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Periodicity Transforms
William A. Sethares and Thomas W. Staley

Abstract—This paper presents a method of detecting periodic-
ities in data that exploits a series of projections onto “periodic
subspaces.” The algorithm finds its own set of nonorthogonal
basis elements (based on the data), rather than assuming a
fixed predetermined basis as in the Fourier, Gabor, and wavelet
transforms. A major strength of the approach is that it is linear-
in-period rather than linear-in-frequency or linear-in-scale. The
algorithm is derived and analyzed, and its output is compared
to that of the Fourier transform in a number of examples.
One application is the finding and grouping of rhythms in a
musical score, another is the separation of periodic waveforms
with overlapping spectra, and a third is the finding of patterns
in astronomical data. Examples demonstrate both the strengths
and weaknesses of the method.

I. INTRODUCTION

H UMANS are very good at identifying complex patterns;
the auditory system easily senses intricate periodicities

such as the rhythms that normally occur in music and speech,
the visual system readily grasps the symmetries and repetitions
inherent in textures and tilings, the mind searches for sim-
ple underlying regularities to explain phenomena that appear
complex and irregular. Computers are comparatively poor at
locating such patterns, although several kinds of “transforms”
are aimed at automatically identifying underlying patterns.
Perhaps the best known is the Fourier transform, which
attempts to explain a data set as a weighted sum of sinusoidal
basis elements. When the data can be closely approximated
by such elements, the Fourier transform provides both an
explanation and a concise representation of the data. Similarly,
the wavelet transform decomposes data into a sum of basis
elements that are defined by a family of scaling functions.
Again, when the data has the assumed scaling similarities,
this provides a convincing representation and explanation.
None of the available methods, however, directly searches for
periodicities, repetitions, or regularities in the data. This paper
builds on a classical technique called the Buys–Ballot table
for the determination of “hidden periodicities” [23] to fill this
gap. By analogy with modern wavelet and other transforms,
we call this theperiodicity transform(PT).

The PT decomposes sequences into a sum of periodic
sequences by projecting onto a set of “periodic subspaces”,
leaving residuals whose periodicities have been removed. As
the name suggests, this decomposition is accomplished directly
in terms of periodic sequences and not in terms of frequency
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or scale, as do the Fourier and wavelet transforms [20]. As a
consequence, the representation is linear-in-period, rather than
linear-in-frequency or linear-in-scale. Unlike most transforms,
the set of basis vectors is not specifieda priori, rather, the
PT finds its own “best” set of basis elements. In this way, it
is analogous to the approach of Karhunen–Loeve [5], which
transforms a signal by projecting onto an orthogonal basis that
is determined by the eigenvectors of the covariance matrix. In
contrast, the periodic subspaces lack orthogonality, which
underlies much of the power of (and difficulties with) the PT.
Technically, the collection of all periodic subspaces forms
a frame [6], which is a more-than-complete spanning set.
The PT specifies ways of sensibly handling the redundancy
by exploiting some of the general properties of the periodic
subspaces.

The next section examines the structure of the periodic
subspaces. Section III shows how to project onto periodic
subspaces and uses the residuals of these projections to
demonstrate relationships between the subspaces. Special care
must be taken with periodicities of incommensurable lengths.
Section IV describes how the PT deals with uniqueness issues
caused by the nonorthogonality of the periodic subspaces.
Section V presents some of the various algorithmic options
available when using the PT, and analogies are drawn with
a number of methods designed to remove redundancy from
frames. Then, Section VI gives a series of examples that
demonstrate the application of the PT to a variety of problems
including the rhythmic parsing of a musical score, the
separation of waveforms, the finding of a harmonic template,
and a search for periodicity in astronomical data. The casual
reader may wish to jump ahead to Section VI, which motivates
the algorithm by showing the kinds of results possible with
the PT. The final section concludes that the PT may find
use in a number of applications in which periodicities are
believed to exist.

II. PERIODIC SUBSPACES

A sequence of real numbers is called -periodicif there
is an integer with for all integers . Let

be the set of all -periodic sequences, and

be the set of all periodic sequences.

In practice, a data vectorcontains elements. This can be
considered to be a single period of an element ,
and the goal is to locate smaller periodicities within ,
should they exist. The strategy is to “project” onto the
subspaces for . When is “close to” some periodic
subspace , then there is a -periodic element that
is close to the original . This is an ideal choice to use
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when decomposing . To make these ideas concrete, it is
necessary to understand the structure of the various spaces,
and to investigate how the needed calculations can be realized.

Observe that is closed under addition since the sum of
two sequences with period is itself -periodic. Similarly,
is closed under addition since the sum ofwith period and

with period has period (at most) . Thus, with scalar
multiplication defined in the usual way, both and form
linear vector spaces, and is equal to the union of the .

