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The Hasse-Weil Zeta Function
of a Quotient Variety

1. Introduction

Let V/Q be a smooth projective variety,

G ≤ AutQ(X) be a finite group of automorphisms,

W = G\V the quotient variety.

Note: W is usually a singular variety (if dimV > 1).

Questions: 1) How is the Hasse-Weil zeta-function ζW (s) of W
related to ζV (s)?

2) How can we determine ζW (s) (if ζV (s) is “known”)?

3) What properties does ζW (s) have? Meromorphic continua-
tion? Tate Conjecture?

Motivating Example: Let V = XN×XN product surface and
G = ∆GN ≤ GN ×GN diagonal subgroup, where:

XN is the modular curve classifying level N structures,

GN = GL2(Z/NZ)/{±1} ≤ AutQ(XN),

∆GN = {(g, g) : g ∈ ΓN} the diagonal subgroup of GN .

Thus: W = ZN := ∆GN\V is the modular diagonal quotient
surface of level N .

Remark: For N = p (prime), ζZp(s) was studied by S. Mohit in
his thesis (Queen’s, 2001).
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2. The Hasse-Weil Zeta Function

Let X/Q be a projective variety of dimension d, and

X/Z a projective model of X/Q.

Then its zeta function is defined by the Euler product:

ζX (s) :=
∏
x∈|X |

(1−N(x)−s)−1 =
∏
p

ζXp(s),

which converges absolutely for <(s) > dimX = d + 1. Here
Xp = X ⊗ Fp is the fibre of X over p, and ζXp(s) is the usual
zeta function of the projective variety Xp/Fp.
If X ′/Z is another projective model ofX/Q, then ζX ′(s) agrees
with ζX (s) up to finitely many Euler factors, i.e.

ζX (s) ∼ ζX ′(s).

Thus we can define the zeta function of X/Q up to finitely many
Euler factors by

ζX(s) ∼ ζX (s),

where X/Z is any projective model of X/Q.

Remark. To study the analytic properties of ζX(s), it is useful to
factor it into finitely many factors which have (conjecturally)
a functional equation. More precisely, we expect that

ζX(s) ∼
2d∏
m=0

Lm(s)(−1)m,

where each Lm(s) is the L-function of a suitable rational Galois
representation, but this is known only if X/Q is smooth.
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3. Rational Galois Representations

Definition. A Galois representation (of degree n) is a system
ρ = {ρ`}`∈P of `-adic representations

ρ` : GQ := Gal(Q/Q)
cont→ AutQ`(V`), dimQ`

V` = n.

Following Taniyama, such a representation is called rational if:

(∗) ∃ finite set S ⊂ P (= set of all primes) such that if p ∈ P \S
and if ` 6= p, then

1) ρ` is unramified with respect to p;

2) the characteristic poly. χp(T ) = det((1−Tρ`(Frobp)−1)|V`)
has coefficients in Q and is independent of `.

Note: If ρ is a rational Galois representation, then its L-function
is

L(ρ, s) =
∏
p/∈S

χp(p
−s)−1.

Example 1) If ρ = 1G
Q

is the trivial representation, then ρ is
rational and L(1G

Q
, s) = ζ(s) is the usual Riemann ζ-function.

2) IfX/Q is any projective variety, then for anym ≥ 0 we have
the Galois representation ρX,m = {ρX,m,`} which is defined by
the Galois action on the m-th `-adic etale cohomology group
V` = Hm

et (X ⊗Q,Q`). Moreover, we have:

Fact: If X/Q is smooth, then

1) ρX,m is rational, ∀m ≥ 0 (Deligne, 1974);

2) ζX(s) ∼
∏2d

m=0L(ρX,m, s)
(−1)m (Grothendieck)
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4. Rational A-Module Structures

Observation: The Galois representations ρX,m come equipped
with extra structure which can be used to construct other Ga-
lois representations.

Definition. Let A be a ring. A Galois representation ρ = {ρ`}
is said to have an A-module structure if each V` has a right
A⊗Q`-module structure such that

(ρ`(σ)v)a = ρ`(σ)(va), ∀σ ∈ GQ, a ∈ A.

Thus, each V` has a (Q`[GQ], A⊗Q`)-bimodule structure.

