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ABSTRACT 
 

During the last decades, remote sensing sensors have undergone a rapid development in terms of 

both data quantity and characteristics. With advancements in remote sensing technology, the use 

of satellite images in disparate fields has received a tremendous boost. Few of these include 

generation of 3D models and topographic maps, early warning systems, urban growth, damage 

assessment, crisis information management and disaster mitigation. These applications normally 

utilize image processing techniques like image fusion, change detection, GIS overlay operations or 

3D visualization which requires registered images procured from different sources. 

 

Image registration is a fundamental task in remote sensing image processing that is used to 

match two or more images taken, for example, at different times, from different sensors or from 

different view points. A lot of automation has been achieved in this field but ever sprouting data 

quality and characteristics compel innovators to design new and/or improve existing registration 

techniques. In literature, image registration methodologies are broadly classified into intensity and 

feature based approaches. In this dissertation, we have evolved and combined two distinct 

techniques from each of the broad classes to extend their applicability for answering contemporary 

challenges in remote sensing image registration. 

 
Generally, remote sensing applications need to accommodate images from different 

sensors/modalities; reason might be specific application demands or data availability. For example 

in case of a natural calamity, decision makers might be forced to use old archived optical data with 

a newly acquired (post-disaster) SAR image. Misalignment within procured SAR and optical 

imagery (both orthorectified) in such scenarios is a common phenomenon and these registration 

differences need to be taken care of prior to their joint application.  Considering the recently 

available very high resolution (VHR) data available from satellites like TerraSAR-X, Risat, 

IKONOS, Quickbird, ALOS etc, registering these images manually is a mammoth task (due to 

volume and scene characteristics). Intensity based similarity metrics like mutual information (MI) 

and cluster reward algorithm (CRA) have been found useful for achieving registration of SAR-

optical data from satellites like Landsat, Radarsat, SPOT, and IRS but still their application for 

high resolution data especially acquired over urban areas is limited. In this dissertation, we 

analyze in detail the performance of MI for very high resolution remote sensing images and 
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evaluate (feature extraction, classification, segmentation, discrete optimization) for improving its 

accuracy, applicability and processing time for VHR images (mainly TerraSAR-X and IKONOS-

2) acquired over dense urban areas. Further, on basis of the proposed modifications, we also 

present a novel method to improve the sensor orientation of high resolution optical data 

(IKONOS-2) by obtaining ground control through local image matching, taking geometrically 

much more accurate TerraSAR-X images as a reference. 

 

Apart from the joint application demands of SAR and optical imagery, the improved spatial 

resolution of SAR images from latest and future satellites like TerraSAR-X and TanDEM-X, is set 

to make a paramount impact on their usability. Here, the lack of any proven point feature detection 

and matching scheme for multisensor/multimodal SAR image matching encourages us to review 

the advancements in the field of computer vision and extend the applicability of Scale Invariant 

Feature Transform (SIFT) operator for SAR point feature matching. We have analysed the feature 

detection, identification and matching steps of the original SIFT processing chain. After thorough 

analysis, we propose steps to counter the speckle influence which deteriorates the SIFT operator 

performance for SAR images, in feature identification we evaluate different local gradient 

estimating techniques and highlight the fact that giving up the SIFT’s rotation invariance 

characteristic increases the potential number of matches. In the feature matching stage we propose 

to combine MI and the SIFT operator capabilities for effective results in challenging SAR image 

matching scenarios. Further, our results indicate that a significant speedup is achieved on 

incorporating above suggested changes to the original SIFT processing chain.  
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CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 GENERAL 

 

During the last decades, remote sensing sensors have undergone a rapid development in terms of 

both data quantity and characteristics. The Earth surface is now regularly being observed by 

sensors providing data in different wavelength domains, at different spatial and temporal 

resolutions. With this enormous increase in availability and quality of remote sensing data 

products, the use of remote sensing techniques for diverse applications has received a 

tremendous boost over the past few years. Remote sensing techniques have found applications in 

important areas like traffic studies, treaty and border monitoring, agricultural studies, generation 

of 3D models and topographic maps, early warning systems, urban growth, damage assessment 

and disaster mitigation. Specifically, remote sensing images have become one of the major 

sources of crisis information in the events of catastrophes and natural disaster. The practical 

utility of remote sensing data products and techniques can be seen from the activities of the 

centre for satellite based crisis information (ZKI) supported by the German Aerospace Centre 

(DLR)1. The chief objective of ZKI is rapid acquisition, processing and analysis of satellite data 

and the provision of satellite-based information products on natural and environmental disasters, 

for humanitarian relief activities, as well as in the context of civil security. In its short existence 

ZKI has utilized satellite imagery to generate invaluable information for decision makers in 

different catastrophic events like floods, hurricanes, oil spill, earthquakes, landslides and many 

more in different countries across the globe. For detailed information about the ZKI activities 

and the utility of remote sensing imagery in events of different natural disasters, the interested 

readers are encouraged to visit the ZKI homepage2.  

 

                                                 
1 www.dlr.de 
2 http://www.zki.dlr.de/intro_en.html 
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Normally, remote sensing applications need to accommodate images from different 

sensors/modalities; reason might be specific application demands or data unavailability. For 

example in case of a natural calamity, decision makers might be forced to use an old archived 

optical data with a newly acquired (post disaster) SAR image. Images acquired both by the 

passive optical sensors and active SAR sensors alone and in combination are major sources for 

crisis information management. In particular, the SAR sensors active nature gives them the 

capability to see through clouds and to acquire images at night which might be the only possible 

option during a catastrophic event. However, images acquired by SAR sensors have very 

different characteristics from normally used optical sensor images. On top of the very different 

geometry (sideways looking and measuring distances) from their optical counterparts (downward 

looking and measuring angles), images acquired by SAR sensors show a high amount of speckle 

influence caused by random backscatter of the microwaves emitted by the active sensor. Further, 

combined application of data from different sensors requires georeferenced and fine co-

registered images for an accurate and successful analysis. Although, latest satellites provide the 

end user already georeferenced and orthorectified data products but still registration differences 

exist between various data sets acquired from different sources and agencies even after the 

orthorectification process. These differences need to be taken care of through quick automated 

registration techniques before using the images in different applications like cartographic 

mapping, change detection, image fusion, and 3D visualization and GIS overlays.  

 

Image to image registration is a fundamental task in remote sensing image processing that is 

used to match two or more images taken, for example, at different times, from different sensors 

or from different view points. Typically, all remote sensing based applications require the 

registration of images as an intermediate step. Specific examples of applications where image 

registration is a significant component include (Brown, 1992): 

 

i. Matching a target with a real time image of a scene for target recognition. 

ii. Monitoring global land use and/or land cover through satellite images. 

iii. Matching stereo images to recover shape for autonomous navigation. 

iv. Integrating various remotely sensed images obtained from different sensors in different 

regions of the electromagnetic spectrum. 
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v. Inferring 3D information from images in which either the camera or the objects in the 

scene have moved. 

vi. Multi-source classification. 

 

Normally, the problem of registration problem can be divided into three overlapping categories: 

 

i. Multimodal registration: Registration of images of the same scene acquired from 

different sensors.  The problem here is to integrate images with different modalities, e.g. 

microwave and optical with an objective to benefit fusion and classification applications. 

Multimodal registration for remote sensing images also incorporates another category of 

registration known as the viewpoint registration as normally different modality remote 

sensing sensors also have a different view point or look angle during scene acquisition. 

Further, very different sensor acquisition principles and geometries (like very high 

resolution SAR and optical) can also complicate this type of registration.  

 

ii. Template registration: To find a match of a reference pattern in an image. This kind of 

registration normally becomes useful for interpretation of well defined scenes such as 

airports, lakes etc, also useful to locate and identify well defined features and objects 

 

iii. Temporal registration: Registration of images of same scene taken at different times or 

under different conditions. This category of registration has huge applications in planned 

change detection studies when same sensor images (mostly) are used for critical tasks of 

natural resource monitoring, surveillance of nuclear plants and urban growth monitoring.  

 

1.2 PROBLEM STATEMENT 

 

As stated earlier, remote sensing images are frequently used for a variety of applications such as 

image fusion (Pohl and Genderen, 1998), change detection (Dai and Khorram, 1998; Li et al., 

2006), mosaic formations (Xin et al., 2007), traffic monitoring (Reinartz et al., 2006a), urban 

damage detection and mapping (Stramondo et al., 2007) and DEM generation (Hoja et al., 2006). 

Image to image registration is a prerequisite task in most of these applications, though the nature 



 28

and accuracy of registration may vary from one application to other.  Currently, multimodal 

image registration is an established semi automatic process3 in the form of a feature based 

technique available in commercial software like Erdas Imagine and ENVI. Human intervention 

is needed to select and match the tie points on the reference and the input images. Then, by 

taking into account the distortions that may be present in the images, a spatial transformation is 

estimated. The input image is then transformed according to the estimated transformation using a 

suitable resampling technique. Recently, Erdas Imagine from Leica Geosystems has introduced 

automated point feature matching capabilities but then it is still very much limited to same sensor 

images and performs matching using cross correlation and least squares method.  Although, 

manual measurement of control points can sometimes achieve better accuracy to outperform an 

automated technique (Reinartz et al., 2009) but the pit falls of the described process lie in: 

 

i. The availability of sufficient number of tie points, as some scenes may not have enough 

well defined features to use as tie points for an accurate registration. 

ii. Time taken to identify and mark the tie points. 

iii. The accuracy with which the points are selected and matched is dependent upon the 

operator’s capability and experience. 

 

Moreover, for latest remote sensing images from sensors like IKONOS and TerraSAR-X 

(Krieger et al., 2007), the elaborated process due to the limitations of human visual interpretation 

becomes much more labour intensive (especially in dense urban areas). The problem complexity 

can be visualized in Figure 1.1, depicting a road intersection imaged by IKONOS-2 and 

TerraSAR-X sensors. Due to fine minute details (like cars, small city structures) now available 

with the high resolution sensors, the idea of finding the same control/tie point (road 

intersections) becomes much more challenging than ever before. Although the fine minute 

details to a certain extent can be avoided by down sampling the images but then the control 

points should be marked accurately enough so that the resulting registration accuracy is in the 

order of originally available spatial resolution. Keeping in mind the shortcomings of the above 

process and the upcoming new challenges, the development of automatic image to image 

                                                 
3 http://gi.leica-geosystems.com/documents/pdf/IMAGINEAutoSync_WhitePaper_Feb06.pdf 
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registration techniques especially suitable for high resolution imagery is encouraged. The need of 

automatic image registration is further strengthened by considering the fact that there has been a 

tremendous increase in data volume and in times to come processing large volumes of earth 

observation data is set to become a normal day activity. 

 

 
Figure 1.1:  A road intersection in the City of Sichuan, China as imaged by (pan) IKONOS-2 (left) and (high 

resolution spot light) TerraSAR-X (right) sensors. High amount of minute details now visible with modern day 
sensors make the task of manually matching the control points more complicated than ever before (Suri and 

Reinartz,  2010). Images with 1 m pixel spacing are displayed at 175% zoom.  
 

In general, a lot of work has been done in this field to develop registration schemes for 

optical images of similar spatial and spectral radiometric resolution. For registration of optical 

imagery both the control point detection and their subsequent matching have been automated by 

the remote sensing community over the past few years. Automated control point detection in 

optical imagery is very much possible using various edge (Canny, 1986) and corner detectors 

(Harris and Stephens, 1988; Förstner and Gülch, 1987). Further, for matching the already 

detected control points, techniques like least squares matching (Grün, 1985), cross correlation 

and moment invariants (Hu, 1962) have been successfully utilized. Lately, techniques from the 

field of computer vision in form of rotation and/or scale invariant feature detectors like SIFT 

(Lowe, 2004), Harris-Laplace (Mikolajczyk and Schmid, 2001), SURF (Bay et al., 2008) have 

proven their usefulness for detecting and matching homologous points in digital camera images 

(optical images acquired under lab conditions) but the applications of these techniques in the 

field of remote sensing image processing till date is very limited. In general, failure or 

inefficiencies of these mentioned techniques for images, specifically involving SAR-optical and 
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SAR-SAR image pairs necessitates further research and development in the field of remote 

sensing image registration. 

 

Extracting common features from multimodal remote sensing SAR and optical images 

acquired with disparate acquisition principles, noise characteristics and  sensor geometry, is a 

tedious task therefore intensity based registration techniques are preferred over the feature based 

ones. A lot of work has recently been reported on intensity based image registration, mostly 

concentrating on biomedical images (Pluim et al., 2003; Maes et al., 1997). Since, the 

characteristics of remote sensing images are different from biomedical images, the developed 

techniques may not be directly applicable and hence need to be suitably modified.  For remote 

sensing images, similarity metrics namely cluster reward algorithm and mutual information have 

shown some effectiveness by showing capabilities of automatically aligning medium resolution 

images (5-15 m) through a rigid body transformation (Inglada and Giros, 2004; Chen et al., 

2003a-b; Inglada, 2002). Still, their application to achieve registration amongst high resolution 

SAR and optical imagery having heterogeneous land cover classes (like urban, agricultural 

fields) needs to be thoroughly explored and analysed. The impact of distance measuring SAR 

sensor and the angle measuring optical sensors offer difficulties to intensity based metrics 

especially in urban areas and therefore certain modifications might be mandatory for their 

successful usage to high resolution imagery. Another important constraint related to the intensity 

based techniques is the registration turn around time for large remote sensing datasets which 

requires considerable attention before utilizing these metrics for any practical remote sensing 

application. 

 

Reviewing feature based registration, till date there is no stable established technique for 

matching and registration of multimodal SAR image pairs. The inherent influence of 

multiplicative speckle makes feature detection and matching a complicated task. The 

complexities of different incidence and aspect angles during image acquisition offer further 

challenges to various established feature detectors and matching schemes. Looking into the 

advances in the field of computer vision, the scale invariant feature transform (SIFT) operator 

invented in (Lowe, 1999) and revised in (Lowe, 2004) by David Lowe is a feature detection 

algorithm which shows great potential for feature based registration of images with various 



 31

differences. The SIFT features are accredited to be invariant to image scale, rotation, 

illumination changes  as well as are expected to offer high resistance to disruptions by occlusion, 

clutter or noise. For the mentioned reasons, SIFT operator has found immense applications in the 

fields of computer vision, pattern recognition and image processing (Battiato et al., 2007; Fiala 

and Shu, 2006).  The inherent capability of the SIFT operator to match different resolution 

images (scale invariance) makes it a suitable alternative for diverse applications. Further, this 

property also offers a platform to select and match different characteristic features from a wide 

scale range. Therefore, for SAR images the SIFT operator can be utilized to detect and match 

stable features at lower scales, where the speckle influence is expected to diminish. Further, 

previous studies about comparative evaluation of the SIFT descriptors (for optical images) with 

other feature descriptors like shape context, PCA-SIFT, moments, differential invariants 

Steerable Filters have been proven to be very distinctive in the field of computer vision 

(Mikolajczyk and Schmid, 2005). The mentioned SIFT operator characteristics make it an 

attractive alternative to the intricate feature based multimodal SAR image registration problem.  

 

1.2.1 Our Contribution 

 

This dissertation caters to research in developing and analyzing methods for automated image 

registration techniques for multimodal (specifically high resolution SAR-optical and multimodal 

SAR) image pairs. Broad objectives of the study may be enumerated as: 

 

i. Study and evaluation of intensity based registration metrics capable of registering SAR 

and optical images acquired by different sensors with different viewing geometries. To 

accomplish a detailed investigation of intensity based registration technique in terms of 

its applicability and efficiency for SAR and optical images. 

ii. As the spatial resolution reaches to meter or sub-meter level it further widens the existing 

gap between SAR and optical sensor geometry and radiometry, posing problems for 

intensity based techniques. Modifications to the way the intensity based technique have 

been applied conventionally are proposed and analysed to extend their application for 

VHR imagery acquired especially over semi urban and dense urban land cover. 
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iii. Investigation of the scale invariant feature transform (SIFT) operator for solving the 

intricate multimodal SAR image registration problem. The operator is investigated and 

refined to enhance its performance for remote sensing SAR images. Detailed operator 

analysis in terms of its characteristics, applicability and efficiency for high and medium 

resolution SAR imagery is presented.   

 

Specifically, on the basis of the evaluation of intensity based techniques for SAR-optical image 

matching, we present a novel approach to improve sensor orientation and orthorectification of 

high resolution optical data using the geometrical accuracy of TerraSAR-X data. A detailed 

analysis and evaluation of the results with available ground truth is presented. This exercise is 

targeted to highlight potential, issues and possible improvements pertaining to application of 

purely intensity based techniques, specifically for remote sensing applications. 

 

1.3 ORGANIZATION OF THE DISSERTATION 

 

The introduction has provided insights into the importance, applicability, issues and objectives of 

the research carried out for this dissertation. In the following chapter we extensively review the 

scientific literature to describe the state of the art in the field of remote sensing image 

registration. In Chapter 3, we elaborate intensity based image registration processing chain 

taking mutual information (MI) as the similarity metric. In the same chapter, we provide a 

thorough mathematic description of MI and also present its characteristics, relevant for its 

application in remote sensing. In Chapter 4, we propose modifications in conventional MI 

implementation to improve its applicability (accuracy and processing time) for high resolution 

multimodal imagery. In Chapter 5, we discuss two distinct approaches to register TerraSAR-X 

and IKONOS images acquired over dense urban areas. In the same chapter, results of a novel 

approach for orthorectification of high resolution optical data using TerraSAR-X imagery is also 

evaluated. In Chapter 6, we shift our focus to multisensor SAR image matching/registration, here 

we propose modifications in the originally proposed SIFT processing chain to improve its 

effectiveness for remote sensing SAR images. Finally, in accordance to the laid down objectives, 

we summarize our findings, discuss our accomplishments and advise guidelines for future 

investigations in this vital area of research. 
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CHAPTER 2       

                                                           

STATE OF THE ART 
 

 

 2.1 INTRODUCTION 

 

The previous chapter laid the background of the problem envisaged in this dissertation. 

Automated multimodal image registration is an important problem as it is a pre-requisite in 

various diverse applications. As discussed, the solution to the problem has two approaches 

namely feature and intensity based techniques. The selection of one of the two techniques (alone 

or in combination) for image registration might finally depend upon the nature of the datasets 

involved. This chapter describes the registration problem formulation and reviews the already 

published work describing the state of the art in feature and intensity based techniques. Further, 

we explicitly highlight the recent advancements and current challenges being confronted in 

automating multimodal image registration. 

 

2.2 IMAGE REGISTRATION 

 

Image to image registration is a prerequisite in various applications in diverse fields and so has 

been an important area of investigation. Specifically, image registration has found immense 

applications in the fields of 

 

i. Computer vision and pattern recognition 

ii. Medical image analysis 

iii. Remote sensing image processing 

 

 An extensive overview and survey of various image registration methods used in the above 

mentioned fields can be found in Brown (1992) and Zitová and Flusser (2003). Specifically, 

review for biomedical images (Pluim et al., 2003; Maintz and Viergever, 1998) and remote 
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sensing images (Wong and Clausi, 2007; Fonseca and Manjunath, 1996) can also be consulted. 

Mathematically, the problem of registering an input image II to a reference image RI  can be 

expressed as 

             ( ) ( )( )( ), ,R II x y g I T u v=                                                        (2.1) 

where T  is a transformation function which maps two spatial coordinates u  and v , to the new 

spatial coordinates 'x  and 'y  (Equation 2.2) and g  is a 1D intensity or radiometric interpolation 

function. Here it has to be noted that in Equation 2.1, transformation function T  is normally 

estimated keeping only 2D features (no height information associated) into consideration as 

estimating transformation function using 3D features like topographic features, man made 

buildings etc. is a complicated task.  Pictorially the problem has been depicted in Figure 2.1 but 

this representation is a very simple and abstract form of image registration which is seldom 

encountered in registering real world remote sensing images from contemporary sensors. A 

detailed discussion about this issue can be found later in this dissertation.  

                                                               ( ), ( , )x y T u v′ ′ =                                                      (2.2) 

The main objective of the entire process is to estimate the spatial transformation T and depending 

upon the method of resolution, image registration task can be divided into (Suri et al., 2009a): 

 

Intensity based techniques: These register images largely on the basis of correlation between 

the intensity values of the pixels of two images (Inglada, 2002). This makes the registration 

process to emphasize on feature matching rather than on their detection. In this approach, the 

problem of registration is generally mapped as an optimization problem. Where the spatial 

transformation function T  is the argument of the optimum of some similarity metric S , applied 

to reference image RI  and transformed input image TII . This can be expressed as 

                                           arg( ( ( , )))R TIT opt S I I=                                                   (2.3) 
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Figure 2.1: Pictorial depiction of the image registration problem. Solution lies in estimating the transformation 
function T that matches the (u, v) coordinate in input image to (x, y) coordinate in the reference image. 

 

Considering the nature of implementation, these techniques might become sensitive to the 

changes in intensity values, introduced for instance by noise, by varying the illumination, and/or 

by using different sensor types. Intensity based registration techniques definitely have an edge 

over the feature based techniques in case of featureless areas where feature detection and 

matching might just not be possible.  An intensity based registration processing chain has the 

following components: 

 

i. Similarity metric 

ii. Search space and strategy 

iii. Transformation model and parameter estimation 

iv. Image resampling and transformation 

v. Registration quality assessment 

 

Feature based techniques: These depend on the accurate identification of features or objects 

that describe important landmarks, sharp edges or shapes, which might be difficult to obtain. 

Significant regions (forests, lakes, fields), lines (region boundaries, coastlines, roads, rivers) or 

points (region corners, line intersections, points on curves with high curvature) may be 

considered as features. These represent information at higher level and are suitable for situations 

when changes in illumination are expected or if multi-sensor analysis is demanded. The 
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parameters of the spatial transformation T  are computed from the extracted and matched feature 

in both the reference and the input images. The use of feature based techniques is recommended 

if images contain enough distinctive and easily detectable objects. The task of determining the 

best spatial transformation for the registration of the images can be broken down into the 

following major components: 

 

i. Feature detection 

ii. Feature matching 

iii. Transformation  model and parameter estimation 

iv. Image resampling and transformation 

v. Registration quality assessment 

 

From the discussion until now it becomes clear that both feature based and intensity based 

techniques differ only in the first two steps of the registration process. In feature based 

registration techniques, explicit features need to be extracted and matched and on the contrary 

for intensity based techniques a suitable similarity metric along with a search strategy needs to 

be decided. The steps of transformation and model parameter estimation, image transformation 

and registration quality assessment are common to both the contrasting techniques. Hereafter, the 

advancements in all the registration steps in intensity and feature based registration techniques 

have been discussed. 

 

2.3 INTENSITY BASED REGISTRATION 

 

As already stated, intensity based registration techniques involve maximizing a suitable 

similarity metric between the images to achieve image registration (Equation 2.3). The current 

state of art in terms of utilized similarity metrics and search techniques is being provided here. 

 

2.3.1 Similarity Metric 

 

An important step to be considered in intensity based registration is the design or selection of a 

similarity metric to measure the similarity between the intensity values. The cost of evaluating 
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the similarity metric greatly influences the overall computational cost of the registration process. 

Some of the common similarity metrics that have been used for intensity based registration 

techniques are pixel averaging (Dasgupta and McGregor, 1992), sum of absolute errors (Turton 

et al., 1994), phase correlation (Reddy and Chaterji, 1996), correlation and normalized cross-

correlation (Lewis, 1995), cluster reward algorithm (Inglada, 2002), mutual information (Chen et 

al., 2003a-b), normalized standard deviation (Woods et al., 1992) and correlation ratio (Roche et 

al., 2000). Information about each of the listed metrics can be obtained from the cited references. 

Out of these metrics, mutual information and cluster reward algorithm have been found capable 

of handling the multimodal SAR-optical image registration scenario. Mutual information in 

particular has also been extensively used for biomedical multi modal image registration (Pluim et 

al., 2003; Maes et al., 1997).  

 

2.3.2 Search Space and Strategy 

 

Having defined the similarity metric, image registration can be expressed as an optimization 

problem that aims to minimize a predefined cost function. Due to large computational costs 

associated with most registration problems, search space and strategy are key steps that require 

consideration. Search space is the class of transformations from which to find the optimal 

transformation to align the images. The type of transformation underlying each registration 

technique determines the characteristics of the search space and is based on the distortions and 

other variations present in the images. For example, if it is assumed that to register a pair of 

images, a translation must be performed, then the search space is the set of all translations over 

the range of reasonable distances. Normally, the search space of a registration problem is quite 

large and it is not possible to evaluate each transformation candidate. Therefore, it is important to 

reduce the number of computations. The greater the complexity of the misalignment between the 

images, the more severe this requirement will be. 

 

A search strategy is employed to tackle the problem of a very large search space in 

registration problems. In large part, the choice of search strategy is determined by the 

characteristics of the search space including the form of the transformation (i.e. what types of 

constraints are to be satisfied? and how hard it is to find the optimum?). For example, if linear 
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inequalities are to be satisfied, then linear programming is advisable. If image features are 

composed of trees or graphs to be matched, then search strategies which are specialized for these 

data structures are required (Brown, 1992). Some of the common considerations to keep in mind 

before making a selection may be enumerated as: 

 

i. Can the strategy take the benefits of parallel processing? 

ii. Does the strategy make any assumptions? 

iii. What is the storage and computational cost involved? 

 

 Examples of common search strategies include hierarchal or multiresolution approach, 

decision sequencing, relaxation, linear programming, tree and graph matching, dynamic 

programming and heuristic search. Description of these search strategies can be found in Brown 

(1992). Efficient search strategy forms the core component of an intensity based registration 

process. An efficient and effective search of registration parameters between two images has 

achieved some in recent past. Down sampling of images to form image pyramids to expedite 

mutual information based registration process has been demonstrated (Cole-Rhodes et al., 2003a; 

Chen and Varshney, 2000). The idea behind this setup is to get a rough estimate of the 

registration parameters from the coarser resolution images and iteratively improve the 

registration parameters by using finer resolution images in the formed image pyramids. The work 

presented by Cole-Rhodes et al. (2003a) enlists certain image pyramid formation technique and 

advocates the usage of Steerable Simoncelli Filters (Simoncelli and Freeman, 1995) more robust 

to translation, rotation and noise than the standard wavelet filters.   

 

Intensity based registration techniques require a robust optimizer to achieve the elucidated 

task. Various optimizers with different mathematical backgrounds have been utilized to find 

accurate registration parameters between two images. Some of the optimization techniques that 

have been successfully employed in an intensity based registration process are Powell’s method 

(Sun and Guo, 2007), simulated annealing (Zibaeifard and Rahmati, 2006), Nelder-Mead 

Simplex method (Xie et al., 2003), genetic algorithms (Bhattacharya and Das, 2007) and 

first/second order simultaneous perturbation stochastic approximation (SPSA) algorithm (Cole-
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Rhodes et al., 2003a-b). For further reading, Pluim et al. (2003) also presented a survey of 

optimization techniques utilized in intensity based registration scenarios.  

 

2.4 FEATURE BASED REGISTRATION 

 

The advancements made in the critical tasks of feature detection and matching for any successful 

feature based registration (Equation 2.1) technique have been reviewed in this section. 

 

2.4.1 Feature Detection 

 

The feature detection is the most fundamental aspect of image registration for almost all image 

processing tasks. Feature detection extracts the information in the images that will be used for 

matching them. The information may be in the form of raw pixel values (i.e. the intensities). 

However, the other common feature spaces include (Brown, 1992):  

 

i. Dimensionless features like corners of buildings and road intersections 

ii. One dimensional features like edges, contours etc 

iii. Two dimensional features like homogeneous closed boundary regions 

iv. Three dimensional features like surfaces 

v. Statistical features such as moment invariants or centroids 

 

Conventionally, this step of image registration has been manual but some automation has been 

achieved in this critical phase. Features like line intersections (Stockman et al., 1982), high 

curvature points (Kanal et al., 1981), and centre of gravity of closed boundary regions 

(Goshtasby et al., 1986) have been successfully utilized but still reviewed literature suggests 

most of the remote sensing image registration applications have concentrated on using edges, 

contours and prominent points as features. Specifically for optical remote sensing images, feature 

detectors like the Förstner corner detector (Förstner and Gülch, 1987), Canny edge detector 

(Canny, 1986), Laplacian of Gaussian (Marr and Hilderth, 1980) and Harris corner detector 

(Harris and Stephens, 1988) have found tremendous applications for feature detection in image 

registration applications.  As these operators are based on the assumption that the images suffer 
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from additive white noise these are not very successful for SAR images having multiplicative 

speckle influence (Bovik, 1988). For feature detection among SAR images (mainly edges) ratio 

based operators (Oller et al., 2002; Fjørtoft, et al., 1999, 1995; Touzi et al., 1988) have been 

developed and utilized for image registration applications.  

 

2.4.2 Feature Matching 

 

Once the features have been detected and identified, a mechanism for feature matching needs to 

be devised. Unambiguous representation of features known as feature descriptors have to be 

determined and finally matched using a functional relation also termed as a similarity metric. 

Techniques available to match two sets of features include template matching (Goshtasby, 1985), 

clustering (Stockman et al., 1982), relaxation (Ranade and Rosenfeld, 1980), matching of 

minimum spanning trees of the two sets (Lavine et al., 1983) and matching of convex hull edges 

of the two sets (Goshtasby and Stockman, 1985). Ideally, the feature descriptors and the 

matching scheme utilized should be scale and rotation invariant and should also accommodate 

for possible linear and non linear intensity variations in the feature space.  For matching of 

detected edges in SAR and optical images, various edge matching techniques based on cross 

correlation (Oller et al., 2002), Hausdorff distance (Cheng et al., 2004) and contour models 

(Inglada and Adragna, 2001; Li et al., 1995) have been utilized with fair amount of success. 

Alternatively for point feature based techniques, remote sensing literature indicate successful 

usage of least square matching (Grün, 1985), moment invariants (Bentoutou et al., 2005) for 

feature matching. Further, some examples of extracting and matching prominent features like 

fields, lakes (Dare and Dowman, 2000) and buildings (Yang et al., 2005) can also be found.  

 

2.5 COMMON REGISTRATION TASKS 

 

In this section the registration tasks common both to intensity based and feature based techniques 

are being reviewed. 
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2.5.1 Transformation Model and Parameter Estimation 

 

The type and parameters of the so-called mapping functions need to be decided for successful 

image to image registration. A transformation is defined as the mapping of location of points in 

one image to new locations in another image. For feature based registration techniques, 

transformation parameters are computed from the established feature correspondences. On the 

other hand, in the case of intensity based techniques the transformation function parameters are 

obtained through optimization of the similarity metric function computed mostly from the image 

intensity values. A transformation is normally selected depending upon the application needs and 

nature of distortions expected to be present within the images. Two types of transformation 

functions are commonly utilized in image registration: 

 

Global transformations are implemented by a single equation which maps the entire image 

through one single function. Examples of global transformation are rigid, affine, projective, 

curved and polynomial transformations (Maintz and Viergever, 1998). Although, the global 

transformations are economical in terms of computational cost, these may not handle the local 

distortions. Distortions here refer to the noise and other deterministic effects that corrupt or alter 

the true intensity values and their locations in an image. Local distortions may arise due to 

differences in sensor viewpoint, change in subject position and other undesirable changes in the 

scene or sensor. Generally, the registration of satellite images has been modelled as a global 

deformation mainly utilizing affine and polynomial transformations (Bentoutou et al., 2005; 

Inglada and Giros, 2004; Chen et al., 2003). Global transformations which can accommodate 

slight local variations include surface splines (Rohr et al., 2001; Bookstein, 1989; Goshtasby, 

1988a-b) and multiquadric transformations (Hardy, 1990). Among these transformation 

functions surface splines have the most local control while polynomial and weighted mean have 

the least local control. Multiquadrics allow some local deformation, but large local deformations 

result in large global deformations (Goshtasby, 1987). A sample application for thin plate spline 

(TPS) elastic wrapping for images in remote sensing images can be found in Xie et al. (2003). 

 

Local transformations map the image differently depending on the spatial location and are thus 

much more difficult to express succinctly. To handle local distortions present within the images, 
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technique like piecewise mapping functions (Goshtasby, 1988b, 1987, 1986), surface spline 

mapping functions (Flusser, 1992; Goshtasby, 1988a) and elastic models (Brown, 1992) have 

proven their effectiveness. These transformations usually need large numbers of evenly 

distributed features to represent the local variation and are generally applied for high resolution 

images acquired from airborne sensors having complex local deformation caused by the wide 

view angle, terrain variation, the low flight height and the effects of yaw, pitch and roll 

(Devereux et al.,  1990). 

 

2.5.2 Image Resampling and Transformation 

 

Since transformations are applied to the input image to resample and register it with the 

reference image, the use of an interpolation algorithm (Thévenaz et al., 2000) becomes an 

indispensable task. When a transformation is applied to the input image, a new grid is obtained 

and an intensity interpolation algorithm is necessary for the computation of new intensity values 

at every transformed grid point. Some of the most commonly used interpolation techniques are 

nearest neighbour, bilinear, cubic convolution (Keys, 1981), B-splines (Chaniotis and 

Poulikakos, 2004), cubic spline interpolation and radially symmetric kernels (Goshtasby et al., 

2004). Several papers on interpolation techniques have been published in the past years. A 

detailed investigation and comparison of methods was carried out in Parker et al. (1983) for 2D 

images. Lehmann et al. (1999) also presented a survey of interpolation methods used in medical 

image registration applications. 

 

2.5.3 Registration Accuracy Assessment  

 

Estimation of registration accuracy achieved is a vital component of any registration process. 

