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Periodicity Transforms

William A. Sethares and Thomas W. Staley

Abstract—This paper presents a method of detecting periodic- or scale, as do the Fourier and wavelet transforms [20]. As a
ities in data that exploits a series of projections onto “periodic - consequence, the representation is linear-in-period, rather than
subspaces.” The algorithm finds its own set of nonorthogonal |inear_in-frequency or linear-in-scale. Unlike most transforms,
basis elements (based on the data), rather than assuming ath t of basi t . t ifi C . ther. th
fixed predetermined basis as in the Fourier, Gabor, and wavelet e ?e O_ asls Yec O,I,’S IS no SPeC' iacpriori, ra Fj'r' e .
transforms. A major strength of the approach is that it is linear- PT finds its own “best” set of basis elements. In this way, it
in-period rather than linear-in-frequency or linear-in-scale. The is analogous to the approach of Karhunen—Loeve [5], which
algorithm is derived and analyzed, and its output is compared transforms a signal by projecting onto an orthogonal basis that
to that of the Fourier transform in a number of examples. g qatermined by the eigenvectors of the covariance matrix. In
One application is the finding and grouping of rhythms in a trast. th iodi bspacBs lack orth lit hich
musical score, another is the separation of periodic waveforms con ra§ » IN€ periodic subspaces lac c.)r. oglonally, whic
with overlapping spectra, and a third is the finding of patterns Underlies much of the power of (and difficulties with) the PT.

in astronomical data. Examples demonstrate both the strengths Technically, the collection of all periodic subspaces forms

and weaknesses of the method. a frame [6], which is a more-than-complete spanning set.
The PT specifies ways of sensibly handling the redundancy
|. INTRODUCTION by exploiting some of the general properties of the periodic

UMANS are very good at identifying complex patternsSUPspaces. . . o

the auditory system easily senses intricate periodicities "€ Next section examines the structure of the periodic
such as the rhythms that normally occur in music and spee€Hbspaces. Section Il shows how to project onto periodic
the visual system readily grasps the symmetries and repetitih@spaces and uses the residuals of these projections to
inherent in textures and tilings, the mind searches for siffémonstrate relationships between the subspaces. Special care
ple underlying regularities to explain phenomena that appéHPSt_ be taken w_|th periodicities of mcom_mensgrable Iengths.
complex and irregular. Computers are comparatively poor ggction IV describes how the RT deals with uniqueness issues
locating such patterns, although several kinds of “transformg@used by the nonorthogonality of the periodic subspaces.
are aimed at automatically identifying underlying pattern€ction V presents some of the various algorithmic options
Perhaps the best known is the Fourier transform, whi@yailable when using the PT, and analogies are drawn with
attempts to explain a data set as a weighted sum of sinusof@dfumber of methods designed to remove redundancy from
basis elements. When the data can be closely approximat@ines. Then, Section VI gives a series of examples that
by such elements, the Fourier transform provides both S§monstrate the application of the PT to a variety of problems
explanation and a concise representation of the data. SimilafR£luding the rhythmic parsing of a musical score, the
the wavelet transform decomposes data into a sum of ba¥gParation of waveforms, the finding of a harmonic template,
elements that are defined by a family of scaling function@nd & search for periodicity in astronomical data. The casual
Again, when the data has the assumed scaling similariti€g2der may wish to jump ahead to Section VI, which motivates
this provides a convincing representation and explanatidh€ algorithm by showing the kinds of results possible with
None of the available methods, however, directly searches 8¢ PT- The final section concludes that the PT may find
periodicities, repetitions, or regularities in the data. This papéf€ In @ number of applications in which periodicities are
builds on a classical technique called the Buys—Ballot tap¢lieved to exist.
for the determination of “hidden periodicities” [23] to fill this
gap. By analogy with modern wavelet and other transforms, Il. PERIODIC SUBSPACES
we call this theperiodicity transform(P'_I’). ... A'sequence of real numbersk) is calledp-periodicif there

The PT dec"”.‘po?es sequences mtol a sum of perlo@Can integenp with z(k + p) = z(k) for all integersk. Let

sequences by projecting onto a set of “periodic subsp&a€gs”
leaving residuals whose periodicities have been removed. As P, be the set of alp-periodic sequences, and
the name suggests, this decomposition is accomplished directly
in terms of periodic sequences and not in terms of frequency
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when decomposing:. To make these ideas concrete, it iFhe first part of the positivity condition is clear sin¢e, «)
necessary to understand the structure of the various spai®s sum of squares. Suppose thag 0 has periodp. Then,
and to investigate how the needed calculations can be realizet(;j) = ¢ > 0 for at least ongj in each period. Then

Observe thafP, is closed under addition since the sum of 1 k .
two sequences with perigdis itself p-periodic. Similarly,? (z,z) = lim 1 Z #2(3) > - >0
is closed under addition since the sumegfwith periodp; and koo 2R + i=—k p

x3 with periodp, has period (at mosg); p». Thus, with scalar and the only periodia: with (z,z) = 0 is z = 0.
multiplication defined in the usual way, bof, and P form Thus, (2) defines an inner product @h and the induced
linear vector spaces, arfd is equal to the union of th@,. norm is

For every periodp and every “time shift"s, define the

sequencess(j) for all integers; by llzll = v/ {z, z). (4)
srn 1, if (j—s)modp =0 . : : I .
6(0) = {07 otherwise (1) The norm (4) is well suited to the investigation of periodic

. sequences since it gives the same value whethisrconsid-
The sequences; for s = 0,1,2,...,p — 1 are called the greq to he an element at,, of Py, (for positive integersk),
p-periodic basis vectors since they form a basis7yr or of P.

Example 2.1:For p = 4, the 4-periodic basis vectors, Example 2.2:Let + € P; be the 3-periodic sequence
shown at the bottom of the page, span the 4-periodic subspace 1 2 3 .. .1, and lety € Ps be the 6-periodic sequence
Pa | . {....1,2,3,1,2,3,...}. Using (4), ||| = ||y

An inner product can be imposed on the periodic subspaces\s ysual, the signals andy in 7 are said to be orthogonal
by considering the function fror® x P into R defined by  jf (z,y) = 0.

