the k possible 
couples ��⟩i��⟩i at least once, we would need k log k measure-
ments on average. This proves that it is possible to estimate 
all the singular values, factor scores and factor score ratios 
with the guarantees of Theorem 3 in time Õ( ‖�‖

�

1√
p

�(�)k

�
).

(4)
1�
∑k

i

�2
i

�
2

i

k�

i

�i

�i

��⟩i��⟩i��i⟩ ∼
1√
k

k�

i

��⟩i��⟩i��i⟩

To perform tomography on each state-vector, one should 
satisfy the coupon collector the same number of times as the 
measurements needed by the tomography procedure. The 
costs of the tomography for all the vectors {�i}ki  and {�i}ki  
are O

(
T(U(6))

k log k⋅n log n

�2

)
 ,  and O

(
T(U(6))

k log k⋅m logm

�2

)
. 

Therefore, the following complexities are proven: 

Õ

�
�����
�

1√
p

�(�)

�

kn

�2

�
, Õ

�
�����
�

1√
p

�(�)

�

km

�2

�
.  

In the appendix, Section 6.3., we provide experiments 
that show that the coupon collector’s argument of Eq. 4 is 
accurate for practical � . Besides 1∕

√
p being negligible, it 

is interesting to note that the parameter � can be computed 
using: 1. the procedures of Theorems 8, 9; 2. the binary 
search of Theorem 10; 3. the available literature on the type 
of data stored in the input matrix �.

About the latter, the original paper of latent seman-
tic indexing (Deerwester et al. 1990) states that the first 
k = 100 singular values are enough for a good representa-
tion. We believe that, in the same way, fixed thresholds � can 
be defined for different machine learning applications. The 
experiments of Kerenidis and Luongo (2020) on the run-time 
parameters of the polynomial expansions of the MNIST data-
set support this expectation: even though in qSFA they keep 
the k smallest singular values and refer to � as the biggest sin-
gular value to retain, this value does not vary much when the 
the dimensionality of their dataset grows. In our experiments, 
we observe that different datasets for image classification 
have similar � s. For completeness, we also state a different 
version of Theorem 12, with �∞ guarantees on the vectors.

Corollary 13  (Fast top-k singular vectors extraction) The 

run-times of 12 can be improved to Õ
�

‖�‖
�

1√
p

�(�)

�

k

�2

�
 with 

estimation guarantees on the �∞ norms.

Proof  The proof consists in using �∞ tomography (Theo-
rem 7) at step 7 of Algorithm 4.

Note that, given a vector with d non-zero entries, performing 
�∞ tomography with error �√

d
 provides the same guarantees of 

�2 tomography with error � . This implies that the extraction of 
the singular vectors with �2 guarantees can be faster if we can 

make assumptions on their sparseness: Õ
�

‖�‖
�

1√
p

�(�)

�

kd

�2

�
.

4 � Applications to machine learning

The new quantum procedures can be used for principal 
component analysis, correspondence analysis, and latent 
semantic analysis. Besides extracting the orthogonal factors 
and measuring their importance, we provide a procedure to 
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represent the data in PCA’s reduced feature space on a quan-
tum computer. In a similar way, it is possible to compute the 
representations of CA and LSA.

4.1 � Principal component analysis

Principal component analysis is a widely-used multivariate 
statistical method for continuous variables with applications 
in machine learning. Its uses range from outlier detection 
to dimensionality reduction and data visualization. Given 
a matrix � ∈ ℝ

n×m storing information about n data points 
with m coordinates, its principal components are the set 
of orthogonal vectors along which the variance of the data 
points is maximized. The goal of PCA is to compute the 
principal components with the amount of variance they cap-
ture and rotate the data points to express their coordinates 
along the principal components. It is possible to represent 
the data using only the k coordinates that express the most 
variance for dimensionality reduction.

Model  The model of PCA is closely related to the singular 
value decomposition of the data matrix � , shifted to row 
mean 0. The model consists of the principal components and 
the amount of variance they explain. The principal compo-
nents coincide with the right singular vectors �i , the factor 
scores �i = �2

i
 represent the amount of variance along each 

of them, and the factor score ratios �(i) = �i∑r

j
�j

 express the 

percentage of retained variance. For datasets with 0 mean, 
the transformation consists in a rotation along the principal 
components: � = �� = ���T� = �� ∈ ℝ

n×m . When per-
forming dimensionality reduction, it suffice to use the top k 
singular values and vectors.

Using the procedures from Section 3 it is possible to 
extract the model for principal component analysis. In par-
ticular, Theorems 8, 9, and 10 allow to retrieve information 
on the factor scores and on the factor score ratios, while 
Theorem 12 allows extracting the principal components. The 
run-time of the model extraction is the sum of the run-times 
of the theorems: Õ

((
1

�2
+

km

��2

)
�(�)

�

)
 . The model comes with 

the following guarantees: |�i − �i| ≤
�

2
 ; ��i − �i� ≤ �

√
�i ; 

��(i) − �(i)� ≤ �
�
i

‖�‖
f

 ; ‖�i − �i‖ ≤ � for i ∈ {0,… , k − 1} . This 

run-time is generally smaller than the number of elements 
of the input data matrix, providing polynomial speed-ups on 
the best classical routines for non-sparse matrices. In writing 
the time complexity of the routines, we have omitted the 
term 1√

p
 because usually p is chosen to be a number greater 

than 0.5 (generally in the order of 0.8/0.9).
When performing dimensionality reduction, the goal is 

to obtain the matrix � = �� ∈ ℝ
n×k , where � ∈ ℝ

n×k and 
� ∈ ℝ

k×k are composed respectively of the top k left singu-
lar vectors and singular values. In Lemma 14, we provide a 

theoretical error bound for � , using the estimated entries of 
� and � . For sake of completeness, the error bound is also 
stated for �� . These bounds stand regardless of how the 
singular values and vectors are extracted and hold when the 
multiplication is done with a classical computer.

Lemma 14  (Accuracy of �� and �� ) Let � ∈ ℝ
n×m be a matrix. 

Given some approximate procedures to retrieve estimates �i of the 
singular values �i such that |�i − �i| ≤ � and unit estimates �i of 
the left singular vectors �i such that ‖�i − �i‖2 ≤ � , the error on 
�� can be bounded as ‖�� − ��‖F ≤

�∑k

j

�
� + ��j

�2 . Simi-

larly, ‖�� − ��‖F ≤

�∑k

j

�
� + ��j

�2 . Both are bounded by √
k(� + �‖�‖).

We prove this result for ‖�� − ��‖F . The proof for 
‖�� − ��‖F is analogous.

Proof  We first bound the error on the columns:

Because of the triangular inequality, ‖�
i
(�

i
− �

i
) ± ��

i
‖ ≤ �

i

‖�
i
− �

i
‖ + �‖�

i
‖ . Also by hypothesis, ‖(�i − �i)‖ ≤ � and 

‖�i‖ = 1 . Thus, �i‖�i − �i‖ + �‖�i‖ ≤ �i� + � . Since 
f (x) =

√
x is an increasing monotone function, it is pos-

sible to prove:

Using matrix-multiplication from Theorem 4, we can 
have algorithms to produce quantum states proportional 
to the data representation in the new feature space. Having 
access to �(k) ∈ ℝ

m×k , these routines create the new data 
points in almost constant time and are helpful when chained 
to other quantum machine learning algorithms that need to 
be executed multiple times.