Errors can be dragged into the registration process in each of the registration stages and also it is 

hard to distinguish between registration inaccuracies and actual physical differences in the image 

contents. Commonly utilized registration quality assessment tools in feature based registration 

techniques are localization error, matching error and alignment error (Zitová and Flusser, 2003). 
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Localization error: Displacement of the control points due to their inaccurate detection is called 

localization error. For practical cases this error cannot be measured or completely eliminated but 

can definitely be minimized by using optimal feature detection algorithms.  

 

Matching error: Matching error is measured by the number of false matches in the feature 

matching step of the registration chain. This error can lead to the failure of a registration 

algorithm and should be strictly avoided by using robust matching algorithms. False matches can 

be avoided using consistency checks and cross validation techniques.   

 

Alignment error: Alignment error denotes the difference between the mapping model used for 

the registration and the actual between-image geometric distortions. Reasons for alignment error 

include inaccurate mapping model utilized for registration or faulty computation of model 

parameters. The former case is caused by lack of a priori information about the geometric 

distortion while the latter originates from insufficient number of control points and/or their 

localization error. Alignment error can be measured by mean square error at the control points 

(CPE). Although, commonly used, it is not a good alignment error measure as it only quantifies 

how well the control point coordinates can be fitted by the chosen mapping model. Very similar 

to the CPE is so called the test point error (TPE). Test points are control points that are 

deliberately excluded from the calculation of the mapping parameters. TPE cannot become zero 

by over fitting making it more useful than CPE. This method can only be used if a sufficient 

number of control points are available. Otherwise, the exclusion of several control points may 

result in inaccurate estimation of mapping parameters.  

 

Registration consistency: In absence of ground truth, registration consistency measure 

suggested by Holden et al. (2000) is useful for performance evaluation of intensity based 

registration techniques and is being discussed here. Let ,I RT  be the transformation obtained by 

maximizing the MI registration function by transforming the input image I  over the reference 

image grid R . Similarly ,R IT is the transformation obtained by maximizing the registration 

function by transforming the reference image R  over the input image grid I . For two 

dimensional images, registration consistency RC  is formulated as 
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where the composition , ,I R R IT To  is a result of applying ,R IT followed by ,I RT . ,I RA  is the overlap 

area of image I  and R  respectively. IA , RA  are their individual regions. N  is the number of the 

pixels in the image that is being transformed. As the expression involves the 

composition , ,I R R IT To , cost associated with the described measure is inevitability of two way 

optimization of MI registration function. A two way optimization of MI may not be a big concern 

for small image sizes but for practical applications involving huge remote sensing data sets 

reporting of the achieved registration consistency may become a big overhead for the entire 

registration process. Important point to be kept in mind is that the value obtained from Equation 

2.4 is not related to the ground level accuracy of registration achieved. The value obtained is a 

measure describing MI function consistency for image registration, in an ideal scenario value 

obtained from Equation 2.4 should be equal to zero. This measure was utilized for performance 

evaluation of intensity based registration of remote sensing images by Chen et al. (2003a-b). 

 

Another approach to estimation of accuracy is consistency check using multiple cues. Here, the 

image registered by the method under investigation is compared (by a metric) with the same 

image registered by another comparative method. As the comparative method ‘gold standard’ 

method is believed to be the best in the particular application area or for the given image type. 

This approach is extensively used in medical imaging. In application areas where any gold 

standard does not exist, like in remote sensing, any other registration method can be taken as the 

comparative method. Finally, the oldest method of registration accuracy estimation, visual 

assessment by a domain expert should be mentioned. It is normally used as a complement of the 

mentioned objective error measures. 

 

2.6 REGISTRATION IN THE FREQUENCY DOMAIN 

 

Apart from achieving image to image registration by the above described methods registration 

schemes in the frequency domain have also been experimented and proposed in the past. In this 

section the registration techniques developed using properties of the Fourier transform are being 
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elaborated. By using the frequency domain, the Fourier methods achieve excellent robustness 

against correlated and frequency dependent noise. They are applicable, however only for images 

which have been at most rigidly misaligned. Registration techniques in the frequency domain 

depend upon a technique called phase correlation. Phase correlation is based on the Fourier Shift 

Theorem (Bracewell, 1965) and can be used for the registration of translated images. For a 

square image of size NxN pixels the discrete two dimensional transform is given by  
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where ( ),f x y  is the image in the spatial domain and the exponential term is the corresponding 

basis function of ( )1 2,F ω ω in the Fourier space. According to the Fourier Shift Theorem, given 

two images 1f  and 2f  differing only by a displacement ( ),x yd d  i.e. 

                                                  ( )2 1, ( , )x yf x y f x d y d= − −                                                (2.6) 

their corresponding Fourier transforms 1F  and 2F  will be related by 
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in other words, the two images have the same Fourier magnitude but a phase difference directly 

related to their displacement. The phase difference is given by 1 2( )Je φ φ− . It turns out that if we 

compute the cross-power spectrum of the two images defined as  
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where *F  is the complex conjugate of F , the Fourier Shift Theorem guarantees that the phase of 

the cross-power spectrum is equivalent to the phase difference between the images. Furthermore, 

if we represent the phase of the cross-power spectrum in its spatial form, i.e. by taking the 

inverse Fourier transform of the representation in the frequency domain, and then we will have a 

function, that is approximately zero everywhere except at the displacement which is needed to 

optimally register the two images. Generally, Fourier transformation based registration is utilized 

to estimate global transformations within similar sensor images and especially is extremely 

useful for implementing cross correlation and convolution which are computationally expensive 

operations in the spatial domain.  
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In an extension of the phase correlation technique, DeCastro and Morandi (1987) proposed a 

technique to register images which are both translated and rotated with respect to each other. 

Further, numerous applications and improvements of the introduced technique for image 

registration are available in the literature (Stone et al., 2003; Foroosh et al., 2002; Reddy and 

Chatterji, 1996).The techniques in the frequency domain are fast and pretty stable for noisy 

images as the phase difference for every frequency contributes equally, the location of the peak 

will not change if there is noise which is limited to a narrow bandwidth. Consequently these 

techniques are useful for images acquired under different illumination conditions as illumination 

changes are very slow varying and therefore concentrated at low spatial frequencies. Along with 

the Fourier transformation, wavelet transformation has also been successfully utilized in image 

registration applications. Their primary applications have been feature extraction (Xie et al., 

2008; Moigne et al., 2001; Li and Zhou, 1996; Djamdji et al., 1993) and generation of multiple 

representations of image data (Cole-Rhodes et al., 2003a; Stone et al., 1998; El-ghazawi et al., 

1997; Moigne, 1995) to expedite the registration process. 

 

2.7 RECENT ADVANCEMENTS AND CURRENT CHALLENGES 

 

As already mentioned and highlighted, image registration has been an active area of research in 

the fields of remote sensing, computer vision and biomedical imaging. Thanks to advancements 

in research, a basic framework for both feature and intensity based techniques has been 

established but with the ever increasing remote sensing data volume and characteristics new 

challenges keep on arising and some of them have been answered in this thesis. Specifically the 

challenges and recent advancements in intensity and feature based techniques are as follows: 

 

In intensity based registration, some similarity metrics like cross correlation, sum of absolute 

errors, mutual information, cluster reward algorithm and techniques based on least square 

matching have been found useful for image registration. In particular, mutual information and 

cluster reward algorithm have been found of some use to align remote sensing multimodal 

images automatically (Inglada and Giros, 2004). The major hindrance in using these similarity 

metrics for any practical purposes is the registration turn around time (Shu et al., 2005; Inglada, 

2002). For large remote sensing datasets these metrics generally need huge amounts of time to 
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produce accurate registration results. A vigilant review of all the above mentioned work mainly 

done for 5-10 m spatial resolution imagery significantly indicates the usefulness of mutual 

information as a registration similarity metric. One sole example of combining an image 

classification step with mutual information for metric resolution imagery is found in Oller et al. 

(2006).  Still the performance of mutual information for datasets from latest high resolution 

sensors like TerraSAR-X and IKONOS has not been explored to develop registration strategies 

for different industrial and academic applications. Moreover, the above mentioned published 

literature due to data unavailability during those times have not made any analysis of intensity 

based techniques for high resolution imagery acquired over urban areas where different sensor 

geometry and radiometry in combination complicates the registration task. Certain recent efforts 

in registering urban area images from airborne SAR sensors and optical satellite images like 

IKONOS have been made by combining feature and intensity based techniques (Lehureau et al., 

2008; Wegner et al., 2008; Yang et al., 2005). But considering the complicated nature of SAR 

imagery, registration techniques dependent upon line and point detectors are not a robust 

alternative as till date here has not been any proven feature detector, capable of extracting 

conjugate features in SAR and optical images. 

 

 In the area of feature based registration, there is still no established technique that can 

guarantee conjugate features amongst images with various differences.  Feature based SAR 

image registration is a difficult task due to the presence of multiplicative speckle influence 

(Touzi et al., 1988; Bovik, 1988). Still, some work in the field of feature based SAR image 

registration can be found in the remote sensing literature. Borghys et al. (2001) presented an 

approach utilizing digital topographic maps for registration of high resolution polarimetric SAR 

images. A point feature based approach was used successfully for registration of SAR-SAR and 

optical-optical images by Bentoutou et al. (2005). Here, the authors utilized the Harris operator 

(Harris and Stephens, 1988) for detection of control points (strong corner points). Subsequently, 

a template matching algorithm based on invariants based similarity measure was used. 

Specifically, for multimodal SAR images techniques based on edge maps have been 

experimented in Li et al. (1995). Edge or contour based registration techniques are generally time 

consuming involving heavy computation (Inglada and Giros, 2004) and depend heavily on 

prominent edges to be successfully detected and matched which might become complicated due 
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to the presence of speckle or absence of features having strong edge characteristics. Ideally, for 

this scenario robust feature detectors not biased to any of the standard geometrical shape needs to 

be explored. Further, the feature identification through descriptors and their robust matching is 

also an area of concern. Lately, techniques from the field of computer vision in form of rotation 

and/or scale invariant feature detectors like SIFT (Lowe, 2004), SURF (Bay et al., 2008), Harris-

Laplace (Mikolajczyk and Schmid, 2001) have proven their usefulness for detecting and 

matching homologous points in digital camera images (optical images acquired under lab 

conditions) but their application in the field of remote sensing image processing, till date is very 

limited. Therefore, the application of the SIFT descriptors for SAR image registration and 

matching applications like Radargrammetry (Tupin and Nicolas, 2002) has been suitably 

analysed in this presented work. 

 

2.8 SUMMARY 

 

This chapter completes an exhaustive review of the extensive literature available in the field of 

image registration. Image registration has applications in different fields and so has been 

extensively researched by researchers with various perspectives in different domains. The 

advancements in feature based, intensity based and frequency based registration methodologies 

have been accordingly cited and acknowledged. The chapter also formulates the current state of 

art in context of remote sensing multimodal image registration according to the literature 

reviewed. In the following chapter, we proceed with the basics of intensity based registration 

followed by their application to various registration scenarios. 
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CHAPTER 3 

 

INTENSITY BASED REGISTRATION 
 

 

3.1 INTRODUCTION 

 

The task of automating multimodal image registration has been a topic of research for decades 

now. Specifically in the field of remote sensing, availability of new sensors generating images 

with ever improving spatial, spectral and radiometric details keeps on throwing fresh challenges 

to existing image registration methodologies thus instigating new research and development in 

the field. Considering the meticulous task of extracting and matching features in very different 

SAR and optical images, the development of a universally applicable feature based technique is 

difficult. Exploring the area or intensity based techniques the concepts like normalized cross 

correlation, least squares matching and sum of absolute differences are only effective for images 

with similar modalities. Moving from these conventional techniques, in this chapter, we present 

information theory based similarity metric namely mutual information, which has capabilities to 

handle multimodal images. Henceforth, we present in detail the mathematical properties, 

implementation details and characteristic properties of mutual information in context of 

registering discrete multimodal remote sensing images. 

 

3.2 NORMALIZED CROSS CORRELATION 

 

We start our analysis by first highlighting the limitation of the extensively used cross correlation 

for registration of images acquired by SAR and optical sensors. Cross correlation is a method 

utilized in signal processing to determine the correlation between two signals. This concept with 

a basic statistical approach has been extended in image processing and can be utilized for feature 

matching and registration applications. The idea in both the cases is to compute the correlation 

between two images by a template matching technique. This method is generally useful for 

images, which are misaligned by small shifts in both horizontal and/or vertical directions. Cross 
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correlation as a measure of similarity between an image I  and an image template T  positioned 

at ( ),u v is defined as (Lewis, 1995) 
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Further, a normalized cross correlation (NCC) having values in range [-1, +1] and defined in 

Equation 3.2 is mostly utilized in various applications:  
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Where T  and ,u vI  are the means of T  and ( ),I x y  respectively.  This metric computes pixel-

wise cross correlation and normalizes it by the square root of the image auto correlation function 

and has been considered a much more robust measure of alignment as compared to the cross 

correlation measure defined in Equation 3.1.  Normalized cross correlation as represented in 

Equation 3.2 in not invariant to scale, rotation and perspective distortions.  We present the 

performance of the normalized cross correlation for registration of a sample SAR and optical 

imagery.  

  

 
 

Figure 3.1: Pre-registered Landsat (left) and Radarsat (right) images utilized to test similarity metrics.  
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(a) 

(b) 
Figure 3.2: Performance of NCC for multimodal image registration. (a) Landsat image used as template and 
Radarsat image used as the reference. (b) Radarsat used as template and Landsat image used as the reference. 
Failure of NCC for multimodal image pairs asks for investigating other similarity metrics for automatic image 

registration. 
 

Figure 3.1 depicts Radarsat and Landsat images which have already been registered manually for 

analysis purposes. Both the images have a pixel spacing of 14.25 m and the image size is 301 x 
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301 pixels. As the images are pre-registered a similarity metric (NCC) peak at position (0, 0) 

representing no misalignment between the images is expected. The performance of NCC for the 

images depicted above can be visualized in Figure 3.2, where we interchangeably utilize Landsat 

and Radarsat images as template and reference respectively. It is observed that in both the cases 

the NCC failed to produce a peak at perfect alignment of the two pre-registered images. 

 

Considering its mathematical construction, the failure of NCC for SAR optical matching is 

very much justifiable. NCC by concept needs a linear relationship between input and the 

reference image and therefore it is observed that correlation coefficient based similarity measures 

are limited to handling images acquired with the same modality. The relationship between the 

multimodal SAR and optical intensity values is definitely much more complex and therefore asks 

for a much advanced similarity metric discussed in the following sections4.  

 

3.3 INFORMATION THEORETIC MEASURES 

 

Information theory explores the fundamental limits of the representation and transmission of 

information. Further, it also attempts to characterize the information present in random variables 

providing a vital background for researchers in the areas of data compression, signal and image 

processing, controls, and pattern recognition. It was developed out of Shannon’s pioneering work 

in the 1940’s at Bell Laboratories (Shannon, 1948). His work focused on characterizing 

information for communication systems by finding ways of measuring data based on the 

uncertainty or randomness present in the given system. Shannon proved that for probabilities pi, 

                                                               logi i
i

p p∑                                                                (3.3) 

 is the only functional form that satisfies all the conditions that a measure of uncertainty should 

satisfy. Entropy is one of the main building blocks of information theory. From it are obtained 

two other major building blocks, relative entropy and mutual information. Entropy is a measure 

of uncertainty (or information) in a random variable, relative entropy is a distance measure 

between one probability distribution and another, and mutual information is the amount of 

                                                 
4 In general two similarity metrics capable of handling SAR optical registration are cluster reward algorithm (CRA) 
and mutual information (MI). However, in this dissertation we focus primarily on MI as it has been found much 
more robust in comparison to CRA (Suri and Reinartz, 2009). 
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information that one random variable contains about another (Cover and Thomas, 1991). As 

already mentioned information theory has applications in various fields and hence its basic 

building blocks can be explained with different perspectives according to the underlying 

application. As the sought application for this dissertation comes under digital image processing 

therefore all the discussions and concepts of information theory and related building blocks have 

been presented in the context of discrete digital images. For a more general and a complete 

understanding of the wide applications of information theory interested readers are referred to a 

text book on elements of information theory (Cover and Thomas, 2006). 

 

3.3.1 Entropy and Information 

 

In digital imaging, an intensity image X  is represented as a matrix of intensity values. For an n  

bits/pixel image, the intensity values are discrete greyscale values, }{ 1 2, ,... Nx x xℵ=  where 

2 1nN = − . A histogram can be constructed from an image by looking at each pixel intensity 

value and counting the number of times a pixel intensity value occurs, or the number of times a 

pixel intensity value lies in a range. Dividing the histogram of occurrences by the total number of 

pixels in the image gives the frequency of occurrence of each intensity value, or each intensity 

value bin. Normalizing the histogram in this way gives an estimate of the probability distribution 

function of pixel intensity values for the image. Given an image X , we use p  to denote the 

corresponding estimated intensity value probability distribution function, 

where ( ) ( )i,jP Xp x x= = , for x∈ℵ and ,i jX  is a pixel in image X . A result of histogram 

normalization is the following 

                                                              ( ) 1
x

p x =∑                                                               (3.4) 

The function p  is normally referred as probability density function or the probability mass 

function. Entropy uses probability distribution or density function to measure the randomness or 

uncertainty of a random variable. Under the assumption that each observation in the image 

matrix is independent and occurs with the probability determined by the frequency of 

occurrence, the entropy of the random variable X , or the entropy of the image, can be computed. 
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The entropy ( )H X , for a discrete random variable X , with probability distribution function p , is 

defined as 

                                            ( ) ( ) ( ) ( )log
x

H X H p p x p x
εℵ

= = −∑                                          (3.5) 

where for reasons of continuity the assumption 0 log 0 0= is made. The notation ( )H p  

emphasizes the dependence of entropy on the probability distribution of X , as opposed to the 

actual intensity values of X . 

 

3.3.2 Joint Entropy and Mutual Information 

 

For defining the concept of joint entropy and mutual information, two discrete images A  and B  

over their regions of overlap can be considered as observations from two discrete random 

variables, A  and B , with probability distributions p  and q . It is also assumed that the two 

random variables A  and B  have sample spaces α  and β  respectively. The 2D joint histogram 

can be constructed from images A  and B  over their region of overlap by counting the number 

of times the intensity pair ( ),a b  occurs in corresponding pixel pairs ( ), ,,i j i jA B . Normalizing the 

joint histogram gives an estimate of the joint probability distribution r , where 

( ) ( ), ,, ,r i j i jr a b P A a B b= = = . A result of the joint histogram normalization is 

that ( ), 1
a b

r a b =∑ ∑ . The marginal of the joint distribution are defined as 

( , ) ( )
a

r a b q b
εα

=∑  

                                                                ( , ) ( )
b

r a b p a
εβ

=∑                                                         (3.6) 

 Joint entropy ( ),H A B  is a functional of the joint probability distribution r , and is a measure of 

the combined randomness of the discrete random variables A  and B . Further, the joint entropy 

can be defined as 

                               ( ) ( ) ( ), , log ( , )
a b

H A B H r r a b r a b
εα εβ

= = −∑∑                                        (3.7) 
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If two random variables are independent, then the joint probability distribution becomes the 

product distribution d , i.e. ( ) ( ) ( ) ( ), ,r a b d a b p a q b= = . In this situation, joint entropy 

simplifies to 

                                                 ( )
,

, ( , ) log ( , )
a b

H A B r a b r a b= −∑  

                                              ( ) ( ) ( ) ( )
, ,

log ( ) log ( )
a b a b

p a q b p a p a q b q b= − −∑ ∑              

                                              ( ) ( )H A H B= +                                                                           (3.8) 

In general ( ) ( ) ( ),H A B H A H B≤ + , with equality if and only if A  and B  are independent.  

 

Mutual information in terms of conditional entropy: Conditional entropy measures the 

randomness of a variable B  given A , and is given by 

                 ( )( | ) ( | )
a

H B A p a H B A
α

α
∈

= =∑  

                                   =  ( ) ( | ) log ( | )
a b

p a p b a p b a
εα εβ

−∑ ∑  

                                   ( , ) log ( | )
a b

p b a p b a
εα εβ

= −∑∑  

                                   ( ) ( ),H B A H A= −                                                                      (3.9) 

MI can be expressed using Equation 3.9, the relation in that case quantifies dependence within 

two variables 

                                                 ( ) ( ) ( ), |MI A B H B H B A= −                                                 (3.10) 

using Equation 3.9 

                                            ( ) ( ) ( ) ( ), ,MI A B H B H A H B A= + −                                          (3.11) 

 

Mutual information in terms of relative entropy: MI can also be defined as a special case of 

relative entropy. It measures the amount of information shared between two random variables, or 

the decrease in randomness of one random variable due to the knowledge of another. Relative 

entropy, or Kullback-Leibler distance, is a measure of the distance between one probability 

distribution and another. It measures the error of using an estimated distribution q over the true 
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distribution p (Cover and Thomas, 1991). The relative entropy ( )||D p q , of two probability 

distributions p  and q  over ℵ , is defined as 

                                ( ) ( ) ( )|| log
( )x

p xD p q p x
q xχ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                    (3.12) 

where for reasons of continuity, we define ( )0log 0 / 0q =  and ( )log / 0p p = ∞ .With A  and B  

be two random variables with probability distributions p  and q , respectively, and joint 

probability distribution r . Mutual information, ( ),MI A B , is the relative entropy between the 

joint probability distribution r , and the product distribution d , where ( ) ( ) ( ),d x y p x q y= . 

That is 

                                    
( )

( )

, ( || )

( , )                = , log
( ) ( )a b

MI A B D r d

r a br a b
p a q bεα εβ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑
                                            (3.13) 

As mentioned earlier, if the random variables A  and B  are independent, then the joint 

probability distribution is equal to the product distribution, i.e. r d= . Thus, mutual information 

measures the correlation between A  and B , with respect to A  and B  being independent.  

The relation expressed in Equation 3.11 is depicted by a Venn diagram in Figure 3.3.  

                                                 ( ) ( ) ( ) ( ), ,MI A B H A H B H A B= + −                                     (3.14) 

 
Figure 3.3: Relationship between variables marginal entropies, joint entropy and mutual information. 



 57

The two image entropies are represented as the two sets. The union of the two entropies 

represent the joint entropy of the system and the intersection of the two sets is equivalent to the 

mutual information contained within the two images. In this dissertation, image registration is 

achieved by maximizing this mutual information content within images. 
 

3.3.3 Statistical Properties of Mutual Information 

 

i. ( ), ( , )MI A B MI B A=  

 MI formulation in Equations 3.9 and 3.12 are derived using two different definitions. From 

both the definition sources the symmetry of mutual information can be inferred. In practice, for 

registration applications, MI function might lose its symmetric nature due to the artefacts from 

different processing chain components.  

 

ii. ( ) ( ),MI A A H A=                    

The information image A  contains itself is equal to information of image A  

 

iii. ( ) ( ) ( ) ( ), ; ,MI A B H A MI A B H B≤ ≤  

The information the images or random variables contain about each other can never be greater 

than the information in the images itself. 

 

iv. ( ), 0MI A B = , if and only if A  and B  are independent 

Normally, MI function attains strictly positive values. If it attains a value of zero for two 

random variables it signifies that knowledge of A  does not give any information about B . 

Implying, A  and B  are not related in any way. 

 

3.3.4 Mutual Information Definitions 

 

We utilize the concepts from information theory (mutual information) to solve the problem of 

multimodal image registration especially involving SAR and optical images. Mutual information 

as a similarity metric for multimodal image registration has gained a lot of importance in recent 
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past. It was first and independently used as a measure for matching of medical images by Viola 

(1995) and Collignon et al. (1995). Since its introduction, MI without any mandatory pre-

processing has been rigorously utilized for image registration applications. Mutual information 

depending upon the underlying entropy measure can be defined in following ways: 

 

Rényi entropy: The Rényi entropy, a generalization of Shannon entropy, is one of a family of 

functions for quantifying the diversity, uncertainty or randomness of a system and is defined as 

follows: 

                                           ( ) ( )
1

1 ln
1

n

i
i

R A p xα
α α =

=
− ∑          1α ∈ℜ−                                   (3.15) 

The Rényi entropy is additive in nature, it becomes the Shannon entropy as 1α →  and hence for 

this case mutual information is defined as  

                                         ( ) ( ) ( ) ( ), ,RMI A B R A R B R A Bα α α α= + −                                        (3.16)      

Tsallis entropy: Tsallis entropy is a one-parameter generalization of Shannon entropy, has been 

often discussed in statistical physics as a new information measure. It is generally defined as: 

                                                        ( )
1

1 * 1
1

k
q

q i
i

S p
q =

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑                                                  (3.17) 

where k  is the total number of entities and the real number q  is an entropic index that 

characterizes the degree of non-extensivity. As Tsallis entropy is non additive in nature, mutual 

information in this case is defined as 

                               ( ) ( ) ( ) ( ) ( ) ( ), 1s
q q q q qMI A B S A S B q S A S B= + + −                                   (3.18) 

Mutual information based upon different entropy calculation has been tested for multimodal 

image registration scenarios (Wachowiak et al., 2003) but the most extensively used measure is 

the one based on Shannon entropy and is also utilized here for all further discussions. 

 

Shannon entropy: As discussed earlier, by nature Shannon’s entropy measure is additive in 

nature, implying the fact that if random variables A  and B  are independent, then mutual 

information between two variables is defined as 

                                               ( ) ( ) ( ) ( ), ,MI A B H A H B H A B= + −                                       (3.19) 
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where ( )H A  and ( )H B  are the Shannon entropies of A  and B  respectively, ( ),H A B  is the 

joint entropy and ( )|H A B  is the conditional entropy of A  given B . Shannon entropy of a 

variable x  is defined as 

                                                     ( ) ( ) ( )lnH x f x f x dx
+∞

−∞

= ∫                                                   (3.20) 

where ( )f x  is the probability density function of x. Registration of two images A and B is based 

on maximization of ( ),MI A B  (Equation 3.19), which means that the joint entropy ( ),H A B  is 

minimized. At the same time, the sums of the marginal entropies ( )H A and ( )H B are 

maximized to avoid situations where the images are shifted so far apart that only two small 

regions of background coincide. Marginal entropies ensure that the overlapping region of images 

contains most of their information. During discrete implementations because of the MI 

formulation in Equation 3.19 the metric can produce negative values specifically when images 

are shifted far apart, to tackle this issue and to reduce the sensitivity of MI towards changes in 

image overlap, the following definition of mutual information (Studholme et al., 1999) is utilized 

                                                   
( ) ( )

( )
( , )

,
H A H B

MI A B
H A B

+
=                                                  (3.21) 

For implementation purposes, the entropies and joint entropy can be computed from (Chen et al., 

2003a-b)   

                                               ( ) ( ) ( )logA A
a

H A p a p a= −∑                                                   (3.22)             

                                                ( ) ( ) ( )logB B
b

H B p b p b= −∑                                                   (3.23) 

                                               ( ) ( ) ( ), ,
,

, , log ,A B A B
a b

H A B p a b p a b= −∑                                    (3.24) 

                                                  ( ) ( )
( ),

,

,
,

,A B

a b

h a b
p a b

h a b
=
∑

                                                          (3.25) 

                                                    ( ) ( ), ,A A B
b

p a p a b=∑                                                           (3.26) 

where h  is a joint histogram (JH) of the two images involved. It is a 2D matrix with the intensity 

values of one image along one axis and the intensity values of the other image along the other 
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axis. The value ( ),h a b  is the statistic number of corresponding pairs having intensity value a  in 

the first image and intensity value b  in the second image.  

(a) 

(b) 
Figure 3.4: Performance of MI for multimodal image registration. (a) Landsat image used as input and Radarsat 

image used as the reference. (b) Radarsat image used as input and Landsat image used as the reference. In both the 
cases MI detects the desired peak (0, 0) for the pre-registered images. 
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Thus, it can be seen from Equations (3.22) to (3.26) that the joint histogram is the only 

requirement for MI computation between any two images. Therefore, different joint 

histogramming techniques and influence of joint histogram bin size on MI performance is 

thoroughly discussed later in this chapter. A sample mutual information performance for the 

Radarsat and Landsat imagery (Figure 3.1) both interchangeably used as reference and input 

images can be seen in Figure 3.4. For both the graphs the input image has been translated over 

the reference image grid from [-20 +20] pixels in both x and y direction. The registration peak 

for the two images is observed at perfect alignment of the two images. 
 

3.4 REGISTRATION STEPS 

 

Generally, a typical intensity based registration scheme requires the following steps: 

 

i. Spatial Transformation: The type and parameters of the mapping functions need to be 

decided for successful image to image registration. 

ii. Radiometric Normalization: Mathematical explanation of MI highlights that it is heavily 

dependent upon the joint histogram of the images being registered. Therefore, the joint 

histogram (JH) size needs a vigilant selection. 

iii. Joint Histogramming Technique: To estimate the joint histogram of the transformed input 

image and the fixed reference image, suitable interpolation techniques need to be 

incorporated in the process. 

iv. Search Space and Strategy: The problem of image to image registration finally reduces to 

searching the optimal set of transformation from a large search space that is capable of 

aligning the images perfectly. 

 

Each of the above briefly mentioned steps would now be discussed in details.  

 

3.4.1 Spatial Transformations 

 

A transformation is defined as the mapping of location of points in one image to new locations in 

another image. A transformation is normally selected depending upon the application needs and 
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nature of distortions expected to be present within the images. As already mentioned in Chapter 

2, on the basis of transformation nature, two types of transformation functions are commonly 

utilized in the field of image registration: 

 

i. Global transformation functions 

ii. Local transformation functions 

 

In particular global transformations are generally utilized for satellite image registration, and 

high resolution aircraft images having complex local deformation caused by the wide view angle, 

terrain variation, the low flight height and the effects of yaw, pitch and roll are registered using 

local transformation (Desheng et al., 2006). The presented work concentrates on remote sensing 

satellite images with much stable geometries and thus the utilized global transformation models 

are being elaborated. It is to be noted here that single global transformation might still not be 

sufficient for an entire complete remote sensing scene but here for analysis we consider smaller 

areas extracted from full coverages.  

 

Rigid transformation 

 

For remote sensing registration applications, the most commonly used are the rigid body/affine 

and polynomial transformation functions. Global affine incorporates geometric operations of 

scaling, translation and rotation. It typically has four parameters , , ,tx ty s θ  which map co- 

ordinates ( ),I IX Y of input image to ( ),R RX Y of the reference image as follows 

                                   
cos sin
sin cos

xR I

yR I

tX X
s

tY Y
θ θ
θ θ

⎛ ⎞ −⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
                                     (3.27) 

This can be rewritten as  

                                                    R Ip t sR p= +                                                            (3.28) 

Where Rp , Ip  are the coordinate vectors of the reference and the input images, t  is the 

translation vector, s  is the scale factor and R  is the rotation matrix. Since the rotation matrix R  

is orthogonal (the rows or columns are perpendicular to each other) the angles and lengths in the 

original image are preserved after the registration. Because of the scale factor s, the rigid body 



 63

transformation allows change in length relative to the original image, but it is the same in both x 

and y directions.  

 

Affine transformation 

 

The general 2D affine transformation is represented as 

                                      13 11 12

23 21 22

R I

R I

aX a a X
aY a a Y
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

                                           (3.29) 

The above representation does not have the properties associated with the rigid body 

transformation described by Equation 3.28. Angles and lengths in this case need not be preserved 

but parallel lines do remain parallel. This transformation can also account for more general 

spatial deformations like shear and changes in aspect ratio. Affine transformation represented in 

Equation 3.30 are global transformations and are sufficient to match two images of a scene taken 

from the same viewing angle but from a different position, i.e. the camera can be moved and it 

can be rotated around its optical axis (Brown, 1992).  

 

Polynomial transformation 

 

Polynomial transformations are one of the most general transformation models normally utilized 

for image registration. Achieving image registration using polynomial transformations assumes 

some combination of the following constraints (Goshtasby, 1988): 

 

i. The scene is flat.  

ii. The area to be imaged is small compared to the distance of the camera to the scene. 

iii. Viewing angle is the same when the images are obtained. 

iv. The camera is a perfect pin-hole camera. 

v. The effect of atmospheric turbulence or other distortions in the images is negligible.  

 

A polynomial transformation of degree M  is defined by 

                                                       
0 0

jM
k j k

R jk I I
j k

X a X Y −

= =

=∑∑                                                      (3.30) 
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0 0

jM
k j k

R jk I I
j k

Y b X Y −

= =

=∑∑                                                         (3.31) 

Parameters ,a b  are determined by feature correspondences in the reference and the input image. 

The minimum number of feature correspondences for first and second order polynomial 

transformations are three and six respectively. Generally, more number of features ( N ) then 

required for parameter estimation are utilized and parameter of the mapping function are 

determined by minimizing the sum of squared errors (Equation 3.32) 

                            
2

1 0 0 0 0
n n n n n n

j jN M M
k j k k j k

R jk I I R jk I I
n j k j k

E X a X Y Y b X Y− −

= = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑∑ ∑∑                (3.32) 

Generally, guidelines for polynomial transformations advocate well spread out control points, 

sufficient in number for a second or third order polynomial estimation. Usually, polynomials of 

degree larger than 2 are not advised for image geometric transformation because prediction of 

their behaviours from their coefficients gets difficult (Goshtasby, 1986). Abundant examples for 

usage of global polynomial transformations for image registration are available in the literature. 

Some of them are included in Lehureau et al. (2008), Panigrahi and Tripathy (2002), Woods et 

al. (1998).   