1 k Example 2.3: The periodic basis elements; for s =
(z,y) = klggo %11 Z z(D)y (i) 2 0,1,.. b= 1 are orthog(_)nal, anglé; || = «/1/_p.
i=—k The idea of orthogonality can also be applied to subspaces.

for arbi'_[rary elementse ar_1d y in P. For the purposes of A signalz is orthogonal to the subspa@®, if (x,z,) = 0 for
calculation, observe that it € 7, andy € P,,, then the all 1, € P,, and two subspaces are orthogonal if every vector
product sequence(i)y(i) € Pp,,, IS p1p2-periodic, and (2) in one is orthogonal to every vector in the other. Unfortunately,

is equal to the average over a single period, that is the periodic subspacéB, are not orthogonal to each other.
| Pzl Example 2.4:1f p; andp, are mutually prime, then
(x,y) = — x(4)y(). 3) s s . . 1
p1p2 72:% <6p176p2> = <6p1p276p1p2> = Pip2 # 0.

To see that (2) actually defines an inner product [16]7an

Suppose th = p3. Then, P, C Pp,, andP,, C Pp,,
there are four conditions that must be verified: PP Fupz = P v ’ " g

which restates the fact that any sequence that-feriodic
Commutativity: (z, y) = (y, z) is alsonp-periodic for any integern. However,P,, can be
Additivity: (z +y, 2) = (,2) + (4, 2) strictly larger than®,, U P,,.

Scalar Multiolication: A _ Example 2.5:Let z = {...,1,2,1,-1,-2,-1,...} €
calar Multiplication:(Az, y) = Mz, y) Pe. Then, z is orthogonal to botHP, and P; since direct

Positivity: (z,z) >0 and (z,z) =0 iff z=0. calculation shows that is orthogonal tos; and to#; for all
The first and third conditions are obvious from (2). To demort- ) ) )
strate additivity In fact, no two subspaceB, are linearly independent since

k P, C P, for every p. This is because the vectdr (the 1-
1 . .
r 4y, 2)= lim 2(1) 4+ (i) (i periodic vector of all ones) can be expressed as the sum of
(v +u2) k—oo 2k + 1 7;( () +w(0)=() the p periodic basis vectors
k
. 1 N p—1
= T ‘;‘x(l)z(l) 1= 6
L =0
. 1 N : .
+ Jim o > y(i)(i) for everyp. In fact, 71 is the only commonality betwee,,,
- i=—k and’P,, whenp; andp, are mutually prime. More generally,
={x,2) +{y,2). we have the following theorem.

j —4 -3 -2 -1 01 2 3 4567
8(5) 1 0 0 0 10001000
5L(5) 0O 1 0 0 010007100
§2(5) 0O 0 1 0 00100010
§(5) 0O 0 0 1 00010001
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Theorem 2.1:P,,NPp,, = P, Wwhenn andm are mutually If, in addition, V/p is an integer, then this reduces to
prime.

A proof is in the Appendix. Theorem 2.1 shows how the Nt
structure of the periodic subspaces reflects the structure of the s = N—/p z:o @(s +np). (6)
integers. "
Example 3.1N = 14, p = 2: Let
Ill. PROJECTION ONTOPERIODIC SUBSPACES z=1{...,2-11,-11,2,-1.2,-1.2,2, —1.1
The primary reason for formulating this problem in an inner ~11,2,-12,-11,2,—-1.1,...} € Pia.

product space is to exploit the projection theorem. L&t P
be arbitrary. Then, a minimizing vector i, is an z, €Pp Then, the projection of x onto Py is =z =
such that {...,0.2,-0.228, ...},
Th|s sequence: is the 2-periodic sequence that best “fits”
|z — 2|l < [lz — x|, for all z, € 7. this 14-periodicz. However, looking at this: closely suggests
that it has more of the character of a 3-periodic sequence, albeit
somewhat truncated in the final “repeat” of the—1,—1.
XCcordlneg it is reasonable to projeetonto Ps.
Example 3.2V = 14, p = 3: Letx € P14 be as defined in
Example 3.1. Then, the projection sfonto Ps [using (5)] is
=-0.2{..,1,1,1,...}.
CIearIy, th|s is not in accord with the intuition that this
“almost” 3-periodic. In fact, this is an example of a rather
generic effect. WheneveN and p are mutually prime, the
. L. . sum in (5) cycles through all the elementszgfand therefore,
fact exist, and the projection theorem provides, after some _ =1 Zf\_o «(4) for all s. Hence, the projection ont®,

ST’ID“fIC&tIOI’], a simple way to ca_lculate It _The_ opt|mas the vector of all ones (times the mean value of:tbneThe
xy € P, can be expressed as a linear combination of the
eriodic basis elements, as problem here is the incommensurability of theand p.
P What does it mean to say that (with length N) is p-
o= %62 —|—o¢16]1) +___+%716£—1' periodic whenN/p is not an integer? Intuitively, it eho_uld
mean that there argV/p| complete repeats of theperiodic
According to the projection theorem, the unique minimizingequence (whergz| is the largest integer less than or equal
vector is the orthogonal projection ofon 7,, that is,z —z}, 10 2) plus a “partial repeat” within the remaining/ =

is orthogonal to each of th& for s =0,1,...,p— 1. Thus N — p|[N/p] elements. For instance, theé = 14 sequence

Thus, z}, is the p-periodic vector “closest to” the original
x. The projection theorem, which is stated here in slightl
modified form, shows howr; can be characterized as an
orthogonal projection ofz ontoP

Theorem 3.1 (The Projection Theorem) [Luenbergerkt
« € P be arbitrary. A necessary and sufficient condition that’ -
x,, be a minimizing vector irP, is that the error — z;, be
orthogonal toP,,.