For every period and every “time shift” , define the
sequence for all integers by

if mod
otherwise

(1)

The sequences for are called the
-periodic basis vectors since they form a basis for.
Example 2.1:For , the 4-periodic basis vectors,

shown at the bottom of the page, span the 4-periodic subspace
.
An inner product can be imposed on the periodic subspaces

by considering the function from into defined by

(2)

for arbitrary elements and in . For the purposes of
calculation, observe that if and , then the
product sequence is -periodic, and (2)
is equal to the average over a single period, that is

(3)

To see that (2) actually defines an inner product [16] on,
there are four conditions that must be verified:

Commutativity:

Additivity:

Scalar Multiplication:

Positivity: and iff

The first and third conditions are obvious from (2). To demon-
strate additivity

The first part of the positivity condition is clear since
is a sum of squares. Suppose that has period . Then,

for at least one in each period. Then

and the only periodic with is .
Thus, (2) defines an inner product on, and the induced

norm is

(4)

The norm (4) is well suited to the investigation of periodic
sequences since it gives the same value whetheris consid-
ered to be an element of , of (for positive integers ),
or of .

Example 2.2:Let be the 3-periodic sequence
, and let be the 6-periodic sequence

. Using (4), .
As usual, the signals and in are said to be orthogonal

if .
Example 2.3:The periodic basis elements for

are orthogonal, and .
The idea of orthogonality can also be applied to subspaces.

A signal is orthogonal to the subspace if for
all , and two subspaces are orthogonal if every vector
in one is orthogonal to every vector in the other. Unfortunately,
the periodic subspaces are not orthogonal to each other.

Example 2.4: If and are mutually prime, then

Suppose that . Then, , and ,
which restates the fact that any sequence that is-periodic
is also -periodic for any integer . However, can be
strictly larger than .

Example 2.5:Let
. Then, is orthogonal to both and since direct

calculation shows that is orthogonal to and to for all
.
In fact, no two subspaces are linearly independent since

for every . This is because the vector (the -
periodic vector of all ones) can be expressed as the sum of
the periodic basis vectors

for every . In fact, is the only commonality between
and when and are mutually prime. More generally,
we have the following theorem.
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Theorem 2.1: when and are mutually
prime.

A proof is in the Appendix. Theorem 2.1 shows how the
structure of the periodic subspaces reflects the structure of the
integers.

III. PROJECTION ONTOPERIODIC SUBSPACES

The primary reason for formulating this problem in an inner
product space is to exploit the projection theorem. Let
be arbitrary. Then, a minimizing vector in is an
such that

for all

Thus, is the -periodic vector “closest to” the original
. The projection theorem, which is stated here in slightly

modified form, shows how can be characterized as an
orthogonal projection of onto .

Theorem 3.1 (The Projection Theorem) [Luenberger]:Let
be arbitrary. A necessary and sufficient condition that

be a minimizing vector in is that the error be
orthogonal to .

Since is a finite ( -dimensional) subspace, will in
fact exist, and the projection theorem provides, after some
simplification, a simple way to calculate it. The optimal

can be expressed as a linear combination of the
periodic basis elements as

According to the projection theorem, the unique minimizing
vector is the orthogonal projection ofon , that is,
is orthogonal to each of the for . Thus

Since the are orthogonal to each other, this can be rewritten
using the additivity of the inner product as

Hence, can be written as

Since , it is periodic with some period . From (3), the
above inner product can be calculated

However, is zero except when mod , and
threrefore, this simplifies to

(5)

If, in addition, is an integer, then this reduces to

(6)

Example 3.1 : Let

Then, the projection of onto is
.

This sequence is the 2-periodic sequence that best “fits”
this 14-periodic . However, looking at this closely suggests
that it has more of the character of a 3-periodic sequence, albeit
somewhat truncated in the final “repeat” of the .
Accordingly, it is reasonable to project onto .

Example 3.2 : Let be as defined in
Example 3.1. Then, the projection ofonto [using (5)] is

.
Clearly, this is not in accord with the intuition that this

is “almost” 3-periodic. In fact, this is an example of a rather
generic effect. Whenever and are mutually prime, the
sum in (5) cycles through all the elements of, and therefore,

for all . Hence, the projection onto
is the vector of all ones (times the mean value of the). The
problem here is the incommensurability of theand .

What does it mean to say that (with length ) is -
periodic when is not an integer? Intuitively, it should
mean that there are complete repeats of the-periodic
sequence (where is the largest integer less than or equal
to ) plus a “partial repeat” within the remaining

elements. For instance, the sequence

can be considered a (truncated) 3-periodic sequence.
There are two ways to formalize this notion: to “shorten”
so that it is compatible with or to “lengthen” so that

it is compatible with . Although it is roughly equivalent
(they differ only in the final elements), the first approach
is simpler since it is possible to replacewith (the -
periodic sequence constructed from the first
elements of ) whenever the projection operator is involved.
With this understanding, (5) becomes

(7)

Example 3.3 : Let be as defined in
Example 3.1. Then, the projection ofonto [using (7)] is

.
Clearly, this captures the intuitive notion of periodicity far

better than Example 3.2, and the sum (7) forms the foundation
of the PT. The calculation of each thus requires
operations (additions). Since there aredifferent values of ,
the calculation of the complete projection requires
additions. A subroutine that carries out the needed calculations
is available at our web site [24].