Corollary 15  (Quantum PCA: vector dimensionality reduc-
tion) Let � be a precision parameter. Let there be efficient 
quantum access to the top k right singular vectors 
�

(k)
∈ ℝ

m×k of a matrix � = ���T ∈ ℝ
n×m , such that 

‖�(k) − �
(k)
‖ ≤

�√
2
 . Given quantum access to a row �i of � , 

the quantum state ��i⟩ =
1

‖�i‖
∑k

i
yk�i⟩ , proportional to its 

projection onto the PCA space, can be created in time 
Õ
�
�(�(k))

‖�i‖
‖�i‖

�
 with probability at least 1 − 1∕poly(m) and 

precision ‖��i⟩ − ��i⟩‖ ≤
‖�i‖
‖�i‖

� . An estimate of ‖�i‖ , to rela-
tive error � , can be computed in Õ(1∕�).

(5)
‖�i�i − �i�i‖ ≤ ‖(�i ± �)�i − �i�i‖ = ‖�i(�i − �i) ± ��i‖

(6)
‖�� − ��‖F =

����
n�

i

k�

j

‖�juij − �juij‖2 =

����
k�

j

�
‖�j�j − �j�j‖

�2

≤

����
k�

j

�
� + ��j

�2
≤

�
k
�
� + ��max

�2
≤

√
k(� + �‖�‖)
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Proof  Here with � we denote �(k) ∈ ℝ
m×k . Given a vec-

tor �i , its projection onto the k-dimensional PCA space 
of � is �T

i
= �T

i
� , or equivalently �i = �T�i . Note that 

‖�i‖ = ‖�T�i‖.
It is possible to use Theorem 4 to multiply the quantum 

state ��i⟩ by �T , appropriately padded with 0s to be a square 
ℝ

m×m matrix. In this way, we can create an approximation 
��i⟩ of the state ��i⟩ = ��⟩T�i in time Õ

(
�(�T ) log(1∕�)

�

)
 with 

probability 1 − 1∕poly(m) , such that ‖��i⟩ − ��i⟩‖ ≤ � . Since 
�T has rows with unit �2 norm, we can prepare efficient 
quantum access to it by creating access to its rows [Kerenidis 
and Prakash (2020a),   Theorem IV.1].  Having 
� = ‖�T�i‖∕‖�i‖ ,  w e  g e t  a  r u n - t i m e  o f 
Õ
�
�(�)

‖�i‖
‖�i‖

log(1∕�)
�
 . The term log(1∕�) can be considered 

negligible. We conclude that the state ��i⟩ can be created in 
time Õ

�
�(�)

‖�i‖
‖�i‖

�
 with probability 1 − 1∕poly(m) and that 

its norm can be estimated to relative error � in time 
Õ
�
�(�)

‖�i‖
‖�i‖

1

�

�
.

For what concerns the error, we start by bounding 
‖�i − �i‖ and then use Claim 2 to bound the error on the 
quantum states. Assume to have estimates �i of the columns 
of � such that ‖�i − �i‖ ≤ �.

Considering that ‖�i − �i‖ = �T
i
�(k) − �T

i
�

(k)
‖ ≤ ‖�i‖

√
k� , 

we can use Claim 2 to state

Setting � =
�√
2k

 leads to the requirement ‖� − �‖F ≤
�√
2
.

This result also holds when �i is a previously unseen data 
point, not necessarily stored in � . Note that from the row 
orthogonality of �(k) it follows that �(�(k)) ≤ ‖�(k)‖F =

√
k . 

Furthermore, ‖�i‖‖�i‖
 is expected to be close to 1, as it is the 

percentage of support of �i on the new feature space spanned 
by �(k) . We formalize this better using Definition 2 below.

Definition 2  (PCA-representable data) A set of n data points 
described by m coordinates, represented through a matrix 
� =

∑r

i
�i�i�

T
i
∈ ℝ

n×m is said to be PCA-representable if there 
exists p ∈ [

1

2
, 1], � ∈ [0, 1∕2], � ∈ [p − �, p + �], � ∈ [0, 1] 

such that:
•	 ∃k ∈ O(1) such that 

∑k

i
�2
i∑m

i
�2
i

= p

•	 for at least �n points �i it holds ‖�i‖
‖�i‖

≥ � , where 

‖�i‖ =

�∑k

i
�⟨�i��j⟩�2‖�i‖.

(7)‖� − �‖F =

����
n�

i

k�

j

�
vij − vij

�2
≤

√
k�

(8)‖��i⟩ − ��i⟩‖ ≤
‖�i‖
‖�i‖

√
2k� =

‖�i‖
‖�i‖

�.

Claim 16  (Quantum PCA on PCA-representable datasets) 
Let �i be a row of � ∈ ℝ

n×d . Then, for p ∈ [1∕2, 1] , the run-
time of Corollary 15 is �(�) ‖�i‖‖�i‖

= �(�)
1

�
= O(�(�)) with 

probability greater than �.

It is known that, in practical machine learning datasets, � 
is a number fairly close to one. We have tested the value of 
� for the MNIST, Fashion MNIST and CIFAR-10 datasets, 
finding values over 0.85 for any p ∈ (0, 1].

The next corollary shows how to perform perform dimen-
sionality reduction on the whole matrix, enabling quantum 
access to the data matrix in the reduced feature space.

Corollary 17  (Quantum PCA: matrix dimensionality reduc-
tion) Let � be a precision parameter and p be the amount of 
variance retained after the dimensionality reduction. Let 
there be efficient quantum access to � = ���T ∈ ℝ

n×m and 
to its top k right singular vectors �

(k)
∈ ℝ

m×k , such that 
‖�(k) − �

(k)
‖ ≤

�
√
p

√
2

 . There exists a quantum algorithm that, 

with probability at least 1 − 1∕poly(m) , creates the state 
��⟩ = 1

‖�‖F

∑n

i
‖�i,⋅‖�i⟩��i,⋅⟩ , proportional to the projection 

of � in the PCA subspace, with error ‖��⟩ − ��⟩‖ ≤ � in 
time Õ(�(�)∕

√
p) . An estimate of ‖�‖F , to relative error � , 

can be computed in Õ(�(�)√
p�
).

Proof  Here with � we denote �(k) ∈ ℝ
m×k . Using the same 

reasoning as the proof above and giving a closer look at the 
proof of Theorem 4 (Lemma 24 (Chakraborty et al. 2019)), 
we see that it is possible to create the state �0⟩( �

T

�(�)
��i⟩) + �0

⟂
⟩ 

in time Õ(1) and that the term �(�)
�

 is introduced to boost the 
probability of getting the right state. Indeed, if we apply 
Theorem 4 without the amplitude amplification step to the 
superposition of the rows of � , we obtain the following map-
ping in time Õ(1):

where ‖�i,⋅⟂‖ are normalization factors. Keeping in mind that 
‖�‖F =

�∑r

i
�2
i
 and ‖�‖F =

�∑n

i
‖�i,⋅‖2 =

�∑k

i
�2
i
 , we 

see that the amount of explained var iance is 
p =

∑k

i
�2
i∑r

j
�2
j

=
�

‖�‖F
‖�‖F

�2

 . The probability of obtaining 

�Y⟩ = 1

‖�‖F

∑n

i
‖�i,⋅‖�i⟩��i,⋅⟩ is p

�(�)2
=

‖�‖2
F

‖�‖2
F

1

�(�)2
=

∑n

i
‖�i,⋅‖2

‖�‖2
F
�(�)2

 . 
We conclude that, using Õ(�(�)∕

√
p) rounds of amplitude 

amplification, we obtain ��⟩ with probability 1 − 1∕poly(m) 
(Theorem 5). 