Since 7, is a finite p-dimensional) subspace;; will in

0= <.’L' — .’L'*, 6g> = <.’L' — 06060 — 06161 — = Oépflép_l, 6;> L1, L2,T3,X1,L2,T3,T1,L2, T3, T1, T2, L3, T1, T2

Since thes; are orthogonal to each other, this can be rewrittf! be considered a (truncated) 3-periodic sequence.

using the add|t|V|ty of the inner product as There are two ways to formalize this notion: to “shorten”
x so that it is compatible witp or to “lengthen”s; so that
= <a: — a56;,6;> it is compatible with V. Although it is roughly equivalent
_ <x755> _ <5s 5s> (they differ only in the finalV elements), the first approach
v v is simpler since it is possible to replacewith x5 (the N-
= (. p/ T T periodic sequence constructed from the filét= p|N/p]
elements ofr) whenever the projection operator is involved.
Hence,«, can be written as With this understanding, (5) becomes
as = p(xz,8). | Wl
oy = —— Z x5 (s+ np). (7)
Sincex € P, it is periodic with some perio&v. From (3), the LN/p) n=0

above inner product can be calculated Example 3.3V = 14, p = 3: Letx € P14 be as defined in

pN— Example 3.1. Then, the projection sfonto P; [using (7)] is
o, = p—N Z a3 ={...,2,—-1.14,-1.125,...}.

Clearly, this captures the intuitive notion of periodicity far
better than Example 3.2, and the sum (7) forms the foundation
of the PT. The calculation of each, thus requires|N/p]|
operations (additions). Since there ardifferent values ofs,
the calculation of the complete projectiap requiresN ~ N
@ = Z z(s + np). (5) additions. A subroutine that carries out the needed calculations

is available at our web site [24].

However, 6; is zero except wherfs — i) mod p = 0, and
threrefore, this simplifies to
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Let n(x, P,) represent the projection af onto 7,. Then onto P, is b = {...,2,-2,...}. The resulting
- decomposition isc = by + bs.
(x,P,) = ZO@Z (8) Thus, the order in which the projections occur affects the
0 decomposition, and the PT does not in general provide a

o , unique representation. Once the succession of the projections
where theb; are the (orthogonal)-periodic basis elements ofig hecified, then the answer is unique, and the next section
Pp. Clearly, whenz € P, & = n(x.P,). By CONSIUCON, yotails 4 handful of ways to specify how the projections can
when .z is projected ontdP,,, it finds the bestp-periodic o meaningfully ordered. For instance, they can be ordered
components withiry, and hence, the residual= « — 7y, has g0 entially from large to small or from small to large by
no np-periodic component. The content of the next result Bow much power they remove from the signal, by how much

tiiat th'$ re§|dual also r‘ias querilo?i'c comporielfit.fln ESSENCeyarea” they remove, or by the magnitude of their projection
the projection ontd>,,,, “grabs” all thep-periodic information. on independent basis elements.

Theorem 3.2:For any integem, letr =« —7(z, Py) D& 1his nonuniqueness may appear problematical. On the con-
the residual after projecting onto P,,,. Then,n(r,7,) = 0. yary e claim that it is a strength of the PT method; that
All proofs are found in the Appendix. The next result relateg .\ of yniqueness is mainly a theoretical and not a practical
the residual after projecting ont®’, to the residual after jsge The goal of signal decomposition is to represent the
projection onto7y,. , original signal in an alternative and more meaningful way.
Theorem 3.3:Let 7, = & —n(x,P,) be the residual after 1,5 £ rier transform provides one representation, the Gabor
projectinga onto,,. Similarly, letr,,, = x—m(x, Pny) d€NOte  yansform another, and wavelet transforms give a different
the residual after projecting onto 7,,. Then decomposition for each “mother wavelet’ chosen. The PT can
provide several different decompositions into periodic basis
elements, depending on how the projections are ordered. If
Combining the two previous results shows that the order tife method of ordering is well suited to the task at hand,
projections does not matter in some special cases, that is then the resulting decomposition can convincingly reflect the
underlying meaning of the signal. At a deeper level, many real-
(@, Pp) = 71 (2, Pp), Prp) = 7(7(@, Prp) Pp) world ghegnomena ire funda?nentally amb%uous. For iné’tance,
which is used in Section V to help sensibly order the proje£® way humans perceive rhythm in music [11] or “connect the
tions. dots” in a visual scene can be essentially ambiguous [10], and
the various criteria of merit used to order the projections in

the PT may lead to multiple solutions that reflect this essential
IV. NONUNIQUENESS -
ambiguity.

The previous section shows how to project an arbitrary
signal x € P onto P,, that is, how to calculater, =
m(z,P,). Itis not completely obvious, however, how to iterate V. ALGORITHMS FOR PERIODIC DECOMPOSITION

this calculation to reliably decomposeinto its constituent  The PT searches for the best periodic characterization of
periodic elements. There are several subtleties, most of whiglg |engthV signalz. The underlying technique is to project
are related to the lack of orthogonality of the subspags  ; onto some periodic subspace giving = #(z, P,), which

Most standard transforms can be interpreted as projectiggshe closesp-periodic vector tox. This periodicity is then
onto suitable subspaces, and in most cases (such as the Fousigoved fromz, leaving the residuat, = x — z,, stripped
and wavelet transforms), the subspaces are orthogonal. Syglis p-periodicities. Both the projection, and the residual
orthogonality implies that the projection onto one subspace;is may contain other periodicities and may be decomposed
independent of the projection onto others. Thus, a projectiito otherg-periodic components by projection onm),. The
onto one sinusoidal basis function (|n the Fourier tl’anSfOl’I"ﬂ’)Ck in designing a useful a|gorithm is to provide a sensible
is independent of the projections onto others, and the Fourigfterion for choosing the order in which the succesgigeand
decomposition can proceed by projecting onto one subspags, are chosen. The intended goal of the decomposition, the
subtracting out the projection, and repeating. Orthogonalifnount of computational resources available, and the measure
guarantees that the order of projection is irrelevant. This ¢§“goodness-of-fit” all influence the algorithm. The analysis of
not true for projection onto nonorthogonal subspaces suchtgg previous sections can be used to guide the decomposition