2956 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

Let represent the projection of onto . Then

(8)

where the are the (orthogonal)-periodic basis elements of
. Clearly, when , . By construction,

when is projected onto , it finds the best -periodic
components within , and hence, the residual has
no -periodic component. The content of the next result is
that this residual also has no-periodic component. In essence,
the projection onto “grabs” all the -periodic information.

Theorem 3.2:For any integer , let be
the residual after projecting onto . Then, .

All proofs are found in the Appendix. The next result relates
the residual after projecting onto to the residual after
projection onto .

Theorem 3.3:Let be the residual after
projecting onto . Similarly, let denote
the residual after projecting onto . Then

Combining the two previous results shows that the order of
projections does not matter in some special cases, that is

which is used in Section V to help sensibly order the projec-
tions.

IV. NONUNIQUENESS

The previous section shows how to project an arbitrary
signal onto , that is, how to calculate

. It is not completely obvious, however, how to iterate
this calculation to reliably decompose into its constituent
periodic elements. There are several subtleties, most of which
are related to the lack of orthogonality of the subspaces.

Most standard transforms can be interpreted as projections
onto suitable subspaces, and in most cases (such as the Fourier
and wavelet transforms), the subspaces are orthogonal. Such
orthogonality implies that the projection onto one subspace is
independent of the projection onto others. Thus, a projection
onto one sinusoidal basis function (in the Fourier transform)
is independent of the projections onto others, and the Fourier
decomposition can proceed by projecting onto one subspace,
subtracting out the projection, and repeating. Orthogonality
guarantees that the order of projection is irrelevant. This is
not true for projection onto nonorthogonal subspaces such as
the periodic subspaces .

Example 4.1:Let .

a) If is projected onto to give , then the projections
of onto and are zero since .

b) If is projected onto to give ,
then the projection of onto is

. The resulting decomposition is
.

c) If is projected onto to give
, then the projection of

onto is . The resulting
decomposition is .

Thus, the order in which the projections occur affects the
decomposition, and the PT does not in general provide a
unique representation. Once the succession of the projections
is specified, then the answer is unique, and the next section
details a handful of ways to specify how the projections can
be meaningfully ordered. For instance, they can be ordered
sequentially from large to small or from small to large by
how much power they remove from the signal, by how much
“area” they remove, or by the magnitude of their projection
on independent basis elements.

This nonuniqueness may appear problematical. On the con-
trary, we claim that it is a strength of the PT method; that
lack of uniqueness is mainly a theoretical and not a practical
issue. The goal of signal decomposition is to represent the
original signal in an alternative and more meaningful way.
The Fourier transform provides one representation, the Gabor
transform another, and wavelet transforms give a different
decomposition for each “mother wavelet” chosen. The PT can
provide several different decompositions into periodic basis
elements, depending on how the projections are ordered. If
the method of ordering is well suited to the task at hand,
then the resulting decomposition can convincingly reflect the
underlying meaning of the signal. At a deeper level, many real-
world phenomena are fundamentally ambiguous. For instance,
the way humans perceive rhythm in music [11] or “connect the
dots” in a visual scene can be essentially ambiguous [10], and
the various criteria of merit used to order the projections in
the PT may lead to multiple solutions that reflect this essential
ambiguity.

V. ALGORITHMS FOR PERIODIC DECOMPOSITION

The PT searches for the best periodic characterization of
the length signal . The underlying technique is to project

onto some periodic subspace giving , which
is the closest -periodic vector to . This periodicity is then
removed from , leaving the residual stripped
of its -periodicities. Both the projection and the residual

may contain other periodicities and may be decomposed
into other -periodic components by projection onto . The
trick in designing a useful algorithm is to provide a sensible
criterion for choosing the order in which the successive’s and
’s are chosen. The intended goal of the decomposition, the

amount of computational resources available, and the measure
of “goodness-of-fit” all influence the algorithm. The analysis of
the previous sections can be used to guide the decomposition
by exploiting the relationship between the structure of the
various . For instance, it makes no sense to projectonto

because , and no new information is obtained.
This section presents several different algorithms, discusses
their properties, and then compares these algorithms with some
methods available in the literature.