F o r  t h e  e r r o r ,  c o n s i d e r  t h a t 
‖� − �‖ = ‖��(k) − ��

(k)
‖ ≤ ‖�‖

√
k� , so we can use 

Claim 2 to state

(9)

��⟩ = 1

‖�‖
F

n�

i

‖�
i,⋅
‖�i⟩��

i,⋅
⟩ ↦ 1

‖�‖
F
�(�)

n�

i

(‖�
i,⋅
‖�0⟩�i⟩��

i,⋅
⟩ + ‖�

i,⋅⟂
‖�0

⟂
⟩),
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We can set  � =
�√
2k

‖�‖F
‖�‖F

=
�
√
p

√
2k

 ,  so  we require 

‖� − �‖F ≤
�
√
p

√
2

.

The error requirements of the two corollaries propagate 
to the run-time of the model extraction in the following way.

Corollary 18  (Quantum PCA: fitting time) Let � be a preci-
sion parameter and p =

∑
i∶�i≥�

�2
i∑r

j
�2
j

 the amount of variance to 

retain, where |�i − �i| ≤ � . Given efficient quantum access 
to a matrix � ∈ ℝ

n×m , the run-time to extract �(k) ∈ ℝ
m×k 

for corollaries 15, 17 is Õ
(

�(�)k2m

���2

)
.

Proof  The procedure to train the model consists in using 
Theorem 10 or 8 to extract the threshold � , given the amount 
of variance to retain p, and to leverage Theorem 12 to extract 
the k right singular vectors that compose � ∈ ℝ

m×k . The 
run-time of Theorem 10 and 8 are smaller than the one of 
Theorem 12, so we can focus on the last one. To have 
‖� − �‖F ≤

�
√
p

√
2

 we need ‖�i − �i‖ ≤
�
√
p

√
2k

 . Substituting 

� =
�
√
p

√
2k

 in the run-time of Theorem 12, we get Õ(�(�)k
2m

p3∕2���2
) . 

If we consider that p to be a reasonable number (e.g., at least 
grater than 0.05), we can consider it a constant factor that is 
independent from the input’s size. The asymptotic run-time 
is proven to be Õ(�(�)k

2m

���2
).

When training the model for Corollary 17, the run-time 
has a dependency on 1∕p3∕2 . However, this term is constant 
and independent from the size of the input dataset.With this 
additional 1∕p3∕2 cost, the error of Corollary 15 drops to � 
for every row of the matrix and generally decreases in case 
of new data points.

Using the same framework and proof techniques, it is 
possible to produce similar results for the representations 
of CA and LSA.

Remark: Note that [Yu et al. (2019), Theorem 1] propose 
a lower bound for a quantity similar to our � . However, their 
result seems to be a loose bound: using their notation and 
setting � = 1, � = 1 they bound this quantity with 0, while a 
tight bound should give 1.

4.2 � Correspondence analysis

Correspondence analysis is a multivariate statistical tool from 
the family of factor analysis methods. It is used to explore 
relationships among categorical variables. Given two random 
variables, X and Y, with possible outcomes in {x1,⋯ , xn} and 
{y1,⋯ , ym} , the model of Correspondence Analysis enables 

(10)‖��⟩ − ��⟩‖ ≤
‖�‖F
‖�‖F

√
2k� = �.

representing the outcomes as vectors in two related Euclid-
ean spaces. These vectors can be used for data visualization, 
exploration, and other unsupervised machine learning tasks.

Model  Given a contingency table for X and Y (see 
Section  2), it is possible to compute the matrix 
� = �

−1∕2

X
(�̂X,Y − �̂X�̂

T
Y
)�

−1∕2

Y
∈ ℝ

n×m , where �̂X,Y ∈ ℝ
n×m 

is the estimated matrix of joint probabilities, �̂X ∈ Rn and 
�̂X ∈ ℝ

m are the vectors of marginal probabilities, and 
�

−1∕2

X
= diag(�̂X) , �

−1∕2

Y
= diag(�̂Y ) . The computation of � 

requires linear time in the non-zero entries of the contingency 
table. The singular value decomposition of � is strictly related 
to the model of correspondence analysis (Greenacre 1984; Hsu 
et al. 2019). The new coordinates of X’s outcomes are given by 
the rows of �−1∕2

X
� ∈ ℝ

n×k , while the ones of Y by the rows 
of �−1∕2

Y
� ∈ ℝ

m×k . Like in PCA, it is possible to choose only 
a subset of the orthogonal factors as coordinates for the repre-
sentation. Factor scores and factor score ratios measure of how 
much “correspondence” is captured by the respective orthogonal 
factor, giving an estimate of the quality of the representation.

Similarly to what we have already discussed, it is possible 
to extract the model for CA by creating quantum access to 
the matrix � and using Theorems 8, 9, and 12 to extract the 
orthogonal factors, the factor scores and the factor score 
ratios in time Õ

((
1

�2
+

k(n+m)

��2

)
�(�)

�

)
 . We provide a theoreti-

cal bound for the data representations in Lemma 19.

Lemma 19  (Accuracy of �−1∕2

X
� and �−1∕2

Y
� ) Let � ∈ ℝ

n×m 
be a matrix. Given some approximate procedures to 
retrieve unit estimates �i of the left singular vectors �i such 
that ‖�i − �i‖ ≤ � , the error on �−1∕2

X
� can be bounded 

as  ‖�−1∕2

X
� − �

−1∕2

X
�‖F ≤ ‖�−1∕2

X
‖F

√
k�  .  S imi larly , 

‖�−1∕2

Y
� − �

−1∕2

Y
�‖F ≤ ‖�−1∕2

Y
‖F

√
k�.

Proof  It suffices to note that ‖�−1∕2

X
� − �

−1∕2

X
�‖� ≤ ‖�−1∕2

X
‖
F

‖� − �‖
F
≤ ‖�−1∕2

X
‖
F

√
k� . Similar conclusions can be 

drawn for ‖�−1∕2

Y
� − �

−1∕2

Y
�‖F.

4.3 � Latent semantic analysis

Latent semantic analysis is a data representation method 
used to represent words and text documents as vectors in 
Euclidean spaces. Using these vector spaces, it is possible 
to compare terms, documents, and terms and documents. 
LSA spaces automatically model synonymy and polysemy 
(Deerwester et al. 1990), and their applications in machine 
learning range from topic modeling to document clustering 
and retrieval.