Trp =Tp — T(Tpy Prp)-

the periodic subspaceB,,. by exploiting the relationship between the structure of the
Example 4.1:Letz = {...,1,0,4,-3,4,0,...} € Ps. variousP,. For instance, it makes no sense to projgcbnto
a) If « is projected ontd®s to give bg, then the projections 7,,,, becauser,, € P,,, and no new information is obtained.
of x — bg onto P, andP3 are zero since: = bg. This section presents several different algorithms, discusses
b) If « is projected ontd?, to giveb, = {...,3,—1,...}, their properties, and then compares these algorithms with some
then the projection ofr — b, onto P3; is b3 = methods available in the literature.
{...,—2,1,1,...}. The resulting decomposition is One subtlety in the search for periodicities is related to the
z = by + bs. guestion of appropriate boundary (end) conditions. Given the
c) If =z is projected onto P; to give b3 = signalz of length NV, it is not particularly meaningful to look

{...,=1,2,2,...}, then the projection ofr — b3 for periodicities longer thap = N/2, even though nothing in
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the mathematics forbids it. Indeed, a “periodic” signal witlthe residual ontdP. is futile sincen(z — 100, P20) = 0 by
length N — 1 has N — 1 degrees of freedom and surelyTheorem 3.2. Thus, an algorithm that decomposes from large
can matchz very closely, yet provides neither a convincing to smallerp must further decompose both the candidate
explanation nor a compact representation:oConsequently, basis element, as well as the residual, since either might

we restrict further attention to periods smaller th&p2. contain smallerg-periodicities.
Probably the simplest useful algorithm operates from small The M -Best Algorithm deals with these issues by maintain-
periods to large: ing lists of theM best periodicities and the corresponding basis
Small To Large Algorithm elements. The first step is to build the initial list as shown at
pick thresholdT” € (0,1) the bottom of the page.
letr =« At this stage, the algorithm has compiled a list of the
forp=2,3,....N/2 M periodicities ¢; that remove the most “energy” (in the
zp = 7w(r, Pp) sense of the norm measure) from the sequence. Typically,
if W >T however, theg; will be large (since, by Theorem 3.2, the
T=7—2p projections onto larger subspaceg contain the projections
savez, as basis element onto smaller subspacgs. Thus, the projections,;, can be
end further decomposed into their constituent periodic elements to
end see if these smaller (sub)periodicities removes more energy

The Small To Large algorithm is simple because there fiom the signal than another currently on the list. If so, then
no need to further decompose the basis elemeptsf there the new one replaces the old. It is not necessary to search
were significany-periodicities withinz, (where “significant” all possible period® < ¢; when decomposing, however; we
is determined by the thresholfl), then they would already need only search the factors. Lgt= {n;q;/n is an integef
have been removed by, at an earlier iteration. The algorithmbe the set of factors of;. Then, the algorithm proceeds as
works well because it tends to favor small periodicities, tehown at the bottom of the next page.
concentrate the power i, for smallp, and, hence, to provide  This second step projects eaep onto each of its factors
a compact representation. Q € p;. If the norm of the new projection is larger than the

Thinking of the norm as a measure of power, the thresholddmallest norm in the list, and if the sum of all the norms will
used to insure that each chosen basis element removes at lg@géase by replacing,,, then the new) is added to the list,

a factor’ of the power from the signal. Of course, choosingnd the last element,,, is deleted. These steps rely heavily
different thresholds leads to different decompositionsT'lf on Theorem 3.3. For example, suppose that the algorithm has
is chosen too small (say zero), then the decomposition Wiund a strong periodicity in (say¥40, giving the projection
simply pick the first linear independent set from among thg, ,, = 7(z, Prao). Since140 = 22 -5 - 7, the factors are

p-periodic basis vectors p=1{2,4,5,7,10,14,20,28,35,70}. Then, the inner loop in
Py Ps Py step2 searches over each of théx14g, Po) YQ € p. If 2140
@ m m 5L g2 is “really” composed of a significant periodicity at (say) 20,
27720730 730 ¥3r By B B T B50 Be then this new periodicity is inserted in the list and will later be

which defeats the purpose of searching for periodicitie®.i§ searched for yet smaller periodicities. Thé&-Best Algorithm
chosen too large, then too few basis elements may be choisefelatively complex, but it removes the need for a threshold
(none asT” — 1). In between “too small” and “too large” parameter by maintaining the list. This is a sensible approach
is where the algorithm provides interesting descriptions. Fand it often succeeds in building a good decomposition of
many problems0.01 < 7 < 0.1 is appropriate, since this the signal. A variation called thé/-Best algorithm with~-
allows detection of periodicities containing only a few percemodification (orA/-Best,) is described in Appendix B, where

of the power yet ignores thosg's that only incidentally the measure of energy removed is normalized by the (square
contribute toz. root of) the lengthp.

An equally simple “Large To Small” algorithm is not Another approach is to project onto all the periodic
feasible because projections ontg for compositep may basis elementss; for all p and s, essentially measuring
mask periodicities of the factors @f For instance, ifr;g0 = the correlation between and the individual periodic basis
7(x,P1oo) removes a large fraction of the power, this may ielements. The with the largest (in absolute value) correlation
fact be due to a periodicity at= 20, yet further projection of is then used for the projection. This idea leads to the Best

M-Best Algorithm (step 1)
pick size M
letrg ==
fori=1,2,... M
find g; ith [la(ri—r, Pyl > [lm(rime, PIl Vg € [1,2...., N/2]
ri =711 — w(ri—1, Py,)
concatenate; andz,, , = n(r;, P,,) onto respective lists
end
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Correlation Algorithm. of entropy. In [17], a greedy algorithm called “matching-
Best Correlation Algorithm pursuit” is presented that successively decomposes a signal
M = number of desired basis elements by picking the element that best correlates with the signal,
letr =z subtracts off the residual, and decomposes again. This is
fori=1,2,...,.M analogous to (though somewhat more elaborate than) the
p = argmax|(r, 67)] “Best Correlation” algorithm above. Nafie [18] proposes an

approach that maintains “active” and “inactive” dictionaries.
Elements are swapped into the active dictionary when they
better represent the signal than those currently active. This

end , , . o ) is analogous to the }-Best” algorithm above. The “best
The presumption behind the “Best Correlation” algorithm ig4gis” approach of [13] uses a thresholding method aimed

that goodp will tend to have good correlation with at least ong; signal enhancement and is somewhat analogous to the
of the p-periodic basis vectors. This method tends to pick odimga|l To Large algorithm above. Using dh norm, Chen
periodicities with large regular spikes over those that are moggq Donoho [7] propose a method that exploits Karmarkar's
Uniform. A fourth approach iS to determine the beSt periodici‘hterior point linear programming method. The “method of
p by Fourier methods and then to project orftp, shown at frames” [9] essentially calculates the pseudo-inverse of a
the bottom of the next page. (large rectangular) matrix composed of all the vectors in the