One subtlety in the search for periodicities is related to the
question of appropriate boundary (end) conditions. Given the
signal of length , it is not particularly meaningful to look
for periodicities longer than , even though nothing in
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the mathematics forbids it. Indeed, a “periodic” signal with
length has degrees of freedom and surely
can match very closely, yet provides neither a convincing
explanation nor a compact representation of. Consequently,
we restrict further attention to periods smaller than .

Probably the simplest useful algorithm operates from small
periods to large:

Small To Large Algorithm
pick threshold
let
for

if

save as basis element
end

end
The Small To Large algorithm is simple because there is

no need to further decompose the basis elements; if there
were significant -periodicities within (where “significant”
is determined by the threshold), then they would already
have been removed by at an earlier iteration. The algorithm
works well because it tends to favor small periodicities, to
concentrate the power in for small , and, hence, to provide
a compact representation.

Thinking of the norm as a measure of power, the threshold is
used to insure that each chosen basis element removes at least
a factor of the power from the signal. Of course, choosing
different thresholds leads to different decompositions. If
is chosen too small (say zero), then the decomposition will
simply pick the first linear independent set from among the
-periodic basis vectors

which defeats the purpose of searching for periodicities. Ifis
chosen too large, then too few basis elements may be chosen
(none as ). In between “too small” and “too large”
is where the algorithm provides interesting descriptions. For
many problems, is appropriate, since this
allows detection of periodicities containing only a few percent
of the power yet ignores those’s that only incidentally
contribute to .

An equally simple “Large To Small” algorithm is not
feasible because projections onto for composite may
mask periodicities of the factors of. For instance, if

removes a large fraction of the power, this may in
fact be due to a periodicity at , yet further projection of

the residual onto is futile since by
Theorem 3.2. Thus, an algorithm that decomposes from large

to smaller must further decompose both the candidate
basis element as well as the residual since either might
contain smaller -periodicities.

The -Best Algorithm deals with these issues by maintain-
ing lists of the best periodicities and the corresponding basis
elements. The first step is to build the initial list as shown at
the bottom of the page.

At this stage, the algorithm has compiled a list of the
periodicities that remove the most “energy” (in the

sense of the norm measure) from the sequence. Typically,
however, the will be large (since, by Theorem 3.2, the
projections onto larger subspaces contain the projections
onto smaller subspaces). Thus, the projections can be
further decomposed into their constituent periodic elements to
see if these smaller (sub)periodicities removes more energy
from the signal than another currently on the list. If so, then
the new one replaces the old. It is not necessary to search
all possible periods when decomposing, however; we
need only search the factors. Let is an integer
be the set of factors of . Then, the algorithm proceeds as
shown at the bottom of the next page.

This second step projects each onto each of its factors
. If the norm of the new projection is larger than the

smallest norm in the list, and if the sum of all the norms will
increase by replacing , then the new is added to the list,
and the last element is deleted. These steps rely heavily
on Theorem 3.3. For example, suppose that the algorithm has
found a strong periodicity in (say) , giving the projection

. Since , the factors are
. Then, the inner loop in

step searches over each of the . If
is “really” composed of a significant periodicity at (say) 20,
then this new periodicity is inserted in the list and will later be
searched for yet smaller periodicities. The-Best Algorithm
is relatively complex, but it removes the need for a threshold
parameter by maintaining the list. This is a sensible approach
and it often succeeds in building a good decomposition of
the signal. A variation called the -Best algorithm with -
modification (or -Best ) is described in Appendix B, where
the measure of energy removed is normalized by the (square
root of) the length .

Another approach is to project onto all the periodic
basis elements for all and , essentially measuring
the correlation between and the individual periodic basis
elements. The with the largest (in absolute value) correlation
is then used for the projection. This idea leads to the Best

-Best Algorithm (step 1)
pick size
let
for

find with

concatenate and onto respective lists
end
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Correlation Algorithm.
Best Correlation Algorithm

number of desired basis elements
let
for

save as basis element

end
The presumption behind the “Best Correlation” algorithm is

that good will tend to have good correlation with at least one
of the -periodic basis vectors. This method tends to pick out
periodicities with large regular spikes over those that are more
uniform. A fourth approach is to determine the best periodicity

by Fourier methods and then to project onto, shown at
the bottom of the next page.

Using frequency to find periodicity is certainly not always
the best idea, but it can work well and has the advantage that
it is a well-understood process. The interaction between the
frequency and periodicity domains can be a powerful tool,
especially since the Fourier methods have good resolution at
high frequencies (small periodicities) while the PT has better
resolution at large periodicities (low frequencies).

As far as we know, there is no simple way to guarantee that
an optimal decomposition has been obtained. One foolproof
method for finding the best subspaces would be to search
all of the possible different orderings of projections to
find the one with the smallest residual. This is computation-
ally prohibitive in all but the simplest settings, although an
interesting special case is when , that is, when only the
largest periodicity is of importance.