Model The input of LSA is a contingency table of n words 
and m documents � ∈ ℝ

n×m . Inner products of rows are a 
measure of words similarity, and can be computed at once as 
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��T = ��2�T . Inner products of columns �T� = ��2�T 
are a measure of documents similarity, and the aij entry of 
� = ���T is a measure of similarity between word i and 
document j. We can use SVD to express words and doc-
uments in new spaces where we can compare them with 
respect to this similarity measure. In particular, we can com-
pute: 1. a representation for word comparisons �� ∈ ℝ

n×k ; 
2. a representation for document comparisons �� ∈ ℝ

m×k ; 
3. two representations for word and document comparisons 
��1∕2 ∈ ℝ

n×k and ��1∕2 ∈ ℝ
m×k.

When using LSA for document indexing, like in a search 
engine, we need to represent the query as a vector in the 
document space. In this case, instead of increasing � ’s size 
and recomputing the document space, the new vector can 
be expressed as �T

q
= �T

q
��−1 , where �q ∈ ℝ

n is obtained 
using the same criteria used to store a document in � . The 
representation of the query can then be used to compare the 
query to the other documents in the document representation 
space. Finally, factor score ratios play an important role in 
LSA too. For instance, the columns of V can be seen as latent 
topics of the corpus. The importance of each topic is propor-
tional to the corresponding factor score ratio. This paragraph 
only stresses how computing the SVD of � is connected to 
LSA. For a better introduction to LSA and indexing, we 
invite the reader to consult the original paper (Deerwester 
et al. 1990).

Even in this case, the cost of extracting the orthogonal 
factors and the factor scores is  bounded by 
Õ
((

1

�2
+

k(n+m)

��2

)
�(�)

�

)
 . In some applications, the data analyst 

might use a fixed number of singular values and vectors, 
regardless of the factor score ratios. In Deerwester et al. 

(1990), k = 100 is found to be a good number for document 
indexing. Similarly, we believe that if we scale the singular 
values by the spectral norm, it is possible to empirically 
determine a threshold � to use in practice. Determining such 
threshold would reduce the complexity of model computa-
tion to the one of Theorem 12: Õ

(
k(n+m)

��2
�(�)

�

)
.

For what concerns the error bounds, we already know that 
it is possible to retrieve an approximation �� and �� with 
precision 

√
k(� + �‖�‖) (Lemma 14), where � is the preci-

sion on the singular vectors and � the precision on the singu-
lar values. To provide bounds on the estimations of ��1∕2 , 
��1∕2 , and ��−1 we introduce Lemmas 20 and Lemma 21.

Lemma 20  (Accuracy of ��
1∕2

 and ��
1∕2

 ) Let � ∈ ℝ
n×m be 

a matrix. Given some approximate procedures to retrieve 
estimates �i of the singular values �i such that |�i − �i| ≤ � 
and unitary estimates �i of the left singular vectors �i such 
that ‖�i − �i‖ ≤ � , the error on ��1∕2 can be bounded as 

‖��1∕2 − ��
1∕2

‖F ≤

�
∑k

j

�
�
√
�j +

�

2
√
�

�2

 . 

Similarly, ‖��1∕2 − ��
1∕2

‖F ≤

�
∑k

j

�
�
√
�j +

�

2
√
�

�2

 . 

Both are bounded by 
√
k
�
�
√
‖�‖ + �

2

√
�

�
  

We prove this result for ‖��
1∕2

− ��1∕2‖F.

Proof  We start by bounding �
√
�i −

√
�i� . Let’s define 

� = ��i as a relative error:

By definition � =
�

�i
 and we know that �min ≥ �:

(11)

�
√
�i + � −

√
�i� =�

√
�i + ��i −

√
�i� = �

√
�i(

√
1 + � − 1)�

=
√
�i�

(
√
1 + � − 1)(

√
1 + � + 1)

√
1 + � + 1

�

=
√
�i�

� + 1 − 1
√
1 + � + 1

� ≤
√
�i
�

2
.

Fig. 1   Accuracy of 10-fold cross-validation using K-Nearest-Neigh-
bors, with 7 neighbors, on the MNIST dataset after PCA’s dimension-
ality reduction (0.8580% of variance retained). The benchmark accu-
racy was computed with an exact PCA. The experiment line shows 
how the classification accuracy decreases as error is introduced in the 
Frobenius norm of the representation

Table 1   Summary of the run-time parameters. The parameters that 
depend on k have been computed using the estimated k 

Parameter MNIST F-MNIST CIFAR-10

�(�) = ‖�‖
F

3.2032 1.8551 1.8540
Estimated k 62 45 55
Exact k 59 43 55
Estimated p 0.8510 0.8510 0.8510
Exact p 0.8580 0.8543 0.8514
Thrs. � 0.0030 0.0009 0.0006
� 0.1564 0.0776 0.0746
� 0.1124 0.0106 0.0340
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Using the bound on the square roots, we can bound the col-
umns of ��

1∕2
:

From the error bound on the columns we derive the bound 
on the matrices:

Lemma 21  (Accuracy of ��
−1

 and ��
−1

 ) Let � ∈ ℝ
n×m be 

a matrix. Given some approximate procedures to retrieve 
estimates �i of the singular values �i such that |�i − �i| ≤ � 
and unitary estimates �i of the left singular vectors �i such 
that ‖�i − �i‖ ≤ � , the error on ��−1 can be bounded as 
‖��−1 − ��

−1
‖F ≤

√
k
�

�

�
+

�

�2−��

�
 .  S i m i l a r l y , 

‖��−1 − ��
−1
‖F ≤

√
k(

�

�
+

�

�2−��
).

We prove this result for ‖��
−1

− ��−1‖F.

Proof  We start by bounding | 1

�i

−
1

�i
| . Knowing that �min ≥ � 

and 𝜖 < 𝜃:

(12)�
�

�i −
√
�i� ≤

√
�i

�1

�

2
=

�

2
√
�i

≤
�

2
√
�
.

(13)

����

�
�i�i −

√
�i�i

����
≤

������

�
√
�i +

�

2
√
�

�
�i −

√
�i�i

������
=

������

√
�i(�i − �i) +

�

2
√
�
�i

������
≤
√
�i� +

�

2
√
�

(14)

����
��

1∕2
− ��1∕2

����F
=

����
k�

j

�����

�
�j�j −

√
�j�j

����

�2

≤

�����
k�

j

�
�
√
�j +

�

2

√
�

�2

≤

√
k

�
�
√
‖�‖ + �

2

√
�

�
.

From the bound on the inverses, we can obtain the bound on 
the columns of ��

−1
:

To complete the proof, we compute the bound on the 
matrices:

5 � Experiments

All of our experiments are numerical and can be carried out 
on classical computers.1 We have analysed the distribution 
of the factor score ratios in the MNIST, Fashion MNIST, 
CIFAR-10, Tiny Imagenet and Research Papers datasets. 
They decrease exponentially fast (figures in the appendix), 
confirming the low rank nature of the data. Focusing on 
MNIST, Fashion-MNIST, and CIFAR-10, we have simulated 
PCA’s dimensionality reduction for image classification. The 
datasets have been shifted to row mean 0 and normalized so 
that �max = 1 . We have simulated Algorithm 1 by sampling 
1∕�2 = 1000 times from the state 

∑r

i
�i��⟩i��⟩i��i⟩ to search 

the first k principal components that account for a factor 
score ratios sum p = 0.85 . The simulation occurs by sam-
pling with replacement from the discrete probability distri-
bution given by the �i . We then estimated the measured �i 

(15)| 1
�i

−
1

�i
| ≤ | 1

�i − �
−

1

�i
| ≤ �

�2 − ��
.