Using frequency to find periodicity is certainly not alwaysjictionary.
the best idea, but it can work well and has the advantage thaihile these provide analogous approaches to the problems
it is a well-understood process. The interaction between tbe dealing with a redundant spanning set, there are two
frequency and periodicity domains can be a powerful todadistinguishing features of the PT. The first is thatgheeriodic
especially since the Fourier methods have good resolutionbaisis elements are inherently coupled together. For instance, it
high frequencies (small periodicities) while the PT has bettdoes not make any particular sense to chose (&ay)s:, 62,
resolution at large periodicities (low frequencies). andé2 as a basis for the representation of a periodic signal. The

As far as we know, there is no simple way to guarantee thaperiodic basis elements are fundamentally coupled together,
an optimal decomposition has been obtained. One foolprawid none of the methods were designed to deal with such
method for finding the bestZ subspaces would be to searcl coupling. More generally, none of the methods is able (at
all of the possible() different orderings of projections to least directly) to exploit the kind of structure (for instance, the
find the one with the smallest residual. This is computatiogontainment of certain subspaces and the equality of certain
ally prohibitive in all but the simplest settings, although afesiduals) that is inherent when dealing with the periodic
interesting special case is whaf = 1, that is, when only the subspaces of the PT.
largest periodicity is of importance.

Several methods for finding the “best” basis functions from VI
among some (possibly large) set of potential basis elements_ | _ ) L
have been explored in the literature [6], many of which are This section gives three examples of the application of

related to variants of general “projection pursuit” algorithmg]e _PT to the automatic grouping Of_ rh_yth_mlc motifs n a

[12]. Usually, these are set in the context of choosing usical score, to the separation of periodic signals when given

repr.esentatioiw for a given signal from among a family 0t eir sum, and to the identification of periodicities in certain
o . . . asfronomical data.

prespecified frame elements. For instance, a Fourier basis;"a

collection of Gabor functions, a wavelet basis, and a wavelet .

packet basis may form the elements of an over-compleie Musical Rhythm

“dictionary.” Coifman [8] proposes an algorithm to chose a One situation where periodicities play a key role is in

particular basis to represent a given signal based on a measuausical rhythm. Several researchers (for instance, [2], [15] and

p
savez, = n(r,P,) as basis element
T=T =)

. EXAMPLES

M-Best Algorithm (step 2)
repeat until no change in list
fori=1,2,....M
find Q* with [[r(z,, Po-)|| = I (4, Po)|| VQ € p;
let zo+ = m(xzq,,Pg+) be the projection ont®g-
let x4 = x4, — x+ be the residual
if g || + llzg | > llzga | + llzq [ & llzg-
replaceg; with ¢* andz,, with z,-
insert@* andz¢- into lists at position: — 1
removegy; andz,,, from end of lists
end if
end for
end repeat

> ming ||zg, || & ||zg-|| > ming ||zq, ||



SETHARES AND STALEY: PERIODICITY TRANSFORMS 2959

magnitude

u u u u u u

frequency

Fig. 2. DFT of the binary sequence derived from the score to La Marseil-
laise, assuming a sampling rate of 8 Hz (one half note per second). The peak
at 2 Hz represents the quarter note pulse, and the peak at 0.5 Hz corresponds
to the measure.

Fig. 1. Rhythmic grouping calculated by Rosenthal’'s program Fa. Essen-
tially the same grouping was achieved by the PT, using a simple coding ofin which each digit represents a time equal to that of one
the onset times. sixteenth note. A 1 indicates that a note event occurred at that
time, whereas a 0 means that no new note event occurred. This
[19]) have created programs to automatically parse a musigas made “periodic” by concatenating it to itself four times
score (or a standard MIDI file, which contains equivalerdnd then decomposed by the various periodicity algorithms.
information) in order to generate a “high-level” explanation The Small To Large algorithm with threshold 0.1 detected
of the grouping of musical rhythms. The “pulse” is the basifour periodicities: with periods 4 (corresponding to the quarter
unit of temporal structure and is often represented in the scorgtes), 16 (the measured bar lines), 32 (the two measure
as a quarter note. Such pulses are typically gathered togetblerases), and 64 (everything else). These periodicities removed
into groupings that correspond to metered measures, @8%, 13%, 20%, and 39% of the power, respectively, and
these groupings are often clustered to form larger structumggree well with Rosenthal’s analysis. Similarly, the Best Cor-
corresponding to musical “phrases.” Such patterns of groupirglation algorithm (with ratio 0.1) found the three periodicities
and clustering can continue through many hierarchical levelg, 16, and 32. When asked to find four periodicities, ilie
and many of these may be readily perceptible to attentiBest algorithm responded with 8, 16, 32, and 64, whereas the
listeners. It is not so easy to teach computers to recognize-Best, algorithm returned 2, 4, 16, and 32. It is typical
these patterns. that they-modified version emphasizes smaller periodicities.
Rosenthal [19] has created a rhythm parsing program caligthen asked to find the ten best periodicities (the default),
“Fa,” which searches for regularly spaced onset times inbath AM-best versions detected 2, 4, 8, 16, 32, 64, 0, 0,
MIDI data stream. The program forms and ranks sever@ and 0. The final four zeroes indicate that the residual
hypotheses “according to criteria that correspond to wawgs zero and the decomposition exact. The Best Frequency
in which human listeners choose rhythmic interpretationsglgorithm returned periods 4, 16, and 5. The unexpected 5 is
These criteria include quite sophisticated ideas such as havifiig to “rounding off” of the spectrum near period 4. Since the
accented notes fall on “strong” beats, noticing motivic repetirequency corresponding to period 5 has the largest magnitude
tions, and measuring salience. An example is given of the b@sthis residual, the algorithm can proceed no further.
rhythmic parsing found by Fa for the song “La Marseillaise,” For comparison, the same binary sequence (again concate-

which is reproduced here as Fig. 1. ~ nated four times) was tranformed using the DFT. Assuming a
The four measures of “La Marseillaise” were coded intgampling rate of 8 Hz, the duration of each quarter note is 0.5
the binary sequence s, and the resulting magnitude spectrum is shown in Fig. 2. In

this figure, the largest peak at 2 Hz represents the quarter note

pulse, whereas the peak at 0.5 Hz corresponds to the measure.
1100110001000 100010001 000000110 It is unclear how to interpret the remainder of the information
011 001 100010000 000 100 110 000 000 000 in this spectrum.