Several methods for finding the “best” basis functions from
among some (possibly large) set of potential basis elements
have been explored in the literature [6], many of which are
related to variants of general “projection pursuit” algorithms
[12]. Usually, these are set in the context of choosing a
representation for a given signal from among a family of
prespecified frame elements. For instance, a Fourier basis, a
collection of Gabor functions, a wavelet basis, and a wavelet
packet basis may form the elements of an over-complete
“dictionary.” Coifman [8] proposes an algorithm to chose a
particular basis to represent a given signal based on a measure

of entropy. In [17], a greedy algorithm called “matching-
pursuit” is presented that successively decomposes a signal
by picking the element that best correlates with the signal,
subtracts off the residual, and decomposes again. This is
analogous to (though somewhat more elaborate than) the
“Best Correlation” algorithm above. Nafie [18] proposes an
approach that maintains “active” and “inactive” dictionaries.
Elements are swapped into the active dictionary when they
better represent the signal than those currently active. This
is analogous to the “ -Best” algorithm above. The “best
basis” approach of [13] uses a thresholding method aimed
at signal enhancement and is somewhat analogous to the
Small To Large algorithm above. Using an norm, Chen
and Donoho [7] propose a method that exploits Karmarkar’s
interior point linear programming method. The “method of
frames” [9] essentially calculates the pseudo-inverse of a
(large rectangular) matrix composed of all the vectors in the
dictionary.

While these provide analogous approaches to the problems
of dealing with a redundant spanning set, there are two
distinguishing features of the PT. The first is that the-periodic
basis elements are inherently coupled together. For instance, it
does not make any particular sense to chose (say) ,
and as a basis for the representation of a periodic signal. The
-periodic basis elements are fundamentally coupled together,

and none of the methods were designed to deal with such
a coupling. More generally, none of the methods is able (at
least directly) to exploit the kind of structure (for instance, the
containment of certain subspaces and the equality of certain
residuals) that is inherent when dealing with the periodic
subspaces of the PT.

VI. EXAMPLES

This section gives three examples of the application of
the PT to the automatic grouping of rhythmic motifs in a
musical score, to the separation of periodic signals when given
their sum, and to the identification of periodicities in certain
astronomical data.

A. Musical Rhythm

One situation where periodicities play a key role is in
musical rhythm. Several researchers (for instance, [2], [15] and

-Best Algorithm (step 2)
repeat until no change in list

for
find with
let be the projection onto
let be the residual
if

replace with and with
insert and into lists at position
remove and from end of lists

end if
end for

end repeat
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Fig. 1. Rhythmic grouping calculated by Rosenthal’s program Fa. Essen-
tially the same grouping was achieved by the PT, using a simple coding of
the onset times.

[19]) have created programs to automatically parse a musical
score (or a standard MIDI file, which contains equivalent
information) in order to generate a “high-level” explanation
of the grouping of musical rhythms. The “pulse” is the basic
unit of temporal structure and is often represented in the score
as a quarter note. Such pulses are typically gathered together
into groupings that correspond to metered measures, and
these groupings are often clustered to form larger structures
corresponding to musical “phrases.” Such patterns of grouping
and clustering can continue through many hierarchical levels,
and many of these may be readily perceptible to attentive
listeners. It is not so easy to teach computers to recognize
these patterns.

Rosenthal [19] has created a rhythm parsing program called
“Fa,” which searches for regularly spaced onset times in a
MIDI data stream. The program forms and ranks several
hypotheses “according to criteria that correspond to ways
in which human listeners choose rhythmic interpretations.”
These criteria include quite sophisticated ideas such as having
accented notes fall on “strong” beats, noticing motivic repeti-
tions, and measuring salience. An example is given of the best
rhythmic parsing found by Fa for the song “La Marseillaise,”
which is reproduced here as Fig. 1.

The four measures of “La Marseillaise” were coded into
the binary sequence

Fig. 2. DFT of the binary sequence derived from the score to La Marseil-
laise, assuming a sampling rate of 8 Hz (one half note per second). The peak
at 2 Hz represents the quarter note pulse, and the peak at 0.5 Hz corresponds
to the measure.

in which each digit represents a time equal to that of one
sixteenth note. A 1 indicates that a note event occurred at that
time, whereas a 0 means that no new note event occurred. This
was made “periodic” by concatenating it to itself four times
and then decomposed by the various periodicity algorithms.