(16)
‖ 1

�
i

�
i
−

1

�
i

�
i
‖ ≤ ‖

�
1

�
i

±
�

�2 − ��

�
�
i
−

1

�
i

�
i
‖ ≤

1

�
i

� +
�

�2 − ��
≤

�

�
+

�

�2 − ��
.

(17)

‖��
−1

− ��−1‖F =

����
k�

j

�
‖ 1
� j

�j −
1

�j
�j‖

�2

≤

√
k
�
�

�
+

�

�2 − ��

�

Fig. 2   Run-time comparison on 
Imagenet as the number of data 
points increases. The plots have 
been computed setting � = 0.1 
and p = 0.85 and are logarith-
mic w.r.t. the y axis
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1  The code of the experiments is available at https://​github.​com/​
ikiga1/​qadra.
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using the Wald estimator (see the proof of Theorem 8) and 
searched for the most important k.2 In all cases, sampling 
the singular values has been enough to decide how many 
to keep. However, as p increases, the gap between the fac-
tor score ratios decreases and the quality of the estimation 
of k or � decreases. As discussed in Section 3.1, it is pos-
sible to detect this problem using Theorem 9 and solve it 
with a binary search for � (Theorem 10). We have tested 
the quality of the representation by observing the accuracy 
of 10-fold cross-validation k-nearest neighbors with k = 7 
as we introduce error in the representation’s Frobenius 
norm (see Fig. 1). To introduce the error, we have added 
truncated Gaussian noise to each element of �� to have 
‖�� − ��‖ ≤ � =

√
k(� + �) (Lemma 14). The parameter 

� has been estimated using the bound above, choosing the 
error so that the accuracy drops no more than 0.01 and fixing 
� to a number that allows for correct thresholding. Table 1 
summarizes the run-time parameters. The results show that 
Theorems 8, 9, 10 are already advantageous on small data-
sets, while Theorem 12 requires bigger datasets to express 
its speed-up. We have also simulated the creation of the 
state at step 6 of Algorithm 4 to test the average number of 
measurements needed to collect all the singular values as � 
increases. The analysis has confirmed the run-time’s expec-
tations. To end with, we have tested the value of � (Defini-
tion 2, Claim 16) for the MNIST dataset, fixing � = 0 and 
trying p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . We have 
observed that � = 0.97 ± 0.03 , confirming that the run-time 
of Corollary 15 can be assumed Õ(�(�)(k)) for the majority 
of the data points of a PCA-representable dataset.

We point out that more experiments on the run-time 
parameters have been extensively discussed in other 
works that rely on the same parameters (Kerenidis and 
Luongo 2020; Kerenidis et al. 2020b). These works study 
the scaling of the parameters as the dataset size increases, 
both in features and samples, and conclude that the param-
eters of interest are almost constant. In addition to the exist-
ing experiments, we have studied the trend of the run-time 
parameters on the Tiny Imagenet dataset as the number of 
samples scales. While the spectral norm increases, the other 
run-time parameters become constant after a certain number 
of samples. Figure 2 shows that the algorithms discussed in 
Section 3.1 are already of practical use for small datasets, 
while the singular vector extraction routines of Section 3.2 
require larger datasets to be convenient over their classical 
counterparts. We refer the interested reader to the appendix 
for more details about the experiments.

6 � Conclusions

In this paper, we formulate many eigenvalue problems in 
machine learning within a useful framework, filling the 
gap left open by previous literature with new algorithms. 
Our new procedures fill the gap by estimating the quality 
of a representation and extracting a classical description of 
the top-k singular values and vectors. We have shown how 
to use the new tools to extract the information needed by 
SVD-based data representation algorithms, computing theo-
retical error bounds for three machine learning applications. 
Besides identifying the proper quantum tools and formal-
izing the novel quantum algorithms, the main technical dif-
ficulty was analyzing how the error propagates to bound the 
algorithms’ run-time properly.

We do not expect run-time improvements that exceed 
poly-logarithmic factors or constant factors, using similar 
techniques. For non-zero singular values and dense singular 
vectors, the run-time of the extraction can not be smaller 
than kz, as one needs to read vectors of size kz. The �2 
parameter is a tight bound for the �2 norm of the vectors, as 
it is a result of Chernoff’s bound. The parameter � is a tight 
error bound from phase estimation, which is necessary to 
distinguish the singular vectors. � is the condition number of 
the low-rank approximation of the matrix, and it is necessary 
to amplify the amplitudes of the smallest singular values.

As future work, we deem it interesting to explore quan-
tum algorithms for incremental SVD or for datasets whose 
points are available as a data streaming. It might be possi-
ble to reduce the overhead due to tomography and achieve 
greater speed-ups in these settings. It also remains an open 
question whether there are particular applications and data-
set distributions for which the singular vector extraction 
algorithms offer a practical advantage over their classical 
counterparts. Finally, an appropriate resource estimation that 
takes into consideration different quantum hardware archi-
tectures, noise models, and error correction codes is out of 
the scope of this paper and is left for future work.

Appendix A: Experiments

A.1 Factor score ratios distribution in real data

Throughout the work, we often claim that real datasets for 
machine learning are low-rank and that the distribution of 
their singular values is so that a few of them are much bigger 
than the rest. To verify this fact, we have selected five data-
sets for machine learning and investigated the distribution 
of the factor score ratios �2

i∑r

j
�2
j

 in all of them (see Fig. 3). We 

briefly describe the datasets and our pre-processing steps.

2  Note that, in practice, one could also estimate the factor score ratios 
as �

i
=

�
i

‖�‖
F

 . This method should require less measurements: a bound 
on the necessary number of measurements can be obtained via the 
coupon collector’s problem with non-uniform probabilities.
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Fig. 3   Factor score ratios distributions in machine learning datasets

Page 15 of 23     20



Quantum Machine Intelligence (2022) 4:20

1 3

MNIST  MNIST (LeCun et al. 1998) is probably the most used 
dataset in image classification. It is a collection of 70000 
images of 28 × 28 = 784 pixels. Each image is a black and 
white hand-written digit between 0 and 9 and it is paired with 

a label that specifies the digit. Since the images are black 
and white, they are represented as arrays of 784 values that 
encode the lightness of each pixel. The dataset, excluding 
the labels, can be encoded in a matrix of size 70000 × 784.

Fig. 4   Tiny Imagenet run-time parameters
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Fashion MNIST  Fashion MNIST (Xiao et  al.  2017) is a 
recent dataset for benchmarking in image classification. Like 
the MNIST, it is a collection of 70000 images composed of 
28 × 28 = 784 pixels. Each image represents a black and 
white fashion item among {T-shirt/top, Trouser, Pullover, 
Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot}. Each 
image is paired with a label that specifies the item repre-
sented in the image. Since the images are black and white, 
they are represented as arrays of 784 values that encode the 
lightness of each pixel. The dataset, excluding the labels, can 
be encoded in a matrix of size 70000 × 784.