Best Frequency Algorithm
M = number of desired basis elements
letr==x
fori=12,....M
y = |[DFT{r}|
p = Round1/f), wheref = frequency at whichy is max
savex, = n(r,Pp) as basis element
T=r— .’L'p
end
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samples subspace. The algorithm then fingdg; = x 4+ ¢; + 713 as its

13-periodic basis element.
X WWWW\MW\MW The four transforms do not behave identically. The Small
To Large algorithm regularly finds such periodic sequences.

The Best Correlation algorithm works best when the periodic
data is spiky. ThelM/-Best algorithm is sometimes fooled
into returning multiples of the basic periodicities (say 26
or 39 instead of 13), whereas th¥&-Best, is overall the
most reliable and noise resistant. The Best Frequency algo-
rithm often becomes “stuck” when the frequency with the
largest magnitude does not closely correspond to an integer
periodicity. The behaviors of the algorithms are explored in
z detail in the four demonstration fileP{demos2l, PTdemobc,
PTdemomband PTdemobf that accompany the periodicity
software [24].

Two aspects of this example deserve comment. First, the
determination of the periodicity and its corresponding basis
element is tantamount to locating a “harmonic template” in the
frequency domain. For example, the 13-periodic component
has a spectrum consisting of a fundamental (at a frequéncy
proportional tol /13) and harmonics atf;,3f1,4f1,.... Sim-
ilarly, the 19-periodic component has a spectrum consisting of
a fundamental (at a frequengf proportional to1/19) and
harmonics atfs;, 3f2,4f2,.... These are indicated in Fig. 3
by the beams above and below the spectrumy.ofhus, the

frequency PT provides a way of finding simple harmonic templates that
Fig. 3. Signal= is the sum of the 13-periodic and the 19-periodig. The May be obscured by the inherent complexity of the spectrum,
Epelsttrum zlft\:”\n;s th%%Vg?Fi)Spigglgfttg?Otcv\{/j‘(t)es?ﬁgtragrggiiznigzn(migﬁ fﬁrzraﬁdi the process of subtracting the projection.from the original
p?/iolr?euegknown)génd to resconstruct (up to a co%stant offset) botind y signal can be interpreted as a multmotched filter th,at re,moves
given only =. the relevant fundamental and its harmonics. For a singlleis
is a kind of “gapped weight” filter familiar from time series
analysis [14].

The offsetsc; andc, occur becaus®; is contained in both

When signals are added together, information is often lo$;; and inyy. In essence, both of these subspaces are capable
However, if there is some characteristic that distinguishe$ removing the constant offset (which is an element™j
the signals, then they may be recoverable from their sufmrom ». Were bothz andy zero mean, then both; and c,
Perhaps the best known example is when the spectrum ofvould be zero, but since both are nonzero mean, the projection
and the spectrum af do not overlap. Then, both signals caronto (say)P;s grabs all of the signal ir?; for itself (Thus,
be recovered fronx + y with a linear filter. However, if the ¢; = mear{z) + mearfy), and further projection ont@;g
spectra overlap significantly, the situation is more complicategives c; = —mear{y)). This illustrates a general property of
This example shows how, if the underlying signals are periodicojections onto periodic subspaces. Suppose that the periodic
in nature, then the PT can be used to recover signals freignals to be separated werg, € P,, andz,,, € P, for
their sum. This process can be thought of as a way to extraome mutually prime: andm. SinceP,;, N Py, is Pp, both
a “harmonic template” from a complicated spectrum. Pnp and Py, are capable of representing the common part of

Consider the signat in Fig. 3, which is the sum of the the signal, and:,,;, andz,,, can only be recovered up to their
13-periodic signak and the 19-periodic signa). The spec- common component i?,,. In terms of the harmonic templates,
trum of z is quite complex, and it is not obvious which parts ofhere is overlap between the set of harmonics:gf and the
the spectrum arise from and which fromy. However, when harmonics ofz,,,,, and the algorithm does not know whether
the PT is applied te;, two periodicities are found, at 13 andto assign the overlapping harmonics:tg, or to z,,,.
at 19, with basis elements that are exaatly = = + ¢; and It is also possible to separate a deterministic periodic
Y19 = y—+co, that is, both signals andy are recovered, up to asequence: € 7, from a random sequengewhen only their
constant. Thus, the PT is able to locate the periodicities (whisimz = y -+ can be observed. Suppose thas a stationary
were assumed priori unknown) and to reconstruct (up to alindependent, identically distributed) process with mean
constant offset) bott andy given only their sum. Even when Then, E{7(y,P,)} = m, -1 (where1l is the vector of all
z is contaminated with 50% random noise, the PT still locat@ses), and therefore
the two periodicities, although the reconstructionscadnd y
are noisy. To see the mechanism,sjdie the noise signal, and E{n(z,Pp)} = E{7m(y + 2, Pp)} = E{7(y, Pp)}
let 713 = #(n, P13) be the projection of; onto the 13-periodic + E{n(2,Pp)} =my-1+4+2