The Small To Large algorithm with threshold 0.1 detected
four periodicities: with periods 4 (corresponding to the quarter
notes), 16 (the measured bar lines), 32 (the two measure
phrases), and 64 (everything else). These periodicities removed
28%, 13%, 20%, and 39% of the power, respectively, and
agree well with Rosenthal’s analysis. Similarly, the Best Cor-
relation algorithm (with ratio 0.1) found the three periodicities
4, 16, and 32. When asked to find four periodicities, the-
Best algorithm responded with 8, 16, 32, and 64, whereas the

-Best algorithm returned 2, 4, 16, and 32. It is typical
that the -modified version emphasizes smaller periodicities.
When asked to find the ten best periodicities (the default),
both -best versions detected 2, 4, 8, 16, 32, 64, 0, 0,
0, and 0. The final four zeroes indicate that the residual
was zero and the decomposition exact. The Best Frequency
algorithm returned periods 4, 16, and 5. The unexpected 5 is
due to “rounding off” of the spectrum near period 4. Since the
frequency corresponding to period 5 has the largest magnitude
in this residual, the algorithm can proceed no further.

For comparison, the same binary sequence (again concate-
nated four times) was tranformed using the DFT. Assuming a
sampling rate of 8 Hz, the duration of each quarter note is 0.5
s, and the resulting magnitude spectrum is shown in Fig. 2. In
this figure, the largest peak at 2 Hz represents the quarter note
pulse, whereas the peak at 0.5 Hz corresponds to the measure.
It is unclear how to interpret the remainder of the information
in this spectrum.

Best Frequency Algorithm
number of desired basis elements

let
for

Round , where frequency at which is max
save as basis element

end
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Fig. 3. Signalz is the sum of the 13-periodicx and the 19-periodicy. The
spectrum shows the overlapping of the two spectra, which cannot be separated
by linear filtering. The PT is able to locate the periodicities (which werea
priori unknown) and to resconstruct (up to a constant offset) bothx and y
given only z.

B. Signal Separation

When signals are added together, information is often lost.
However, if there is some characteristic that distinguishes
the signals, then they may be recoverable from their sum.
Perhaps the best known example is when the spectrum of
and the spectrum of do not overlap. Then, both signals can
be recovered from with a linear filter. However, if the
spectra overlap significantly, the situation is more complicated.
This example shows how, if the underlying signals are periodic
in nature, then the PT can be used to recover signals from
their sum. This process can be thought of as a way to extract
a “harmonic template” from a complicated spectrum.

Consider the signal in Fig. 3, which is the sum of the
13-periodic signal and the 19-periodic signal. The spec-
trum of is quite complex, and it is not obvious which parts of
the spectrum arise from and which from . However, when
the PT is applied to , two periodicities are found, at 13 and
at 19, with basis elements that are exactly and

, that is, both signals and are recovered, up to a
constant. Thus, the PT is able to locate the periodicities (which
were assumeda priori unknown) and to reconstruct (up to a
constant offset) both and given only their sum. Even when

is contaminated with 50% random noise, the PT still locates
the two periodicities, although the reconstructions ofand
are noisy. To see the mechanism, letbe the noise signal, and
let be the projection of onto the 13-periodic

subspace. The algorithm then finds as its
13-periodic basis element.

The four transforms do not behave identically. The Small
To Large algorithm regularly finds such periodic sequences.
The Best Correlation algorithm works best when the periodic
data is spiky. The -Best algorithm is sometimes fooled
into returning multiples of the basic periodicities (say 26
or 39 instead of 13), whereas the -Best is overall the
most reliable and noise resistant. The Best Frequency algo-
rithm often becomes “stuck” when the frequency with the
largest magnitude does not closely correspond to an integer
periodicity. The behaviors of the algorithms are explored in
detail in the four demonstration files (PTdemos2l, PTdemobc,
PTdemomb,and PTdemobf) that accompany the periodicity
software [24].

Two aspects of this example deserve comment. First, the
determination of the periodicity and its corresponding basis
element is tantamount to locating a “harmonic template” in the
frequency domain. For example, the 13-periodic component
has a spectrum consisting of a fundamental (at a frequency
proportional to ) and harmonics at Sim-
ilarly, the 19-periodic component has a spectrum consisting of
a fundamental (at a frequency proportional to ) and
harmonics at These are indicated in Fig. 3
by the beams above and below the spectrum of. Thus, the
PT provides a way of finding simple harmonic templates that
may be obscured by the inherent complexity of the spectrum,
and the process of subtracting the projection from the original
signal can be interpreted as a multinotched filter that removes
the relevant fundamental and its harmonics. For a single, this
is a kind of “gapped weight” filter familiar from time series
analysis [14].

The offsets and occur because is contained in both
and in . In essence, both of these subspaces are capable

of removing the constant offset (which is an element of)
from . Were both and zero mean, then both and
would be zero, but since both are nonzero mean, the projection
onto (say) grabs all of the signal in for itself (Thus,

mean mean , and further projection onto
gives mean ). This illustrates a general property of
projections onto periodic subspaces. Suppose that the periodic
signals to be separated were and for
some mutually prime and . Since is , both

and are capable of representing the common part of
the signal, and and can only be recovered up to their
common component in . In terms of the harmonic templates,
there is overlap between the set of harmonics of and the
harmonics of , and the algorithm does not know whether
to assign the overlapping harmonics to or to .