  

As already mentioned, the selection of a spatial transformation between the two images 

depends solely on the nature of deformations present. For example, in case of remote sensing 

images orthorectified (with or without using a DEM) to same coordinate projection system 

generally differ mainly by two translations in x and y direction respectively. Here it is assumed 

that the scale factor between the two images being registered can be accurately estimated from 

the image ground spacing distance. Therefore, a scenario where we have to co-register two 

orthorectified scenes, selection of two translation parameters for the optimization process should 

suffice the purpose. In case, images are in different coordinate systems, a much more complex 

transformation like affine or polynomial transformation might be inevitable.  
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3.4.2 Joint Histogramming Techniques 

 

For computing the MI registration function the joint histogram of the transformed input image 

and the reference image needs to be estimated. As depicted in Figure 3.5, according to the 

selected transformation function, the transformed input image may or may not coincide with the 

target reference image grid. Therefore, in certain cases of grid misalignment an exact joint 

histogram may not be obtained and certain approximation becomes inevitable. For joint 

histogram estimation, one step and two step histogramming techniques have been utilized in the 

past (Chen and Varshney, 2004b).  

 

Figure 3.5: Image transformation in image registration. Depending upon the spatial transformation function selected 
the transformed input image may or may not coincide with the reference image grid. 

 

Two step techniques evaluate the intensity values of the reference image at the transformed 

grid points through interpolation and than update a unique joint histogram entry by one. 

Interpolation techniques like nearest neighbour, bilinear interpolation, cubic convolution and 

cubic B-spline interpolations have been utilized for mutual information based registration 

methods (Chen and Varshney, 2002). In general, this intensity value interpolation for updating a 

single joint histogram entry has been found to introduce a systematic regular pattern in MI 

registration function which can make the registration function noisy, in turn making the 

registration optimization process a tedious task. These regular patterns in the literature of MI 

based registration are generally termed as interpolation induced artefacts (Pluim et al., 2000). 
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Figure 3.6 depicts induced artefacts for nearest neighbour, bilinear and cubic convolution 

intensity interpolation techniques. MI function in Figure 3.6a-c have been plotted by sliding the 

Landsat image over the Radarsat image (Figure 3.1) in a range of [-10 +10] pixels in x direction 

with a 0.5 pixel movement. A regular pattern especially in the case of bilinear and cubic 

convolution interpolation (Figure 3.6 b-c) is observed where the MI registration function attains 

local minima at exact grid alignments (no interpolation) and local maxima at sub pixel image 

movements (interpolation step). Due to this mentioned recursive behaviour the MI function 

attains a peak at 0.5 pixel misalignment for the perfectly registered images.  

 

(a) (b) 

 
(c) 

Figure 3.6: Interpolation induced artefacts appear in mutual information registration function with two step joint 
histogramming techniques. (a) Nearest neighbour, (b) Bilinear interpolation, (c) Cubic convolution. 

 

In case of nearest neighbour interpolation the artefacts do not make a very regular pattern but 

this interpolation technique can sometimes make the MI function immune to sub pixel 
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movements (blurring effect). This can be observed in Figure 3.6a where MI function value does 

not change for a consecutive pixel and sub pixel image translation at several locations in a small 

search space of 41 x-axis translations. This observed behaviour is not a desirable metric 

characteristic as sub-pixel registration accuracy is desired in lot of remote sensing applications. 

The problem of interpolation induced artefacts has been addressed by lot of researchers in 

different fields (Inglada et al., 2007; Tsao, 2003; Pluim et al., 2000). Two reasons have been 

mainly highlighted to produce interpolation induced artefacts: 

 

Pluim et al. (2000) mention equal sample spacing in one or more dimensions as one of the 

prime reasons. For example, if two images have the same sample spacing along the horizontal 

axis, then any integer values horizontal displacement between the two images results in the 

alignments of all horizontal grid lines within the overlap area. Therefore, fewer interpolations are 

required to estimate the joint histogram, than in the case where grids are not aligned (sub pixel 

movements). This phenomenon is observed for sample in Figure 3.6b as both the images have 

same pixel spacing in the horizontal direction and MI function shows a regular pattern for pixel 

and sub pixel movements.  

 

Chen and Varshney (2004) also indicate noise within the images as one of the factors 

generating artefacts in mutual information surface. In the cited reference, the authors with a 

registration experiment involving Landsat TM (band 1 and band 3) images showed that addition 

of different levels of Gaussian noise in both the images produced artefacts in MI search spaces. 

Moreover, it was also highlighted that severity of the artefacts increased with the variance of the 

added Gaussian noise. Observations from this optical image registration experiment can be 

safely extended to SAR-optical registration scenario as different statistics and levels of noises in 

both the images can very well influence the smoothness of the registration function.  

 

Considering the persistent problem of interpolation induced artefacts one step joint 

histogramming techniques have been proposed and utilized. One step techniques update the joint 

histogram without resorting to the interpolation of intensity values at the transformed grid points 

on the reference image. These techniques include the partial volume interpolation (PVI) 

suggested by Maes et al. (1997) and later extended by Chen and Varshney (2003) to generalized 
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partial volume estimation (GPVE) which utilize B-spline interpolation to update several joint 

histogram bins as opposed to a single joint histogram entry done by the two step techniques.  

 

Partial volume interpolation 

 

As compared to the standard interpolation techniques which generate an interpolated transformed 

input image to update a single joint histogram entry, partial volume interpolation does the 

following to handle the two cases of grid alignment. For the case of perfect grid alignment 

nothing is performed and a single joint histogram entry is updated in the joint histogram. In case 

of grid misalignment, PVI updates four entries in the joint histogram by the same weights as for 

linear interpolation. Figure 3.7a presents a graphical representation of the scenario of an input 

grid point U  transformed by a transformation function to an unaligned grid point 'U  in the 

reference image grid. 

 

(a) 
 

(b) 

Figure 3.7: (a) Graphical illustration of Partial Volume Interpolation (PVI). (b) Behaviour of mutual information 
registration function using the PVI scheme. (For images shown in Figure 3.1). 

 

 The PVI updates four joint histogram bins comprising the nearest four reference image grid 

points surrounding the transformed grid point U . The four bins in the joint histogram are 

updated according to their respective weights calculated according to the rules of linear 

interpolation. The entire step is performed as  

                                      ( ) ( )( ) ( ) ( )( ), ,i i ih R P I U h R P I U A= +         i = 1,2,3,4                     (3.33) 

P3 = (vx +1, vy +1)      P4 = (vx , vy+1)  

dx 

dy 

A3 

A2 

A4 

A1 

U 

       P1 = (vx, vy)  P2 = (vx +1, vy)  
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Here, h  represents the joint histogram of the reference image R  and the transformed input 

image I . iA  represent the respective areas of the four reference image grid points surrounding 

the transformed input image grid point 'U . A sample performance of the discussed partial 

volume interpolation scheme for images shown in Figure 3.1 (Landsat Radarsat image pair) can 

be visualized in Figure 3.7b. This scheme introduced in the field of medical imaging did not 

recover completely from the problems of interpolation induced artefacts. We again observe the 

regular pattern and the important point to be noted here is the fact that here the regular pattern is 

just opposite of the pattern obtained using the two step bilinear interpolation (Figure 3.6b).  in 

this case we obtain a MI peak at perfect alignment of the two images but it is also not a desirable 

behaviour as in this case the registration function starts taking  local maxima at perfect grid 

alignments and  local minima at misaligned grid positions. 

 

Generalized partial volume estimation (GPVE) 

 

Partial volume interpolation updates one histogram entry for perfectly aligned grids and four 

histogram entries for misaligned grid transformations, thus producing a regular dispersion in the 

joint histogram of the images being registered. This regular dispersion when combined with the 

above explained artefact generating condition lead to the undesirable PVI behaviour obtained in 

Figure 3.7b. Citing these reasons Chen and Varshney (2003) extended the concept of partial 

volume interpolation to generalized partial volume estimation (GPVE). GPVE is also a one step 

joint histogramming technique and has been utilized for various results and discussions in this 

thesis and is elaborated thoroughly in this section.  

 

Let I and R  be the input and the reference image respectively and T be a transformation that 

is applied to input image grid points. Considering the Figure 3.7a and assuming that T maps the 

grid point ( )' ',
x y

u u  in image I  onto the point with coordinate, ( ),x x y yv d v d+ + in the reference 

image R , where ( ),x yv v  is a grid point in R  and 0 , 1x yd d≤ < . GPVE is mathematically 

described as 
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                                     ' '( ( , ), ( , ))x y x yh R v p v q I u u+ + + = 1 2( )* ( )x yf p d f q d− − 5                   (3.34) 

In the equation above 1f  and 2f refers to the kernel function selected, p  and q  specify the 

pixels involved in the joint histogram updating procedure depending upon the support of the 

selected kernel functions 1f  and 2f . The selected kernel function f  must satisfy the following 

conditions: 

 

i. where x  is a real number 

ii. ( ) 1,
n

f n d
∞

=−∞

− =∑  where n is an integer 0 1d≤ <                                                         (3.35) 

 

Normally, B-spline functions fits in the role of the kernel functions mentioned in Equation 3.36. 

Basis splines (B-splines) are one of the most commonly used family of spline functions. These 

are derived by several self convolutions of a basis rectangular function.  

                                                ( ) {1,     0 x 0.5
1 0,    elsewhereh x ≤ <=                                                            (3.36) 

A B-spline of degree n  or order 1n +  can be derived through n  self convolutions of the function 

described in Equation 3.36.     

                                        1 1 1

N - 1 times

( ) =  ( )  ( ) ... (x)Nh x h x h x h∗ ∗
14444244443

                                                      (3.37) 
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Figure 3.8: Different B-spline kernels utilized in GPVE. 

                                                 
5 A+=B implies A=A+B 
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On selecting B-splines as kernel functions for GPVE, the support of the underlying B-spline 

kernel (depicted in Figure 3.8) decides the number of grid points that are involved in the joint 

histogram updating procedure for the two mentioned scenarios (exactly aligned grid and 

misaligned grids). For B-spline kernels (order 2 to 7 depicted in Figure 3.8), Table 3.1 tabulates 

the number of grid points involved in joint histogram updating procedure for the two cases. A 

pictorial description of grid points involved in updating the joint histogram in case of aligned and 

misaligned grids for B-spline kernels of order 2-4 is provided in Figure 3.9. The number of 

histogram bins being updated for every pixel transformation is ( )2O n  where n  is the order of 

underlying B-spline kernel. In general, all the B-spline kernels in their discrete form can be 

implemented with the help of look up tables.  
 

Table 3.1: B-spline kernel behaviour as interpolating functions in GPVE (Suri and Reinartz, 2008). 
 

Order Aligned Grids Misaligned Grids6 Ratio 
Linear (2) 1 4, 2 4.00 

Quadratic (3) 9 6, 4 2.25 
Cubic (4) 9 12, 16 1.78 

Quartic (5) 25 20, 16 1.56 
Quintic (6) 25 30, 36 1.44 
Sextic (7) 49 42,36 1.36 

 
 

 

 

 
(a) 

 

 

 

 

 

 
(b) 

 

 
 

Figure 3.9: Grid points that are involved in updating the joint histogram in case of GPVE. (a) Transformed grid 
point coincident with the reference grid point. (b) Transformed grid point is surrounded by the reference grid points. 
Figures are shown only for B-spline kernels of order 2, 3 and 4.  The rectangular block depends upon the support of 

the underlying B-spline kernel (Figure 3.8). 

                                                 
6 Depending upon the nature of misalignment  
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B-spline order 2 B-spline order 3 

B-spline order 4 B-spline order 5 

 B-spline order 6 B-spline order 7 

Figure 3.10: Performance of the GPVE technique using B-spline kernels from order 2 to 7. 
 

The ratio of maximum to minimum number of updated entries in the joint histogram updating 

procedure (max-min ratio), a factor reducing the artefacts appearance in the MI surface is 
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tabulated in Table 3.1. As expected, the max-min ratio tends to 1 as order of interpolating B-

spline kernel increases leading to a lesser joint histogram dispersion which is considered as a 

reason to produce interpolation induced artefacts in mutual information registration function. 

Further, this fact can also be analysed from the MI graphs obtained for the Landsat-Radarsat 

image pair depicted in Figure 3.1. We show the MI behaviour with respect to the underlying B-

spline function in Figure 3.10. It can be clearly observed that order 2 B-spline kernel behaves 

very similarly to the PVI technique producing systematic interpolation artefacts (both these 

function have a max-min ratio of 4). Further, as we increase the support of the B-spline kernel 

from order 2 to order 7 to reduce the joint histogram dispersion through the max-min ratio (listed 

in Table 3.1) the interpolation artefacts disappear and the MI function becomes smoother and 

free of any regular artefact patterns. 

 

3.4.3 Radiometric Normalization 

 

Considering the radiometric resolution of modern day sensors like TerraSAR-X (16 bit) and 

IKONOS (11 bit), radiometric normalization becomes mandatory for any application of the joint 

histogram based mutual information. For example, a scene from TerraSAR-X may have intensity 

values in the entire possible dynamic range of [0, 65535] (16 bit radiometry) and the 

corresponding scene from IKONOS-2 may have intensity values in range [0, 2047] (11 bit 

radiometry). Here, the JH size without any intensity binning would be an array of size 65536 x 

2048, leading to memory and computational issues. In practice, scenes from sensors having high 

radiometric resolution may not show a good distribution of intensity values over the whole 

histogram and therefore would most of the times result into sparse joint histograms, adding 

inefficiency to the registration process. This fact can be very well be visualized in Figure 3.11 

where pre- registered images of size 451x451 pixels from TerraSAR-X and IKONOS  sensors 

have been depicted with their respective histograms. It is observed that most of the information 

content in both the images is located in a very small fraction of their respective intensity range.  

In this case, most of the IKONOS image information is contained in the range [68, 426] (Figure 

3.11c) and most of the TerraSAR-X image information is contained in the range [0, 342] (Figure 

3.11d). This uneven distribution of the information content in both the images leads to a very 

spare joint histogram of size 1030x4263, depicted in Figure 3.11e. To handle the problem of 
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sparse joint histograms generated by remote sensing images, intensity binning or radiometric 

normalization is recommended. Reducing the joint histogram size would not only help in 

checking the registration turn around time but has also been found useful to generate smoother 

MI search spaces (Suri and Reinartz, 2008; Cole-Rhodes et al., 2003). For the presented analysis 

in this dissertation we have utilized the following linear intensity binning technique 

                                       ( )( )orgDN
max_dn = round _ 1newDN bin size× −                                        (3.38)                        

 where orgDN  is the original intensity value, bin_size is the possible number of distinct intensity 

values in the new range, max_dn is the maximum intensity recorded in the original image and 

newDN  is the newly scaled digital number according to the bin size selected. This above scheme 

of normalization can be applied after performing a linear stretch of individual image histograms 

(without any clipping). The reduced sparseness of the joint histogram of the two images due to 

histogram normalization for bin size 8 (256 grey levels) to 5 (32 grey levels) can be visualized in 

Figure 3.12. Already cited literature for MI based image registration does not provide any well 

defined rule governing joint histogram bin size selection. In this regard, Thévenaz and Unser 

(2000) suggested that for reliable joint histogram estimation, ratio of number of reference image 

samples to the number of the joint histogram entries should be about 64. We analyze here this 

recommendation along with other MI similarity metric characteristics for the following joint 

histogramming techniques using different bin sizes: 

 

i. Nearest neighbour resampling (NN) (two step joint histogramming technique) 

ii. Cubic B-spline (order 4) kernel in Equation 3.23 (one step GPVE technique) 

iii. Sextic B-spline (order 7) kernel in Equation 3.23 (one step GPVE technique) 

 

For analysis purposes we select here the pre-registered TerraSAR-X and IKONOS images 

depicted in Figure 3.11a-b. We translate the input IKONOS image over the reference TerraSAR-

X grid in the search space of [-10 +10] pixels in x and y direction at pixel level increments 

resulting into 441 MI function evaluations for every test case.  As only integral pixel translations 

yielding perfectly aligned grids are considered so in this case nearest neighbour also behaves as a 

one step joint histogramming technique. Nearest neighbour, Cubic B-Spline and the Sextic B-

spline update 1, 9 and 49 bins in the joint histogram respectively (Table 3.1).  
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(a) 

 

(b) 

(c) (d) 

 
(e) 

Figure 3.11: Sample IKONOS and TerraSAR-X imagery displayed along with their respective histograms. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.12: Joint histogram of TerraSAR-X and IKONOS image with radiometry of 8-5 bits (a-d). 
 

A glance at the results provided in Table 3.2 clearly indicates a very consistent performance for 

the Sextic B-spline kernel in the GPVE scheme. Sextic B-splines detect the true peak at (0, 0) 

consistently for the original image intensity values till to the point where image intensity values 

have been reduced to 5 bit radiometry (32 bin size). Cubic B-spline kernel shows a small 

discrepancy for the original image intensity values but then stabilizes till 5 bit image radiometry. 

The simplest of all the techniques nearest neighbour image resampling shows a little inconsistent 

behaviour for different bin sizes but it also achieves the assumed true registration peak of (0, 0) 

for bin sizes 256 and 128. 
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                                                                             (2, 3) 

 

                                                                             (0, 0) 

 
                                                                       (-1, 0) 

 

                                                                             (0, 0) 

 
                                                                        (0, 0) 

 

                                                                             (0, 0) 

 
Figure 3.13: Performance of Nearest neighbour (top), Cubic B-spline (middle) and Sextic B-spline (bottom) for 
original image intensity values (left) and  intensity values reduced to 7 bit radiometry (right). The x and y axis 

represent translation values of [-20, +20] pixels in x and y direction respectively. The z axis represents the 
normalized MI values obtained. The peak of the registration surfaces are mentioned on the top right 

 
Table 3.2: X and Y co-ordinates of peak produced by MI using different bin sizes and kernels for joint histogram 

estimation. 
 

Bin Size Entropy 
(SAR Image) 

Entropy 
(Opt. Image) 

NN Cubic 
B-Spline 

Sextic 
B-Spline 

JH 
Entries 

Ratio 

- 7.40 7.67 (2, 3) (-1,0) (0, 0) 472 x 868 0.5 
256 3.37 5.66 (0, 0) (0, 0) (0, 0) 139 x 130 11.3 
128 2.42 4.66 (0, 0) (0, 0) (0, 0) 76 x 75 36.0 
64 1.59 3.66 (-1, 0) (0, 0) (0, 0) 42 x 43 112 
32 0.63 2.66 (-1, 0) (0, 0) (0, 0) 24 x 25 339 
16 0.09 1.76 (-10, 5) (-10, 10) (-10, 10) 13 x 13 - 
8 0.02 1.07 (-5, 2) (-8, 5) (-8, 6) 7 x 7 - 

 

 The consistency achieved by the higher order B-spline kernels comes with an incurred cost in 

terms of the execution time. The sample performance of the nearest neighbour, Cubic B-spline 
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and Sextic B-spline for original image intensity values and intensity values scaled to 7 bit 

radiometry can be visualized in Figure 3.13. It can be seen that intensity binning produces much 

smoother and consistent MI search spaces and thus is expected to facilitate the optimization 

process. The influence of intensity binning is seen maximum on the nearest neighbour technique 

where the reduced joint histogram sparseness makes its performance equally compatible with the 

much complicated higher order B-spline kernels. The question of selecting a suitable or an 

optimal bin size for MI computations cannot be answered empirically but definitely certain 

recommendations can be suggested. The suggested ratio of number of reference image samples 

and the joint histogram entries to be around 64 (Thévenaz and Unser, 2000) has not been found 

as a limiting condition for this tested dataset and several others tested during this thesis work. MI 

has shown satisfactory performance for different bin sizes and joint histogramming techniques 

for a ratio ranging from 0.5 to 339 (Table 3.2). It can be suggested that bin size selection should 

be done carefully as too low bin sizes can drastically reduce the image entropy contents and 

hamper the mutual information performance. As observed in Table 3.2, all the three joint 

histogramming techniques failed to locate the true peaks for bin sizes of 16 and 8 which can be 

attributed to very less information or entropy content (especially in the SAR image) being left in 

both the images for MI to deliver reliable results. An important observation to be made from 

Table 3.2 is the fact that reliable MI performance could be achieved for very low image entropy 

contents. Specifically for bin size of 32, the SAR image entropy reduced to 8% of its original 

value (from 7.40 to 0.63) and the optical image entropy reduced to 35% of its original value 

(from 7.67 to 2.66), still MI could detect correct registration peaks for the B-spline kernels.  

 

The execution times for all the three techniques for different joint histogram bin sizes are 

tabulated in Table 3.3. The individual execution times for the three histogramming techniques 

for different joint histogram size (32x32 to 256x256) increase proportionally to the joint 

histogram size. Therefore, the dependence of MI algorithm on the joint histogram bin size can be 

categorized as ( )O n where n  is the joint histogram bin size. Important is the  significant effect 

of the joint histogramming technique on MI computation time can be visualized in Table 3.3,  

because of the per pixel ( )2O n  operation (explained in the previous section) the Sextic B-spline 
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kernel takes maximum time for producing the most consistent results followed by Cubic B-spline 

kernel and nearest neighbour interpolation.  

 
Table 3.3: Processing time7 in seconds for 441 MI evaluations for various joint histogram bin sizes for a reference 

image size of 451x451 pixels. 
 

Joint Histogram Size Nearest 
Neighbour 

Cubic  B-Spline 
Order 4 

Sextic B-Spline 
Order 7 

4263*1030 143  562 947 
256*256 33  447 832 
128*128 33  445 823 
64*64 33  444 821 
32*32 33  444 820 

 

In general, it can be commented that the easiest to implement and fastest in terms of 

execution time, nearest neighbourhood joint histogramming technique has similar capabilities as 

shown by higher order B-spline kernels but it is recommended to utilize this scheme only in the 

scenario where all possible image transformations lead to perfectly aligned grids as in case of 

non aligned grids the problem of inconsistent behaviour and interpolation artefacts as shown 

earlier might arise. Further, by utilizing nearest neighbour scheme, the chances of achieving sub 

pixel accuracy especially for low resolution sensors like Landsat, Radarsat looks bleak but 

certainly it can be utilized for pixel level registration of high resolution images from TerraSAR-

X and IKONOS, and this has been demonstrated in results presented in the following chapters 

through a proposed discrete optimization scheme for image registration applications.  

 

3.4.4 Search Space and Strategy 

 

After selecting a suitable histogram bin size, joint histogramming technique and the spatial 

transformation the final task in intensity based registration process is to efficiently estimate the 

desired registration parameters. Taking into perspective the huge data volume generated by 

remote sensing sensors, intensity based registration of remote sensing images is computationally 

expensive. The set of all possible image transformation might just be too big to do an exhaustive 

searching of the entire set thereby emphasizing the need of an effective search strategy. Search 

strategy basically employees an optimization technique which tries to maximize the mutual 

                                                 
7 On an Intel P4 Xeon (3 GHz, 1 MB cache) with 2 GB RAM 
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information registration function within the images to be registered. As mentioned earlier, 

optimizers with different mathematical roots have been utilized for this task. In this scenario, the 

target is to optimize the MI function with respect to the parameters of the decided registration 

transformation. For example, if the registration deformation between two images is a x and y 

directional shift then MI function optimization is a simple two dimensional problem but if the 

registration deformation is modelled as an affine transformation then the optimization task would 

be a six dimensional problem where six is the number of parameters. 
 

Table 3.4: Details of the utilized Radarsat and Landsat Imagery. 
 

 Radarsat Landsat 
Spectral Resolution C Band (5.3Ghz) 0.52 - 0.90 µm 

Pixel Spacing 12.5 m 14.25 m 
Bits per pixel 16 8 

Scene Size (pixels) 3003x3008 2937x2941 
Date of Acquisition 3 July 2007 5 July 2007 

 

However, even after selecting a suitable optimizer, the computation time problem may still 

persist as MI implementation is heavily dependent upon the image size. To tackle this problem, 

the use of a multiresolution search strategy is advocated. Multiresolution search strategy to 

match features using mutual information has been successfully used in Cole-Rhodes (2003a-b) 

for estimating the rotation and translation parameters within the images. Multiresolution 

approach presented in the cited reference to register Landsat imagery by maximizing mutual 

information between the features extracted by Steerable Simoncelli Filters (Simoncelli and 

Freeman, 1995) is being extended here for more general purpose registration scenarios. 

 

Here we analyze the metric behaviour using the proposed approach to register two large 

remote sensing images. The dataset here is a pair of orthorectified Landsat and Radarsat imagery 

with registration differences incorporating scale, rotation and translation in x and y direction, 

images are visualized in Figure 3.14 and details of the utilized imagery are tabulated in Table 

3.4. In Figure 3.14 we also show manually selected 12 check points in both the images which 

when utilized to built a affine transformation function have a residual of 0.74 pixel (9.25 m) and 

0.65 pixel (7 m) in x and y direction respectively. To evaluate the absolute performance of MI 

based image registration, a set of precise check points from some ancillary source are mandatory, 

considering no such source is available for the tested dataset we utilize the manually marked 
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points which have a fair overall consistency but still slight individual matching errors might 

exist.  

 

The MI performance at different image resolution levels is analysed with respect to these 

twelve manually marked control points. As extracting conjugate features from multimodal 

images especially SAR and optical images can be a difficult task so we utilize the entire image 

information from the two images and use down sampled images to speed up the entire 

processing. We propose to down sample the images using a simple block mean filter to form 

individual image pyramids for both the images and then proceed for multiresolution MI 

optimization using the SPSA algorithm as proposed in Cole-Rhodes et al. (2003a, b). Simple 

down sampling technique can be utilized effectively for remote sensing images to be registered 

on basis of intensity. 

 

Figure 3.14:  Reference Radarsat (left) and the input Landsat (right) image acquired over Yorkshire, United 
Kingdom in July 2007. The spatial difference between the two images is a rigid body transformation encompassing 
scale, rotation and translation in x and y direction. The end points of the blue lines represent the tie points utilized 

for registration accuracy assessment. 
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Figure 3.15:  Impact of image down sampling on image entropy content. 
 

An important argument favouring this is the fact that image down sampling reduces the image 

size effectively to one-forth at every level does not have a very adverse influence on the image 

entropy content. This phenomenon is also observed for the images in Figure 3.15 where Radarsat 

and Landsat images compressed to 6 levels, effectively reducing the image size (64x64) 4096 

times still can retain 78 and 84% of their original entropy value (measure of information 

content). Studying the graph reveals the fact that image entropy is preserved to more than 90% of 

its original value for both Radarsat and Landsat imagery even when reduced 256 times (level 3) 

of their original size. This preserved entropy in different levels of the pyramid can definitely 

improve the registration turn around time for MI based image registration as a lot of information 

gets represented in far less number of image pixels. 
 

The scaling factor (through image pixel spacing) is normally a known parameter for remote 

sensing images. Therefore, we optimize the MI registration function with respect to three 

registration parameters namely, rotation and translation in x and y direction. For the pyramidal 

MI optimization, a joint histogram bin size of 128 and GPVE with cubic B-spline interpolating 

kernels has been utilized. The four components of a rigid body transformation (scale, rotation 

and translation in x and y direction) obtained at different levels of the formed pyramid are 

provided in Table 3.5. For a metric consistency analysis, we perform a two way optimization of 

the MI registration function once keeping the Landsat image as the input and Radarsat as the 
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reference and then the other way around. The metric consistency (RC) is reported using the 

consistency metric explained in Section 2.5.3. 

 
Table 3.5: Multiresolution MI performance for registration of Landsat and Radarsat imagery. 

 
Level 
No. 

TLSAT to RSAT
8
 

 
TRSAT to LSAT RC 

(pixels) 
FE TAT9 

(sec) 
3 1.14, -6.90°, -12.96, 8.72 0.88, 6.86°, 9.84, -4.4 0.28 336 265 
2 1.14, -6.86°, -13.44, 13.92 0.88, 6.74°,10.56, -6.52 0.75 183   600 
1 1.14, -6.91°, -14.14, 12.70 0.88, 6.83°, 11.30, -7.60 0.81 114 1440 
0 1.14, -6.91°, -14.14, 12.70 0.88, 6.83°, 11.30, -7.60 1.60 54 3060 

RC: Registration Consistency, FE: Function Evaluation, TAT: Turn Around Time 

 

The RC value in Table 3.5 is not a measure of the absolute registration accuracy but just depicts 

the similarity metric performance consistency measured in pixels. We also report the combined 

number of MI function evaluations (FE) for finishing the optimization task along with the 

registration turn around time (TAT) at every image pyramid level. It is worthwhile to take a note 

that fairly similar registration parameters can be estimated from images down sampled to one 

eight of their original pixel spacing and this can directly be attributed to about 95% image 

information (entropy) still left in the down sampled images. Further, the TAT parameter value 

clearly suggests that as the data volume increases, the registration time using MI increase 

drastically without necessarily improving the registration quality significantly.  A limitation of 

this approach is that registration parameters should be precisely detected by the optimizer at the 

lowest level of the image pyramid. As the false registration parameters obtained at the lowest 

level of the image pyramid would propagate to all further layers and the probability of the 

optimizer to get stuck in a local maximum would increase significantly. Another important factor 

that might influence the results of this methodology is the optimizer initialization. Every 

optimizer needs a “seed” value to start the optimization process, in case this value is very far 

from the true global minimum the probability of the optimizer to halt in a spurious local 

maximum would increase rapidly. The utilized optimizer in this scenario is SPSA which has 

been found very effective for rough noisy functions but still this factor can play a significant role 

on the final results.  

                                                 
8 The transformation parameters include scale, rotation, x translation (pixels) and y translation (pixels) 
9  On an Intel P4 Xeon (3 GHz, 1 MB cache) with 2 GB RAM 
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Considering the observed MI performance for estimating the registration parameters, we 

extend this approach to fine register large remote sensing datasets which might also suffer from 

fine local differences that generally cannot be taken care of using a simple rigid body 

transformation. The idea here is simple and can greatly improve registration turn around times 

for large remote sensing datasets. We simply transform the input Landsat image using the 

parameters (TLSAT to RSAT) obtained at level 3 of the resolution pyramid in Table 3.5 and then 

mark a regular grid of tie points in the two images and then refine the tie point pairs through a 

chip matching technique. To demonstrate this idea and compare its results with the complete 

multiresolution optimization technique we mark a regular grid of 64 tie points in Radarsat and 

transformed Landsat image (Figure 3.16). For computing MI function locally around the marked 

tie points we select a chip size of 300x300 pixels in both the images. Here also we make use of 

the multiresolution strategy within the local chips and the registration function is optimized for 

two translation parameters. The shifts obtained for all the 64 tie points in the input Landsat 

image are provided in Figure 3.17. 

 

 
(a) 

 
(b) 

Figure 3.16: Roughly registered Radarsat (a) and Landsat (b) images using the registration parameters obtained 
from level 3 in the resolution pyramid. A regular grid of 64 tie points is constructed on both the images for local 

refinement and estimating fine registration parameters. 
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Figure 3.17:  Local shifts estimated using local matching using MI for the tie points in the Landsat image (Figure 

3.16b). 
 

After the local refinement, possible tie point pair outliers need to be checked for. These outliers 

might surface due to two main reasons. The first and the most common is the optimizer failure to 

detect the global maximum and the other possible scenario is lack of enough information in the 

windows marked around the control points for the metric to produce a sharp enough peak in the 

registration search space. Both these problems can be taken care of. For the first case optimizer 

can be initialized differently and change of parameter settings can be done. For the second case 

the window sizes can be increased to incorporate more image information for similarity metric 

calculation. In general it is better to use an iterative scheme to detect the outliers. Using the 

residuals from an initial polynomial built using all the matched points, the most deviating point 

from the polynomial is removed and a new polynomial is computed. The process is iterated until 

all returned residuals are smaller than twice the average standard deviation of all the points from 

the polynomial. Utilizing this scheme on the refined 64 tie point pairs we finally receive 48 tie 
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point pairs which when utilized to build a first order polynomial transformation function yield a 

standard deviation of 0.52 pixels in x direction (6.5 m) and 0.41 pixels in y direction (5.12 m). 

Considering two successive transformations on an image are multiplicative, the final 

transformation equation between the input Landsat image and the reference Radarsat image is 

computed as Equation 3.39. 
 

     
   48   
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To visualize the performance of the two different registration schemes, x and y direction 

deviation in meters between the manually marked control points (after the registration) is plotted 

in Figure 3.18. From the complete pyramidal optimization scheme, the transformation 

parameters obtained from level 0 and level 1 were exactly the same in Table 3.6 and thus the 

results from level 0 are not been shown in Figure 3.18. As expected, the transformed points from 

the level 3 and level 2 rigid body parameters have huge deviations from the reference x and y 

axis which slightly improves for the level 1 parameters. The transformed points from the affine 

parameters (registered Landsat and Radarsat images shown in Figure 3.19) show the minimum 

deviation from the four transformation parameters but some local differences are observed which 

might also reflect to inaccuracy in the manually marked control points. This observation is also 

reflected in obtained shift statistics (Table 3.6) around the twelve manually marked check points 

shown in Figure 3.14. 
 
 

Table 3.6:  Shift statistics (in meters) around twelve check points at different levels of MI based registration. 
 

 Absolute Average Standard Deviation 
 X Y X Y 

Level 3* 25.42 33.83 20.97 22.57 
Level 2* 38.35 23.32 13.9 12.9 
Level 1* 19.47 24.99 15.07 16.31 
Level 0* 19.47 24.99 15.07 16.31 
Affine  9.8 11.32 7.06 8.68 

           * Rigid body transformation 



 87

 

 
Figure 3.18: Scatter plot of difference in x and y direction within the transformed input image tie points and their 
manually marked conjugate points in reference Radarsat image. Plot compares the multiresolution optimization 

scheme (at different levels, Table 3.5) and the estimated affine transformation (Equation 3.39). 
 

In general, the proposed registration scheme has the following advantages for registration of 

large remote sensing datasets: 

 

Reduced processing time: The behaviour of MI for remote sensing images can be exploited to 

compress the images for obtaining rough registration parameters thus reducing the computation 

time extensively.  
 