Then: for any (f.g.) left A-module M ∈ AMod, each V`⊗AM :=
V` ⊗A⊗Q` (M ⊗ Q`) is a GQ-module and hence defines an `-
adic representation ρ` ⊗A M . We therefore obtain a Galois
representation ρ⊗AM = {ρ` ⊗AM}.

Examples: 1) For any projective variety X/Q with group G ≤
AutQ(X), each etale Galois representation ρX,m has a A =
Q[G]-module structure because G acts on V` by functoriality.

2) If X/Q is smooth, then the Chow group C(X) := Ad(X ×
X) has a ring structure which induces (by functoriality) a
C(X)-module structure on each ρX,m.

Definition. An A-module structure on ρ is called rational if ρ⊗A
M is a rational Galois representation, for all M ∈ AMod.

Examples: 1) IfX/Q is a smooth curve, then C(X) = End(JX),
and the C(X)-module structure on ρX,m is rational.
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2) It is conjectured that the C(X)-module structure on ρX,m
is rational for any smooth X/Q.

Indeed, this conjecture is a basic assumption in any discussion
of motivic L-functions; cf. Deligne, 1979.

Proposition 1. Let A/Q be an abelian variety and let E =
End0(A). Then for every E-module M ∈ EMod there is an
abelian variety AM/Q such that

ρA,m ⊗EM ' ρAM ,m, ∀m ≥ 0;

in particular, the E-module structure on ρA,m is rational.

Proof (Sketch). Since E is semi-simple, we can reduce to the
case that M = Eε is an ideal (generated by an idempotent).
If rE(M) = (1 − ε)E is the right annihilator of M , then the
above identity holds with AM = A/rE(M)A.

By Deligne (or by Weil for m = 1), ρAM ,m is rational, so the
assertion follows.
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5. Quotient Varieties

Theorem 2. Let X/Q be a smooth projective variety, and Y =
G\X the quotient of X by a finite group G ≤ AutQ(X).

(a) For every m ≥ 0 we have

ρY,m ' ρGX,m := ρX,m ⊗Q[G] Q[G]εG, where εG =
1

|G|
∑
g∈G

g.

(b) Each ρY,m is a rational Galois representation and we have

ζY (s) ∼
2d∏
m=0

L(ρY,m, s)
(−1)m =

2d∏
m=0

L(ρGX,m, s)
(−1)m.

Proof (Sketch). (a) This follows from the fact that

Hm
et (Y ⊗Q,Q`) ' Hm

et (X ⊗Q,Q`)
G = Hm

et (X ⊗Q,Q`)εG.

(b) Pick a model X/Z on which G acts, and put Y = G\X .
Then for almost all p the fibre Xp is smooth and Yp = G\Xp.
If also p 6= `, then we have analogously:

Hm
et (Yp ⊗ Fp,Q`) ' Hm

et (Xp ⊗ Fp,Q`)
G = Hm

et (Xp ⊗ Fp,Q`)εG.

Thus, by Deligne’s result (applied to Xp), all (reciprocal) eigen-
values of Frobenius acting on Hm

et (Yp ⊗ Fp,Q`) have absolute
value pm/2. Thus, by an argument similar to the smooth case,
one concludes from Grothendieck’s formula that (b) holds.

Thus: ρY,m is an explicit rational subrepresentation of ρX,m. How
can we relate its L-function to that of ρX,m?
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6. Modular Curves

Let X = XΓ/Q be a modular curve of level N

⇒ (XΓ ⊗ C)an = Γ\H∗,
Ω = ΩΓ := H0(X,Ω1

XΓ/Q
) ' S2(Γ,Q),

E = End0(JX) ⊂ EndQ(Ω)op

T
′ = Q[{Tn : (n,N) = 1}] ⊂ E, the Hecke algebra

Recall: Atkin-Lehner theory ⇒ every (f.g.) T′ ⊗ C-module M
has the form

M '
⊕

f∈N (Γ)

(Cf )mf (M),

where N (Γ) is the set of normalized newforms of weight 2 of
all levels M |N .

Notation. If M is a T′ ⊗ C-module, then put

L(M, s) =
∏

f∈N (Γ)

L(f, s)mf (M),

where (as usual) L(f, s) =
∑
an(f )n−s, if f has Fourier ex-

pansion f =
∑
an(f )qn.

Recall: If f ∈ N (Γ), then by Shimura (1971) there is an abelian
variety Af such that

L(Af , s) := L(ρAf ,1, s) ∼ L(Mf , s), where Mf =
∑
σ

Cfσ.