It is also possible to separate a deterministic periodic
sequence from a random sequencewhen only their
sum can be observed. Suppose thatis a stationary
(independent, identically distributed) process with mean.
Then, (where is the vector of all
ones), and therefore
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since . Hence, the deterministic
periodicity can be identified (up to a constant) and removed
from . Such decomposition will likely be most valuable when
there is a strong periodic “explanation” forand, hence, for

. In some situations such as economic and geophysical data
sets, regular daily, monthly, or yearly cycles may obscure the
underlying signal of interest. Projecting onto the subspaces

, where corresponds to these known periodicities is
very sensible. However, appropriate values forneed not be
known a priori. By searching through an appropriate range
of (exploiting the various algorithms of Section V), both
the value of and the best -periodic basis element can be
recovered from the data itself.

C. Patterns in Astronomical Data

To examine the performance of the PT in the detection of
more complex patterns, a 3-min segment of astronomical data
gathered by the Voyager spacecraft (published on audio CD
in [21]) was analyzed. When listening to this CD, there is
an apparent pulse rate with approximately 18 (not necessarily
equal length) pulses in each 32-s segment. Because of the
length of the data, significant downsampling was required.
This was accomplished by filtering the digital audio data in
overlapping sections and calculating the rms value in each
section. The resulting sequence approximates the amplitude
of the Voyager signal with an effective sampling rate of

Hz.
The downsampled data was first analyzed with a Fourier

transform. The most significant sinusoidal components occur
at 0.078, 0.137, 0.157, 0.167, 0.177, and 0.216 Hz, which
correspond to periodicities at 12.8, 7.3, 6.3, 6.0, 5.7 and 4.6
s. Because the Fourier transform is linear-in-frequency, the
values are less accurate at long periods (low frequencies).
For example, whereas the time interval between adjacent
Fourier bins is only s for the shortest of the significant
periodicities (4.6 s), the time between bins at the longest
detected periodicity (12.8 s) is approximately s.

Applying the PT to the downsampled data using the-
Best algorithm (with ) gives the data at the bottom
of the page. The shortest periodicity at 1.77 s corresponds
well with the pulse rate that is apparent when listening
to the data directly (the large norm for this first subspace
results from a significant DC term). The structure of the
results mimics the operation of the algorithm. For example,
there are three sets of related periodicities. The first three
31:217:434 are in the ratio 1:7:14, the next two 124:868 are
in the ratio 1:7 (and are also in the ratio 4:28 relative to the
periodicity 31). The third set 328:656 are in the ratio 1:2.
These are indicative of the decomposition of large periods
by Step 2 of the -Best algorithm. While these longer
periodicities are not immediately obvious when “listening to”

or “looking at” at the data, their importance is reinforced by
a comparison with the Fourier results. The PT periodicities
at 7.09 and 12.4 correspond to the Fourier periodicities at
7.3 and 12.8 (recall the inherent margin of error in the
bin width of the FFT). In addition, the periodicity at 12.4
contains the 2:1 subperiod at 6.2 detected by the FFT. The
1.77-s pulse is approximately one third of the 5.7-s Fourier
result, reinforcing the interpretation that this was an underlying
“fundamental.”

On the other hand, the appearance of several periodicities
without mutual factors clustered at one time scale (i.e., the
periodicities at 45.66, 50.29 and 49.6 s), suggests that one long
periodicity in the data may have been inexactly decomposed
into several related components. This relates to what may
be the most severe limitation to the general applicability of
the PT: When the sample interval does not correspond to a
factor of some periodicity in the data, the decomposition of
small periods from larger ones is difficult. Qualitatively, this
can be thought of as the converse of the limitation of the
Fourier method; while the linear-in-frequency behavior of the
FFT increases the error at long periods, the linear-in-period
behavior of the PT causes inefficiencies at short periods. Just
as an increase in the amount of data used in the FFT can
provide better precision, a decrease in the sample interval can
improve the performance of the PT. Nonetheless, there is no
general method of ensuringa priori that a particular periodicity
in unknown data will correspond to a multiple of the sample
rate. To see this effect clearly, we resampled the data at an
effective sampling interval of 0.065 s and then reapplied the

-Best algorithm. In this case, the longer periods were not
as successfully decomposed. Similar sensitivities to the choice
of sampling rates were observed in an early critique of the
Buys–Ballot method [4].

This “integer periodicity” limitation of the PT can be
mitigated by the proper choice of a highly factorable integer
as the sample interval. In general, the identification of small
periodicities within an arbitrary data set will be most efficient
when the sample interval itself contains many factors (many
exact periodicities). These intervals, each composed of many
periodic “building blocks,” are easily combined to identify
larger multiples. In fact, this was the reason we chose the
effective sampling rate based on a subsampling interval of
2520, which factors as . This interval has a
highest density of factors within the desired range of effective
sampling rates (0.05 s to 0.1 s) consistent with a downsampled
data set of reasonable length.