Adaptability to parallel computing environment: Once the initial rough parameters are estimated 

from the coarser resolution images each of the conjugate tie point windows can be optimized in a 

parallel execution environment further reducing the processing time. 

 

Flexibility: The described methodology is flexible to use any number of control point pairs 

depending upon the kind of accuracy level desired. For certain applications, control points can be 

deliberately marked in areas expecting some local distortions due to reasons like sensor 

geometry and terrain influence. The method offers a way to get an estimate of possible local 

differences according to which a suitable transformation model can be selected. 
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Model Improvement: This utilized chip matching method can also find immense applications for 

improvement of sensor model which is investigated later in this dissertation. 

 
 

 
Figure 3.19:  Registered Landsat and Radarsat imagery using affine transformation (Equation 3.39). 

 
 
 
 
 
 
 

 



 89

3.5 CONCLUSION 

 

Considering the meticulous task of extracting similar features from SAR and optical images 

intensity based methods are preferred. Highlighting the limitations of correlation based methods 

to handle very different SAR and optical radiometry we have thoroughly discussed the concepts 

of information theory and formulation of mutual information as a registration similarity metric. 

The intensity based registration chain utilizing MI has been thoroughly explained with a detailed 

discussion on very crucial steps of selecting the mapping function, histogram normalization, joint 

histogramming technique and search space and strategy. A method to efficiently use the 

similarity metric properties to achieve fine registration for large remote sensing images from 

medium resolution sensors of Landsat and Radarsat satellites is also suggested. In the following 

chapter, we discuss performance of MI for images acquired by high resolution satellites where 

different sensor acquisition principles affect the metric performance adversely.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 



 90

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91

CHAPTER 4 
 

 
APPLICATION OF MUTUAL INFORMATION FOR VERY 

HIGH RESOLUTION IMAGES 
 

 
 
4.1 INTRODUCTION 

 

Mutual information has shown enough capability to handle the very different radiometry of SAR 

and optical images. Compared to images from medium resolution sensors (Radarsat, Landsat, 

Spot) earth observation data produced by new high resolution satellites like TerraSAR-X and 

IKONOS are much more affected by different sensor image acquisition principles and also 

generate huge data volume. In this chapter, we analyse in detail the MI performance for 

TerraSAR-X and IKONOS images and propose certain steps which might be mandatory for 

intensity based registration of high resolution images acquired over different land covers. 

 
 
4.2 UNDERSTANDING HIGH RESOLUTION IMAGES 

 
 
Considering the fact that MI is a purely intensity based registration method, it is comprehended 

that significantly incompatible image content and radiometry can influence its performance. 

With respect to the images of interest, i.e. high resolution SAR and optical in our case, the 

following concerns need to be acknowledged. 

 

4.2.1 Different Image Acquisition Principles 

 

As sensor spatial resolution approaches meter and sub-meter levels, the existing gap of sensor 

geometry and radiometry between the two sensors further widens up, causing problems for 

registration methods just based on the raw intensity values (like mutual information). This 

primarily arises due to the different image acquisition principles (distance versus angle 

measuring) working in different parts of the electromagnetic spectrum. The SAR side looking 
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geometry leaves its impact in form of the parallax, shading, unexpected scattering mechanism 

and double bounce effects especially on 3D world objects (Bamler and Eineder, 2008). 

Geometric differences leading to very incompatible information becomes clearly visible, 

especially on man made/natural 3D objects like bridges, buildings, huge towers, and mountains. 

 

Due to high sensor spatial resolution, all elevated 3D real world objects appear differently 

(almost incompatible to match) in SAR and optical images. This influence of sensor geometry is 

not so adverse on plain 2D objects which although appear in different radiometry, but are still 

not incompatible to match. To better understand this concept of radiometrically and 

geometrically incompatible 3D objects and only radiometrically incompatible 2D objects an 

example to depict 3D buildings (Sichuan, China) and a 2D lake (Munich, Germany) as imaged 

by SAR (TerraSAR-X) and optical (IKONOS) sensors is provided in Figure 4.1. By analyzing 

the appearance of 3D buildings in urban cities (Figure 4.1a-b) it becomes clear that the object 

geometry and radiometry are dissimilar in the two images. The sensors produce independent 

shadow effects in addition to the layover, foreshortening and double bounce effects observed 

only in the SAR image. On the other hand, the 2D lake provided in Figure 4.2c-d when imaged 

without occlusions at its border appears independent of any geometry characteristics. In the same 

scene the influence of different sensor acquisition principle is observed in the 3D trees 

surrounding the lake. For a detailed understanding of high resolution radar images and the 

difference from their optical counterparts, interested readers can refer to Stilla (2007). 

Considering that real world scenes will in generally have a mixture of relatively compatible 2D 

structures and incompatible 3D structures, the performance of MI for high resolution images 

comes under a scanner.  

 

4.2.2 Absolute Geometric Accuracy 

 

As the SAR images are a result of a distance measurement principle from space, there accuracy 

is not much dependent on satellite altitude due to spherical waves which are emitted from the 

radar antenna. It is due to this reason high resolution SAR especially from the German mission 

TerraSAR-X shows absolute accuracy in order of 2-3 m for the EEC products which are 

orthorectified using a DEM, normally derived from SRTM data (Nonaka et al., 2008).  
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(a) 

 

(b) 

 

 
(c) 

 

 
(d) 

Figure 4.1: Appearance of real world object in high resolution SAR and optical imagery. 3D buildings (a, b) have a 
very different response (both radiometric and geometric) where as the 2D lake (c, d) when imaged without 

occlusions produces much compatible response in both the sensors. 
 

Building shadow due to sun illumination 

  SAR rays reflected strongly due to 
building geometry (Double bounce effect) 

Radar shadow due to absence of SAR 
beam illumination 
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On the other hand, high and very high resolution (VHR) orthorectified optical images using 

sensor orientation still need ground control information to reach absolute geometric accuracy in 

pixel or sub-pixel range. This is attributed due to the insufficient knowledge of the sensors 

altitude and influence of thermal influenced mounting angles. The errors in this case may vary 

from five to several hundred meters depending upon the satellite configuration. In addition, 

precise DEM is mandatory for achieving high geometric accuracy (Reinartz et al., 2006b). 

 

4.2.3 Data Volume 

 

The issue of ever increasing data volume has always been and continues to be a matter of 

concern in remote sensing image processing. As the spatial resolution of modern sensors reach 

meter and sub meter levels the amount of data that needs to be processed is just huge. In the 

previous chapter, we highlighted the capability of a simple image down sampling technique to 

speedup the registration process for Landsat and Radarsat images with approximately 15 m pixel 

spacing. In general, the MI based registration process was shown to have ( )2O n  dependence on 

the image size and the computational complexity is further prone to increase with high order B-

spline kernels employed in the single step GPVE joint histogramming technique (see Sections 

3.4.2 - 3.4.3). These concerns need to be addressed before utilizing MI for automatic registration 

of huge volumes of high resolution images as now and in near future, processing large volumes 

of earth observation data is set to become a normal day activity. 
 
 
4.3 PERFORMANCE EVALUATION IN FLAT PLAIN AREAS 

 

We present here the MI performance for an image pair from TerraSAR-X and IKONOS-2 scenes 

acquired over west of Munich, Germany. The details of the selected dataset are tabulated in 

Table 4.1. The utilized TerraSAR-X scene has been orthorectified using a DEM and on the other 

hand the IKONOS image has been projected to a constant ellipsoidal height during the 

geocoding process and therefore georeferencing differences exist within the images and these are 

estimated using MI in this experiment.  
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Table 4.1: Details of TerraSAR-X and IKONOS-2 Imagery. 
 

 
 
   

 

 

 

 

 

The imagery utilized for this dataset is provided in Figure 4.2, it can be assumed that for these 

small chip sizes registration differences can be eliminated by estimating shifts in x and y 

direction. 

 

 

 

Figure 4.2: IKONOS-2 (left) and TerraSAR-X (right) imagery. Some of the objects producing incompatible 
response to the two sensors and should not be participating in any registration process are highlighted. 

 

It is seen in the images (Figure 4.2) that most of the area is covered by plain fields and the 

road network, which can be put in the category of 2D structures, is not significantly affected by 

different sensor imaging principles. It is observed that high resolution images have abundant 

numbers of ‘targets’ which produce a very strong backscatter especially in the SAR image. 

Incompatible information in the images being considered are the sign boards on the road 

highway and poles (marked in Figure 4.2) which have a 3D structure and thus produce very 

                                                 
10 Courtesy European Space Imaging 

 TerraSAR-X IKONOS-210 
Mode High resolution spot light (HS) Reverse Scanning 

Spectral Resolution 9.65 GHz 450 - 900 nm 
Spatial Resolution Range: 0.96m 

Azimuth: 1.12 m 
Cross Scan: 0.83 m 
Along Scan: 0.82 m 

Pixel Spacing 1 m 1 m (panchromatic) 
Bits per pixel 16 bit 11 bit 

Date of Acquisition 25/12/07 14/10/07 
Processing Level EEC Product IKONOS Geo 
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different response in the two images. It is the presence of structures of these targets in high 

resolution images that was much less observed in medium resolution images.  
 

 
10% Threshold 

 

 
30% Threshold 

 

 
50% Threshold 

 

 
70% Threshold 

 
Figure 4.3: Thresholded TerraSAR-X image (Figure 4.2). All the depicted thresholded images produced the same 
registration peak (Table 4.2) with the corresponding optical image suggesting the fact that complete information 

from both the images might not be required for robust mutual information performance. 
 

Considering the nature of implementation discussed for MI based registration (see Section 3.4) 

requiring all image pixels to participate in the registration process, in this case would also 
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include the incompatible response produced by certain ‘targets’ now visible in high resolution 

images. Therefore, the capability and immunity of mutual information to these incompatible 

targets becomes an important study for high resolution satellite imagery. 
 
 

Table 4.2:  MI registration peaks obtained between the reference thresholded SAR image and the original optical 
image. It is observed that suitable feature selection in only one of the images can be utilized to improve the 

registration processing time considerably without influencing the registration results (Suri and Reinartz, 2010). 
 

Ref 
Image 

Pixel 
Ref  Image 

(%) 

Entropy 
Ref  Image 

(%) 

Peak 
(K4) 

1681 K4  
MI 

evaluations 
(minutes) 

Peak 
(K0) 

1681 K0   
MI 

evaluations 
(seconds) 

Original SAR 100 100 (12, -5) 36 (11, -5) 157 
10%TH_SAR 90.0 97.4 (12, -6) 32 (12, -6) 150 
20%TH_SAR 80.4 96.4 (12, -6) 29 (12, -6) 136 
30%TH_SAR 71.3 95.4 (12, -6) 25 (12, -6) 120 
40%TH_SAR 61.2 94.6 (11, -6) 21 (12, -5) 112 
50%TH_SAR 51.3 93.6 (12, -5) 18 (12, -5) 84 
60%TH_SAR 41.4 92.6 (12, -5) 15 (12, -5) 71 
70%TH_SAR 30.2 91.2 (12, -5) 11 (12, -5) 59 
80%TH_SAR 20.6 89.7 (12, -5) 8 (13, -8) 38 
90%TH_SAR 10.2 87.6 (13, -3) 4 (14, 13) 20 
95%TH_SAR 5.6 56.5 (19, 19) 2 (11, -8) 12 

 

A strong high resolution data characteristic is observed in Table 4.2, removing the higher end 

pixel values from a high resolution SAR image does not influence much of the original image 

entropy (Shannon) content. It is worthwhile to note that almost 90% of the image entropy is 

contained in 30% of the image pixels which is utilized to achieve a registration speedup factor of 

three. This observation can mainly be attributed to the radiometric properties of high resolution 

SAR sensors where most of the image content towards the higher end of the histogram is 

redundant (for intensity based registration metrics) mainly generated by real world 3D targets. 

Abundant number of these targets can actually derail the registration process (shown in 

subsequent chapter) and therefore should be avoided.  With this observation and understanding, 

selection of fewer relevant pixels from lower end of the SAR image histogram can be taken for 

an efficient and effective MI based registration.  
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                                             Nearest Neighbour or GPVE using B-spline kernel (K0) 

 

 
                                               GPVE using cubic B-spline kernel (K4) 

 
 

Figure 4.4: Mutual information performance utilizing nearest neighbour (top) and cubic B-spline kernel (bottom) in 
GPVE technique for input image translated by -6 pixels in y direction moved over the reference grid image from -20 
to +20 pixels in x direction. Different thresholded TerraSAR-X images have been utilized as the reference image for 

the same IKONOS image. 
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This step can not only improve the processing time dramatically but is an important prerequisite 

to produce accurate registration results for images from future sensors which are expected to 

provide much higher resolution (generating more redundant information in the SAR image 

histogram) earth observation data than the here considered TerraSAR-X and IKONOS sensors. It 

is seen in Table 4.2, for this case, MI reported same registration peak of (12, -6) (with at max 1 

m deviation) in decreasing registration processing time between thresholded SAR (10 to 60%) 

and the optical image, strongly indicating the fact that this kind of a smart feature selection step 

can be done for fast and robust mutual information performance. 

 

Another key point to be observed is the performance of cubic B-spline (K4) and nearest 

neighbour (K0) both being one step joint histogramming techniques produced very similar MI 

peaks in the tested search space. Further, as also depicted in the previous chapter the nearest 

neighbour technique has again shown its capacity to detect correct registration parameters when 

we always have perfectly aligned reference and transformed input image grid. The performance 

of the two joint histogramming techniques for thresholded SAR image and the optical image can 

be visualized in Figure 4.4. For plots in Figure 4.4 the reference input image has been translated -

6 pixels in y direction and then has been shifted from -20 to +20 pixels over the reference image 

grid which is basically the SAR image thresholded to different levels (0 to 70%). It is observed 

that nearest neighbour technique produces very similar MI peaks (Figure 4.4) with a speed up 

factor of around 10 (Table 4.2) when utilized for perfectly aligned input and reference grids. A 

vigilant observation of the graphs presented in Figure 4.4 also indicates that the registration peak 

quality declines (for both K0 and K4 kernel) as the thresholding levels in the TerraSAR-X image 

is increased successively from 10 to 70%. This trend indicates the adverse impact of loss of 

image information on mutual information performance.  In applications involving MI for high 

resolution imagery, this trade off between quality of registration peak and reduced processing 

time needs to be balanced for fruitful results. 
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4.4 DISCRETE OPTIMIZATION FOR IMAGE REGISTRATION 

 

Till date, efforts have been concentrated on developing robust joint histogramming techniques to 

achieve smooth MI search spaces to facilitate the optimization process in obtaining the desired 

registration parameters. In general, the joint histogramming techniques which achieve this 

objective are computationally expensive as these involve smoothing in the joint histogram space.  

Due to ever increasing data volume, computational dependence of the considered metric on 

image size and underlying joint histogramming technique, increasing registration processing 

time is a persistent problem. Considering the nature of high resolution images and encouraging 

performance of simple but fast nearest neighbour technique a discrete optimization technique 

(based only on perfectly aligned grids) for high resolution images can be developed.  
 

                                                                     (11.5, -5.0)

(a) 
 

                                                                    (11.5, -5.0) 

 
(b) 

                                                                         (11, -5) 

 
 

(c) 

                                                                     (12, -5) 

 
(d) 

 
Figure 4.5:  Mutual information search space generated by nearest neighbour technique using with (a) subpixel and 

(c) pixel shift in x and y direction. Mutual information search spaces generated by cubic B-spline kernel with (b) 
subpixel and (d) pixel shift in x and y direction. It is seen that nearest neighbour produces similar MI surface as 

generated by cubic B-spline kernel in case of pixel level shifts. The x and y axis represent translation values of [-20, 
+20] pixels in x and y direction respectively. The z axis represents the normalized MI values obtained. The peak of 

the registration surfaces are mentioned on the top right 
 

 



 101

The concept of developing a discrete optimization scheme can be realized by observing the 

search spaces generated by MI for images of the dataset analysed in the previous section. As 

before, we translate the input IKONOS image at sub pixel and pixel level in search space of [-20 

+20] pixels over the reference TerraSAR-X image. We employ two joint histogramming 

techniques namely nearest neighbour and GPVE using cubic B-spline to generate search MI 

search spaces in Figure 4.5. It is clearly observed in Figure 4.5b that the computationally 

expensive cubic B-spline generates a much smoother search space as compared to nearest 

neighbour technique (Figure 4.5a) on utilizing half a pixel increment in image translation. On the 

contrary, search spaces generated using pixel level increments are comparatively similar (Figure 

4.5 c, d). This observation can be utilized for improving the registration turnaround time by 

employing nearest neighbour technique and a discrete optimization scheme which optimizes the 

MI function solely based only on the values obtained by perfectly aligned reference and 

transformed input image. 

 

To achieve this, we need to incorporate an optimizer which only works with discontinuous 

estimates of the mutual information registration function. The optimizer that we select here for 

the proposed adaptation is the Simultaneous Perturbation Stochastic Approximation (SPSA) 

algorithm. In its original proposed form, it was also used in the previous chapter to handle 

registration of Landsat and Radarsat imagery (see Section 3.4.4) through a multiresolution 

optimization scenario with cubic B-spline kernel being utilized to estimate the registration 

function in a continuous search space. 

 

4.4.1 Basic Simultaneous Perturbation Stochastic Approximation Algorithm 

 

The SPSA or Simultaneous Perturbation Stochastic Approximation algorithm was originally 

proposed by Spall (1992). Taking the task of optimizing a real valued function ( )f θ , defined on 

an open domain D  in p −dimensional Euclidean space pR . The function ( )f θ  is assumed to be 

at least three times differentiable and have a unique minimum point in D . It is assumed that 

measurements of ( )f θ  over different points in D  are available. As the algorithm tries to 



 102

optimize the function based on its gradients, the SPSA uses two measurements of f at an 

iteration k to form a gradient estimate 

                                                      ( ) ( )k kM f cθ θ+ = + Δ                                                            (4.1) 

                                                      ( ) ( )k kM f cθ θ− = − Δ                                                            (4.2) 

The SPSA gradient estimate of the gradient at thk iteration is 

                                                 ( )
( ) ( )( )

,
2

k k

k

M M
g k

c

θ θ
θ

+ +−
=

Δ
                                                   (4.3) 

                                                          ( )1k k k k ka gθ θ θ+ = −                                                          (4.4) 

Where c  and  a  are positive valued gain parameters, and kΔ is an independent random Bernoulli 

sequence of 1±  generated for all the function arguments. In the considered example it is assumed 

that the value of function f is dependent only upon a single variableθ , which is not the general 

case. The gradient is estimated using the above three equations for all the parameters of the 

function being optimized. The basic algorithm can be suitably modified to 

 

i. Maximize or minimize the target function registration 

ii. Generalize for a n argument target function  

iii. To decide exit conditions prior to the set number of optimizer iterations 

iv. Further, to do a constraint optimization with pre-defined search domains for the 

function parameters being optimized.  

 

The SPSA algorithm is highly parametric and the choice of the gain parameters especially (a, c) 

is critical to the performance of SPSA (Spall, 1998).  Here we utilize the same values for 

parameters as Cole-Rhodes et al. (2003a-b) utilized for both first and second order SPSA 

optimization. Utilizing the recommended optimizer coefficients, we test the optimizer 

performance by maximizing the mutual information registration function to estimate the shift 

parameters (x and y direction) within the TerraSAR-X and IKONOS images of dataset 1 (Figure 

4.2).   
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(a) (b) 

(c) (d) 

Figure 4.6: Maximization of the mutual information registration function to estimate the shifts between the 
TerraSAR-X and IKONOS imagery shown in Figure 4.2. (a-b) Represent successful optimization of the registration 

function using the SPSA algorithm with initial seed being (0, 0) and (20, -2) respectively. (c) The optimizer 
converges to a false maximum with seed (-20, 2). (d) The optimizer is stuck in a local minima when initialized with 

seed (-11, 5) respectively. 
 

Observing the MI search spaces presented in Figure 4.5, the shift parameters are expected to be 

around (11, -5) while keeping the more accurate TerraSAR-X as the reference and the IKONOS 

image as the input image. Generally all the optimization algorithms need a seed initialization to 

kick start the optimization process. We present the performance of the basic SPSA for four 

different initializations in Figure 4.6a-d. Figure 4.6a-b represent the successful optimization of 

the registration function with shift parameters being (11.55, -5.11) and (11.27, -5.00) for 

optimizer seeds (0, 0) and (20, -2) respectively which are very near to the expected maximum of 

(11, -5). Figure 4.6c represents the case where optimizer converges to a false maximum at 
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(12.04, 0.12) when initialized by (-20, 2). Figure 4.6d represents the case where the optimizer 

terminated at the initialization seed of (-11, 5) as the registration function value did not change 

significantly for 40 successive function evaluations which has been set as a terminating criteria 

for the optimizer. 

 

Considering the nature of registration search spaces generated by MI (especially 

incorporating misaligned grids, see Figure 4.5b) even when higher order kernels are employed 

for joint histogram estimation, the optimizer can halt at a false spurious peak. This remains a 

concern in utilizing MI for multimodal registration. One normally utilized solution is to double 

check the registration peak by performing a two way optimization by interchanging the reference 

and input image and evaluating registration metric consistency (see Section 2.4.3) to be doubly 

sure of the obtained maximum. This method comes with an additional cost of a two way 

optimization and is obviously not full proof as it fails to detect registration failure in case the 

optimizer halts at the same false peak in both optimization attempts.  

 

4.4.2 Discrete Simultaneous Perturbation Stochastic Approximation Algorithm 

 

In this sub section, we propose to utilize a discrete optimization scheme. However, it needs to be 

mentioned that this discrete optimization can only be utilized when we have only a translational 

shift difference between images having the same pixel spacing. Generally, remote sensing 

images have well known ground sampling distance and therefore images (small chips) can be 

brought to the same pixel spacing using appropriate resampling techniques. For geocoded 

imagery, rotational differences seldom exist within fractions of images, therefore discrete 

optimization being introduced here is expected to find applications especially for high resolution 

imagery where nearest neighbour technique has similar accuracy as compared to higher order B-

spline kernels. 
 

The already explained SPSA optimizer is suitably modified to achieve the desired target. 

Another sample example of discrete optimization of SPSA algorithm for the problem of 

constrained discrete resource allocation is found in Hill (2005). In the literature reviewed for this 

dissertation, attempt of utilizing discrete optimization in the field of image registration is found 

to be missing.  
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(a) (b) 

(c) (d) 

Figure 4.7: Discrete maximization of the mutual information registration function to estimate the shifts between the 
TerraSAR-X and IKONOS imagery shown in Figure 4.2. Here, the discrete optimization scheme converged to same 

maximum (-11, 5) with initial seeds being (0, 0), (20, -2), (20, 2) and (-11, 5) for (a-d) respectively. Due to the 
discrete estimates and increased value of the step coefficient ‘c’, the optimizer jumps more abruptly here as 

compared to the continuous case in Figure 4.6.  
 

 

We use the same parameter setting as utilized in the previous section and slightly modify the 

optimizer gain coefficients to achieve successive discrete estimates of the MI registration 

function. Another simple change is to insert round functions in Equations 4.3 and 4.4 

respectively to always achieve discrete optimizer candidates which are the two translation 

parameters in the case of image registration.  
 

The idea behind introducing the round function is to always introduce integral updates in the 

function arguments of the registration function being optimized. We present the performance of 
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the discrete SPSA using the same initializations of (0, 0), (20, -2), (20, 2) and (-11, 5) as done in 

the previous section. The optimizer behaviour for these initializations can be observed in Figure 

4.7. It is observed that the discrete optimizer using the nearest neighbour interpolation could 

achieve the true maximum of (11, -5) but this might not be true for certain different optimizer 

initializations. The reader has to be cautious while interpreting the results as these necessarily 

doesn’t imply that the new optimizer coefficient settings are better than the previous ones. Due to 

the discrete translation and increased value of the step coefficient ‘c’, it is expected to see the 

optimizer jump more abruptly in Figure 4.7 as compared to the continuous case in Figure 4.6.  

 
Table 4.3: SPSA performance11 for MI based registration (reference Figure 4.6 and 4.7). 

 
 SPSA using Cubic B-spline kernel Discrete SPSA using nearest neighbour 

interpolation 

Seed Optimizer 
Iterations 

TAT Result Optimizer 
Iterations 

TAT Result 

(0, 0)a 101 446 sec Optimized to 
(11.55, -5.11) 

65 17 sec Optimized to 
(11, -5) 

(20, -2)b 95 420 sec Optimized to 
(11.27, -5.00) 

77 22 sec Optimized to 
(11, -5) 

(-11, 5)c 29  143 sec Optimization 
failed 

118 33 sec Optimized to 
(11, -5) 

(20, 2)d 101 446 sec Optimization 
failed 

64 17 sec Optimized to 
(11, -5) 

 

The chief advantage of the discrete scheme is observed from the statistics in Table 4.3 where 

the number of optimizer iterations and execution times for the two scenarios are provided. Due to 

the underlying very simple joint histogramming technique the discrete SPSA achieves the 

registration peak in far less time as compared to the normally utilized SPSA technique. To 

achieve further a sub pixel registration result the output of the discrete SPSA can be utilized as a 

seed to facilitate faster convergence of the normal SPSA using sophisticated joint histogramming 

techniques.  

 

 

 

 

                                                 
11 Experiments done on Genuine Intel Pentium D CPU (2.8 GHz) with 2 GB RAM 
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4.5 PERFORMANCE EVALUATION IN SEMI URBAN AREAS 

 

It is observed that simple image down sampling and slight modifications in the optimization 

process can be utilized to enhance the registration time and effectively handle large data volume 

generated by high resolution sensors. We now analyze the influence of very different image 

acquisition principles on the performance of mutual information registration similarity metric. 

Here, we perform our analysis with high resolution imagery acquired over sub urban area in west 

of Munich, Germany (a subset extracted from the same complete scene utilized for dataset-1). 

The images can be visualized in Figure 4.8a-b, the imaged scene has urban settlement situated 

very next to vast plain fields providing an opportunity to analyze the similarity metric 

performance for two different land covers (both independent and combined).  

 
 

 
(a) 

 

(b) 

  

                                                                    (11, -7) 

 
(c) 

                                                                      (17, 4) 

 
(d) 

Figure 4.8: IKONOS (a) and TerraSAR-X (b) imagery acquired over semi urban areas. MI statistics estimated using 
only plain field pixels lead to a registration peak of (11, -7).  (c) Introduction of urban area pixels in MI statistics 

shifts the registration peak to (17, 4) (d). The x and y axis represent translation values of [-20, +20] pixels in x and y 
direction respectively. The z axis represents the normalized MI values obtained. The peak of the registration 

surfaces are mentioned on the top right 
 

 



 108

The following two scenarios have been considered: 

 

i. For case 1, we select pixels only from the plain fields (roughly demarcated with rectangle 

in Figure 4.8) in both the images for computing the registration parameters (Size: 

953x1096 pixels). For the plain field pixels, the side ways looking SAR sensor and the 

downward looking optical sensor are not expected to have much of their geometric 

influence so favourable registration results as in the previous case are expected. 

 

ii. For case 2, we select the entire image scene for registration parameter computation and 

hence analyze the influence of the sub urban establishments on similarity metric 

performance (Size: 1001 x 2001 pixels). The urban establishments due to their strong 

radar backscatter cause great changes in SAR image radiometry (histogram information) 

and thus offer a testing case for the similarity metric.  

 

The search spaces generated in Figure 4.8c-d represent the MI response obtained by moving 

the input IKONOS image over the reference image grid in a predefined range of [-20 20] pixels 

in both x and y direction. Figure 4.8c and 4.8d represent the generated search spaces for MI 

while utilizing pixels belonging only to the land cover class fields and the complete image region 

respectively. For the two cases, MI reported a peak at (11, -7) and (17, 4) respectively. A visual 

analysis using an overlay tool clearly indicates the present misalignment within the imagery after 

using the obtained registration parameters from case 2. Although the land cover fields constitute 

more than 65% of the total image area but still the introduction of the bright urban area pixels 

have derailed the registration process. This shift in the registration peak can directly be related to 

the introduction of region generating incompatible radiometric information (3D real world 

objects) which has noticeably hampered the mutual information performance for achieving on 

ground co-registration. The magnitude and direction of this observed shift in the MI peak (which 

to evaluate quantitatively might require detailed scene information like a DSM and sensor 

acquisition parameters and settings) in actual is dependent on one or more of the following 

factors: 

 

i. Sun elevation angle (influences response of urban 3D objects in optical images) 
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ii. SAR incidence angle (influences response of urban 3D objects in SAR images) 

iii. Building shape, height and their orientation towards the SAR sensor (influences double 

bounce pattern and radar shadow observed in SAR images acquired over urban areas) 

 

Practically, different land cover classes are hardly as segregated as available in the analysed 

dataset. Therefore, the problem of mixed land cover classes asks for a segmentation step before 

intensity based registration technique. The segmentation should principally be targeted to 

incorporate only those pixels in the registration process which are less influenced by different 

sensor geometries (like the plain field pixels in dataset 1 and 2).  
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 4.9: Pixels with value 1 were left out (in SAR image) of the registration process after introducing high 
thresholds of 5% (a) 10% (b) 20% (c) and 30% (d) at image compressed to one-forth of its original resolution. 

 
 
However, the idea of introducing a segmentation step prior to intensity based registration has the 

following concerns to be addressed: 

 

i. Supervised or unsupervised, ideally unsupervised would be preferred to avoid any kind of 

manual intervention in the registration process. 

ii. The accuracy and the speed of the segmentation, it needs to be established that how much 

accuracy in segmentation is mandatory for robust performances. 
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iii. Segmentation required only in one image or both the images involved in the registration 

process. 

 

The proposed method is unsupervised, very fast and easy to implement and requires 

segmentation in only one of the images being registered (reference image preferably to reduce 

computation time).  Inspired from the results obtained for dataset 1, the idea of the proposed 

solution lies in the histogram of a SAR image acquired over urban/semi-urban areas. Normally, 

the pixels generated by the double/triple bounce phenomenon result into a very strong 

backscatter to the radar sensor and thus most of these pixels would be located towards the higher 

end of a SAR image histogram.  

 
                                                                   (15, 1) 

 
5% Threshold 

                                                                     (11, -6) 

 
10% Threshold 

                                                                  (11, -6) 

 
20% Threshold 

                                                                     (11, -6) 

 
30% Threshold 

Figure 4.10: Registration surfaces generated by MI between segmented SAR (using masks in Figure 4.9) and the 
original optical image. As threshold level reaches 20-30% we obtain the similar peak as was generated by plain field 

pixels (Figure 4.8). The x and y axis represent translation values of [-20, +20] pixels in x and y direction 
respectively. The z axis represents the normalized MI values obtained. The peak of the registration surfaces are 

mentioned on the top right 
 

 

Here it has to be kept in mind that certain other pixels (not influenced by SAR geometry) due to 

constructive interference of the radar waves can also produce high intensity value (strong 

backscatter). However by histogram thresholds, it still might be possible to bin out most of the 
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pixels explicitly produced by the SAR sensor working principle. For dataset 1, MI recorded the 

same registration peak for different threshold levels so as long as the numbers of “false” pixels 

being binned out represent minority of the total pixel population, the true registration peak is not 

expected to change. The number of such false pixels can definitely be reduced by speckle 

filtering but intensity based registration of SAR and optical imagery does not require any 

mandatory image smoothing step, hence we refrain to perform the same in this solution. 

 

The results of the proposed segmentation scheme can be visualized in Figure 4.10. First the 

SAR image (Figure 4.8b) is down-sampled to one-forth of its original resolution. The histogram 

of the obtained down-sampled image is now used to generate thresholds for binning out possible 

pixels affected by the SAR sensor geometry in the original resolution image. To realize the goal 

of the segmentation process, thresholds are made from the higher end of the image histogram. It 

is clearly observed in Figure 4.9 that as the threshold limit is relaxed (from 5 to 30%) more and 

more pixels from the plain fields start coming into the filtered pixel category and this might have 

an adverse influence on similarity metric performance. 

 

To analyze the segmentation influence, we register the segmented SAR image (different 

thresholds analysed) with the corresponding optical image. In this scenario, all the pixels from 

optical imagery would contribute to the similarity metric computation but from the SAR imagery 

only those pixels which are within the threshold limits (assigned the value 0 in the masks of 

Figure 4.9) would participate in the registration process. The MI surfaces generated in the search 

space of [-20 20] pixels for the segmented SAR images and the original optical image have been 

provided in Figure 4.10. Segmentation of the SAR image using the mask depicted in Figure 4.9a 

(5% threshold) influenced the registration peak observed in Figure 4.8c. The registration peaks 

obtained by MI (17, 4) shifts to (15, 1). Further segmentation of the SAR image i.e. using 

threshold in the order of 10, 20 and 30% percent yielded nearly the same registration peaks as 

were reported by the similarity metrics using only from plain field pixels (Figure 4.8d). The MI 

peaks obtained for the segmented SAR and the optical imagery are same as the peaks obtained 

earlier (1 m difference in y direction still exist) using only the plain field pixels, which in this 

case are assumed to be the true registration parameters.  
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                                                                                (12, -4) 

 
(a) 

                                                                     (12, -4)    

(b) 
                                                                          (11, -5)        

                                     
     (c) 

Figure 4.11: Performance of the discrete SPSA algorithms for segmented TerraSAR-X and IKONOS imagery, (a-c) 
represent MI function optimization at 4 m 2 m and 1 m pixel spacing respectively using nearest neighbour technique 
(obtained registration parameters reported on top right of the optimization graphs). 

 
 

Further, the performance of the discrete SPSA algorithm can be visualized in Figure 4.11. 

Analyzing the search spaces in Figure 4.10 the registration peak can be expected to be around 

(11, -6) pixels in x and y direction for 20% thresholded TerraSAR-X and the IKONOS image. 