CIFAR‑10  CIFAR-10 (Krizhevsky and et al 2009) is another 
widely used dataset for benchmarking image classification. 
It contains 60000 colored images of 32 × 32 pixels, with the 
values for each of the 3 RGB colors. Each image represents 
an object among {airplane, automobile, bird, cat, deer, dog, 
frog, horse, ship, truck} and is paired with the appropriate 
label. We use all the images, reshaping them to unroll the 
three channels in a single vector. The resulting size of the 
dataset is 60000 × 3072.

Tiny Imagenet  Tiny Imagenet (Le and Yang 2015) is a sub-
set of Imagenet, a large dataset for image classification. It 
is a collection of 100000 colored images of 64 × 64 pixels. 
Tiny Imagenet contains images of 200 object classes. Each 
class is composed of 500 images. We process the dataset to 
have only black and white images. Though the size is consid-
erably less than the one of Imagenet, its complexity is higher 
than CIFAR-10’s. The dataset, excluding the labels, can be 
encoded in a matrix of size 100000 × 4096.

Research Paper  Research Paper (Harun-Ur-Rashid 2018) 
is a dataset for text classification, available on Kaggle. It 
contains 2507 titles of papers together with the labels of 
the venue where they have been published. The labels are 
{WWW, INFOCOM, ISCAS, SIGGRAPH, VLDB}. We 
pre-process the titles to compute a contingency table of 
papers × words : the value of the ith − jth cell is the number 
of times that the jth word is contained in the ith title. We 
remove the English stop-words, the words that appear in 

only one document, and those that appear in more than half 
the documents. The result is a contingency table of size 
2507 × 2010.

A.2 Run‑time parameters

We have computed the run-time parameters on the Tiny 
Imagenet dataset, maintaining the number of features steady 
(i.e., 4096 black and white pixels) and observing how the 
parameters scale as we consider an increasing number of 
data points. The results are shown in Fig. 4. In these plots, 
epsilon is half the gap between the least singular value to 
retain and the one below, leading to correct thresholding, 
while theta is computed as the least singular value to retain. 
Although we would fine-tune � and � better in practice, the 
trend and the order of magnitudes of these parameters would 
remain like our plots. We have computed the best �(�) over 
a finite set of p ∈ [0, 1] , and for any number of data points, 
the Frobenius norm was the most convenient. Finally, in this 
experiment, we did not estimate � . This is because � can only 
be estimated with respect to a specific classification task. We 
did not run classification on this dataset for practical com-
putational reasons. However, the following sections contain 
more run-time parameters for image classification datasets 
on smaller datasets, including estimates for �.

From the plots, we can see that the spectral norm 
increases with the number of data points and that the thresh-
olding epsilon is independent of this quantity. All the other 
parameters asymptotically approach a constant after intro-
ducing a certain number of data points. Our intuition sug-
gests that the number of data points after which the param-
eters are constant depends on the number of classes in the 
dataset. Indeed, this quantity should be related to the amount 
of information that a new data point adds to the dataset. 
The reader might find it weird that the Frobenius norm, in 

Table 2   Results of the estimation of the number of principal compo-
nents to retain. The parameter k is the number of components needed 
to retain at least p = 0.85 of the total variance. The parameter p is 
computed with respect to the estimated k 

Parameter MNIST F-MNIST CIFAR-10

Estimated k 62 45 55
Exact k 59 43 55
Estimated p 0.8510 0.8510 0.8510
Exact p 0.8580 0.8543 0.8514
� 0.0316 0.0316 0.0316

Fig. 5   Introducing some error in the Frobenius norm of a matrix � . 
The error was introduced such that ‖� − �‖ ≤ 0.01 . The figure shows 
the distribution of the error over 2000 measurements
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Fig. 4, slightly decreases towards the end. However, this 
trend is justified by the fact that we compute these param-
eters after the dataset is divided by the spectral norm, and 
this parameter continues to increase (Fig. 4). The fact that 
�(�) is a positive homogeneous function makes it so that 
scaling by the spectral norm does not improve the overall 
run-time. If we did not divide the dataset by the spectral 
norm, we would have seen the effect of its trend in � , � , and 
�(�) . The decrease of � after the normalization corresponds 
to a decrease of � and � , making the overall run-time remain 
the same.

We have used this data to generate the run-time plots 
in the main text (Fig. 2). In that figure, we can see that the 
algorithms of Section 3.1 are already convenient on datasets 
of this size. In contrast, the ones for singular vector extrac-
tion of Section 3.2 require datasets of greater size to show 
their potential.

A.3 Image classification with quantum PCA

To provide the reader with a clearer view of our new algo-
rithms and their use in machine learning, we provide experi-
ments on quantum PCA for image classification. We perform 
PCA on the three datasets for image classification (MNIST, 

Fashion MNIST, and CIFAR 10) and classify them with a 
K-Nearest Neighbors model. First, we simulate the extrac-
tion of the singular values and the percentage of variance 
explained by the principal components (top k factor score 
ratios’ sum) using the procedure from Theorem 8. Then, we 
study the error of the model extraction, using Lemma 14, by 
introducing errors on the Frobenius norm of the representa-
tion to see how this affects the accuracy.

Estimating the number of principal components We shift 
MNIST, Fashion MNIST, and CIFAR-10 to row mean 0 and 
divide them by their spectral norm. We directly simulate 
Theorem 8 to decide the number of principal components 
needed to retain 0.85 of the total variance. For each dataset, 
we classically compute the singular values with an exact 
classical algorithm and simulate the quantum state 

1√∑r

j
�2
j

∑r

i
�i��i⟩ to emulate the measurement process of 

Algorithm 1. After initializing the random object with the 
correct probabilities, we measure it 1

�2
= 1000 times and esti-

mate the factor score ratios with a frequentist approach (i.e., 
dividing the number of measurements of each outcome by 
the total number of measurements). Measuring 1000 times 
guarantees us an error of at most � = 0.03 on each factor 
score ratio. In practice, the error is much smaller. To 

Fig. 6   Classification accuracy of 7-Nearest Neighbor on three machine learning datasets after PCA’s dimensionality reduction. The drop in accu-
racy is plotted with respect to the bound on the Frobenius norm of the difference between the exact data representation and its approximation

Fig. 7   Classification accuracy of 7-Nearest Neighbor on three machine learning datasets after PCA’s dimensionality reduction. The drop in accu-
racy is plotted with respect to the effective Frobenius norm of the difference between the exact data representation and its approximation
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determine the number of principal components to retain, we 
sum the factor score ratios until the percentage of explained 
variance becomes more significant than 0.85. We report the 
results of these experiments in Table 2. We obtained good 
results for all the datasets, estimating no more than three 
extra principal components than needed.

We could further refine the number of principal com-
ponents using Theorems 9, 10. When we increase the per-
centage of variance to retain, the factor score ratios become 
smaller and the estimation worsens. When the factor score 
ratios become too small to perform efficient sampling, it is 
possible to establish the threshold � for the smaller singular 
value to retain using Theorems 9 and 10. Suppose one is 
interested in refining the exact number k of principal com-
ponents, rather than � . In that case, it is possible to obtain it 
using a combination of the Theorems 9, 10 and the quantum 
counting algorithm in time that scales with the square root 
of k (Theorem 11) to find a good trade-off. Once one sets 
the number of principal components, the next step is to use 
Theorem 12 to extract the top singular vectors. To do so, 
we can retrieve the threshold � from the previous step by 
checking the gap between the last singular value to retain 
and the first to exclude.