VII. CONCLUSION

The PT is designed to locate periodicities within a data
set by projecting onto the (nonorthogonal) periodic subspaces.
The method decomposes signals into their basic periodic

Period
Time (seconds)
Norm (in percent)
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components, creating its own “basis elements” as linear com-
binations of delta-like -periodic basis vectors.

In some cases, the PT can provide a clearer explanation of
the underlying nature of the signals than standard techniques.
For instance, the signal of Fig. 3 is decomposed into
(roughly) 14 complex sinusoids by the DFT or into two
periodic sequences by the PT. In a strict mathematical sense,
they are equivalent since the residuals are equal in norm.
However, the PT “explanation” is simpler and allows the
recovery of the individual elements from their sum. When
periodicity provides a better explanation of a signal or an event
than does frequency, then the PT is likely to outperform the
DFT. Conversely, when the signal incorporates clear frequency
relationships, the DFT will likely provide a clearer result. Our
belief is that a detailed analysis of truly unknown signals will
benefit from the application of all available techniques. Several
examples of possible applications of the PT are given:

1) to the grouping of rhythmic patterns in a musical score;
2) to the separation of signals;
3) to the finding of harmonic templates;
4) to the search for patterns in astronomical data.

There are several ways that these ideas can be extended.
Generalizations to two dimensions are straightforward, and
there is some hope that visual patterns such as textures may be
amenable to identification and classification with the PT. The
algorithms and results were all stated in terms of real numbers,
but the generalization to the complex setting is certainly
feasible. For simplicity, the development was conducted with
discrete sequences rather than functions, but the ideas may be
extendible to function spaces using “almost periodic functions”
[3]. Another intriguing idea is to incorporate certain kinds of
a priori knowledge about the signal within the decomposition
procedure, for instance, if projections are allowed only onto
the periodic subspaces

then there is a nesting of subspaces with orthogonal comple-
ments as is familiar from the wavelet theory [20].

Like the Hadamard transform [22], the PT can be calculated
using only additions (no multiplications are required). As
shown in Section III, each projection requires approximately

operations, but the calculations required to project onto
(say) overlap the calculations required to project onto
in a nontrivial way, and these redundancies can undoubtedly
be exploited in a more efficient implementation.

The analysis of this paper focused on the basic properties of
the periodic subspaces and of projections onto . There
may be better ways to parse the periodic subspaces than those
presented in Section V, and there is room for exploring the
convergence properties of the algorithms, their robustness to
noises, and to the interactions between periodicities, frequen-
cies, and sampling rates.

APPENDIX A

Theorem 2.1: when and are mutually
prime.

Proof: Observe first that if , then it is also in both
and since a -periodic sequence is also -periodic

for any . On the other hand, suppose that .
Then, is both -periodic and -periodic, that is,

This means that for all integers
and . In particular, since and are mutually prime,

the function mod cycles through all possible values
as cycles through the first integers.

Hence, there is a and a such that . Hence,
, and is -periodic.

The next two results make use of the projection operator
defined in (8). Because of the additivity of the inner

product

for any and any real numbers . The
parameters of the projections are calculated as in (7),
although the notation is suppressed.

Theorem 3.2:For any integer , let be
the residual after projecting onto . Then, .

Proof:

Since

if
otherwise

all the “cross terms” are annihilated, and this simplifies to

Observe that
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Equating , and substituting gives

The -periodic basis vectors “sum up” to a-periodic basis
vector, that is

and the expression finally simplifies to

Theorem 3.3:Let be the residual after
projecting onto . Similarly, let denote
the residual after projecting onto . Then

Proof: The above equation can be rewritten

Substituting into the third projection and expanding gives

Canceling terms leaves

which is true because the projection onto leaves a -
periodic sequence, which is also an-periodic sequence by
definition.

APPENDIX B

Suppose that is a random sequence with each term
distributed and independent (if the mean is not zero,
then project onto and remove the DC bias). The measure of
“goodness” in the -Best algorithm can be easily modified so
that on average, no periodicity is reported any stronger than
any other, as would be expected for “random” data. Thus,
the measure in the algorithm may be replaced by

, as shown below.
Recall from (8) and (7) that , where

each is a sum of of the ’s and is therefore,
distributed . Thus, is distributed as

, and the are independent. A standard result from

probability says that if , where each
are independent , then has distribution with

degrees of freedom, and the mean of is ,
where denotes the standard gamma function. Hence, the
mean of

is also . Thus, in the algorithm, rather than comparing
with directly, a better comparison is

between and . Since [1]

can be approximated as , which is

considerably simpler numerically. Thus, we suggest using
in place of throughout the algorithm, which we call the

-Best algorithm with modification, or -Best for short.
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