The seed utilized for the optimizer is (0, 0) and we perform out optimization in multiresolution 

pyramid comprising of images having 4 m, 2 m and 1 m pixel spacing. Figure 4.11a-c depict 

performance of the discrete SPSA using nearest neighbour technique from 4 m to 1 m images 

respectively. Here at 1 m pixel spacing, we obtain (11, -5) pixel translation in x and y direction 

as the registration parameters which differ by 1 m in y direction from the expected result.  
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4.6 CONCLUSION 

 
In this chapter we have analysed the performance of mutual information for metric resolution 

images acquired by SAR and optical sensors. The two major concerns with high resolution data 

are incompatible imagery content and high data volume. The incompatible radiometric 

information and geometric behaviour within the images do influence the mutual information 

performance but the introduced intensity based thresholding in the SAR image has been found 

beneficial to improve the similarity metric performance. Further examples shown in the 

subsequent chapter show that this method gives encouraging results for various tested datasets. 

The other issue of high data volume generally encountered in remote sensing image registration 

can be handled by using the proposed discrete optimization scheme to reduce the registration 

processing time considerably. In the following chapter, we present a critical analysis of mutual 

information for achieving registration of high resolution imagery acquired over dense urban 

areas. 
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CHAPTER 5 
 
 

MUTUAL INFORMATION BASED REGISTRATION OF 
TERRASAR-X AND IKONOS IMAGERY IN URBAN AREAS 

 
 
 
5.1 INTRODUCTION 

 
The previous chapter highlighted a possible solution to the problematic behaviour of mutual 

information while utilizing high resolution imagery especially acquired over scenes having a 

significant number of real world 3D objects.  In this chapter, we test dense urban area images 

where different sensor characteristics have a major influence on the performance of the 

investigated similarity metric. We analyse techniques, issues and possible solutions to adapt 

mutual information for registration of high resolution imagery acquired over dense urban areas. 

Further, based on the analysis in this and the previous chapter, we present a novel method to 

improve the sensor orientation for orthorectification of high resolution optical data.  

 

5.2 CHALLENGES IN REGISTERING HIGH RESOLUTION URBAN AREA IMAGES 

 

Automatic registration of high resolution data is a tough task due to two reasons, one is data 

volume and other being the amount of fine details now visible in satellite imagery. For 

multisensor images the situation further complicates because of possibly different modality 

and/or geometry of acquisition (see Figure 5.1). Multisensor modality can be handled by 

registration similarity metrics but for scenes (like those acquired over dense urban areas) where 

different sensor geometries and imaging principles start playing a crucial role, pose much more 

challenges to all registration techniques. In Figure 5.1, we have three images one from 

TerraSAR-X (acquired 2 days after the earthquake on 12/05/2008 in Sichuan, China) and two 

IKONOS images acquired pre and post the disastrous natural calamity. 

 

The challenges associated in registering each of the IKONOS images to the TerraSAR-X 

image can simply be visualized by the very different appearance of the images acquired by the 
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sensors. Not only the SAR image offers completely different signatures of the 3D urban 

settlements, the 2D features like the main road which is clearly observed in the optical images is 

difficult to interpret and delineate in case of the SAR image. 
 

 
(a) 

(b) (c) 

Figure 5.1: Challenges in registering high resolution images acquired over urban areas in form of different sensor 
radiometry and geometry. (a) TerraSAR-X image acquired after 2 days of the earthquake. (b) IKONOS image 

acquired 8 months before the earthquake. (c) IKONOS image acquired a month after the disaster. Both IKONOS 
images have different geometry of acquisition. Red cross indicates a “on ground” feature point detected and matched 

automatically within the IKONOS images. 
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Looking at the SAR-optical image pairs it is a subtle observation that developing a feature point 

algorithm to detect and match similar features might just not be possible. The most realizable 

solution is to use intensity based techniques and try to increase the influence of on ground 

features in the matching process. The accuracy of this method with the proposed attempt is 

analysed later in this chapter.  
 

Table 5.1: Details of TerraSAR-X and IKONOS imagery utilized for analysis in dense urban areas. 
 

 TerraSAR-X IKONOS-2 
(pre disaster) 

IKONOS-2 
(post disaster) 

Mode High resolution 
spot light (HS) 

Descending orbit 

 
Forward scanning 

 
Forward scanning 

Spectral 
Resolution 

        9.65 GH 450 – 900 nm 450 - 900 nm 

Spatial Resolution Range: 1.64 m 
Azimuth: 1.66m 

Cross Scan: 1.03 m 
Along Scan: 0.92 m 

Cross Scan: 0.94 m 
Along Scan: 1.08 m 

Geometry  
Incidence angle: 46.8º 

Sun azimuth: 154.4 º 
Sun elevation: 60.3º 

Collection azimuth: 284.4º  
Collection elevation: 62.1º 

Sun azimuth:113.0º 
Sun elevation:73.3º 

Collection azimuth: 352.8º 
Collection elevation: 59.3º 

Bits per pixel 16 bit 11 bit 11 bit 
Date of 

Acquisition 
15/05/08 14/09/07 28/06/08 

Product GEC Product IKONOS GEO IKONOS GEO 
 

Considering the two IKONOS images shown in Figure 5.1, it becomes clear that images even 

for the same sensor but acquired under different geometrical conditions produce different 

signatures for 3D objects. This is observed by analysing the shadow responses of the different 

buildings shown in the optical images. Specifically for these IKONOS images, different shadow 

pattern is a result of different geometrical settings (collection azimuth and collection elevation) 

and sun position (sun azimuth and sun elevation) during the time of image acquisition. To 

understand how these mentioned angles influence the geometry of acquisition for IKONOS 

images, interested readers are referred to Grodecki and Dial (2001).  Further, as these images 

have similar modalities we can use point feature detectors and matching schemes (like SIFT) but 

specifically for urban areas, after the matching phase, we would require a classification of the 

matched features into “on ground” and “above ground” features as for registration purposes only 

the former can be utilized. Generally, urban features like buildings, object shadows, small real 

world occlusions would make this kind of classification difficult to implement.  A sample “on 

ground” feature (relevant for image registration) detected by the SIFT operator for these image 
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chips is marked by a red cross in the two images (Figure 5.1). Although, high resolution optical 

image registration is not the theme of focus in this dissertation, it is anticipated that very high 

resolution optical urban area scenes even acquired by the same sensor but under different 

geometrical settings might pose some challenges for similarity metrics like mutual information. 

 

5.3 REGISTRATION IN URBAN AREAS 

 
In this section, we present a scenario that the end users might be confronted with while utilizing 

high resolution images acquired over urban areas. In the context of the presented work, 

registration is defined as estimating shifts in x and y direction between already orthorectified 

imagery. This also implies that the discrete optimization scheme proposed in the previous 

chapter can be very well utilized here to quickly estimate large global shifts between voluminous 

high resolution images. We consider TerraSAR-X and IKONOS imagery acquired over the city 

of Sichuan in China (dataset details in Table 5.1). The pre disaster image has been acquired 

roughly eight months prior to the earthquake and the post disaster IKONOS image is acquired 

approximately a month after. The image pairs have been procured from georeferenced scenes 

(without DEM) and have considerable urban changes within the acquired time period. The 

TerraSAR-X image is the standard GEC product which has been corrected to UTM projection 

using a constant ellipsoidal height and is not the most accurate data product available (Fritz and 

Eineder, 2008). Moreover, the following georeferencing differences within the images are 

observed (based on average of few manual measurements): 

 

i. TerraSAR-X and the post disaster IKONOS image have a georeferencing difference of 

approximately 90 m in x direction and 45 m in y direction. 

ii. TerraSAR-X and the pre disaster IKONOS image have a georeferencing difference of 

approximately 125 m in x direction and 25 m in y direction. 

iii. The average shift within the two IKONOS image using the SIFT matching technique is 

estimated as 37 m in x direction and 20m in y direction with 1 m and 2 m standard 

deviation in x and y directions respectively (from 8 automatically matched “on ground” 

points), reported parameters have been rounded to nearest integers and are used in 

experiments later for evaluating registration consistency 
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(a) 

 
(b) 

 
(c) 

Figure 5.2: Images utilized in dataset-1a. (a) TerraSAR-X image acquired after 2 days of the earthquake. (b) 
IKONOS image acquired 8 months before the earthquake. (c) IKONOS image acquired a month after the disaster. 

Markings reflect the areas in the images that have gone under considerable urban change within the acquisition time 
span.  

 

For complete analysis, we retrieve shift parameters between two datasets (zero overlap) extracted 

from the same complete scene (image pairs of size 1000x1000 pixels at 1 m pixel spacing are 

referred to as dataset-1a and 1b in further text and are provided in Figure 5.2 and 5.3 

respectively). Here the shifts are estimated keeping the TerraSAR-X image as the reference and 

the two IKONOS images as the input image.  
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(a) 

 
(b) 

 
(c) 

Figure 5.3: Images utilized in dataset-1b. (a) TerraSAR-X image acquired after 2 days of the earthquake. (b) 
IKONOS image acquired 8 months before the earthquake. (c) IKONOS image acquired a month after the disaster. 

Markings reflect the areas in the images that have gone under considerable urban change within the acquisition time 
span.  

 
 

The registration involving the pre and post disaster IKONOS image are referred as “Pre 

Registration Scenario” and “Post Registration Scenario” in further text.  
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5% Threshold 

 
10% Threshold 

 

 
20% Threshold 

 

 
30% Threshold 

 

 
40% Threshold 

 

 
50% Threshold 

 
Figure 5.4: Thresholded TerraSAR-X image of dataset-1a. Pixels with value 1 are left out (in SAR image) of the 
registration process after introducing high thresholds of 5 to 50% at image compressed to one-forth of its original 
resolution. It is observed that most of the “on ground” pixels are left for matching after the proposed thresholding 

step. 
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It is worthwhile to mention that the above mentioned georeferencing differences are not 

artificially introduced but are originally present in the procured scenes. The acquisition time 

differences within the images and the aftermath of the disastrous earthquake have led to 

significant urban change in the analysed datasets. We observe new roads, buildings and open 

spaces especially full of temporary settlements in the post earthquake IKONOS image. Some of 

the profound changes within the three images are demarcated in Figure 5.2 and 5.3. In this 

chapter, we analyse two registration techniques, one technique is based on the thresholding 

scheme proposed in the previous chapter and the other technique is based upon a region growing 

methodology (Türmer, 2009) that shows much potential for high resolution image 

matching/registration applications. 

 

5.3.1 Histogram Based Registration 

 

To continue evaluating the thresholding scheme proposed in the previous chapter, we translate 

the IKONOS image over the reference TerraSAR-X image in a range of -120 to -80 meters in x 

and -65 to -25 meters in y direction (post disaster) and -150 to -110 meters in x and -50 to -10 

meters in y direction (pre disaster). The true registration parameters for both the image pairs are 

expected to lie within this range and have been estimated manually by marking conjugate control 

points.  We perform this experiment within images having pixel spacing of four, two and 1 m 

respectively. Objective here is to do a multiresolution consistency analysis of the mutual 

information metric with the proposed thresholding scheme. Unless and otherwise stated, in this 

section all the computations have been made from a 128 bin size joint histogram estimated 

through cubic B-spline kernel and the image pyramid is built using the mean block filter. 

 

Results from dataset-1a 
 

To analyse the influence of the SAR image pixels generated mainly by double bounce effect in 

urban areas we performed the same segmentation scheme tested effectively for sub urban images 

in the previous chapter. The segmented TerraSAR-X image with thresholds in range 5 to 50% 

can be visualized in Figure 5.4. We first test the metric performance for the original images and 

later for segmented SAR and the optical image at pixel spacing of four, two and one meter. 
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                                                                            (-80, -46) 

 
No Threshold 

                                                                (-80, -46) 

5% Threshold 
                                                                            (-96, -48) 

 
10% Threshold 

                                                                (-96, -47) 

20% Threshold 
                                                                            (-96, -47) 

 
30% Threshold 

                                                                (-96, -47) 

40% Threshold 
                                                                          (-100, -47) 

 
50% Threshold 

                                                                (-99, -48) 

60% Threshold 
 

Figure 5.5: Registration surfaces generated by MI (dataset-1a, post disaster scenario) between segmented SAR and 
the original optical image. Interpolation artefacts may increase with the level of threshold in SAR image (Suri and 
Reinartz, 2009). The x and y axis represent translation values of [-120, -80] pixels in x and [-65, -25] pixels in y 

direction respectively. The z axis represents the normalized MI values obtained. The peak of the registration 
surfaces are mentioned on the top right 
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                                                                       (-110, -31) 

(a) 

                                                                   (-122, -30) 

(b) 
 

Figure 5.6: Registration surfaces generated by MI (dataset-1a, pre disaster scenario) between (a) original SAR and 
the original optical image (b) 30% thresholded SAR and optical image. The x and y axis represent translation values 
of [-150, -110] pixels in x and [-50, -10] pixels in y direction respectively. The z axis represents the normalized MI 

values obtained. The peak of the registration surfaces are mentioned on the top right 
 

Table 5.2: Multiresolution performance of MI for registration of pre and post disaster IKONOS imagery to 
TerraSAR-X image of dataset-1a (Figure 5.2).  

 
 L2 L1 L0 

Pixel Spacing 4 m 2 m 1 m 
Pre Search Space 

(pixels) 
x: -37 to -22 
y: -12 to -2 

x: -75 to -55 
y: -25 to -5 

x: -150 to -110 
y: -50 to -10 

Post Search Space 
(pixels) 

x: -30 to -20 
y: -17 to -7 

x: -60 to -40 
y: -33 to -13 

x: -120 to -80 
y:  -65 to -25 

 
Registration parameters in meters (x and y direction) 

 
Original Image Pairs 

(100% entropy) 
Pre -112, -22 -110, -21 -110, -31 
Post -80, -46 -80.0, -46 -80, -46 

 
5% High Threshold 

(97% entropy) 
Pre -112, -21 -110.0, -22 -110, -31 
Post -80, -46 -96.0, -48 -80, -46 

10% High Threshold 
(95% entropy) 

Pre -112, -22 -110.0, -22 -110, -31 
Post -96, -48 -98.0, -48 -96, -47 

20% High Threshold 
(92% entropy) 

Pre -120, -28 -122.0, -30 -122, -30 
Post -96, -48 -98.0, -48 -96, -47 

30% High Threshold 
(89% entropy) 

Pre -132, -28 -122.0, -30 -122, -30 
Post -96, -47 -98.0, -48 -96, -47 

40% High Threshold 
(86% entropy) 

Pre -132, -28 -122, -30 -122, -30 
Post -96, -47 -100, -48 -96, -47 

50% High Threshold 
(84% entropy) 

Pre -132, -28 -124, -30 -122, -30 
Post -100, -47 -100, -48. -100, -47 

 

The peaks observed for the two image pairs along with the TerraSAR-X image entropy content 

have been tabulated in Table 5.2. The same entropy behaviour as highlighted for dataset-1 of the 

previous chapter is depicted by this TerraSAR-X urban area image with approximately high 50% 

intensity values only constitute 16% of the entire image information. As observed earlier, here 

also the registration peak obtained for the original imagery shifts as the pixels influenced by the 
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SAR image acquisition principle are removed from similarity metric computation. For the 1 m 

pixel spacing post disaster IKONOS and the TerraSAR-X image pair (dataset-1a, Figure 5.2), MI 

reports registration peak at (-80, -46) for original images and this peak is shifted to (-96, -47) on 

introducing thresholds of 10 to 40% in the SAR image. A similar trend is observed for the 2 m 

and 4 m pixel spacing images. For the pre-disaster case, MI reports a registration peak at (-110, -

31) pixels for the original image pairs and finally registration peaks stabilize at (-122, -30) pixels 

for threshold ranging from 20 to 50% in the SAR image. A similar trend reflecting shifts in MI 

peaks is also observed at 2 m and 4 m pixel spacing images. MI behaviour for three resolution 

levels using different thresholds is tabulated in Table 5.2. 

 

Specifically for the post disaster IKONOS and the SAR image, an observation of the 

generated MI search spaces in Figure 5.5 clearly indicates a systematic shift of registration peak 

from (-80, -46) to (-96 -47) pixels in x and y direction as the image thresholds are increased from 

5 to 40%. For the original images and 5% high thresholded SAR image the peak is at (-80, -47) 

pixels. A small local maximum is observed around (-96, -47) is observed for 5% threshold image 

which becomes more profound for 10% thresholded SAR image. Further thresholding of the 

SAR image (till 40%) makes the registration peak stable at (-96, -47) pixels in x and y direction. 

As further information in form of pixels taking part in the registration process from the SAR 

image are removed (threshold 50 and 60%) the MI registration search space is observed to be 

rough and the peak also show small shifts in both x and y directions. The search space for the pre 

disaster scenario with similar trend is depicted in Figure 5.6.  
 

To do a consistency analysis of the MI performance, we manually estimate the rough 

registration shifts between the registered pre and post disaster IKONOS images by parameters 

obtained at different pixel spacing. With an assumption that after thresholding MI metric 

provides better performance, we estimate registration errors on basis of manual observations 

within the registered images. The individual Deviation  estimate is reported using the following 

relations 
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                      x x xDeviation Manual MI= −   

                                              y y yDeviation Manual MI= −  

                                          2 2
x yDeviation Deviation Deviation= +                                          (5.1) 

Where xManual  and xMI  represent the parameters estimated manually and using MI 

respectively in the x  direction, similar notation is also valid for the y  direction. Deviation  is 

the absolute difference between the mutual information estimate and the manually measured 

registration shifts.  
 

 
Figure 5.7: Evaluation of the mutual information performance consistency. 

 

As we already have estimates of the shifts present within the two IKONOS images (see Figure 

5.7), Registration Consistency RC  is also utilized to evaluate MI performance and is estimated 

using the following equations 

                                                    x SIFT pre postRC X X X= − +              

                                                    y SIFT pre postRC Y Y Y= − +  

                                                                              
2 2

x yRC RC RC= +                                                               (5.2) 

In the above equations , ,pre post SIFTX X X  represent the x  direction registration estimate for the 

pre disaster IKONOS image to TerraSAR-X (estimated using MI), post disaster IKONOS image 

to TerraSAR-X (estimated using MI), and pre disaster IKONOS to post disaster IKONOS image 

(estimated using SIFT). Similar notation is used for the y  direction as well. Finally we compute 

the absolute RC  measure using its x and y  component. 



 127

(a) 4 m pixel spacing 

0.00

5.00

10.00

15.00

20.00

25.00

0 10 20 30 40 50

Threshold Level (%)

D
ev

ia
tio

n 
(m

)
Registration Consistency Post Registration Scenario Pre Registration Scenario

 
(b) 2 m pixel spacing 
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(c) 1 m pixel spacing 

0.00

5.00

10.00

15.00

20.00

25.00

0 10 20 30 40 50

Threshold Level (%)

D
ev

ia
tio

n 
(m

)

Registration Consistency Post Registration Scenario Pre Registration Scenario

 
Figure 5.8: Mutual information performance using the thresholding scheme at different pixel spacing for dataset-1a 

(Figure 5.2). Registration consistency is computed using Equation 5.2 and individual deviation for post and pre 
registration scenarios are computed using Equation 5.1. 
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Figure 5.9: TerraSAR-X image (Figure 5.2) check-squared with registered pre disaster IKONOS image. We have 

utilized before thresholding (-110, -30) and after thresholding (-122, -30) parameters for the left and the right images 
respectively. The difference in registration is very hard to observe and is subjective to observers experience in 

absence of ground truth. The influence of thresholding in terms of improved registration is much clearer in results of 
Figure 5.12.  

 

Ideal value depicting perfect MI performance would be zero for the RC measure but it does not 

necessarily ensure the correct registration parameters for individual registration scenarios. 

Therefore, individual registration errors estimated considering the manual observations need to 

be incorporated for an objective analysis. For this particular case  achieving a RC value of zero 

might be difficult as the two IKONOS images involved have been acquired with different 

geometrical configurations (sun azimuth and elevation, collection azimuth and elevation) and 

this might influence certain features especially roads within building lanes. Ideally for this kind 

of analysis one needs two IKONOS scenes acquired at different dates but with same geometrical 

settings.  

 

The registration parameters estimated manually for pre and post registration scenario for 

dataset-1a are (-125, -27) and (-88, -49) respectively (rounded to nearest integers) these have 

been obtained by manually marking four control points at a standard deviation of 2-3 m in x and 

y directions. The individual registration consistencies RC  and expected accuracy of the pre and 

post disaster registration results tabulated in Table 5.2 can be visualized in Figure 5.8(a-c) for 

pixel spacing of four, two and one meter respectively. Results in Figure 5.8 suggest that the post 
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disaster registration scenario has a deviation of around 8 m where as on the other hand MI 

reports 5 m deviation for the pre disaster registration scenario at three different resolution levels. 

It is also observed that the introduced threshold did not improve the deviation for the post 

disaster scenario (remains around 8 m although the MI peak shifts) but has a significant 

influence in the pre disaster registration scenario (deviation reduced from 15 m to 4 m). The best 

results for this dataset seem to be achieved at 30% threshold at all the three resolution levels as 

we observe the minimum RC  measure value as well as minimal deviation for the two scenarios. 

The registered TerraSAR-X and pre disaster IKONOS imagery utilizing parameters before and 

after the thresholding process can be visualized in Figure 5.9. As for this dataset, there has not 

been a huge shift in registration peaks, visualizing the differencing within the two images is a 

tough ask. To further investigate the mutual information performance and the thresholding 

scheme, we estimate registration parameters in dataset-1b which has images from the same 

complete scene.  
 
 

Results from dataset-1b 

 

For dataset-1b, the selected sub scenes are provided in Figure 5.3. In this case the MI metric 

gives similar trends as observed for dataset-1a to yield the observation table in Table 5.3. For this 

case the post disaster registration scenario shows a peak shift from (-80, -39) to (-94, -50) after 

thresholding and on similar lines the pre disaster registration scenario shows a peak shift from (-

110,-17) to (-123, -29) (till 40%) at 1 m pixel spacing. Thresholding shifts the MI peak in both x 

and y direction as compared to the previous case where it dominantly only influenced the x 

direction. The MI search spaces both before and after the thresholding at different resolution 

levels are provided in Figure 5.10. It is seen that at 4 m pixel spacing, on plotting the MI surface 

interpolation artefacts appear for pre and post disaster registration scenarios. These can be 

attributed to the introduced thresholding and the performed sub pixel shifts. However, artefacts 

are removed by using the Sextic B-spline kernel as shown in Figure 5.10. This example further 

validates the effectiveness of the Sextic B-spline kernel for handling interpolation artefacts in 

high resolution image registration applications (Suri and Reinartz, 2008).    
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Table 5.3: Multiresolution performance of MI for registration of pre and post disaster IKONOS imagery to 
TerraSAR-X image of dataset-1b (Figure 5.3). 

 
 L2 L1 L0 

Pixel Spacing 4 m 2 m 1 m 
Pre Search Space 

(pixels) 
x: -37 to -22 
y: -12 to -2 

x: -75 to -55 
y: -25 to -5 

x: -150 to -110 
y: -50 to -10 

Post Search Space 
(pixels) 

x: -30 to -20 
y: -17 to -7 

x: -60 to -40 
Y: -33 to -13 

x: -120 to -80 
y:  -65 to -25 

 
Registration parameters in meters (x and y direction) 

 
Original Image Pairs 

(100% entropy) 
Pre -131, -27 -110, -17 -110, -17 
Post -95, -50 -94, -50 -80, -39 

 
5% High Threshold 

(97% entropy) 
Pre -128, -28 -132, -26 -123, -29 
Post -92, -52 -94, -50 -94, -50 

10% High Threshold 
(96% entropy) 

Pre -128, -28 -130, -26 -124, -29 
Post -92, -52 -94, -50 -94, -50 

20% High Threshold 
(92% entropy) 

Pre -128, -28 -130, -26 -124, -27 
Post -92, -52 -94, -50 -94, -50 

30% High Threshold 
(90% entropy) 

Pre -128, -28 -132, -26 -123, -29 
Post -92, -52 -94, -50 -94, -50 

40% High Threshold 
(87% entropy) 

Pre -136, -24 -132, -26 -123, -29 
Post -96, -52 -96, -50 -94, -50 

50% High Threshold 
(84% entropy) 

Pre -136, -24 -132, -26 -132, -26 
Post -96, 52 -96, -50 -94, -50 

 

 

The registration parameters estimated manually for pre and post registration scenario for 

dataset-1b are (-125, -30) and (-89, -48) respectively (estimated using 4 control points with 

approximately 3 m standard deviation in both x and y direction). Assuming these to be correct 

parameters, we have deviation of around 6 m and 2 m for the post disaster and pre disaster 

registration scenario (Figure 5.11), which suggests a much better performance than the previous 

case. The TerraSAR-X image registered with the pre disaster IKONOS images using the 

parameters obtained before and after the thresholding scheme are presented in Figure 5.12. 
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No Threshold at 1 m                                             (-110, -17) No Threshold at 1 m                                                (-80, -39) 

 
30% Threshold at 1 m                                           (-123, -29) 30% Threshold at 1 m                                             (-94, -50)

 
30% Threshold at 2 m                                           (-132, -26)

 

30% Threshold at 2 m                                             (-94, -50)

 
30% Threshold at 4 m                                           (-128, -28) 
Cubic B-spline 

 

30% Threshold at 4 m                                             (-92, -52) 
Cubic B-spline 

 

30% Threshold at 4 m                                           (-128, -28) 
Sextic B-spline                                               

 

30% Threshold at 4 m                                             (-94, -50) 
Sextic B-spline            

 
 

Figure 5.10: MI search spaces generated for dataset-1b. Figures on the left represent the pre registration scenario 
and on the right represent the post registration scenario. The peaks obtained by mutual information are provided on 

top right. 
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(b) 2 m pixel spacing 
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(c) 1 m pixel spacing 
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Figure 5.11: Mutual information performance using the thresholding scheme at different pixel spacing for dataset-
1b (Figure 5.3). Registration consistency is computed using Equation 5.2 and individual deviation for post and pre 

registration scenarios are computed using Equation 5.1. 
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Figure 5.12: TerraSAR-X image (Figure 5.3) check-squared with registered pre disaster IKONOS image. We have 
utilized (top) before thresholding (-110, -17) and (bottom) after thresholding (-123, -29) parameters. The difference 

in the river alignment is highlighted in the two images. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 5.13: Influence of the low thresholds in the range of 10-40% (a-d) introduced on the TerraSAR-X image of 
dataset-1b (Figure 5.3). It is observed that thresholding the histogram from the lower end of the SAR image takes a 

lot of pixels away from the “on ground” features like the river and the roads. 
 

It can be anticipated that there is some discrepancy in the introduced thresholding scheme. 

High end SAR image pixels can definitely remove the bright double bounce pixels but still we 

have very dark SAR image pixels generated explicitly by Radar shadow and with the current 

implementation they are participating in the MI statistics. It is comprehended that the removal of 

dark pixels is not very straight forward as these have a significant representation in dominant 

features like roads and river in the selected dataset. A sample influence of introducing thresholds 
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from 10-40% on the TerraSAR-X image of dataset-1b is provided in Figure 5.13. It is observed 

that along with the shadow pixels most of the on ground feature pixels would be left out from MI 

statistic computation from such a thresholding scheme. Tests performed on the investigated 

datasets confirmed this hypothesis as in most of the case the registration peaks do not change and 

sometimes become more erroneous and/or yield rough search spaces. 

 

In this section, we analysed the MI performance by introducing high end thresholds in the 

reference SAR image. Introducing high end thresholds in the SAR image produce significant 

shifts in the MI peaks as most of the rejected pixels in this case are from the SAR double bounce 

effect. Similar results are not obtained on removing the lower end pixels as these have a mix of 

on ground feature pixels and Radar shadow. Considering the results from both the datasets with 

zero overlap, we obtain (-96, -47) and (-94, -50) pixel translation in x and y direction for the post 

disaster registration and (-122, -30) and (-123, -29) pixel translation in x and y direction for pre 

disaster scenario. These parameters definitely are erroneous to a certain extent but also depict a 

consistent mutual information performance after the investigated thresholding scheme. Without 

an ancillary source to estimating the registration shifts manually between the high resolution 

IKONOS and TerraSAR-X imagery can be very subjective. It can still be considered that the 

discussed thresholding scheme may not be adequate to get rid of all the pixels specifically 

generated by the SAR image geometry for achieving correct registration parameters using MI. 

Henceforth, in the following section we utilize a region growing technique to again evaluate the 

MI performance for the same datasets tested here. 

 

5.3.2 Region Based Registration 

 

In this section we present a novel approach for high resolution image registration. This method 

presents a hybrid methodology combining feature and intensity based approaches for achieving 

image registration. The chief idea here is to extract high resolution features which are expected 

to be on ground and following use of their intensity values to estimate registration parameters 

using mutual information. With this methodology we attempt to highlight the following (Suri et 

al., 2009b): 
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i. The usefulness of region growing technique for high resolution feature extraction. 

ii. Capability of MI to match images with selected information in only one of the images 

participating in the registration process. 

 

Considering the very incompatible information generated by the two sensors in urban areas 

(especially for 3D objects) the idea here is to select only on ground 2D features (image 

appearance is not greatly influenced by sensor geometry) for registration purposes. In general, 

for high resolution satellite images acquired over urban areas, common city features like wide 

roads, rivers, big stadiums, play grounds, parks can be expected to appear in considerable sizes 

and be represented by relatively homogeneous intensity values (if imaged without occlusions, 

especially in the case of SAR sensor). This hypothesis gets confirmed as we analyse the 

appearance of prominent features like river and roads in the images depicted in Figure 5.2 and 

5.3. Considering this regular, homogeneous appearance of “on ground” urban features, we intend 

here to utilize region growing techniques to obtain homogenous features within the images. 

  

The intended registration chain is depicted through a flow chart in Figure 5.14. To initiate the 

registration process, smoothing operation is mandatory before targeted flat homogeneous regions 

can be extracted for registration purposes. Considering the image statistics, we employ an 

enhanced Frost filter (Lopes et al., 1990) for SAR image. The basic Frost filter (Frost et al., 

1982) comes into the class of adaptive filters and has been found useful for SAR image speckle 

reduction. The idea behind smoothing is to increase the homogeneity of the regions to 

supplement the following important region growing step. Following the region extraction using 

the standard region growing technique (Castleman, 1996), we attempt to filter the obtained 

homogeneous regions on basis of their shape properties like area, length and geometrical 

moments. Followed by the region extraction and filtering based upon geometrical moments we 

use image morphological operation to obtain the region skeleton. Finally, the extracted skeleton 

is used for taking original image information (intensity values) from SAR image and is matched 

with the original optical image using mutual information. We further present and discuss the 

results obtained from the processing chain illustrated in Figure 5.14 for both the selected 

datasets. 
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Figure 5.14: Proposed chain for registering high resolution SAR and optical satellite imagery acquired over urban 

areas. 
  

Results from dataset-1a 

 

The result of the region growing and the filtering step on the reference SAR image for dataset-1a 

are provided in Figure 5.15. It is visualized that a lot of “on ground” features like the river and 

the roads are extracted automatically. Following the middle axis extraction using binary 

morphological operations the skeleton broadened with SAR image information using different 

window sizes. In this methodology, window size becomes a parameter of evaluation as it is 

assumed here that the middle axis extracted represents the true middle axis of the desired feature 

and by selecting various window sizes information surrounding the axis pixels can be 

accommodated in the MI statistics. Depending upon the width of the features present in the 

dataset we analyse MI response with respect to a window size range of 5 to 19 m in both the 

datasets. Keeping the broadened skeleton images (Figure 5.16) as the reference, these have been 

matched with the input pre and post disaster IKONOS imagery using MI.  

 

As all the extracted features would generally not have the same width and therefore the urban 

establishments surrounding them (especially for the narrow roads) might start creeping in the MI 

statistics for certain window sizes. Therefore, we also recommend performing a 10% threshold 

from the higher end of the SAR skeleton image histogram. This assumption is also in consistence 

with the observation that most of the ground pixels (especially for SAR images) are situated in 
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the lower end of the skeleton image histogram. This step in general is found to facilitate much 

more consistent MI performance in the presented scenario. The results of the matching operation 

with various window sizes for dataset-1a are tabulated in Table 5.4, sample MI search spaces are 

provided in Figure 5.17. The search spaces for this region based strategy have been generated 

using Sextic B-spline kernel in GPVE (Suri and Reinartz, 2008) otherwise the search spaces 

have been found to be rough due to very less number of pixels participating in the registration 

process. 

  

Figure 5.15: Automatically extracted and filtered regions from the TerraSAR-X image in dataset-1a. 
 

For this dataset taking pixels mainly from the “on ground” features has led to a better mutual 

information performance both in terms of the overall registration accuracy and the individual 

accuracies of the pre and post registration scenarios (Figure 5.18). A comparison of utilizing MI 

with and without thresholding and by utilizing the region based scheme with different window 

sizes for 1 m images can be visualized in Figure 5.18. It is worthwhile to mention that by just 

selecting desired features in the SAR image has led to a deviation (Equation 5.1) around 3 m in 

the pre registration scenario and around 6 m for the post registration scenario. The same dataset 

with the global thresholding scheme produced respective deviations of 5 and 10 m respectively. 

We further examine this registration scheme for dataset-1b to complete the evaluation. 
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Table 5.4: Registration results for dataset-1a (Figure 5.2) using region based scheme at 1 m pixel spacing. 
 