The following theorem may be viewed as an extension of the
above result.
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Theorem 3. If M ∈ EMod, then M ′ := Ω⊗EM ∈ T
′Mod and

L(ρX,1 ⊗EM, s) ∼ L(M ′ ⊗ C, s).(1)

Conversely, if M ′ ∈ T
′Mod, then M = HomT

′(T′,M ′) ∈
EMod and (1) holds.

Key Point: E is the centralizer of T′ in Ω, i.e. CΩ(T′) = E.

Note: The proof of this fact uses results of Ribet (1980); cf. my
CMS lecture (Winter 2004).

Application to the modular curve XN :

Let XN = X(N)⊗Q(ζN) (viewed as a curve/Q)

Ω := H0(X,Ω1
XN/Q

) = ΩΓ(N) ⊗Q(ζN)

JXN = ResQ(ζN )/Q(JX(N) ⊗Q(ζN)), the Weil restriction

E = End0(JXN ) ⊂ EndQ(Ω)op

Lemma. There exists an embedding T′ := T′X(N) ↪→ E such that

Z(E) = T′ and CΩ(T′) = E.

Theorem 4. The analogue of Theorem 3 holds for X = XN : if
M ∈ EMod, then M ′ := Ω⊗EM ∈ T

′Mod and

L(ρXN ,1 ⊗EM, s) ∼ L(M ′ ⊗ C, s).(2)

Corollary. For any subgroup G ≤ GN := GL2(Z/NZ)/{±1}
we have

L(ρG\XN , s) ∼ L(ΩG, s).
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7. Quotients of the Product Surface XN ×XN

Observation: If X, Y are smooth/Q and G ≤ AutQ(X × Y ),
then the zeta function of the quotient surface Z = G\(X×Y )
is a product/quotient of L-functions of the form

L((ρX,r ⊗ ρY,s)G, s),

for by the Künneth formula and Theorem 2 we have that

ρG\(X×Y ),m '
⊕
r+s=m

(ρX,r ⊗ ρY,s)G.

Note that if X and Y are curves, then the only really new term
is L((ρX,1 ⊗ ρY,1)G, s).

Assume: from now on that X = Y = XN .

Notation. Let T′ = T′X(N) and write T′
C

= T′ ⊗ C.

If M is any T′
C
⊗CT′C-module, then for f, g ∈ N = N (Γ(N)),

let mf,g(M) denote the multiplicity of the T′
C
⊗C T′C-module

C(f ⊗ g) in M . Moreover, put

L(M, s) =
∏
f,g∈N

L(f ⊗ g, s)mf,g(M),

where L(f ⊗ g, s) denotes the tensor product (or Rankin con-
volution) of f and g:

L(f ⊗ g, s)=L(πf×πg, s)=L(2s, χfχg)
∑

an(f )an(g)n−(s+1)

where χf and χg denote the Nebentypus characters of f, g.
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Theorem 5. In the situation of Theorem 4, let M be an E⊗E-
module. Then M ′ := (Ω ⊗ Ω) ⊗E⊗EM is a T′ ⊗ T′-module
and we have

L((ρXN ,1 ⊗ ρXN ,1)⊗E⊗EM, s) ∼ L(M ′ ⊗ C, s).

In particular, for any G ≤ GN ×GN we have

L((ρXN ,1 ⊗ ρXN ,1)G, s) ∼ L((Ω⊗ Ω)G ⊗ C, s).

Note: There are other interesting subrepresentations of ρ⊗2
XN ,1

which
are not of the above form. For example, the symmetric square
Sym2(ρXN ,1) cannot be obtained by this method since it is not
an E⊗ E-module.

Corollary. The zeta-function of the modular diagonal quotient
surface ZN = ∆GN\(XN ×XN) is given by

ζZN (s) ∼ [ζ(s)ζ(s− 1)2ζ(s− 2)]φ(N)L((Ω⊗ Ω)∆GN , s).

In particular, ζZN (s) has a meromorphic continuation to the
whole complex plane.

Remark. Since ZN is a regular surface, i.e. b1(ZN) = 0, it follows
that L(ρZN ,1, s) = L(ρXN ,3, s) = 1. This is the reason that
ζZN (s) has no “denominators”.