Studying the error in the data representation We continue 
the experiment by checking how much error in the data rep-
resentation a classifier can tolerate. We compute the exact 
PCA representation for the three datasets and the 10-fold 
Cross-validation error using k-Nearest Neighbors with 7 
neighbors. For each dataset, we introduce errors in the rep-
resentation and check how the accuracy decreases. To simu-
late the error, we perturb the exact representation by adding 
truncated Gaussian error (zero mean and unit variance, trun-
cated on the interval [ −�√

nm
,

�√
nm
] ) to each matrix entry. The 

graph in Fig. 5 shows the distribution of the simulated error 
on 2000 approximation of a matrix � , such that 

‖� − �‖ ≤ 0.1 . The distribution is still Gaussian, centered 
almost at half the bound.

The results show a reasonable tolerance of the errors; we 
report them in two sets of figures. Figure 6 shows the drop of 
accuracy in classification as the error bound increases. Fig-
ure 7 shows the accuracy trend against the approximation’s

Analyzing the run-time parameters As discussed in Sec-
t ion   4 ,  the  model  ex t rac t ion’s  r un- t ime i s 

Õ

��
1

�2
+

kz

�
√
p�2

�
�(�)

�

�
 , where � ∈ ℝ

n×m is PCA’s input 

matrix, �(�) is a parameter bounded by min(‖�‖F, ‖�‖∞) , 
k is the number of principal components retained, � is the 
value of the last singular value retained, � is the precision to 
estimate the factor score ratios, � bounds the absolute error 
on the estimation of the singular values, � bounds the �2 
norm of the distance between the singular vectors and their 
approximation, and z is either n, m depending on whether we 
extract the left singular vectors, to compute the classical 
representation, or the right ones, to retrieve the model and 
allow for further quantum/classical computation. This run-
time can be further lowered using Theorem 10 if we are not 
interested in the factor score ratios. This paragraph aims to 
show how to determine the run-time parameters for a spe-
cific dataset. We enrich the parameters of Table 2 with the 
ones in Table 3, and we discuss how to compute them. From 
the previous paragraphs, it should be clear how to determine 
k, � , � , and p, and it is worth noticing again that 1∕

√
p ≃ 1 . 

Fig. 8   Number of measurements needed to obtain all the k singular values from the quantum state 1√∑r

i
�2
i

∑k

i

�i

�i

��i⟩ , where ‖�i − �i‖ ≤ � , as � 

increases. The benchmark line is k log2.4(k)

Table 3   Run-time parameters

Parameter MNIST F-MNIST CIFAR-10

�(�) 3.2032 1.8551 1.8540
Thrs. � 0.0030 0.0009 0.0006
� 0.1564 0.0776 0.0746
� 0.1124 0.0106 0.0340
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We have computed �(�) over a finite set of values p ∈ [0, 1] 
and have seen that ‖�‖F is the best �(�) (this is true for 
CIFAR-10, Fashion MNIST, Tiny Imagenet, and Research 
Papers as well). To compute the parameter � one should con-
sider the epsilon that allows for a correct singular value 
thresholding. We refer to this as the thresholding � and set it 
as the difference between the last retained singular value and 
the first that is excluded. For the sake of completeness, we 
have run experiments to check how the Coupon Collector’s 
problem changes as � increases. Recall that in the proof of 
Theorem 12, we use 1�

∑k

i

�2
i

�2
i

∑k

i

�
i

�
i

��⟩
i
��⟩

i
��

i
⟩∼ 1√

k

∑k

i
��⟩

i
��⟩

i
��

i
⟩
 to 

say that the number of measurements needed to observe all 
the singular values is O(k log(k)) , and this is true only if � is 
small enough to let the singular values distribute uniformly. 
We observe that the thresholding � always satisfies the Cou-
pon Collector’s argument, and we have plotted the results of 
our tests in Fig. 8.

Furthermore, we have computed � by using the fact that 
‖� − �‖ ≤

√
k(� + �) (Lemma 14). We have computed an 

estimate for � by inverting the equation and considering the 
thresholding � . In particular, we have fixed ‖� − �‖ to the 
biggest value in our experiments so that the accuracy doesn’t 
drop more than 1%.

These results show that Theorem 8, 9, and 10 can already 
provide speed-ups on datasets as small as the MNIST. Even 
though their speed-up is not exponential, they still run 
sub-linearly on the number matrix entries even though all 
the entries are taken into account during the computation, 
offering a polynomial speed-up with respect to their tradi-
tional classical counterparts. On the other hand, Theorem 12 
requires bigger datasets. These algorithms are expected to 
show their full speed-up on big low-rank datasets that main-
tain a good distribution of singular values. As a final remark, 
the parameters have similar orders of magnitude.

Appendix B: Related works

One of the first papers that faced the problem of performing 
the eigendecomposition of a matrix with a quantum com-
puter is the well-known Lloyd et al. (2014), which leveraged 
the intuition that density matrices are covariance matrices 
whose trace has been normalized. In this work, the authors 
assume to have quantum access to a matrix in the form of a 
density matrix and develop a method for fast density matrix 
exponentiation that enables preparing the eigendecomposi-
tion of the input matrix in time logarithmic on its dimen-
sions. However, this algorithm requires the input matrix to 
be square, symmetric, and sparse or low-rank. More recently, 
the works of Kerenidis et al. on recommendation systems 
(Kerenidis and Prakash 2017) and least-squares (Kerenidis 

and Prakash 2020a) have used a different definition of quan-
tum access to a matrix (the one used throughout this work) 
and defined the task of singular value estimation. Their 
singular value decomposition scales better with respect 
to the error parameters, eliminates the dependency on the 
condition number, and does not have requirements on the 
input matrix. Several recent works, such as Lin et al. (2019); 
Rebentrost et al. (2018); Gu et al. (2019), have improved or 
extended the quantum singular value decomposition tech-
niques. Almost none of them have provided a formal analysis 
of an algorithm that ensures classical access to the singu-
lar vectors, values and the amount of variance explained by 
each. There have also been attempts at creating near-term 
quantum algorithms for singular value decomposition. These 
works propose quantum circuits for singular value decompo-
sition of quantum states on noisy intermediate-scale quan-
tum (NISQ) devices using variational circuits (Bravo-Prieto 
et al. 2020; Wang et al. 2020c). However, the complexity 
of such methods is unclear, and recent works have ques-
tioned the efficacy of the speed-ups of variational quantum 
algorithms due to (entanglement and noise-induced) barren 
plateaus in the optimization landscape (Wang et al. 2020a; 
Marrero et al. 2020).

In classical computer science, most diffused implementa-
tions of PCA, CA, and LSA available (Pedregosa et al. 2011) 
relays on ARPACK (Lehoucq et al. 1998) or similar pack-
ages, which implement improvements of the Lanczos 
method, like the Implicitly restarted Arnoldi method 
(IRAM) (Sorensen 1997), an improvement upon the simple 
Arnoldi iteration, which dates back to 1951 (a more general 
case of Lancsoz algorithm, which works only for Hermitian 
matrices). The run-time of these algorithms is bounded by 
O(nmk

ln(m∕�)√
�

) , where � is an approximation error related to 
the relative spectral gap between eigenvalues (Saad 1992).