Window Size Post IKONOS to 
TerraSAR-X 

Pre IKONOS to 
TerraSAR-X 

Registration 
Consistency 

5 m -85, -44 -120, -24 2.00 
7 m -87, -44 -119, -28 6.40 
9 m -86, -44 -120, -29 5.83 
11 m -87, -44 -124, -30 6.00 
13 m -88, -44 -124, -30 6.08 
15 m -87, -45 -123, -30 5.10 
17 m -94, -46 -130, -32 6.10 
19 m -91, -47 -123, -30 5.83 

     
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 5.16:  (a) Extracted skeleton from the regions obtained in Figure 5.15. (b-d) skeleton broadened with original 
SAR image intensity values (Figure 5.2a) using a window size of 7, 11 and 15 meter respectively. 
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Pre disaster                                                   (-119, -28) 

                 Skeleton with 7 m window size 

Pre disaster                                                     (-123, -30) 

 
Skeleton with 15 m window size 

 
Post disaster                                                    (-87, -44) 

 
Skeleton with 7 m window size 

 

Post disaster                                                     (-87, -45) 

 
Skeleton with 15 m window size 

Figure 5.17: MI search spaces generated for pre and post disaster registration scenarios using skeleton generated by 
window size of 7 and 15 meter. 
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Figure 5.18: Mutual information performance using the region based registration scheme for dataset-1a. Here we 

compare the application of MI with and without thresholding (0 and 30%) and after utilizing extracted “on ground” 
regions with different window sizes with 10% thresholding.  Registration consistency is computed using Equation 

5.2 and individual deviation for post and pre registration scenarios are computed using Equation 5.1. 
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(a) (b) 

 
(c) (d) 

Figure 5.19:  (a) Extracted regions from the TerraSAR-X image of dataset-1b (Suri et al., 2009b) (b) Filtered 
regions. (c) Obtained skeleton using image morphological operations. (d) Skeleton broadened with original SAR 

image intensity values using a window size of 11 meter. 
 

Results from dataset-1b 
 

The results of the region growing and finally the skeleton extraction step on the reference SAR 

image for dataset-1b are provided in Figure 5.19. The results of the matching operation are 

tabulated in Table 5.5, MI search spaces provided in Figure 5.20. For dataset-1b, the region 

based scheme produces an average deviation of less than 5 m for both the registration scenarios 
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where as the global thresholding scheme produced a very similar performance yielding 6 m for 

the post disaster and approximately 3 m deviation for the pre disaster registration scenario 

(Figure 5.21).  
 
 

Table 5.5: Registration results for dataset-1b (Figure 5.3) using region based scheme at 1 m pixel spacing. 
 

Window Size Post IKONOS to 
TerraSAR-X 

Pre IKONOS to 
TerraSAR-X 

Registration 
Consistency 

5 m -89, -50 -126, -25 5.00 
7 m -89, -50 -125, -29 1.41 
9 m -86, -44 125, -28 3.16 
11 m -91, -50 -126, -26 6.32 
13 m -90, -52 -127, -27 5.00 
15 m -91, -52 -127, -27 5.10 
17 m -91, -52 -127, -29 3.16 
19 m -91, -52 -127, -29 3.16 

 
 
Pre disaster                                                   (-126, -28) 

 
                 Skeleton with 7 m window size 
 

Pre disaster                                                     (-131, -27) 

 
Skeleton with 15 m window size 

 
Post disaster                                                    (-89, -50) 

 
Skeleton with 7 m window size 

 

Post disaster                                                     (-91, -52) 

 
Skeleton with 15 m window size 

Figure 5.20: MI search spaces generated for pre and post disaster registration scenarios using skeleton generated by 
window size of 7 and 15 meter. 
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Figure 5.21: Mutual information performance using the region based registration scheme for dataset-1b. Here we 

compare the application of MI with and without thresholding (0 and 30%) and after utilizing extracted “on ground” 
regions with different window sizes with 10% thresholding.  Registration consistency is computed using Equation 

5.2 and individual deviation for post and pre registration scenarios are computed using Equation 5.1. 
 

5.3.3 Outlook Based on Obtained Results 

 
On the basis of underlying similarity metric we have presented two distinct methods for 

achieving automatic registration between high resolution SAR and optical images. To 

summarize, the first method is based upon histogram thresholds introduced in the reference SAR 

image and the second method is based upon certain features extracted again in the reference SAR 

image which are expected to be imaged independent of any sensor geometric configuration. In 

both the methods, the optical image has not been processed in any ways and good registration 

results have been achieved. We can compare the above methods on the basis of the following 

criteria: 

 

Consistency: It can be realistically argued that the region based scheme has produced better 

registration results than the global thresholding scheme. This can mainly be attributed to the fact 

that maximum of the pixels contributing to the joint histogram in this case were actually “on 

ground” pixels thus facilitating an improved MI performance. On the other hand, the global 

thresholding scheme seems to be slightly inaccurate due to the discrepancy introduced by the 

thresholds. Pre-dominantly double bounce pixels are removed from the joint histogram but still 

lot of the dark pixels generated specifically by geometrical characteristic of the SAR sensor like 
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Radar shadow participate in the registration process which can make the entire process slightly 

inaccurate.  

 

Applicability: Considering the methods discussed, the region based registration method looks 

less likely to have a very general applicability. As extraction of “on ground” features like roads, 

rivers, play grounds may not always be possible automatically and this can jeopardise the entire 

process.  Proposed region based scheme has also been found to be effective for relatively large 

scenes with dominant features which might not always be present. On the other hand the 

histogram based thresholding method can be utilized for more general registration purposes as it 

involves a subtle feature extraction step which can be easily realized using the SAR image 

histogram. Practically, the region based registration scheme can also be employed effectively by 

using a classification scheme to extract “on ground” feature pixels or by including ancillary 

information for feature extraction (like road databases to extract road skeletons) in the 

registration process.  

 

To further evaluate and validate the thresholding based image matching method in the 

following section we present a novel application of SAR optical image matching to improve the 

sensor orientation and orthorectification of high resolution optical data.  

 

5.4 IMPROVEMENT OF SENSOR ORIENTATION AND ORTHORECTIFICATION OF 

HIGH RESOLUTION OPTICAL DATA 

 

Until now, we have shown the capability of MI to match multimodal SAR and optical images. 

Normally, matching has been implemented as a problem of determining shifts in x and y 

direction between two images of interest. Simply determined x and y directional shifts might 

well serve the purpose for small image chips but are not sufficient to register large remote 

sensing images. This conventional application of MI was shown to suffer (see Section 3.4.4) 

where we analysed MI performance for Landsat and Radarsat (approx 3000x3000 pixels in size). 

It was highlighted that simply determining the shifts yielded huge local distortions within 

manually marked registration tie points. There we proposed to use MI locally within the images 

to approximate an affine transformation between already orthorectified images to reduce the 
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local distortions. This technique might suffice for sub scenes but would definitely not meet the 

desired accuracy requirements for complete coverages produced by modern high resolution 

satellites.  

 

The idea we investigate in this section is to utilize MI locally within the images and then 

utilize the obtained matching results to improve the exterior orientation (Müller et al., 2007) and 

thereby improving the geometric accuracy of optical satellite data (Reinartz et al., 2009). The 

main motivation of this exercise can be summarized as follows: 

 

i. The geometrical accuracy of the new German satellite TerraSAR-X has been found to be 

within few meters for the Enhanced Ellipsoid Corrected (EEC) images (Nonanka et al., 

2008). The Single Look Slant Range Complex (SSC) mode has a better accuracy than 1 

m and this accuracy levels are maintained if the data are orthorectified incorporating a 

high precise DEM. 

 

ii. The accuracy of orthorectified high resolution optical satellite data suffers due to 

insufficient knowledge of satellite attitude and thermal influenced mounting angles. 

Errors in this scenario have been found in the range five to several hundred meters 

(depending upon satellite configuration).  

 

iii. The accuracy level of optical orthorectified imagery can be improved by precise ground 

control. Source of this ground control information can be GPS measurements, 

topographic maps or very accurate reference images (Jacobson, 2004). In case we have 

access to accurate optical reference data we can utilize completely automated and robust 

optical matching techniques (e.g. least squares matching) to achieve precise ground 

control. This technique of using accurate optical reference images has been shown to be 

very precise with an overall accuracy of around half pixel size (Müller et al., 2007). 

However, the main limitation in the above process is the lack of precise enough reference 

images especially for high resolution data.  
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iv. Considering encouraging results discussed from the application of MI to high resolution 

imagery in previous section and the availability of accurate images from TerraSAR-X, it 

looks feasible to extract accurate ground control (through local image matching) by using 

TerraSAR-X images as the reference source.  

 

By doing this exercise we can also quantify the absolute registration accuracy (available 

ground truth) achieved by MI for metric resolution images acquired by multimodal sensors using 

different geometries, which has not been found very abundantly in the reviewed literature. 

Specifically, we concentrate on TerraSAR-X and IKONOS imagery, which have been the topic 

of discussion so far in this chapter. 

 

5.4.1 Processing Chain 

 

Considering the application demands, we test the histogram based registration technique 

presented in Section 5.3.1. The dataset under consideration comprises of images acquired over 

the city of Munich, Germany. The details of the dataset are tabulated in Table 5.6. The images 

have an acquisition difference of three years and mostly have an urban land cover.  

  
Table 5.6: Details of the imagery utilized for improving optical sensor orientation and orthorectification (images 

acquired over the city of Munich). 
 

 TerraSAR-X IKONOS-2 
Mode High resolution 

spot light (HS) 
Descending orbit 

 
Forward scanning 

Spectral Resolution 9.65 GHz 450 - 900 nm 
Spatial Resolution Ground range: 0.96m 

Azimuth: 1.12 m 
Cross Scan: 0.83 m 
Along Scan: 0.84 m 

Geometry  
Incidence Angle: 39.3º 

Sun azimuth: 153.9 º 
Sun elevation: 61.5º 

Collection azimuth: 354.9º  
Collection elevation: 80.8º 

Bits per pixel 16 11  
Date of Acquisition 30/09/08 15/07/05 

Product EEC product IKONOS GEO 
 

The processing chain utilized in this section is depicted in Figure 5.22. We initiate by 

forming a grid of conjugate points in both the images which are to be fine matched using MI 
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(Figure 5.23). As the images are already geocoded we can place this regular grid using the initial 

geocoding information of both the TerraSAR-X and the IKONOS image. Grids have to be placed 

so that every point gets a decent window size to be utilized for computing the mutual information 

statistics from both the images. Further, we have used the following parameter settings for all the 

chips to be matched: 

 

i. The local MI based matching is carried out using the histogram based registration scheme 

presented in Section 5.3.1. We threshold each of the reference TerraSAR-X chips with 20 

percent high threshold and also 10 percent low threshold locally and match them with the 

input IKONOS chips. 

ii. As for small image chip sizes, MI surfaces are generally found to be rough and suffer 

from interpolation artefacts, we have selected GPVE technique using Sextic B-spline 

kernel for estimating the joint histograms of bin size 100. 

iii. Multilayer image chip matching forming two layers in each of the chips is utilized. 

iv. For optimization, we utilize the SPSA optimization scheme as described in Section 4.4. 

 

 
Figure 5.22: Processing chain for sensor orientation and orthorectification of IKONOS data. 
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Figure 5.23: Established regular grids for local matching between TerraSAR-X (left) and IKONOS (right) images. 
The White crosses represent the points used for local matching using MI and the Red crosses represent the check 

points used later to judge the quality of orthorectification.  
 

 
Figure 5.24: Local shifts obtained for IKONOS grid points as estimated by MI using TerraSAR-X image as the 

reference (no segmentation). 
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Figure 5.25: Local shifts obtained for IKONOS grid points as estimated by MI using segmented TerraSAR-X image 

as the reference. 
 

We perform a two way matching, first keeping TerraSAR-X as reference and IKONOS-2 as 

input chips and then we revert the settings to obtain matching consistency (see Section 2.4.3 and 

3.4.4)  which as earlier helps us to remove some of the bad matches (according to a set 

threshold). As the regular grid is just placed without any marking of favourable high 

entropy/contrast areas like crossings, intersections, runways there would be points in very 

homogeneous regions where MI matches generally tend to fail. Therefore, performing a two way 

optimization and checking for match consistency helps in removing some of the wrong matches. 

 

Complementing the tie points found from the TerraSAR-X data with interpolated height 

values from the DEM leads to 3D GCPs (in case DEM is not available we use a constant height) 

in the image coordinates of the IKONOS data, which are utilized to improve the sensor model of 

the optical system (here RPC based). A method for blunder detection is integrated in the least 

squares adjustment, which eliminates iteratively GCPs with a residual greater than a threshold 

starting with the most deviating GCP. In this context a residual is defined as deviation of GCP 

coordinates from the re-calculated object point coordinates using the refined sensor model, 
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which is derived from the adjustment using all currently valid GCPs. In a first step the whole 

GCP set serves as input for the iterative parameter estimation. Successively the GCP with the 

worst deviation and residuals greater than a threshold is removed from the GCP set. This 

iterative procedure is repeated until a GCP set remains, which is consistent to the sensor model. 

The procedure has to be iterative, because each GCP influences the result of the parameter 

estimation. As threshold for the GCP blunder detection two pixel sizes has been found to be 

sufficient for ALOS / PRISM and IKONOS images (other values like 1 pixel size threshold show 

no significant improvement of blunder detection). Although this process is deterministic, the 

drawback of this method is that systematic errors for the majority of the GCPs can lead to 

erroneous or shifted values of the estimated parameters. Another possibility is the fact that we 

might obtain a poor distribution of the GCPs concentrated in only one part of the scene and a 

model estimated from such a distribution might not be ideal and consistent for the entire 

coverage.After obtaining the refined sensor model using the locally matched grid points, we 

orthorectify the IKONOS image and check the results both before and after the improved sensor 

orientation with well spread out reference coordinates extracted from a much accurate reference 

data12 (expected accuracy of about 2 m). 

 

5.4.2 Results of Orthorectification 

 

The process starts with local image matching between the reference TerraSAR-X and IKONOS 

image using MI. For a comparison of the results, we perform matching both with and without the 

proposed histogram based method. The initial shift obtained within the established 121 grid 

points with and without introducing SAR image thresholds can be visualized in Figure 5.24 and 

5.25 respectively. Due to various thresholds like registration consistency, image background and 

image chip entropy introduced we obtain MI estimated shifts for only 29 points (with segmented 

TerraSAR-X image in Figure 5.25), rest of the 92 point pairs get rejected due to above 

mentioned reasons.  

                                                 
12 www.geodatenzentrum.de 
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Figure 5.26: Residual vectors obtained after using TerraSAR-X image as the reference (6 points after outlier 

elimination contributed towards sensor model correction). 
 
 

 
Figure 5.27: Residual vectors obtained after using segmented TerraSAR-X image as the reference (7 points after 

outlier elimination contributed towards sensor model correction). This set of seven points does not reflect the ideal 
desirable distribution of control points for accurate orthorectification. 
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For the case, where we don’t introduce any segmentation we obtain shifts within 31 grid points 

(Figure 5.24). In both the cases, the shifts are obtained using the parameter settings mentioned in 

the previous section. 

 

Once these shifts are obtained we use the TerraSAR-X geocoordinates and IKONOS image 

coordinates with a constant elevation height to correct the RPC sensor model of IKONOS-2. The 

scheme further performs blunder detection and then selects a subset of matched points (acting as 

GCPs) to do the desired task. The residuals obtained from the estimated shift files for the two MI 

matching schemes can be visualized in Figure 5.26 without segmentation and Figure 5.27 with 

segmentation. For RPC correction, we finally obtain seven (with segmentation) and six (without 

segmentation) points for sensor model correction from both the matching schemes. Generally, it 

has been found that we obtain a higher percentage of points (especially for scenes having mainly 

rural or sub urban settlements) for sensor model improvement but that has not been the case for 

this dataset. This can mainly be attributed to entire urban land cover present and utilized for 

image matching. The residuals estimated by the built sensor model for the two cases are provided 

in Figure 5.26 and Figure 5.27. 

 
Table 5.7: Shift in meters obtained at six control points after different orthorectification schemes. 

 
 TerraSAR-X 

not utilized to 
establish 

ground control 
 

Ground control 
extracted from 
TerraSAR-X 

using simple MI 
based matching 

Ground control 
extracted from 
TerraSAR-X 

using 
segmentation 
prior to MI 

based matching 
 

Point Number X Y X Y X Y 
1 4 -8 -4 2 -4 -5 
2 4 -7 17 7 0 3 
3 5 -8 2 -5 1 -3 
4 4 -9 24 -4 5 0 
5 5 -9 -5 -11 2 -5 
6 7 -12 8 -19 7 -5 

 
Average (m) 4.83 8.83 10.00 8.00 3.17 3.15 
Std Dev (m) 1.72 1.72 11.66 9.23 3.87 3.33 
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After obtaining the correct sensor model we orthorectify the IKONOS-2 images using the 

two models and compare the results with 6 ground control points (GCP), with their location on 

the IKONOS image shown in Figure 5.20.  The residuals obtained at the 6 GCPs for the initial 

orthorectification (before sensor model improvement), orthorectification through ground control 

extracted from MI based local chip matching both with and without segmentation of the 

TerraSAR-X image chips are tabulated in Table 5.7. 

 

It is interesting to note that prior sensor model improvement the initial orthorectification had 

almost constant shifts (not using TerraSAR-X for extracting ground control) at the six ground 

control points; this should not be taken as a general trend as we have observed huge local 

variations for some other scenes tested. Further, it is observed that using TerraSAR-X chips as 

the reference and not doing any segmentation produces the worst results in the three test cases.  
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Figure 5.28: Plot of the absolute accuracy achieved by different orthorectification schemes at six reference points. 

 

The best results are obtained in using the proposed histogram based thresholds prior to MI based 

local image matching. On average we obtain around 6 m absolute accuracy at the six GCP 

locations, individual absolute errors in the three test cases at the GCP locations can be visualized 

in Figure 5.28. Further, visualization to compare the three test cases is provided in Figure 5.29, 

which shows a window of 50m around the six ground control locations and the results of the 

other three orthorectified IKONOS images. 
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Figure 5.29: Accuracy of different orthorectifation schemes for the IKONOS image at 6 reference points. Red cross 

indicates the reference ground truth, White cross indicates the initial orthorectification prior to improved sensor 
orientation, Green and Yellow crosses represent the results of orthorectification after improved sensor orientation 

using ground control established by mutual information matching with and without segmentation respectively.  The 
image chips represent a 50m window size around the reference points (IKONOS images displayed with 4 times 

zoom). 
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Figure 5.30: TerraSAR-X and orthorectified IKONOS through improved sensor orientation check squared to 
highlight good registration of “on ground” features like the park at the centre and the adjacent roads. Image area is 

of size 540×540 pixels and is displayed without any zoom. 
 

It is clear from the discussed process that most of the pixels participating in the registration 

scheme are intended to be from the on ground features (roads, parks, river etc.) and thus they are 

expected to show good registration in both the images. For this case of TerraSAR-X and 

IKONOS image (orthorectified through improved sensor orientation) well aligned “on ground” 

features can be visualized in Figure 5.30 and Figure 5.31. Especially in Figure 5.31 we also 

highlight the misregistration much easily observed in case of flat roof buildings as compared to 

gabled roof tops mainly due to much compatible optical and SAR sensor response produced by 

the former.  
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Figure 5.31: Check squared TerraSAR-X and IKONOS image orthorectified through improved sensor orientation. 
As in Figure 5.30 we observe good registration of “on ground” features but the highlighted flat roof building shows 

a misalignment. Image area is of size 600x600 pixels and is displayed without any zoom. 
 

5.4.3 Discussion 

 

In this section, we have presented a novel method for sensor orientation and orthorectification of 

high resolution optical data. The segmentation scheme proposed earlier in this chapter has been 

found useful to improve MI performance for matching high resolution imagery acquired over 

dense urban areas. For this dataset acquired over the city of Munich, we obtain around 4.5 m 
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absolute accuracy (reference data approximately 2 m accurate), in general for several other 

IKONOS scenes tested with this proposed processing chain has yielded absolute accuracy in the 

range of 2-7 m. It is commendable that the entire processing chain is completely automatic and 

its performance has not been found very susceptible to different parameter settings. There are 

various factors that contribute to the overall accuracy like the actual scene conditions and mutual 

information matching performance which might not be up to the mark if we have large 

homogeneous regions in most of the images participating in the matching process.  

 

Further, it is mandatory to have a good distribution of ground control which is utilized for 

improving the sensor orientation, the distribution obtained for the Munich scene is still not the 

ideal one. This is an important factor and a failure in achieving this could yield a scenario that 

we might achieve good registration in parts of the scene and severe misalignment in the other 

parts. Further, this misalignment might be difficult to observe especially in dense urban areas and 

in absence of a reference point (for accuracy analysis) in that particular part of the scene. 

Similarly, for an accurate analysis of the results, a good distribution of check points is very much 

required as done for this dataset. In general, the MI based ground control establishment looks 

promising and has given us useful results for orthorectification of IKONOS and ALOS sensor 

images. (Sample results for ALOS imagery are available in Reinartz et al. (2009)). Generally, the 

performance has been at its best for rural or sub urban land covers with not too much of 3D 

objects with very incompatible sensor response. For such scenes, we have almost achieved 1-2 

pixel absolute accuracy for IKONOS and ALOS data. Scenes, with very dense urban areas like 

the one presented in this section give a slightly deteriorated performance with an average 

accuracy of around 4-8 m for IKONOS data.   

 

5.5 CONCLUSION 
 

This chapter started with a discussion on the challenges encountered in registering high 

resolution imagery especially acquired over dense urban areas. On the basis of proven capability 

of mutual information for handling SAR-optical registration scenarios, we have presented two 

approaches for registration of high resolution imagery in urban areas. One technique is based on 

the reference image histogram and the other technique requires “on ground” features to be 
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extracted and then finally matched with the input image. In both the presented methods the pre-

processing steps are only required in the reference SAR image. The technique based on reference 

image histogram looks to be less accurate than the region based technique, but definitely has a 

much more general applicability than its latter counterpart. On the basis of the histogram based 

technique, we have demonstrated a completely automated method to obtain ground control from 

accurate TerraSAR-X images for improving the sensor orientation (RPC’s) of IKONOS data. 

This completely automated technique can be applied for different high resolution optical sensors 

in the same league of spatial resolution. 
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CHAPTER 6   

                 

SIFT BASED MULTIMODAL SAR IMAGE REGISTRATION 
 

 

6.1 INTRODUCTION 

 

With this last chapter, we turn our attention to another important objective of this dissertation. 

Here, we shift our area of interest from SAR-optical registration scenario to multimodal SAR 

image matching/registration which as pointed out earlier in Chapters 1 and 2, till date has no 

established supreme methodology. SAR imagery along with its weather independent capability is 

useful for diverse applications like DEM generation (Dupont et al., 1997), image fusion 

(Moghaddam et al., 2002), soil moisture estimation (Hegarat-Mascle et al., 2002), traffic related 

studies (Palubinskas et al., 2005), change detection (Bovolo and Bruzzone, 2005) and many 

more (Eineder et al., 2005). Considering challenges in feature based multimodal SAR image 

registration (see Section 2.6) and advancements in the field of computer vision, improvements in 

point feature matching for applications like radargrammetry (Tupin and Nicolas, 2002) and 

geometrical SAR image registration look feasible. Henceforth, in this chapter, we evaluate the 

application of the SIFT (Scale Invariant Feature Transform) operator for remote sensing SAR 

image matching and registration applications. A detailed conceptual description of the SIFT 

operator is provided in Appendix of this dissertation, here we discuss SIFT operator and its 

application in context of SAR images and propose refinements for the same.  

 

6.2 SIFT IN CONTEXT OF SAR IMAGERY 

 

The motivation for considering the SIFT operator for SAR image matching application is the 

operators scale invariance along with its robust feature identification and matching capabilities. 

For SAR images, the SIFT operator has the inherent ability to detect and match stable features at 

lower scales, where the speckle influence is expected to diminish. Its robustness in the face of 

occlusion, clutter and noise (Lowe, 2004), further facilitates its application for SAR image 
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matching. Broadly the SIFT processing chain (see Appendix) can be decomposed into three main 

categories, namely feature detection, identification (rotation and scale invariant descriptor 

formation) and matching. All the three following components have been developed and 

optimized for optical images, henceforth we propose and evaluate some changes in the SIFT 

processing chain with an objective of successfully adapting it for multisensor SAR image 

matching/registration applications.  

 

6.2.1 Feature Detection  

 

The feature detection is primarily based upon image smoothing by the Gaussian filter followed 

by the DOG technique to form the scale space, followed by extremum detection (potential 

features). Further, the sub-pixel feature localization is dependent upon gradients approximated 

through simple differencing in x, y and z direction (scale). As highlighted, the feature detection 

component is heavily dependent upon image differencing operators which generally are not ideal 

for SAR image statistics (speckle is multiplicative). Here, we don’t intend to change the basic 

feature detection scheme but explore the idea of image smoothing and introduce the concept of 

skipping features detected at the highest scale with an objective to improve SIFT feature 

detection for SAR images.  

 

6.2.2 Feature Identification   

 

Once stable features have been detected they are assigned robust descriptors which are scale and 

rotation invariant. The descriptors in the SIFT operator are assigned utilizing the local gradients 

computed at the characteristic scale of feature detection in the scale space pyramid. The feature 

descriptors depend upon local gradients estimated using simple adjacent pixel differencing and 

dominant gradient orientations of the feature neighbourhood are utilized to make the descriptor 

rotation invariant. More than one dominant orientation from the local gradient orientation 

histogram might be selected as the feature orientation and therefore numbers of descriptors might 

be greater than the number of features detected (recommended in Lowe, 2004). In this phase, the 

main step of estimating the local gradients is again not very well suited for SAR images and 

therefore we try to change the way local gradients are estimated. Later in this chapter we select 
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two conceptually different gradient operators (based upon image difference and ratio operator) 

specifically designed for SAR imagery. 

 

6.2.3 Feature Matching 

 

Matching of the feature descriptors based on ratio of the descriptor distance between two best 

matches of a reference feature (referred to as matching ratio in further text) seems to be a 

reasonable choice for both SAR and optical images. However, considering the properties of 

mutual information discussed in the previous chapters (see Section 3.4.4), we propose to 

combine MI and SIFT for improving the matching results obtained after using the standard SIFT 

operator matching (Section 6.9). In the following sections, we thoroughly evaluate the above 

proposed changes against the application of the standard SIFT processing chain for SAR images.  

 
 

 
(a) 

 

 
 (b) 

Figure 6.1: Result of SIFT feature detection on a sample SAR image. (a) E-SAR imagery of size 300x300 pixels 
displayed at 75% of its original size. (b) The application of the SIFT operator produces 1520 features with around 

74% features being detected at the first octave13.  The figure depicts 1119 octave 0, 315 octave 1, 63 octave 2 and 23 
octave 3 SIFT features marked by White, Green, Yellow and Red crosses respectively. 

  

 

 

                                                 
13 For details see Appendix 
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6.3 FEATURE DETECTION 

 

The application of the SIFT operator for SAR matching applications is not very straight forward 

primarily because of the multiplicative speckle influence inherent to any SAR image. Initiating 

the analysis, here we show the SIFT features detected on an E-SAR image (Experimental SAR: 

an airborne SAR-sensor developed and used by DLR (Schreiber et al., 1999)) of size 300 x 300 

pixels (Figure 6.1). The application of the original SIFT operator on the image depicted in Figure 

6.1a results into 1520 SIFT features being detected, depicted in Figure 6.1b. On analyzing the 

SIFT feature distribution in different octaves, it becomes evident that maximum features have 

been found in first octave and on their visual analysis it can be inferred that most of them are a 

result of the multiplicative speckle influence. Based on this initial observation we apply and test 

two modifications into the SIFT processing chain, described as follows: 

 

Skipping of the first scale-space octave (SIFT-OCT): While analysing the SIFT operator 

performance for SAR image matching, it became apparent that only very few matches are found 

in the first octave (highest scale) of the scale space pyramid. Even worse, the matches found at 

the first octave were observed to have the highest false alarm ratio of all the octaves. Images at 

lower scale showed more robust features as the influence of speckle gets diminished lower down 

the octave pyramid. This observation suggests skipping the first octave of the scale space 

pyramid. The proposed change reduces the number of feature detections significantly, but 

interestingly it did not reduce the number of correct feature matches (demonstrated later). 

Another advantage is the reduced processing time as the image area reduces by four times in 

each octave. 

 

 Infinite symmetric exponential filter (SIFT+ISEF-OCT): To further reduce the speckle 

influence, the SAR images can be pre-processed using a smoothing filter before the computation 

of the scale space pyramid. The ISEF filter was shown to deliver good results for edge detection 

in SAR images (Fjørtoft et al., 1995). ISEF was proposed by Shen and Castan (1992) as an 

"optimal low-pass filter as a preparation for edge detection". Shen and Castan illustrated that an 

increase in Gaussian filter size is useful to reduce noise influence but the increased size has an 

adverse effect on edge localization precision. To overcome this problem, the ISEF filter with an 



 163

infinite window size and desired sharpness at the window centre was proposed. ISEF is 

mathematically expressed as 

                                                              ( ) .
2 exp p xpf x −=                                                       (6.1) 

Replacing p  by ( )ln b−  the above equation can be written as 

                                                               ( ) xf x ab=                                                                  (6.2) 

with ( )( )ln / 2a b= −  and 0 1b< < . For the two dimensional case, an efficient, recursive 

function can be used (Shen and Castan, 1992). The comparison between the Gaussian and the 

ISEF filter curves can be visualized in Figure 6.2.  

 

 
Figure 6.2:  Comparison of Gaussian and ISEF function. The Gaussian function (top) smoothens at the centre and 

the ISEF filter (bottom) retains a sharp peak at the centre (Schwind, 2008). 
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6.4 FEATURE IDENTIFICATION 

 

The two conceptually different gradient estimation techniques evaluated for improving the SIFT 

feature identification are the following: 

 

Operator based upon image recursive differencing: Proposed for detecting step edges in noisy 

SAR images (Paillou, 1997), the utilized operator is derived from Deriche filter and is 

implemented recursively. The operator specifically designed for SAR images according to the 

edge detection criteria proposed by Canny (1983) 

i. Insensibility to noise 

ii. Good edge localization 

iii. Unique response to one edge 

 

was shown to be more effective than classical differential operator like Shen-Castan operator 

(Shen and Castan, 1986), first derivative of a Gaussian and the original Deriche operator 

(Deriche, 1987). For a detailed understanding of the operator, the interested readers are referred 

to the cited reference.  

 

Operator based upon image ratio: Considering the fact that due to the multiplicative nature of 

speckle difference based edge detectors detect more false edges in areas of high reflectivity, we 

also test an edge detector with a Constant False Alarm Ratio (CFAR) (Touzi et al., 1988). For 

this comparison, we evaluate Ratio of Exponential Weighted Averages ROEWA operator 

proposed in Fjørtoft et al., (1995). This operator was found much efficient for SAR image edge 

detection in comparison to Ratio of Averages (Touzi et al., 1988), Ratio of Order Statistics 

(Brooks and Bovik, 1990) and ratio based version of Deriches optimal edge detector (Deriche, 

1987).   

 

The SIFT descriptor formation or feature identification as described in Appendix-1 is a 

function of a region of pixels selected for feature identification. It is clear from the nature of the 

task that the two major components to be scrutinized in this section are the magnitude of the 
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edge strength computed at a pixel followed by its assigned orientation. To recapitulate the 

magnitude Ma  and orientations Or  in image I are computed as following 

                                                       ( ) 2 2,Ma i j dx dy= +                                                         (6.3) 

                                               ( ) ( )tan 2 , tan 2 ,Or a dy dx with a Y Xπ π= − ≤ ≤                        (6.4) 

where dx  and dy  represent the x  and y  gradient computed at a pixel location ( ),i j . Here on, 

we briefly outline the three different local gradient estimation techniques for a comparative 

evaluation. 

 

Simple differencing (used in the original SIFT implementation)   

The original SIFT implementation supports the simple first order derivatives calculated using the 

following equations 

                                              ( ), ( 1, ) ( 1, )dx i j I i j I i j= + − −                                                      (6.5) 

                                              ( ), ( , 1) ( , 1))dy i j I i j I i j= + − −                                                     (6.6) 

 

Recursive differencing (Paillou, 1997) 

This linear edge detector based on the Deriche filter uses the following recursive equations to 

obtain derivatives in x and y direction. 