+4-

~

amplitude

maghnitude

B. Signal Separation
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since E{n(z,Pp)} = E{z} = = Hence, the deterministic or “looking at” at the data, their importance is reinforced by
periodicity ~ can be identified (up to a constant) and removeal comparison with the Fourier results. The PT periodicities
from x. Such decomposition will likely be most valuable whemt 7.09 and 12.4 correspond to the Fourier periodicities at
there is a strong periodic “explanation” ferand, hence, for 7.3 and 12.8 (recall the inherent margin of error in the
z. In some situations such as economic and geophysical data width of the FFT). In addition, the periodicity at 12.4
sets, regular daily, monthly, or yearly cycles may obscure teentains the 2:1 subperiod at 6.2 detected by the FFT. The
underlying signal of interest. Projecting onto the subspac&s7-s pulse is approximately one third of the 5.7-s Fourier
P,, where p corresponds to these known periodicities isesult, reinforcing the interpretation that this was an underlying
very sensible. However, appropriate values ganeed not be “fundamental.”
known a priori. By searching through an appropriate range On the other hand, the appearance of several periodicities
of p (exploiting the various algorithms of Section V), bothwithout mutual factors clustered at one time scale (i.e., the
the value ofp and the besp-periodic basis element can beperiodicities at 45.66, 50.29 and 49.6 s), suggests that one long
recovered from the data itself. periodicity in the data may have been inexactly decomposed
into several related components. This relates to what may
be the most severe limitation to the general applicability of
C. Patterns in Astronomical Data the PT: When the sample interval does not correspond to a

To examine the performance of the PT in the detection G¥ctor of some periodicity in the data, the decomposition of
more Comp|ex patternsy a 3-min Segment of astronomical dﬁma” pel‘iOdS from Iarger ones iS dIffICUlt Qua”tatively, thIS
gathered by the Voyager spacecraft (published on audio €@n be thought of as the converse of the limitation of the
in [21]) was analyzed. When listening to this CD, there isourier method; while the linear-in-frequency behavior of the
an apparent pulse rate with approximately 18 (not necessafilyT increases the error at long periods, the linear-in-period
equal length) pulses in each 32-s segment. Because of @gkavior of the PT causes inefficiencies at short periods. Just
length of the data, significant downsampling was require@S an increase in the amount of data used in the FFT can
This was accomplished by filtering the digital audio data iRrovide better precision, a decrease in the sample interval can
overlapping sections and calculating the rms value in eatprove the performance of the PT. Nonetheless, there is no
section. The resulting sequence approximates the amplitfneral method of ensuriregpriori that a particular periodicity

of the Voyager signal with an effective sampling rate oft unknown data will correspond to a multiple of the sample
44100 _ {75 Hz. rate. To see this effect clearly, we resampled the data at an

“The downsampled data was first analyzed with a Fourigffective sampling interval of 0.065 s and then reapplied the
transform. The most significant sinusoidal components occli-Best, algorithm. In this case, the longer periods were not
at 0.078, 0.137, 0.157, 0.167, 0.177, and 0.216 Hz, whié8 successfully decomposed. Similar sensitivities to the choice
correspond to periodicities at 12.8, 7.3, 6.3, 6.0, 5.7 and £6sampling rates were observed in an early critique of the
s. Because the Fourier transform is linear-in-frequency, tRélys—Ballot method [4].
values are less accurate at long periods (low frequencies)Ihis “integer periodicity” limitation of the PT can be
For example, whereas the time interval between adjacéittigated by the proper choice of a highly factorable integer
Fourier bins is only=0.2 s for the shortest of the significantas the sample interval. In general, the identification of small
periodicities (4.6 s), the time between bins at the |Ongdggriodicities within an arbitrary data set will be most efficient
detected periodicity (12.8 s) is approximatelyl.6 s. when the sample interval itself contains many factors (many
Applying the PT to the downsampled data using e €Xxact periodicities). These intervals, each composed of many
Best, algorithm (with A/ = 10) gives the data at the bottomPeriodic “building blocks,” are easily combined to identify
of the page. The shortest periodicity at 1.77 s correspon@éger multiples. In fact, this was the reason we chose the
well with the pulse rate that is apparent when listeningffective sampling rate based on a subsampling interval of
to the data directly (the large norm for this first subspac®20, which factors ag?® - 3* . 5 - 7. This interval has a
results from a significant DC term). The structure of thBighest density of factors within the desired range of effective
results mimics the operation of the algorithm. For exampl&ampling rates (0.05 s to 0.1 s) consistent with a downsampled
there are three sets of related periodicities. The first thréata set of reasonable length.
31:217:434 are in the ratio 1:7:14, the next two 124:868 are
in the ratio 1:7 (and are also in the ratio 4:28 relative to the
periodicity 31). The third set 328:656 are in the ratio 1:2. VIl. ConcLusIoN
These are indicative of the decomposition of large periodsThe PT is designed to locate periodicities within a data
by Step 2 of theM-Best, algorithm. While these longer set by projecting onto the (nonorthogonal) periodic subspaces.
periodicities are not immediately obvious when “listening toThe method decomposes signals into their basic periodic

Periodp 31 217 434 124 868 328 636 799 880 525
Time (seconds) 1.77 124 24.8 7.09 49.6 18.74 37.49 45.66 50.29 30
Norm (in percent) 296 6.2 43 28 86 3.7 5.9 4.9 36 27
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components, creating its own “basis elements” as linear com- Proof: Observe first that i € P, then it is also in both
binations of delta-likep-periodic basis vectors. Pnp and Py, since ap-periodic sequence is aldg-periodic
In some cases, the PT can provide a clearer explanationf@f any k. On the other hand, suppose that P, N Pp,p.
the underlying nature of the signals than standard techniqu&ken, z is both np-periodic andmp-periodic, that is,
For instance, the signat of Fig. 3 is decomposed into
(roughly) 14 complex sinusoids by the DFT or into two
periodic sequences by the PT. In a strict mathematical sense,
they are equivalent since the residuals are equal in norm.
However, the PT “explanation” is simpler and allows th&his means that:(i) = z(i + (jn + km)p) for all integers
recovery of the individual elements from their sum. Whep and k. In particular, sincem and n are mutually prime,
periodicity provides a better explanation of a signal or an evethie functionkn mod m cycles through all possible values
than does frequency, then the PT is likely to outperform the, 1,2,...,m — 1] as k cycles through the firstu integers.
DFT. Conversely, when the signal incorporates clear frequendgnce, there is &* and aj* such thatj*n+&*m = 1. Hence,
relationships, the DFT will likely provide a clearer result. Oug:(¢) =z (i+(j*n+k*m)p) =z(i+p), andz is p-periodic. O
belief is that a detailed analysis of truly unknown signals will The next two results make use of the projection operator
benefit from the application of all available techniques. Severa{x, P,,) defined in (8). Because of the additivity of the inner
examples of possible applications of the PT are given: product

1) to the grouping of rhythmic patterns in a musical score;
2) to the separation of signals;

3) to the finding of harmonic templates;

4) to the search for patterns in astronomical data.