The realization of quantum procedures that provide expo-
nential speed-ups in linear algebra tasks has given inspira-
tion for the realization of classical quantum-inspired algo-
rithms that try to achieve the same run-time as their quantum 
counterparts. The process of transforming a quantum algo-
rithm into a classical algorithm with a similar speed-up is 
usually referred to as “dequantization”. In our case, the com-
parison with dequantized algorithms is often not easy, as 
they solve problems that are different from ours. Most of 
these works are based on a famous algorithm by Frieze, 
Kannan, and Vempala, which computes a low-rank approxi-
mation of a matrix in time that is sub-linear in the number 
of entries (see Frieze et al. 2004; Chia et al. 2020; Arrazola 
et al. 2020). Such algorithms promise exponential speed-ups 
over the traditional SVD algorithm for low-rank matrices. 
However, the high polynomial dependency of the run-times 
on the condition number, the rank, and the estimation error 
makes them advantageous only for matrices of extremely 
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large dimensions, with low ranks and small condition num-
bers. The research described in Arrazola et  al. (2020) 
observed that the dependencies like O

�‖�‖6
F

�6

�
 are far from 

being tight in real implementations, but still order of mag-
nitudes slower than the best classical algorithms.

Concomitantly to our work, a new important result 
(Chepurko et al. 2020) was able to lower the complexity of 
these dequantizations by better leveraging all the previous 
literature of classical algorithms in randomized linear alge-
bra and re-framing them into a more complete mathematical 
framework. Indeed, previous sample-based dequantizations 
were just doing a form of leverage score sampling. These 
new algorithms seem to be tighter than previous results and 
offer a better comparison with quantum algorithms, solving 
problems related to ours. While we believe that it is not pos-
sible to have classical algorithms with run-times compara-
ble to the ones of Theorems 8, 9, 10 (see the relationships 
between LLSD, SUES, and DQC1 in Cade and Montanaro 
(2018)) and Corollaries 15 and 17, we have found that the 
work of Chepurko et al. (2020) may question the practical 
advantage of our Theorem 12 over a classical counterpart. 
At first sight, their Theorem 33 might seem relevant for this 
work, as it provides a set of linearly independent rows of 
the input matrix. We stress that this problem is not related 
to finding the singular vectors provided by SVD, which are 
linearly independent and orthonormal. Moreover, even after 
further orthonormalization processing (e.g., Gram-Schmidt), 
the computed row basis wouldn’t necessarily be the one pro-
vided by SVD. This is why we cannot compare the run-
time of this procedure to our Theorem 12. On the other 
hand, Theorem 37 is more similar to our Theorem 12 but 
still aims to solve a different problem. While ours provides 
estimates ‖�i − �i‖ ≤ �,∀i ∈ [k] (which we recall are also 
relative-error estimates, as ‖�i‖ = 1 ), their Theorem 37 pro-
vides a rank-k projector matrix �(k) , with orthonormal col-
umns, such that ‖� − ��(k)�(k)T‖2

F
≤ (1 + ��)‖� − �(k)‖2

F
 

in time Õ(nnz(�) + kw−1m

��
+

k1.01m

��2
) . While it is easy to see 

that � → � as � → 0 , it is not easy to see how ‖� − �‖F 
varies as � varies and that becomes even less clear if we 
are interested in the error on a specific singular vector. If 
the run-time of this algorithm is shown to be better than its 
quantum equivalent, it would still be great to include it in 
our framework instead of Theorem 12 and continue to take 
advantage of the speed-ups of the other quantum procedures. 
One downside of using the dequantized subroutines would 
be that, in general, the Õ(nnz(�)) data pre-processing step 
is different from the one required to provide efficient quan-
tum access. Even though it can be possible that a classical 
algorithm could extract the singular vectors with a run-time 
comparable to the quantum one, using it would require pay-
ing additional costs both in time and space. Those costs arise 
from the need for an ad hoc data structure that would not 

be adequate to provide competitive speed-ups with respect 
to the other available quantum machine learning and data 
analysis algorithms. We believe that both the classical and 
quantum versions of singular vectors extraction may be used 
in the future, depending on the computational capabilities 
available to the interested data analysts.

B.1 Principal component analysis

Probably no other algorithm in ML has been studied as much 
as PCA, so the literature around this algorithm is vast (Halko 
et al. 2011; Jolliffe and Cadima 2016). To mention an improve-
ment upon the standard Lanczos method for PCA (Wang 
et al. 2020b), the authors used more Lanczos iterations to 
improve the numerical stability of PCA, by obtaining a better 
description of the Krylov subspace (i.e., more iterations help 
obtain a more orthonormal base). As mentioned, the problem 
of PCA has been studied previously within the model of quan-
tum computation. Lin et al. (2019); He et al. (2020) focus on 
a circuit implementation of qPCA, whose run-time has been 
superseded by more recent techniques used in this paper. The 
work of Yu et al. (2019) faces the problem of performing PCA 
for dimensionality reduction on quantum states achieving an 
exponential advantage over the best known classical algorithms. 
However, their algorithm is somewhat impractical, due to the 
overall error dependence, which can be of Õ(�−5) . Furthermore 
they use old Hamiltonian simulation techniques, superseded 
by the techniques that we use in our paper. To our knowledge, 
there are no works that provide a theoretical analysis of the 
run-time for the procedure needed to select the number of sin-
gular vectors needed to retain enough variance, obtain a clas-
sical description of the model, and map new data points in the 
new feature space with theoretical guarantees on the run-time 
(which we believe cannot be improved, as in this work we show 
that the run-time for this mapping is almost constant).

B.2 Correspondence analysis

While correspondence analysis has been really popular in 
the past, so much that entire books have been written about 
it (Clausen 1998; Greenacre 2017), it seems to have become 
out of fashion in the last decades, probably overshadowed 
by the wave of results in deep learning. The novel formula-
tion of Hsu et al. (2019) gives a new perspective of CA. The 
authors connects correspondence analysis to the principal 
inertia components theory, making it relevant also in tasks 
that concern privacy in machine learning (Wang et al. 2019). 
As said before, similarly and independently from us, Koide-
Majima and Majima (2021) have extended the dequantized 
subroutines to perform canonical correspondence analysis. 
This algorithm is not expected to beat the performance of 
our quantum algorithm, let alone the performance of the best 
classical algorithm for CA.
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B.3 Latent semantic indexing

LSA was first introduced in Deerwester et al. (1990), which 
spurred a flurry of applications (Landauer et al. 2013). Some 
notable works are streaming and/or distributed algorithms 
for incremental (LSA Řehrůřek 2011; Cavanagh et al. 2009; 
Zhang et al. 2017). While these work might offer inspiration 
for new quantum algorithms, their distributed nature make it 
an unfair comparison with a single-QPU quantum algorithm. 
LSA with neural networks has also been explored in the past 
years (Yu et al. 2008), albeit without guarantees on the run-
time or the approximation error. During the preparation of 
this manuscript we discovered a previous work on quantum 
LSA, which pointed at the similarities between quantum 
states and LSA, albeit without offering any practical algo-
rithm (González and Caicedo 2011).
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