                                                  ( ), ( , ) ( , )xp xmdx i j I i j I i j= +                                                      (6.7) 

               ( ) ( ) ( ) ( ) ( )0 0 1 1 2, , 1, 1, 2,xp p x p xo xp xpI i j a I i j a I i j b I i j b I i j= + − − − − −                         (6.8)                        

             ( )1 0 2 0 1 2( , ) 1, ( 2, ) ( 1, ) ( 2, )xm m x m x xm xmI i j a I i j I i j b I i j b I i j= + + + − + − +                       (6.9) 

                                        ( ) ( ) ( )( )0 1, , ,x p mI i j a X i j X i j= −                                                    (6.10) 

                             ( ) ( ) ( ) ( )1 2, , 1 , 1 , 2p p pX i j I i j b X i j b X i j= − − − − −                                   (6.11) 

                             ( ) ( ) ( ) ( )1 2, , 1 , 1 , 2m m mX i j I i j b X i j b X i j= + − + − +                                  (6.12) 

In Equation 6.7-6.12, 1... , 1...x yi S j S= = , 0 1 1 2 , 2 1, , , ,p p m ma a a a b b  are operator parameters and 

xS and yS represent the image size. A similar recursive formulation is also utilized to obtain the 

gradient in y  direction dy . 
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Ratio of exponential weighted averages (ROEWA) operator (Fjørtoft et al., 1995) 

Placing a step edge between two homogeneous regions degraded by speckle, this operator 

intends to give an unbiased estimate of the ratio of the mean values of the two regions. Based on 

the ISEF filter (Figure 6.2b), which is realized as a cascade of two recursive filters, 

( )1h x (causal) and ( )2h x (anticausal) 

                                                       ( ) ( ) ( )1 2
xh x c b h x h x= ⋅ ≡ ∗                                              (6.13) 

where  

                                             ( ) ( )1
xh x a b u x= ⋅     ( ) ( )2

xh x a b u x−= ⋅ −                                    (6.14) 

( )/ 2 , 1 ,0 1c a a b a a= − = − < <  and ( )u x is the Heaviside function. The first derivative of the 

smoothing filter ( )h x is given by  

                                                                  ( ) ( )df x h x
dx

=                                                           (6.15) 

for ratio based implementation proposed in Fjørtoft et al., (1995) 

                                         ( ) ( ) ( )( )1 2f x k h x h x=             ( )ln 1
2

a
ak −

−=                                        (6.16) 

 For this case, horizontal and vertical components of the gradient of an image are given by: 

                              ( ) ( )( ) ( ) ( ) ( ) ( )( ), ,x h x h y I i j f x h y I i j⎡ ⎤Δ ⊗ = ∗ •⎣ ⎦                                   (6.17) 

                               ( ) ( )( ) ( ) ( ) ( ) ( )( ), ,y h x h y I i j f y h x I i j⎡ ⎤Δ ⊗ = ∗ •⎣ ⎦                                 (6.18) 

where ⊗ denotes bidimensional convolution, ∗  denotes convolution in the horizontal direction 

and •  represents convolution in the vertical direction. The discrete realizations of 1h and 2h are 

obtained using the z-transform of the discrete versions of equations (6.14) 

                                             ( )1 11
aH z
bz−

=
−

         ( )2 1
aH z
bz

=
−

                                       (6.19) 

For discrete recursive implementation (one dimensional), in terms of a spatial index n , this 

corresponds to the following simple recursions 

                                ( ) ( ) ( )( ) ( )1 1 1 11 1s n a e n s n s n= − − + −          1....n N=                             (6.20) 

                               ( ) ( ) ( )( ) ( )2 2 2 21 1s n a e n s n s n= − + + +         ....1n N=                             (6.21) 
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In above, ( )1e n and ( )2e n  are the inputs, and ( )1s n and ( )2s n  are the outputs of 1h and 

2h respectively. Adapting the edge detector to radar images, ratio ( )r n  is defined as 

                                                 ( ) ( )
( )

( )
( )

1 2

2 2

min ,
s n s n

r n
s n s n

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                    (6.22) 

It is important to note that according to formulation represented in Equation 6.22, a stronger edge 

response would have value near to zero. Further, the Equations 6.20 and 6.21 are realized both 

for x  and y  directions to obtain the gradients dx  and dy .  

 
Table 6.1: Details of E-SAR Imagery used as dataset-114. 

 
 E-SAR  

Mode Multi look image (4 looks) 
Radar Frequency 9.6 GHz 
Spatial Resolution range: 2 m azimuth: 1.8 m 

Pixel Spacing 1 m 
Bits/Pixel 8 

Incidence Angle 24.78° 
Date of Acquisition 20/04/2004 

 

For a comparative evaluation of the described gradient estimation schemes we perform the 

following tests 

 

i. Run the three edge detectors on a sample E-SAR imagery to show the magnitude and 

orientation of edges produced by the three detectors. 

ii. Run the same SIFT-OCT detection and the standard SIFT matching scheme on a 

sample dataset and compare the obtained results. 

 

For evaluation, we have selected two scenes acquired by E-SAR sensor (Table 6.1) over 

Oberpfaffenhofen, Germany. Considering the small time difference and the use of the same 

sensor to acquire the images, a good registration result is anticipated. This dataset is also referred 

to as dataset-1 in further text. Sensor characteristics are tabulated in Table 6.1 and the two very 

similar images can be visualized in Figure 6.3.  
  

                                                 
14 Two images acquired at 1 hr difference have been utilized as dataset- 1 
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Figure 6.3: Two E-SAR images acquired over Oberpfaffenhofen, Germany at a time difference of 1hr. 

 

To analyse the gradient estimation schemes we show the individual gradient images and 

pixel orientation histogram obtained by the three schemes for the image shown in Figure 6.3a. 

The obtained results are provided for inspection in Figure 6.4. The magnitude images 

representing edge magnitude strengths are linearly mapped from their respective value range to 

the range[ ]0,255  (for display purposes). The edge orientations are again linearly mapped from 

the initial range[ ] [ ], to 0, 255π π− +  to plot a histogram of edge orientations of all the image 

pixels. The key observation to be made is that for difference based gradient estimation schemes 

the feature descriptors have orientations assigned in the complete viable range of [ ],π π− +  but 

that is not the case for the ROEWA operator where all the image pixels obtain orientations from 

the range 20, π⎡ ⎤⎣ ⎦. This behaviour is attributed to the Equation 6.22 where none of the x and y 

gradient has any sign associated which is used to decide an edge pixels orientation. This narrow 

range can influence the detector’s performance especially for rotated images. 
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Magnitude image obtained by simple image 

differencing  

 
Edge orientation histogram depicting  edges having assigned 

orientation in range [ ],π π− +  

 

 
Magnitude image obtained by recursive image 

differencing 

 
 

 
Edge orientation histogram depicting  edges having assigned 

orientation in range [ ],π π− +  

 

 
Magnitude image obtained by ROEWA operator 

 
 

 
Edge orientation histogram depicting  edges having assigned 

orientation in range 20, π⎡ ⎤⎣ ⎦  
 

 
Figure 6.4: Edge magnitude and orientations obtained on applying different gradient estimation schemes on E-SAR 

imagery (Figure 6.3). The narrow range of orientation produced by the ROEWA operator might hamper its 
performance for images having a rotation difference. This is not observed for the gradient estimation techniques 

based on image differencing. 
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6.5 FEATURE MATCHING 
 
 
To continue with the analysis we run the same SIFT-OCT detection, utilize the three different 

gradient estimators for matching images depicted in Figure 6.3 with the standard SIFT feature 

matching technique. For one matching scenario we also rotate the reference image by 90º to 

analyse how the gradient estimation schemes perform for rotated images.  Further, we also 

propose another SIFT variant which does not have rotation invariance property but shows 

encouraging results for various tested datasets.  SIFT descriptors rotation invariance can be 

easily given up by simply skipping the dominant orientation finding step in the SIFT processing 

chain (see Appendix) and this version of SIFT can be useful for remote sensing images which 

seldom have rotation differences. 

 
Table 6.2: Experimental results for difference and ratio based local gradient estimation techniques for E-SAR 

imagery in Figure 6.3.  
 

 No Rotation Reference image  
rotated by 90º 

No Rotation 

Rotation Invariance Yes Yes  No 
Matching Ratio 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 

 
Simple differencing 89 289 539 67 263 512 163 467 763 

Recursive differencing 102 328 569 84 290 540 223 520 799 
ROEWA operator 64 247 506 12 115 364 165 473 763 

 

 Due to the same detection scheme, we obtain the same number of detected features and similar 

matching accuracy levels in all the SIFT versions evaluated in this section, therefore these two 

factors have not been accounted for in the presented analysis. However, we compare the three 

techniques on basis of their matching accuracy in terms of percentage and number of correct 

matches. The observations with three different matching ratios (0.4, 0.6 and 0.8) are depicted in 

Figure 6.5. In terms of percentage accuracy of detection in all the three scenarios, it is seen that 

the originally proposed simple differencing performs almost at par with the two more 

conceptually sophisticated techniques (ROEWA operator shows a slightly improved 

performance). 
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Figure 6.5: Comparison chart for difference and ratio based local gradient estimation techniques for E-SAR 

imagery in Figure 6.3. It is realized that the gradients estimated using simple image differencing perform at par with 
the two other much sophisticated techniques. 



 172

                  
67 Matches found using simple differencing  

                   
84 matches found using recursive differencing 

                   
12 matches found using ROEWA operator 

Figure 6.6: Matching results for E-SAR images having a 90º rotation difference. The number of matches for the 
ROEWA operator is far less as compared to the two other schemes after introducing a rotation difference of 90° 

within the images being matched. 
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Results in Table 6.2 indicate that the ROEWA based descriptor formation scheme looses 

maximum number of correct matches on rotating the reference image by 90º and this is due to 

the narrow range of feature orientations available (Figure 6.4). This problem is not encountered 

in the gradient estimation schemes based on image differencing. Similar performance trends 

have also been observed for several other datasets tested during the research phase with the ratio 

based scheme generally detecting considerably lower matches but with a slightly better accuracy 

percentage. Another key observation is the fact that the SIFT version with lost rotation 

invariance detects the maximum number of matches (for all the gradient estimating techniques). 

In general this has also been found true for various other datasets, suggesting the fact that the 

matching capability of the SIFT operator can be increased by giving away its rotation invariance 

property. Sample matches found between images having a rotation difference of 90º for all the 

three gradient estimation techniques are provided for visualization in Figure 6.6 (matching ratio 

0.4). The results obtained indicate that gradients estimated by simple image differencing yield 

comparable performances to other sophisticated techniques, we  further present a detailed SIFT 

operator evaluation (with rotation invariance) for diverse natured SAR images. 

 

6.6 OPERATOR EVALUATION 

  

6.6.1 Datasets 
 
Results from three representative selected datasets (size 1000 x 1000 pixel) are being presented 

here (all the images analysed here are ground range amplitude images): 

 

Dataset-1: Two E-SAR scenes acquired over Oberpfaffenhofen, Germany (Table 6.1).  
 

Dataset-2: A dataset from multitemporal scenes acquired by Radarsat-1 (Canadian SAR 

satellite) over the city of Dresden, Germany, before and during the flooding of 2006. These 

scenes, showing a mostly urban land cover class were acquired at a time difference of almost six 

months (Table 6.3. A sample impact of the flood can be seen in the top left corner of Figure 6.10. 

 

Dataset-3: Two scenes acquired using different sensors (Radarsat-1 and ERS-2, the European 

Remote-Sensing Satellite) at a time difference of 14/15 days, featuring a rural land cover class 
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with well defined features. The chosen scene shown in Figure 6.12 has prominent features 

(several lakes of the Lausitzer Seenkette near Senftenberg, Germany) to facilitate assessment of a 

feature based technique. To evaluate the operator performance for scenes with different aspect 

angles, the ERS-2 image was matched once with an ascending Radarsat-1 image (dataset-3a, 

Table 6.4) and once with a descending Radarsat-1 image (dataset-3b, Table 6.4). 

 
Table 6.3: Details of Radarsat-1 imagery used as dataset-2. 

 
 Radarsat-1 (ref) Radarsat-1 (inp) 

Mode Standard Beam (mode 7) Standard Beam (mode 7) 
Radar Frequency 5.3 GHz 5.3 GHz 

Pixel Spacing 12.5 m 12.5 m 
Bits/Pixel 16 16 

Incidence Angle 47° 47° 
Date of Acquisition* 20/10/2005 06/04/2006 

Orbit Descending Descending 
 

Table 6.4: Details of Radarsat-1 and ERS-2 imagery used as dataset-3. 
                            

 ERS-2 
(ref) 

Radarsat-1 
(inp  Dataset-3a) 

Radarsat-1 
(inp  Dataset-3b) 

Mode SAR Image Mode Standard Beam (mode 7) Standard Beam (mode 7) 
Radar Frequency 5.3 GHz 5.3 GHz 5.3 GHz 

Pixel Spacing 12.5 m 12.5 m 12.5 m 
Bits/Pixel 16 16 16 

Incidence Angle 22.97° 47° 47° 
Date of Acquisition 20/04/2006 05/04/2006 26/04/2006 

Orbit Ascending Ascending Descending 
 

6.6.2 Methodology 

 

On the pre-registered images, the SIFT operator detection and the BBF (Best Bin First) matching 

technique has been critically analysed. We examine the original proposed SIFT operator and two 

of its minor variants (SIFT-OCT, SIFT+ISEF-OCT). The evaluation is done using the following 

criteria (Schwind et al., in print):  

 

Number of detections: Individual feature detections made by the three detector variants have 

been recorded. 
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Overlap error (OE) and repeatability: To evaluate the detectors ability to detect same features 

in images with various acquisition differences (repeatability) the concept of overlap error 

between operator detected regions has been used. The SIFT operator detects regions centred at a 

feature point which is rotation and scale invariant. The scale at which the feature gets detected in 

the DoG pyramid is termed as the features characteristic scale (CS) (Lindeberg, 1998) and it 

determines the region size that is used for SIFT descriptor calculations. Regions around a 

detected feature might be circular or elliptical depending upon the nature of the feature detector 

(Mikolajczyk and Schmid, 2005). For scale and rotation invariant detectors like SIFT, Harris-

Laplace (Mikolajczyk and Schmid, 2001), Hessian-Laplace (Lowe 2004), SURF (Bay et al., 

2008) the region shape is circular. For affine invariant region detectors like Harris-Affine 

(Mikolajczyk and Schmid, 2004), Hessian-Affine (Mikolajczyk and Schmid, 2005) the affine 

region is elliptic and is determined using a shape adaptation process (Lindeberg and Garding 

1997, Mikolajczyk et al., 2005). For the presented analysis we use circular detection regions 

where the radius of the circular region around the detected feature depends upon the scale of 

detection. A sample illustration of detected SIFT features at different characteristic scales along 

with their circular regions is provided in Figure 6.7 (For visualization ease, features detected at 

the first octave have not been depicted). It can be observed that the features detected at different 

scales provide circular regions of different sizes. The radius of the circular regions surrounding 

the feature point increase as we move down in the created scale space. The overlap error between 

these detected regions in different images has been employed as a criteria to evaluate the SIFT 

operator performance. Two regions are defined to correspond if the OE of these two regions is 

smaller than a set threshold ε  (a threshold of 0.4 has been used) (Mikolajczyk et al., 2005) 
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where Rµ represents the region and H  is the homography relating the two images (a and b). 
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μ ∩ is their intersection. The 

presented analysis has been performed on pre registered ground range images therefore the 

homography matrix H  becomes an identity matrix for all the test cases. To counter the different 

region sizes, normalization is recommended (Mikolajczyk et al., 2005) and therefore a scale 

factor is determined to normalize the regions in the reference image to a radius of 30 pixels. The 
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computed scale factor is applied both to the region detected in the reference image and the region 

detected in the input image which is mapped onto the reference image before computing the 

overlap error. An illustrative Matlab code for normalizing the regions and computing overlap 

errors between the regions can be downloaded from www.robots.ox.ac.uk/~km/. The 

repeatability score for a given pair of images is computed as the ratio between the number of 

region to region correspondences and the minimum number of points detected in the images. For 

this analysis, the overlapping regions have been classified into four classes according to the OE. 

The classes are defined by the OE ranges 0-10%, 10-20%, 20-30%, 30-40% and higher than 

40%. As all regions are scaled to a radius of 30 pixels (Mikolajczyk et al., 2005), an OE of 0-

10% usually means a distance of 0-3 pixels between the region centres. Here it needs to be 

explained that some overlapping regions with a distance smaller than three pixels can still have 

an OE bigger than 10%, provided they were detected at very different scales. For an ideal 

detector performance, all of the overlapping regions would have an OE of 0-10%. In practice, 

such a result is unlikely. A more realistic but still favourable result would be to achieve 

maximum repeatability in the 0-10% class and sharply decreasing repeatability’s for regions with 

an OE higher than 10%. 

 

 
Figure 6.7: SIFT features displayed with their characteristic scale of detection in a SAR image. Radius of the circle 
centred on a detected feature is directly proportional to the feature detection scale. Here the features from the first 

octave have not been displayed to avoid cluttering. 
 

Consistency analysis: To verify and evaluate the operator performance we compute polynomial 

transformation parameters (see Section 3.4.1) between the two feature sets detected in already 
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registered images. The average residual of the features obtained from the polynomial 

transformation has been used as an indicator of detector and the matching scheme performance. 

 

Turn around time (TAT): Defined as the execution time needed by the detection and matching 

scheme to complete the task. All the experiments illustrated in this section have been performed 

on an Intel P4 Xeon (3 GHz, 1 MB cache) with 2 GB RAM. 

 

The following section discusses in detail the experimental observations made from the three 

datasets using different SIFT operator variants. Here results obtained may not represent the 

optimum operator performance for a particular dataset but for a consistent and fair comparison, 

all the tests have been conducted with the same operator parameter settings. 

 

6.7 EXPERIMENTS AND OBSERVATIONS 

 

6.7.1 Dataset-1  

 

The first dataset consists of same sensor images acquired at one hour time difference (Table 6.1). 

Therefore, good SIFT operator performance can be expected, the matches found in this dataset 

using SIFT-OCT variant can be visualized in Figure 6.8.  

 

Number of detections: As observed in Table 6.5, the original SIFT operator detected 28660 and 

28835 features in the reference and input image respectively. This huge number is drastically 

reduced while using the other two minor variants of the operator.   

 

Repeatability: While analysing the repeatability measure it has to be noted that a high number 

of feature detections may lead to a misleading high repeatability score (Figure 6.9a). It is very 

likely that a possible match is found for every feature if both images are cluttered with features 

(see Note on the Effect of Region Density in Mikolajczyk et al., 2005). This can be seen as the 

reason for the original SIFT operator to show nearly the same repeatability score in the 0-10% 

and the 10-20% classes. A sharper peak difference for the 0-10% and 10-20% classes for SIFT-
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OCT and especially for SIFT+ISEF-OCT illustrates the enhanced SIFT operator performance 

after the introduced modifications. 

 

Figure 6.8: Matches found in dataset-1 after filtering them iteratively (SIFT-OCT scheme). The reference image is 
shown on the left, the input image on the right. 

 
Table 6.5: Experimental results for dataset-1. 

 
 Original SIFT SIFT-Oct SIFT+ISEF-Oct 

TAT 201s 27s 17s 
Nr. of  features Ref: 28660 

Inp: 28835 
Ref: 3942 
Inp: 3938 

Ref: 2048 
Inp: 2153 

Nr. of matches 307 343 332 
Nr. of matches (FM) 128 134 95 

Std. deviation X: 74.72 
Y: 47.25 

X: 34.01 
Y: 10.89 

X: 1.95 
Y: 1.30 

Std. deviation (FM) X: 0.26 
Y: 0.30 

X: 0.38 
Y: 0.33 

X: 0.38 
Y: 0.26 

 

Consistency: The significant number of outliers found by the BBF matching algorithm is 

responsible for the high standard deviations in X and Y returned by the polynomial image 

transformation (Table 6.5). To remove the outliers automatically, we use the same iterative 

approach utilized earlier (see Section 3.4.4). Using the residuals from an initial polynomial built 

using all the matched points, the point with maximum deviation from the polynomial is removed 

and a new polynomial is computed. This process which we call filtered matching (FM) is iterated 

until all returned residuals are smaller than twice the standard deviation of all the points. 
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Turn around time: The most obvious improvement of the modifications can be observed when 

taking into account the TAT of the detection and matching process. The SIFT operator without 

the first octave applied to the ISEF filtered image (SIFT+ISEF-OCT) is more than eleven times 

faster than the original SIFT operator (including the TAT for ISEF filtering). Skipping the first 

octave, which leads to a significant reduction in feature detections, can be mainly accredited for 

the speed up achieved. 

 

 
(a)  

 
(b)  

 
Figure 6.9: Repeatability score and number of matches for two same sensor images acquired at one hour difference 

(dataset-1). (a) The repeatability scores achieved for different overlap error classes. (b) Number of matches in 
different overlap classes (before and after the iterative filtering) for the three SIFT operator variants. SIFT feature 

repeatability capability increases significantly after the two proposed modifications in the detection scheme. 
 
 
6.7.2 Dataset-2 

 

The second dataset has same sensor images taken with a difference of six months. The matches 

found here using the original SIFT operator can be seen in Figure 6.10. 

 

Number of detections:  This parameter follows the same trend as we see a drastic reduction in 

number of detections with the variants of the original operator (Table 6.6). 

 

Repeatability: As for the previous dataset, SIFT+ISEF-OCT achieves the sharpest peak 

difference between the 0-10% and 10-20% class (Figure 6.11a). Even though the total number of 
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overlapping regions is significantly lower for this dataset (Figure 6.7b), the repeatability score 

has remained consistently good showing that the temporal difference had little influence on 

detection quality. 

 

Consistency: The initially high standard deviations returned by the polynomial transformation, 

are reduced to sub-pixel level if the outliers are removed iteratively (Table 6.6). Just as for the 

dataset-1, all matches with an OE larger than 10% were finally removed by the filtered matching 

(Figure 6.11b). 

 

Figure 6.10: Matches found in dataset-2 after filtering them iteratively (SIFT scheme). Radarsat-1 reference image 
(left) acquired on 20/10/2005. Radardat-1 input image (right) acquired on 06/04/2006. 

 
 

Table 6.6: Experimental results for dataset-2. 
 

 Original SIFT SIFT-Oct SIFT+ISEF-Oct 
TAT 180s 28s 19s 

Nr. of  features Ref: 23681 
Inp: 29282 

Ref: 3881 
Inp: 4381 

Ref: 2382 
Inp: 2622 

Nr. of matches 115 153 177 
Nr. of matches (FM) 61 88 86 

Std. deviation X: 124.05 
Y: 150.06 

X: 38.93 
Y: 43.10 

X: 39.47 
Y: 54.89 

Std. deviation (FM) X: 0.64 
Y: 0.54 

X: 0.53 
Y: 0.71 

X: 0.44 
Y: 0.55 
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 Turn around time: SIFT+ISEF-OCT performs more than nine times faster than the original 

SIFT operator. 

 
(a)  

 
(b 

 
Figure 6.11: Repeatability score and number of matches for the multitemporal dataset-2. (a) The repeatability scores 
achieved for different overlap error classes. (b) Number of matches in different overlap classes (before and after the 

iterative filtering) for the three SIFT operator variants. As for dataset-1 in this case also the SIFT feature 
repeatability improves after introducing the changes in the feature detection scheme. It is worthwhile to note that the 

number of matches also increase in this case after the modifications.  
 

6.7.3 Dataset-3 

 

For the third dataset two separate tests were performed. First, an ERS-2 image acquired at an 

ascending orbit was matched with a Radarsat-1 image also obtained at an ascending orbit. Then, 

the same ERS-2 image was matched to a Radarsat-1 image of the same region acquired at a 

descending orbit. The matches obtained in dataset-3b using SIFT+ISEF-OCT can be seen in 

Figure 6.12. 

 

Number of detections: The original SIFT operator by far has the most detection out of the three 

tested variants, while SIFT+ISEF-OCT finds the fewest features (Tables 6.7, 6.8). 

 

Repeatability: The repeatability trend for both the scene pairs in dataset-3 does not 

represent ideal operator detection behaviour (Figures 6.13a and 6.14a). The fact that all 

the SIFT operator variants showed highest repeatability in the region of 10-20% overlap 

error indicates the influence of introduced image acquisition differences. In this case not 
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only the number of matches but the matching quality has also been affected. Considering 

dataset-3a, approximately one third of the matches returned (all the operator variants) 

have an OE bigger than 10% (Figure 6.13b).  

 

 
Figure 6.12: Matches found in dataset-3 after filtering them iteratively (SIFT+ISEF-OCT scheme). The reference 

image ERS-2 is shown on the left and the input Radarsat-1 image is on the right. 
 
 

Table 6.7: Experimental results for dataset-3a. 
 

 Original SIFT SIFT-Oct SIFT+ISEF-Oct 
TAT 167s 25s 21s 

Nr. of  features Ref: 29876 
Inp: 24931 

Ref: 4061 
Inp: 3426 

Ref: 3725 
Inp: 3247 

Nr. of matches 53 64 35 
Nr. Of matches (FM) 27 21 14 

Std. deviation X: 125.90 
Y: 84.23 

X: 18.93 
Y: 90.46 

X: 125.41 
Y: 111.65 

Std. deviation (FM) X: 0.53 
Y:0.50 

X: 0.31 
Y: 0.58 

X: 0.70 
Y: 0.33 

 
Table 6.8: Experimental results for dataset-3b. 

 
 Original SIFT SIFT-Oct SIFT+ISEF-Oct 

TAT 169s 26s 21s 
Nr. of  features Ref: 29876 

Inp: 24931 
Ref: 4061 
Inp: 3204 

Ref: 3725 
Inp: 3227 

Nr. Of matches 24 22 20 
Nr. Of matches (FM) 12 10 13 

Std. deviation X: 262.49 
Y: 184.80 

X: 139.81 
Y: 87.19 

X: 111.81 
Y: 107.26 

Std. deviation (FM) X: 2.07 
Y: 1.16 

X: 1.84 
Y: 0.54 

X: 1.47 
Y: 0.98 
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Still, iterative filtering in this dataset led to favourable results as all the finally retained matches 

were in the overlap error of 0-10% (expect for SIFT+ISEF-OCT, 3 matches left with OE of 10-

20%). The match performance further deteriorated with added complexity of 

ascending/descending orbits (dataset-3b) as here matches with OE of 0-10% made up less then 

half of all the matches found (Figure 6.14b) and iterative filtering could not bring all the matches 

to the desired overlap error. 

 

(a)  (b) 
 

Figure 6.13: Repeatability score and number of matches for the multisensor dataset-3a (both scenes acquired with 
ascending orbits). (a) The repeatability scores achieved for different overlap error classes. (b) Number of matches in 

different overlap classes (before and after the iterative filtering) for the three SIFT operator variants. The feature 
repeatability for all variants shows peak in the overlap category of 10-20% (unlike the last two datasets) mainly due 
to very different sensor characteristics. Still enough number of matches with acceptable consistency found for image 

registration applications. 
 
 
Consistency: As done with the previous datasets, the outliers have to be filtered out to achieve 

higher consistency (Tables 6.6, 6.7). The final number of matches for all of the three variants has 

been reduced significantly. Even though sub-pixel consistency could be achieved for dataset-3a 

with a descent number of matches, this was not the case for dataset-3b (match consistency of 

around 2 pixels).  The lack of sub pixel consistency in the matches can be related to deteriorated 

feature localization (observed in repeatability analysis, Figure 6.14b) and the significant drop of 

number of matches might be attributed to changes in feature descriptors which have been 
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significantly affected by the further introduced acquisition difference of ascending/descending 

orbits. 

 

 
(a)  

 
(b)  

 
Figure 6.14: Repeatability score and number of matches for the multisensor dataset-3b (images acquired with 

ascending/descending orbits). (a) The repeatability scores achieved for different overlap error classes. (b) Number of 
matches in different overlap classes (before and after the iterative filtering) for the three SIFT operator variants. 

Again, the feature repeatability for all variants shows peak in the overlap category of 10-20% and number of 
matches are further reduced (compared to dataset-3a), asserting the influence of different orbits of Radarsat and ERS 

utilized for image acquisition.  
 

Turn around time: SIFT+ISEF-OCT again achieved a significant speed-up over the original 

SIFT operator, performing almost eight times faster. 

 

6.8 ASSESMENT OF EXPERIMENTS 

 

6.8.1 Feature Detection 

 

 As observed in Tables 6.5-6.8, the SIFT operator detects an undesirable high number of features 

for all the four test cases. This can primarily be attributed to high amount of speckle normally 

present in SAR images. To counter the speckle influence, the ISEF filter is selected for image 

smoothing and reducing the number of features detected. As speckle influence is likely to 

dominate at the highest image scales, the features detected at first octave are also not considered 

for matching. As a consequence, the numbers of features detected are reduced considerably for 



 185

all the datasets. Further, the observation that the SIFT-OCT finds a higher number of correct 

matches (almost same consistency) in a smaller number of detected features (except for dataset-3 

where the number of matches is slightly lower with better consistency) highlights the adverse 

speckle influence on feature detection and matching.  

 

6.8.2 Feature Repeatability 

 

 The repeatability measure provides statistical insights into the SIFT operator capability to detect 

similar features in images with various differences. For a very good detector performance, the 

repeatability of key point detection should be the maximum in the overlap region of 0-10% and 

the repeatability score in other overlap error regions should decrease successively and finally 

should become equal to zero. For dataset-1 and 2 (Figures 6.9a and 6.11a) the two SIFT operator 

variants (SIFT-OCT and SIFT+ISEF-OCT) performs nicely, yielding maximum repeatability 

scores in the overlap error category 0-10% and decreasing thereafter. The same trend is observed 

for the original SIFT operator for dataset-1 but not for dataset-2. Where, the repeatability score 

for the overlap category 10-20% increased a bit before following the decreasing trend. For 

dataset-3 (Figures 6.13a, 6.14a) all the tested operator variants reported maximum repeatability 

score for overlap category 10-20%, deviating from the favourable performance shown in the two 

previous datasets decreasing thereafter. In principle, the SIFT features are rotation and scale 

invariant and robust enough for affine transformations but still their localization and descriptors 

get significantly affected by their local neighbourhood. Specifically for SAR images, a potential 

SIFT feature's neighbourhood, eventually deciding its position (sub pixel localization) and 

identification (descriptor) is prone to changes with changing sensors and/or acquisition 

conditions (incidence, aspect angle, polarization etc). The influence of the changed 

neighbourhood (dependent upon acquisition conditions) has definitely influenced feature 

localization for both the scene pairs in dataset-3 and is observed through the deteriorated 

repeatability performance of the SIFT operator (Figure 6.13a, 6.14a). Feature descriptors have 

also suffered in both the scene pairs and this is reflected by lower number of matches obtained 

(Figure 6.13b, 6.14b) when compared to the number of features matched in the previous datasets. 

Comparing the results for the two scene pairs of dataset-3 in isolation further supports the 

assumed hypothesis. Here for a relatively flat terrain, the repeatability, number and quality of 
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features matched get reduced significantly for dataset-3b which can be seen as a result of 

changed feature neighbourhoods due to the effect of different sensor orbiting directions 

introduced on top of different sensor and incidence angle of acquisition (dataset-3a).The 

magnitude of possible changes will further depend upon the nature of the area being imaged. For 

example, different incidence and aspect angle dependencies are expected to have a stronger 

impact on potential SIFT features in urban (especially for metric resolution images) and 

mountainous regions as compared to the features in plain areas. 

 

6.8.3 Feature Matching 

 

 Considering only the feature repeatability measure would not complete the SIFT operator 

analysis for its applicability to SAR image registration. As the feature SIFT descriptors have 

been matched using the BBF matching technique, we also evaluated the final quality of the 

matched features. The BBF matching technique has been found not to be 100% reliable 

especially for matching of remote sensing SAR images. As can be seen in all the three datasets 

tested and analysed (Tables 6.5-6.8), the BBF technique for all the three variants matched 

features with different overlap errors. Further, the polynomial built using the initially returned 

matched features in all the cases lead to unacceptable average residuals. The matches (without 

filtering) for datasets -1, -2 and -3b from one of the operator variants can be seen in Figures 6.8, 

6.10 and 6.12 respectively. The results returned by the matching technique become useful after 

an iterative rejection of outliers. It can be seen from the results obtained for dataset-1 and 

dataset-2 that after the iterative elimination, all the matched points from the three SIFT operator 

variants get restricted to the overlap category 0-10% (Figures 6.4b and 6.6b). Similar 

performance was also observed for dataset-3a where a small anomaly is detected for the 

SIFT+ISEF-OCT variant (Figure 6.13b).  

 

The matching results of the multisensor dataset acquired under different orbiting directions 

(dataset-3b) shows the maximum deviation from the results obtained for all other test cases. 

Because of the introduced aspect angle dependency, deteriorated SIFT operator performance is 

reflected in the distribution of matches in overlap error categories (Figure 6.14b). It can still be 

argued that the tested operator settings might not be optimal for the dataset under consideration 
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but a better and a more reasonable choice for such cases would be to employ intensity based 

metric like mutual information to refine the matched points using chip matching techniques (see 

Section 3.3.4).  

 

6.8.4 Process Turn around Time 

 

Here, process turn around time incorporates the detection and matching process execution times. 

From Tables 6.4-6.7, it is observed that image smoothing and skipping the first octave provides a 

significant speedup advantage over the original SIFT operator. The reason for the attained speed 

up lies in the fact that fewer features are detected and finally matched. 

 

6.8.5 Applicability Recommendations 

 

On basis of the presented experimental results and their critical analysis based on feature 

detection, repeatability, matching and process turn around time the following conclusions can be 

drawn: 

 

i. The SIFT operator with the BBF matching technique has shown potential to be a stable 

method for point feature based registration of SAR images. Subpixel consistency was 

achieved by one or more SIFT operator variants for all the test cases, except dataset-3b 

(different sensor, incidence angle and sensor orbit direction). 

 

ii. On the basis of the tested datasets, it can be inferred that the SIFT operator detection and 

the BBF perform best for same sensor images with decreasing performance as the 

acquisition differences between the images increase. 

 

iii. The two SIFT operator variants have also shown a significant speed up with similar 

consistency levels compared to the original SIFT operator. 

 

iv. On basis of the SIFT operator performance and the analysis of MI provided in Chapter 3, 

a hybrid multimodal SAR image matching scheme combining the benefits of both is 
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developed and discussed in the subsequent section with a challenging image matching 

scenario. 

 

6.9 A HYBRID CHAIN FOR SAR IMAGE MATCHING  

 

The concept of combining intensity based technique like MI and feature based technique like the 

SIFT can be utilized for complex image matching/registration scenarios. We present an argument 

that all the correct SIFT matches are not reported in the obtained results, mainly due to matching 

ratio threshold parameters. This is confirmed by the fact that the SIFT operator show very high 

feature repeatability in terms of absolute number of detection, especially in the overlap category 

0-10% for different registered datasets in the previous section. But very few of those are actually 

reported as successful matches after the matching phase. In general, detection of all possible 

correct matches might not be very relevant always as the SIFT processing chain with suitable 

threshold parameters can detect enough number of correct matches for accurate registration (as 

shown in the previous section). However, the problem might arise for very complicated image 

matching scenarios like multitemporal registration (see Section 1.1) where the SIFT chain might 

not produce enough number of matches to meet the desired objective mainly due to drastic 

changes in scene conditions (It is already highlighted through dataset-3 that SIFT feature 

detection and matching results deteriorate for images with complex acquisition differences). For 

such scenarios, we propose to utilize MI and assist the SIFT matching scheme to find out all 

possible correct matches within images. MI can quickly estimate rough shift parameters from 

compressed images and this can be utilized to increase the number of matches in SAR imagery 

using the SIFT processing chain. This concept is depicted in this section through a hybrid SAR 

image matching chain (Figure 6.15) tested on a complex multitemporal/multisensor dataset. 