There are several ways that these ideas can be extend®y @y #;y € 7 and any real numbers,b € R. The
Generalizations to two dimensions are straightforward, aRg'ametersa, of the projections are calculated as in (7),
there is some hope that visual patterns such as textures mafjaough thelV notation is suppressed.
amenable to identification and classification with the PT. The 1h€orem 3.2:For any integem, letr = = — n(z, Pn;) be
algorithms and results were all stated in terms of real numbeif€ residual after projecting onto 7,,,,. Then,z(r,P,) = 0.
but the generalization to the complex setting is certainly roOf:
feasible. For simplicity, the development was conducted with
discrete sequences rather than functions, but the ideas may p@r, Pp) = n(x — 7(x, Pap), Pp)
extendible to function spaces using “almost periodic functions” — (2, P,) — w(w(z, Pap)s Py)

[3]. Another intriguing idea is to incorporate certain kinds of e ’np:”f v
a priori knowledge about the signal within the decomposition . P\
procedure, for instance, if projections are allowed only onto =z, Pp) - 7r<np Z <$’6"P>6"P’Pp>
the periodic subspaces =0

p—1 np—1
= Py — 88 V6L 6 )60,
PoCPsCPsCPgC ... (2, Fp) pz_:0<np;<x, "P> np? P>P

then there is a nesting of subspaces with orthogonal comple-
ments as is familiar from the wavelet theory [20]. n
Like the Hadamard transform [22], the PT can be calculated
using only additions (no multiplications are required). As i es 1/np, if imodp=s
nly ad ipli _ _ (50,.80) = { . }
shown in Section lll, each projection requires approximately PP 0, otherwise
N operations, but the calculations required to project onto
(say) P, overlap the calculations required to project ofitg,
in a nontrivial way, and these redundancies can undoubte
be exploited in a more efficient implementation.
The analysis of this paper focused on the basic properties of p—l fn-1
the periodic subspaceB, and of projections ont@®,. There =n(x,Pp) =Dy <Z R T 5Z>5Z~
may be better ways to parse the periodic subspaces than those =0
presented in Section V, and there is room for exploring the
convergence properties of the algorithms, their robustnessQbserve that
noises, and to the interactions between periodicities, frequen-
cies, and sampling rates.

z(i) = z(i+np) = (¢ + mp) Vi.

71'(@.’13' + by, Pp) = CL’]I'(.’IZ', Pp) + bﬂ'(ya PP)

aﬂ/the “cross terms” are annihilated, and this simplifies to

m=0

n—1 n—1
Z <as+mp6:$mpa 6;> = Z as+mp<6:$mpv 6;>

m=0 m=0

APPENDIX A

1 n—1
Theorem 2.1:P,,,N Py = Fp Whenn andm are mutually = — Z Gstmp-
prime. P o
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Equatinga,.ymp = (x,855™), and substituting gives

p—1l n—1
=n(z,Pp) —p Z Z <a:, 62}'"’@6;
s=0m=0
n—1

v S s

m=0

=7r(a:,77p)—p2<

>5;;.

The np-periodic basis vectors “sum up” tomperiodic basis
vector, that is

n—1

s+mp __ ¢s
> Gy =4

m=0

and the expression finally simplifies to

7w(x, Pp) —w(z,Pp) = 0.

p—1
=n(z,Pp) — pz <a:, 6;>6;
5=0

O
Theorem 3.3:Let 7, = z — w(x,P,) be the residual after
projectingz ontoP,,. Similarly, letr,,,, = z—n(z, P,,) denote
the residual after projecting onto 7,,,,. Then
Tnp = 7p = T(7p; Prp).
Proof: The above equation can be rewritten
x —w(x, Pop) =2 — (2, Pp) — w(rp, Pup)-
Substituting into the third projection and expanding gives
x — (X, Ppp) =2 — 7(x, Pp) — 7(x, Prp)
+ (7 (x, Pp), Prp)-
Canceling terms leaves
m(m(2, Pp), Pap) = 7z, Pp)

which is true because the projection orig, leaves ap-
periodic sequence, which is also ap-periodic sequence by
definition. O

APPENDIX B
Suppose that:(¢)

|7 (z, P)||//P. as shown below.
Recall from (8) and (7) that(z, P,) = S-7_; .65, where
eacha, is a sum of |[N/p| of the z()’s and is therefore,

distributed N (0, —<—). Thus, —%— is distributed as
©, RV, LN/PJ) a/+/IN/p]

N(0,1), and thec, are independent. A standard result from

is a random sequence with each term
distributed N (0, o) and independent (if the mean is not zero[,11]
then project ontd; and remove the DC bias). The measure df2]
“goodness” in thel/-Best algorithm can be easily modified s 1
that on average, no periodicity is reported any stronger than
any other, as would be expected for “random” data. Thus,
the measurd{=(x,P,)|| in the algorithm may be replaced byl
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probability says that ify = ¢2 + €2 + - - - + &2, where eacl?
are independentv (0, 1), then/y has X’ distribution with p

degrees of freedom, and the mean 6j is v(p) = ﬁ%z)%l)
2
where I' denotes the standard gamma function. Hence, the

mean of

p

>

=1

<a/x/LN/pJ> ~

is alsov(p). Thus, in the algorithm, rather than comparing
|7 (z, Pp)|| with ||7(x,P,)|| directly, a better comparison is
between”77(5”(’;:)1’)|| and ””(j(’S‘I)”. Since [1]

o\/p

F(CLZ + b) IS m@_az(az)az-l—b—%

~(p) can be approximated a%%) ~ ,/p, which is
2

considerably simpler numerically. Thus, we suggest u%g

in place of|| - || throughout the algorithm, which we call the
M-Best algorithm withy modification, orA/-Best, for short.
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