 

6.9.1 Dataset   

 

The chief characteristics of this selected dataset can be summarized as: 

i. Different sensor nature (airborne and spaceborne). 

ii. Time difference of 4 years. 

iii. Different incidence angle. 
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iv. High resolution imagery acquired over semi urban land cover. 

 
 
The mentioned image acquisition differences present a complicated scenario for image matching 

applications. The influence of different sensor geometries and incidence angles is expected to 

bring strong aspect dependency on the appearance of urban settlements in the scene.  

 

 
 

Figure 6.15: A hybrid processing chain combining mutual information and scale invariant feature transform for 
SAR image matching applications (Suri et al., 2009a). 

 
 

Table 6.9: Details of the E-SAR and the TerraSAR-X Imagery. 
 

 E-SAR TerraSAR-X 
Mode Multi-look image (4 looks) High resolution spot light 

Radar Frequency 9.6 GHz 9.6 GHz 
Pixel Spacing 1 m 1 m 

Bits/Pixel 8 bit 16 bit 
Incidence Angle 24.78° 35.14° 

Data of Acquisition 20-April-04 20-May-2008 
Orbit - Ascending 

Image Size 1000 x 1000 1000 x 1000 
Product type - GEC  
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Figure 6.16: The images from (left) airborne E-SAR (right) TerraSAR-X acquired over Oberpfaffenhofen near 

Munich in Germany. The images have approximately 4 years of acquisition difference. The end points of the blue 
lines represent the eight15 tie points utilized for registration accuracy assessment. 

 

The images have been taken over Oberpfaffenhofen (near Munich) by E-SAR sensor and the 

latest German high resolution satellite, TerraSAR-X. The different sensor nature and incidence 

angles is expected to have an influence on the features in the urban areas and thus this selection 

of dataset offers an interesting evaluation of the SIFT operator capability to match and detect 

features in SAR images with complex acquisition differences. The details of the imagery selected 

are tabulated in Table 6.9 and the changes in the sub urban area in form of new constructions and 

deconstructed buildings in 4 years time span can be observed in Figure 6.16 (images not 

registered). As the reference TerraSAR-X product is not an EEC product, we see the scene 

deviating from the ground reference by approximately 12 m in the x direction and 3 m in the y 

direction. To evaluate the registration performance of MI, SIFT and their combination we have 

manually marked eight points in the two images, using these points for building an affine 

transformation we obtain a standard deviation of 1.14 m in x direction and 0.71 m in the y 

direction. Shifts around these eight points are used for accuracy assessment of the registered 

images obtained using different methodologies.  

 

 
                                                 
15  Lines from two tie points coincide that is the reason that only seven prominent lines are visiible in the image 
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6.9.2 Results 

 

Mutual information: We start our analysis showing results from the intensity based registration 

process. For a rough approximation, the transformation model for the MI based process has been 

limited to translation in x and y directions. The optimization process has been initiated with the 

seed (-10, -45) and for mutual information computations, a joint histogram of bin size 64 has 

been estimated using the GPVE technique (Suri and Reinartz, 2008). Table 6.10 tabulates the 

mutual information performance for the selected dataset as described in the earlier chapters for 

SAR and the optical case for multimodal SAR image registration also MI could estimate very 

similar registration parameters in far less execution time from down sampled images of 4 and 2 

m pixel spacing respectively.  

 
Table 6.10: MI based registration of TerraSAR-X and E-SAR imagery. 

 
Pixel Spacing TSAR-X to E-SAR16 E-SAR to TSAR-X RC TAT17  

(sec) 
4 m (-13.76, -52.60) (13.76, 52.56) 0.00 70 
2 m (-13.78, -52.58) (13.76, 52.56) 0.12 150 
1 m (-14.80, -52.61) (15.01, 52.90) 0.36 440 

 

In Table 6.10, we also provide the metric consistency measure (see Section 2.4.3) normally 

utilized for intensity based registration processes in absence of ground truth measurements. 

Normally values near to zero of the Registration Consistency measure (RC) represents a good 

metric performance. Important point to be kept in mind is that the value of the consistency 

measure might not be directly related to the ground level accuracy of registration achieved.  

 

SIFT operator: We analyse here the SIFT operator matching scheme performance both with 

and without using the rough registration parameters in the SIFT processing chain. The matches 

obtained at matching thresholds of 0.6, 0.8 and 1.0 (see Section 3.3) have been reported for the 

analysed dataset in Figure 6.11. As explained earlier, the matching threshold is calculated as the 

ratio between Euclidean descriptor distance of the second-closest and the closest match of a 

feature. At matching ratio 1.0 we utilize the rough registration parameters to compute an 

                                                 
16 Transformation parameters represent translation in x and y direction (in pixels) 
17 On an Intel P4 Xeon (3 GHz, 1 MB cache) with 2 GB RAM 
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approximate match region for every match and filter out those matches where corresponding 

feature don’t lie within a user defined window size (16 pixels). Finally, depending upon the 

number of matches or match consistency and application demands it can be further decided to 

refine each of the matches individually by using MI locally around the matched features (chip 

matching technique).  

 

As shown for the Landsat-Radarsat registration scenario (see Section 3.3.4) a simple shift 

estimation within large remote sensing scenes18 may not suffice for a precise registration, which 

can normally be achieved using an affine transformation. Taking the initial guess obtained from 

level 2 images we continue with the SIFT operator performance analysis. The effect of complex 

acquisition differences mentioned above is observed on the SIFT matching results tabulated in 

Table 6.11. The standard matching procedures with matching ratios of 0.6 and 0.8 produced far 

less matches as compared to the matches produced by matching ratio of 1.0 helped by the initial 

estimate provided by the intensity based process. Considering the nature of the datasets the 57 

matches found by the SIFT operator are encouraging (both on ground and within urban 

establishments).  
Table 6.11: SIFT matching scheme performance. 

 
Matching Ratio 0.6 0.8 1.0 1.0 

“on ground” 
Matches Found by SIFT 7 188 57 38 

Filtered Matches (RANSAC) 3 10 57 12 
 

The matched features for this dataset can be visualized in Figure 6.17 roughly classified into 

plain area features (green lines) and features matched within the urban establishments (blue 

lines). All the 57 SIFT features detected here, might be useful for various SAR image matching 

scenarios but for co-registration only on ground features (38 green colour lines in Figure 6.17) 

should ideally be considered for registration parameter estimation. In isolation, the “on ground” 

38 features have a consistency of around 2 pixels in both x and y direction and Equation 6.23 

represents the estimated affine transformation.  

 

                                                 
18 The current dataset has 1 m pixel spacing images of size 1000x1000 pixels so is relatively much smaller ground 
area covered by images in Section 3.3.4 
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1.00 0.45 02 16.01

0.38 02 1.00 51.33 *
1 0 0 1 1

X X

Y Y
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− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                      (6.23) 

 
 

 
 

Figure 6.17: SIFT features matched between transformed TerraSAR-X (left) and E-SAR image (right). In total 57 
SIFT features were found using a matching threshold of 1.0 with the rough registration parameters from intensity 

based techniques. Green lines represent features matched on plain ground and blue lines represent features matched 
within the urban establishments (Suri et al., 2009a). 

 
 
SIFT and MI: For this test we could refine 19 conjugate features out of the 38 “on ground” 

features as a window of size 300 x 300 pixels needs to be demarcated centred on each feature. 

Thus, features lying near the image boundaries can not be considered for further refinement. 

Finally, we obtain 12 conjugate features (after outlier removal) with a standard deviation of 0.75 

pixels in x and 0.54 pixels in y direction. The obtained affine parameters keeping TerraSAR-X 

image as the reference are shown in Equation 6.24. 
 

                             
0.99 0.63 02 19.13

0.5 02 1.00 50.65 *
1 0 0 1 1

X X

Y Y

TSARX E ESAR
TSARX E ESAR

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                    (6.24) 

 

Accuracy assessment: For a comparative evaluation of the results produced by the three 

techniques, we utilize the eight manually marked check points shown in Figure 6.16. The results 
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are provided using a scatter plot in Figure 6.18 and corresponding statistics are provided in Table 

6.12. Here, we observe that the SIFT operator performance alone seems to be the worst amongst 

the three methods under consideration. Utilizing MI alone for this 1000x1000 pixel image having 

1 m pixel spacing has given satisfactory results but it has been shown earlier that estimating 

simple translation shifts may not necessarily be sufficient for large remote sensing scenes.  

 
Figure 6.18: Scatter plot of difference in x and y direction within the transformed input image tie points and their 

manually marked conjugate points in reference TerraSAR-X image. Plot compares the alone and combined 
application of mutual information and SIFT operator for multimodal SAR image registration. 

 

Keeping this in perspective, the combination of MI and SIFT seems to offer the following 

advantages: 

 

i. The number of SIFT matches get definitely increase by using the initial estimate provided 

by MI. 

ii. Once the matches have been found, these can be refined individually to fit an affine 

transformation which suffices for relatively large remote sensing scenes (not complete 

coverage’s).   

 
Table 6.12: Shift statistics (in meters) around the eight manually marked check points using different registration 

techniques. 
 

 Absolute Average Standard Deviation 
 X Y X Y 

MI 1.37 0.85 0.89 0.62 
SIFT 1.60 2.90 1.30 1.60 

SIFT + MI 1.20 1.90 1.02 0.98 
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The two registered images using SIFT and MI technique, is check-squared for visualization in 

Figure 6.19 and the overlay consistency of the on ground features like the airport runway is very 

high. 

 

 
Figure 6.19: A small section of the registered TerraSAR-X (dark) and E-SAR imagery (bright). Images at 1 m pixel 

spacing shown without zoom. 
 

 
6.10 CONCLUSION 

 
We have analysed the performance of the SIFT operator for multimodal SAR image matching 

scenarios. For its specific adaptation to SAR imagery, we have considered changes in the feature 

detection, identification and matching stages of the original processing chain. Image smoothing 

of SAR images using ISEF filter and skipping features detected at the first octave increase the 
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operator matching efficiency and have reduced the processing time by almost 10 times for the 

tested 1000x1000 images. In the feature identification stage, we have compared the simple image 

differencing with two advanced gradient estimating techniques to show that the former technique 

performs at par with the latter much sophisticated approaches. It is also highlighted that getting 

rid of the rotation invariant characteristic of the SIFT can increase the number of matches 

considerably by keeping almost similar percentage accuracy. In general, it is found that the 

operator performance is optimum for same sensor images but still works consistently with 

sufficient accuracy for images with complex acquisition differences (like different sensors, 

incidence angles, orbit directions and speckle behaviour). To improve the SIFT performance 

with respect to the number of matches and their consistency, we utilize mutual information, to 

assist the operator matching scheme and if need be also for fine refinement to achieve desirable 

results.  
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CHAPTER 7   

                 

SUMMARY CONCLUSIONS AND PERSPECTIVE 
 

 
The ever growing importance of satellite imagery in applications like treaty and border 

monitoring, disaster mitigation and many more, calls for continuous research and development in 

the field of remote sensing image processing. The reality that many remote sensing applications 

require fusion of multiple data sources (here satellite images) with different characteristics and 

advantages to achieve the desired objectives, asks for automated image matching and registration 

techniques. During the last decades, remote sensing sensors have undergone a rapid development 

in terms of both data quantity and characteristics. Due to these ever sprouting challenges, 

innovators are compelled to design new and/or improve existing remote sensing image 

registration techniques. Bringing to a close, we present as a summary, a chapter wise recall of all 

the major findings, conclusions and develop a perspective for the future, to fill in the gaps that 

came up during the course of this work.  

 

In Chapter 1, we presented certain practical applications and necessity of completely 

automated image registration techniques. Examining the contemporary problems, we devised a 

problem statement and laid down our objectives to accomplish research in the field of 

multimodal image registration. The target imagery set were high resolution multimodal SAR and 

optical images from satellites like TerraSAR-X and IKONOS and we also emphasized the need 

of evolving a feature based matching technique for multimodal SAR images which are in vogue 

with the launch of high resolution satellites like TerraSAR-X, Tandem-X and Risat.  

 

In Chapter 2, we discussed the basics of image registration and presented a thorough walk 

through of remote sensing image literature compiled from exclusive scientific journals and 

prestigious international conferences. We in detail presented advancements in intensity and 

feature based registration techniques and also covered certain aspects of image registration in the 

frequency domain. By establishing the “state of the art”, we eloquently highlighted the very 
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recent developments and challenges faced by the remote sensing community in multimodal 

image registration.  

 

In Chapter 3, specifically catering to multimodal SAR and optical images, we presented a 

detailed discussion on intensity based registration techniques. For the elucidated task, 

highlighting the failure of Normalized Cross Correlation, we chose mutual information (MI) as 

the registration similarity metric. Discussing the origin of MI from information theory we 

examined all the nitty-gritty’s of implementing MI based image registration. We introduced the 

application of higher order B-spline kernels in joint histogramming techniques showing them to 

be very robust but computationally intensive. Analysing the behaviour of simple to implement, 

fast in terms of execution time but ineffective for sub pixel image registration, we emphasized to 

use one step nearest neighbour technique (joint histogram estimation) especially for voluminous 

1 m pixel spacing TerraSAR-X and IKONOS images. We proposed to utilize nearest neighbour 

with discrete optimization scenario (realized in Chapter 4) to achieve pixel level registration 

accuracy for high resolution images. This step was mainly targeted to reduce the execution time 

of intensity based registration which showed ( )2O n behaviour, dependent on the image size, 

generally huge for remote sensing images. In this same chapter, we also advocated the effective 

use of image down sampling for MI based registration and showed limitations of mostly utilized 

simple translational shifts (x and y direction) as image registration parameters for relatively big 

Radarsat and Landsat images. Here, we also proposed to utilize MI locally within large remote 

sensing scenes to build a much effective affine transformation for image registration. An open 

concern still left here is to lay down a general guideline to choose between simple translation 

shifts and affine as the registration transformation function.  

 

In Chapter 4, we specifically turned attention to high resolution SAR and optical imagery. 

We highlighted the impact of different acquisition principles of SAR and optical sensors on the 

response produced by real world 3D and 2D objects. Specifically, we analysed the behaviour 

especially of the SAR images in terms of information content and showed that pixels situated 

towards the higher end of a SAR image histogram do not contribute much to the image 

information content and can hamper the performance of MI as a registration similarity metric to 

achieve “on ground” registration. Analysing images acquired over sub urban areas we proposed a 
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histogram based segmentation scheme not only to improve MI performance in terms of 

registration accuracy but also in terms of processing time. As proposed in Chapter 3, we showed 

also effectiveness of discrete SPSA optimization (using simple nearest neighbour) to achieve 

pixel level registration consistency for high resolution SAR and optical image registration. 

However, still more tests and parameter study are required to use discrete optimization for high 

resolution images but we certainly believe that this is the way forward as in coming times the 

spatial resolution of the images will increase further (already WorldView-1 provides resolution 

of 50cm ) quadrupling the data volume, produced by here analysed IKONOS images.  

 

In Chapter 5, we focussed on a challenging problem to achieve image registration of high 

resolution SAR and optical imagery acquired over dense urban areas. We began our analysis by 

first highlighting the challenges of registering high resolution imagery of any modality. It was 

pointed out that achieving completely automatic image registration even within optical same 

sensor images might not be very straight forward. The influence of sensor geometry (decided by 

settings during scene acquisition) on appearance of real world objects was shown to be 

paramount both for same and different sensor images. Here, we extended the application of MI 

for registering SAR and optical images in urban areas. For this we presented two contrasting 

techniques with different pros and cons. The first technique is a more widely applicable 

histogram based solution (explored initially in Chapter 3) and the second is a more accurate 

technique based on extracted “on ground” regions, it is worthwhile mentioning that both the 

techniques required processing only in the reference SAR image to achieve desirable results. The 

performance of the two techniques here was evaluated using registration consistency measures 

and manual observations. For future applications, here we emphasized on developing a 

classification scheme for the reference image to accurately bin out “over ground” and “radar 

shadow” pixels participating in the registration process. This certainly does not look to be 

achieved comprehensively until now, though a very robust mutual information performance was 

reported. Based on the proposed histogram based solution, we presented a completely automated 

process to improve sensor orientation for orthorectification of high resolution optical data (scene 

acquired over the city of Munich, completely urban land cover). In this process, we utilized the 

geometric accuracy of the EEC TerraSAR-X products to establish ground control using local MI 

based matching for improving sensor orientation of optical data. Here, we also analysed, seldom 
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reported absolute registration accuracy achieved using MI. This was done by checking the 

orthorectification result with reference points estimated from a very accurate source. In general, 

it was found that MI has a capability to achieve pixel level absolute registration accuracy in 

absolutely plain areas and delivers accuracy of around 4-8 m for dense urban areas (for the 

Munich scene absolute accuracy was 4.5 m, but with undesirably low number of points 

participating in model refinement). This is definitely an improvement over the normally 

observed accuracy of IKONOS imagery (standard Geo product). We suggest this performance in 

urban areas can be further improved by incorporating an accurate classification scheme prior to 

the MI based registration process.  

 

In Chapter 6, we engaged efforts in evolving a computer vision technique Scale Invariant 

Feature Transform (SIFT) for remote sensing SAR images. Understanding the possible 

incompatibilities of the originally proposed SIFT processing chain in all feature detection, 

identification and matching stages, we analysed changes to enhance the operator performance for 

microwave remote sensing applications. Starting with feature detection, we proposed image 

smoothing using ISEF filter and also skipping features detected at the first octave to improve the 

processing time by an approximate factor of ten for the tested 1000x1000 pixel images. The 

introduced steps help the image differencing based SIFT feature detection perform very nicely 

for SAR images with inherent multiplicative speckle influence. Turning attention to feature 

identification, we compared the descriptors formed using simple image differencing with much 

sophisticated techniques like recursive image differencing and image ratio (both specifically 

designed for SAR edge detection). It was noted that the descriptors formed using simple image 

differencing performed at par to the two selected alternatives. Incapability, specifically of 

descriptors formed using ratio based operator ROEWA for images having a rotation difference 

was observed mainly due to narrow range of edge orientations arising due to the basic nature of 

image ratio. Developing a method to assign signs to the x and y gradients (to broaden the edge 

orientation range and thus generating much robust feature descriptors) estimated using ratio 

operators can be considered as a future challenge in this area, as gradients estimated using 

ROEWA do show slightly higher match accuracy (percentage wise).  However, it was found that 

number of matches can be increased drastically by giving away the rotation invariance 

characteristic of the SIFT feature descriptors, which is generally acceptable for already rectified 
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satellite data. From the observation that the modified SIFT detection scheme show high number 

of feature repeatability but comparatively fewer number of successful matches, we investigated 

the effects of assisting the SIFT standard matching with MI. This proposed hybrid chain showed 

remarkable improvement over the SIFT processing chain for a challenging multitemporal, 

multisensor SAR dataset acquired over a semi urban land cover. Ideally, such a hybrid chain 

combining benefits of a robust feature detector and a similarity metric should be realised for 

SAR and optical image registration as well, but due to disparate sensor characteristics, this looks 

a far distant reality.  

 

To conclude, according to the laid down objectives in Chapter 1, this dissertation has 

contributed the following in the field of multimodal remote sensing image registration:  

i. With two proposed methods, we have presented implementations of MI suited to high 

resolution SAR and optical imagery acquired especially over urban areas. 

ii. On basis of the improved MI performance, we have presented a novel approach to 

increase the absolute accuracy of high resolution optical data by improving the sensor 

orientation. 

iii. The performance of the SIFT operator, originally proposed for digital camera images, 

has been refined and extended for multimodal SAR image matching and registration 

applications. 
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APPENDIX                 
 

 SCALE INVARIANT FEATURE TRANSFORM (SIFT) 
 

 

1.0 INTRODUCTION 

 

The SIFT operator is a computer vision algorithm first introduced by David Lowe from 

university of British Columbia, Canada (Lowe, 1999). The method developed for optical camera 

images provides a robust technique to extract and match distinctive features within images with 

various acquisition differences. Moreover, SIFT features are invariant to image scale and 

rotation, which makes them well suited to match different views of an object or scene. Later, 

Lowe published a revised version of the SIFT operator with several improvements in terms of 

feature accuracy, stability and invariance (Lowe, 2004). Since its introduction it has proven its 

effectiveness for numerous applications like object recognition, robot localization and mapping 

and panorama stitching in the field of computer vision. In this appendix, the originally proposed 

SIFT operator for optical camera images is detailed here for a clear understanding of the results 

presented in Chapter 6.  

 

2.0 SIFT PROCESSING CHAIN 

 

The SIFT processing chain has four major processing stages: 

i. Scale space extrema detection: Using the Difference of Gaussians function, a scale 

space is built, out of which extrema are detected. 

ii. Feature localization: The found extrema are filtered by different criteria to select only 

features with high stability. 

iii. Orientation assignment: By analysing the local image gradient directions, at least one 

orientation is assigned to every feature. 

iv. Feature descriptor: Making use of the location, scale and rotation of the features, 

descriptors are created. 
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2.1 Scale Space Extrema 

 

Scale space 
 

The first step of the SIFT operator is to build a scale space for each of the involved images. The 

scale space ( ); ;L x y σ  is defined as an input image ( ),I x y  that has been convolved several 

times with a two-dimensional Gaussian function ( ); ;G x y σ  using an increasing standard 

deviationσ  

                                               ( , , ) ( , ) ( , , )L x y I x y G x yσ σ= ∗                                                       (1) 

 
Figure 1: An octave of the scale space, depicting an optical image filtered     repeatedly with Gaussian filter of 

increasing standard deviation. (Scene area: Beirut Airport, Lebanon) (Schwind, 2008). 
 
where the Gaussian function is defined as 

                                                  
2 2

2
( )

2
2

1( , , ) exp
2

x y

G x y σσ
πσ

− +

=                                                       (2) 

The purpose of this scale space is to allow the detection of features at different scales. This is 

possible as more and more of the smaller structures get blurred out every time the image is Gauss 
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filtered. Since the structures present in the image become very coarse after several Gauss 

convolutions (Figure 1), the image size can be decreased to reduce memory usage and 

computational cost without a significant information loss. Every time the value of σ  is doubled, 

a new octave in the scale space is created, meaning the image filtered using twice the initial 

value of σ  is halved by omitting every second pixel (Figure 2). The newly created image is then 

used as the first image of the next octave of the scale space pyramid. The entire resizing process 

does not require any extra interpolation since all pixels in a Gaussian filtered image already 

contain information about their neighbouring pixels. 

 

The difference of each pair of images separated by a multiplicative factor k  in each scale 

space octave is then used to create Difference of Gaussians images (Figure 2) 

                                                ( , , ) ( , , ) ( , , )D x y L x y k L x yσ σ σ= −                                               (3) 

These Difference of Gaussians (DoG) images provide a close approximation to images created 

by the Laplacian of Gaussian function. Later, the Gauss filtered images are used to form the 

feature descriptors efficiently. 

 

To search for extrema in s  images, 3s +  images per octave have to be created in the initial 

Gauss pyramid. Lowe determined 3s =  to be the most reasonable value for s . To generate 

s intervals per octave, the factor k  has to be calculated using 

                                                                           
1

2 sk =                                                                 (4) 

So, the images are convolved with  
1 2

, 2 , 2s sσ σ σ  and so forth. Since the convolution mask 

should always be as big as 3σ , the calculations for each convolution would become more 

complex with every scale. However, instead of filtering the input image with different filter 

masks, Lowe showed that the images can also be filtered recursively. This means, every image in 

the image pyramid is created by filtering the previous image using the sameσ . This leads to the 

same images being produced with a reduced process complexity. 
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Figure 2: Generation of the Difference of Gaussians pyramid (Lowe, 2004). 

 

Extrema Detection 

 

Once a DoG pyramid has been created, extrema are searched in the images of each octave. To do 

this, each pixel of an image is compared to the eight pixels bordering it at the same scale and to 

the nine pixels in the scale above and below (Figure 3). Only if the pixel value is smaller or 

bigger than all of the 26 other pixels, it is accepted as an extremum. Since the first and the last 

image of each octave cannot be compared to all 26 pixels, no extrema are searched in those 

scales. 
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Figure 3: Extrema detection in scale space (Lowe. 2004). 

 

2.2 Feature  Localization  

 

Once the extrema detection has been completed, unstable points need to be detected and filtered 

out. A straight forward approach is to use a normalized contrast threshold; a value of 0.03 has 

been suggested by Lowe. Considering the higher recognition value of corner points over edge 

points, corner points are preferred. To remove the edge points, the Hessian matrix is employed 

for all the detected points 

                                                        xx xy

xy yy

D D
H

D D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                   (5) 

The derivatives ,xx yyD D and xyD are determined by calculating the differences between 

neighbouring points 

                                        ( 1, ) ( 1, ) 2 ( , )xxD D x y D x y D x y= + + − −                                         (6) 

                                           ( , 1) ( , 1) 2 ( , )yyD D x y D x y D x y= + + − −                                      (7) 

                 ( ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)) / 4xyD D x y D x y D x y D x y= + + − − + − + − + − −               (8) 

The trace  

                                                              H xx yyT D D= +                                                                  (9) 

And the determinant 

                                                       2. ( )H xx yy xyDet D D D= −                                                        (10) 

are then used to calculate the ratio of principal curvatures. This ratio is checked against a 

threshold r  by using the following equation:  
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2 2( ) ( 1)H

H

T r
Det r

+
<                                                             (11) 

Lowe uses 10r =  to reject points with a lower ratio of principal curvatures. Practically, this 

means that most points lying along straight edges are removed, while points lying on corners are 

accepted. 

 

2.3 Sub-Pixel Localization 

 

Lowe incorporates a method developed by M. Brown (Brown and Lowe, 2002) to interpolate the 

position of the feature in scale space. To achieve sub-pixel localization a Taylor expansion of the 

scale-space function ( ); ;D x y σ  is built up around the feature location 

                                                    
2

2

1( )
2

T
TD DD x D x x x

x x
∂ ∂

= + +
∂ ∂

                                              (12) 

This function is differentiated and set to zero to find the new, interpolated location Δx of the 

feature: 

                                                                
2 1

2

D Dx
x x

−∂ ∂
Δ = −

∂ ∂
                                                         (13) 

in practice, the Hessian H  and the derivative d  used in this equation are approximated using 

pixel differences: 
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20 21 22

h h h
H h h h

h h h

⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                        (14) 

where the Hessian matrix is calculated in the following ways 

                                         ( ) ( ) ( )00 1 1, 2 , ,n n nh D x y D x y D x y− += − +  

                                      ( ) ( ) ( )11 , 1 2 , , 1n n nh D x y D x y D x y= − − + +  

                                   ( ) ( ) ( )22 1, 2 , 1,n n nh D x y D x y D x y= − − + +  

               ( ) ( ) ( ) ( )( )01 10 1 1 1 1
1 , 1 , 1 , 1 , 1
4 n n n nh h D x y D x y D x y D x y+ + − −= = + − − + + + −  

               ( ) ( ) ( ) ( )( )02 20 1 1 1 1
1 1, 1, 1, 1,
4 n n n nh h D x y D x y D x y D x y+ + − −= = + − − + + + −  
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              ( ) ( ) ( ) ( )( )12 21
1 1, 1 1, 1 1, 1 1, 1
4 n n n nh h D x y D x y D x y D x y= = + + − − + + + − + − −  

                                                  
( ) ( )

( ) ( )
( ) ( )

1 1, ,
, 1 , 1

1, 1,

n n

n n

n n

D x y D x y
d D x y D x y

D x y D x y

+ −⎛ ⎞−
⎜ ⎟= + − −⎜ ⎟
⎜ ⎟+ − −⎝ ⎠

                                               (15) 

The new interpolated position of the feature is obtained by solving the matrix equation Hx d= . 

The interpolated position change can vary in x and y direction on the image and in z direction 

within the image pyramid. This feature interpolation is repeated until the generated offset is 

smaller than 0.5 in any dimension (x, y and z). It also might be the case that the interpolation 

function does not converge for a specific feature, in that case the feature is discarded. 

 

2.4  Orientation Assignment 

 

To achieve rotation invariance, the gradient magnitude ( );m x y and orientation ( );x yθ  is 

computed for all scales ( );L x y  of the Gauss pyramid. 

                          ( ) ( ) ( )( ) ( ) ( )( )2 2
, 1, 1, , 1 , 1m x y L x y L x y L x y L x y= + − − + + − −                 (16) 

                                             ( ) ( ) ( )( )
( ) ( )( )

1 , 1 , 1
, tan

1, 1,

L x y L x y
x y

L x y L x y
θ −

+ − −
=

+ − −
                                     (17) 

To find the dominant orientations a histogram with a bin size of 36 is created. The gradient 

orientations surrounding the feature, weighted by their gradient magnitude and a Gaussian 

window, centred at the feature location, are used to fill the histogram. Once the histogram has 

been created, the highest peak and all peaks bigger than 80% of the highest peak are selected as 

dominant orientations. Even though only about 15% of the points have more than one 

orientation, according to Lowe these additional orientations improve the stability of matching 

significantly. Finally, to achieve a higher accuracy, the positions of the peaks within the 

histogram are interpolated using a parabola approximated to the 3 closest values. 
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2.5 Local Image Descriptor 

 

Having found the location, scale and rotation, a scale and rotation invariant descriptor of the 

feature can be created. Therefore a method based on complex neurons in primary visual cortex 

(Edelman et al., 1997) has been incorporated in the SIFT operator. The main benefit of complex 

neurons is their ability to respond even to slightly shifted gradients on the retina. This ability has 

been reproduced to create descriptors invariant to small local shifts. The gradient magnitudes and 

coordinates, calculated during the orientation assignment, are rotated around the feature relative 

to its found orientation. By rotating the area around the feature, rotation invariance is achieved. 

Scale invariance is assured by using the image gradients calculated at the same scale the feature 

belongs to. After that, the gradient magnitudes surrounding the feature are weighted by a 

Gaussian window to weaken the influence of gradients far away from the feature. In addition to 

that, the descriptor is not changed that much by a small shift, since gradients close to the center 

have a bigger impact. The σ of the Gaussian filter is set to half the size of the descriptor window, 

which itself has a size of 16*16. The descriptor window is divided up into 4*4 sub-windows to 

calculate 16 orientation histograms, each consisting of 8 bins (Figure 4). A trilinear interpolation 

is used to distribute gradients into bordering histogram bins, to once again reduce the effect of 

small local shifts on the descriptor. The final descriptor is a vector holding 128 elements (16 

histograms composed of 8 bins). A 128 element vector has been found optimal according to 

experiments done by Lowe (2004). 

 
Figure 4: Sixteen histograms of the gradients of an area of 16x16 pixels. Each histogram consists of eight bins 

(symbolized by the arrows). The Gaussian window used to weight the histogram entries is depicted by the circle on 
the left (Zimmermann, 2007). 
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Processing till this step is sufficient to provide a rotation and scale invariant descriptor. To 

make the descriptor more robust to linear brightness changes, the elements of the vector are 

normalized to unit length. The influence of non-linear brightness changes (e.g. illumination 

changes that affect some surfaces more than others) is reduced by thresholding the vector 

elements. Lowe determined 0.2 to be a reasonable threshold. After that, all the values are 

normalized once again to unit length. By normalizing again, the distribution of orientations 

becomes more important for the descriptor than the change in relative magnitudes between some 

gradients. 

 

2.6 Feature Matching 

 

Even though the purpose of the SIFT operator is only the detection of features, Lowe also 

proposes a matching strategy for the found features in his paper (1999). To compare two 

descriptors with each other, the Euclidean distance d of the descriptor vectors x and y is 

calculated. 

                                                         ( )
128

2

1
i i

i
d x y

=

= −∑                                                               (18) 

However it is not sufficient to simply find the matching point with the lowest Euclidean distance 

and accept all matches with a distance lower than a given threshold. The Euclidean distance 

between correct matches can vary a lot, so matching this way would mean that a lot of correct 

points would be omitted, while at the same time the number of incorrect matches would be 

increased. To compensate for this effect a more sophisticated matching strategy is utilized. Using 

descriptor distance as the criteria, for every feature the two closest matches in the other image 

are determined. If the distance of the second-closest match is smaller than 0.8 times the distance 

of the closest match, the first closest match is accepted as a legitimate match for a feature in the 

reference image. This mechanism works with high reliability, as it can be assumed that the 

distance between two incorrect matches is much shorter than the distance between a correct 

match and an incorrect match. According to Lowe, for optical images, this way 90% of the false 

matches are removed, while only 5% of actually correct matches are wrongly classified as bad 

detections. Since comparing the distance of all features with each other would not be efficient, 

Lowe uses an approximate algorithm called Best Bin First (BBF) (Beis and Lowe, 1997). BBF is 
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based on a modified version of the k-dimensional tree, where instead of searching all branches, 

by using a backtracking branch-and-bound search, only the bins lying close to the query point are 

searched. By only checking the 200 closest neighbours in the tree, the search speeds up 

drastically (2 orders of magnitude faster than exact nearest neighbour search for a database of 

100.000 features) (Lowe, 1999). An example of two images matched using the scale and rotation 

invariant SIFT operator can be seen in Figure 5. 

 
Figure 5: Matches fund in two test optical images using the SIFT operator (Schwind, 2008). 
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