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Exact methods are available for the simulation of isothermal, well-mixed stochastic chemical
kinetics. As increasingly complex physical systems are modeled, however, these methods become
difficult to solve because the computational burden scales with the number of reaction events. This
paper addresses one aspect of this problem: the case in which reacting species fluctuate by different
orders of magnitude. By partitioning the system into subsets of “fast” and “slow” reactions, it is
possible to bound the computational load by approximating “fast” reactions either deterministically

or as Langevin equations. This paper provides a theoretical background for such approximations and
outlines strategies for computing these approximations. Two motivating examples drawn from the
fields of particle technology and biotechnology illustrate the accuracy and computational efficiency
of these approximations. @002 American Institute of Physic§DOI: 10.1063/1.1505860

I. INTRODUCTION approximations that reduce the computational burden for
simulation of these species. In particular, we partition the
Recently, stochastic simulation of chemical kinetics ha%ystem into subsets of “fast” and “slow” reactions. We ap-
received an increased amount of attention from the mOde"nﬁroximate the “fast” reactions either deterministically or as
community:~> Some of the popular methods of solving is0- | angevin equations, and treat the “slow” reactions as sto-
thermal, well-mixed kinetics models stem from seminal:hastic events with time-varying reaction rates. Such ap-
works by Gillespie’® The simple algorithms outlined in proximations can significantly reduce computational load
these works, the direct method and the first reaction methoqyhjle accurately reconstructing at least the first two moments
permit modeling of microscopic phenomena in terms of dis-gf the probability distribution for each species.
crete, molecular events. As models_ become progressively This paper is organized as follows: First, we examine the
more complex, however, these algorithms often become eXneoretical underpinnings of the approximation. Next, we
pensive computationally. Some recent efforts have focuseﬂropose a numerical algorithm for performing the simula-
upon reducing the computational load. He, Zhang, Chen, anflon, review several practical implementation issues, and pro-
Yang employ a deterministic equilibrium assumption on po-pose a further approximation. We then consider two motivat-

lymerization reaction kinetics.Gibson and Bruck refine jng examples. Finally, we critically examine the technique
Gillespie's first reaction algorithm to reduce the requiredang present conclusions.

number of random numbers, a technique that works best for

systems in which some reactions occur much more fre-

quently than other§Rao and Arkin demonstrate how to nu- Il. STOCHASTIC PARTITIONING

merically simulate systems reduced by the quasi-steady-state

assumptiof. This work expands upon ideas by Jangsén The key ideas are t6l) model the state of the reaction
and Vlad and Pop who first examined the adiabatic elimi- system using extents of reaction as opposed to molecules of
nation of fast relaxing variables in stochastic chemical kinetspecies, and2) partition the state into subsets of “fast” and
ics. Gillespie examines two approximate methods for accel¢slow” reactions. With these two modeling choices, we can
erating simulations, but these methods are currently noéxploit the structure of the chemical master equation, the
implementable for complex systertfsResat, Wiley, and governing equation for the evolution of the system probabil-
Dixon address systems with reaction rates varying by severaly density, by making order of magnitude arguments. We
orders of magnitude by applying a probability-weightedthen derive the master equations that govern the “fast” and
Monte Carlo approach, but this method increases error ifislow” reaction subsets. This section outlines these manipu-
species fluctuations. lations in greater detail.

In this paper, we propose a new approximation for the  We model the state of the systery,using an extent for
simulation of isothermal, well-mixed stochastic chemical ki-each irreversible reactiod.An extent of reaction model is
netics. For systems with species fluctuating by varying orconsistent with a molecule balance model since
ders of magnitude, the largest fluctuating species require the
most time to simulate stochastically because exact stochastic
simulation techniques scale with the number of reactiorwhere, assuming that there areextents of reaction and
events. We expand upon the idea of a partitioned sy$t!m chemical speciesx is the state of the system in terms of
and simulation via Gillespie’s direct metHbitito construct  extents (an m-vectod; n is the number of molecules of

n=ny+v'x, (1)
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each speciega p-vecton; ng is the initial number of mol-
ecules of each specida p-vecton; and v is the stoichio-
metric matrix(an mx p-matrix).

The upper and lower bounds rfare constrained by the
limiting reactant species. We arbitrarily set the initial condi-
tion to the origin. Given assumptions outlined by Gillespie,
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Over our chosen time scale, it is highly improbable that any
reactions in subset will occur. Using order of magnitude
arguments, Eq(6) becomes

dP(y,z;t) . dP(z;t)

the governing equations for this system is the chemical masvanipulating Eq.(7) yields

ter equation,

m

G = 2 AX— GIP(X= St —ax)P(xt),
k=1

dP(x;t)

)

whereP(x;t) is the probability that the system is in statat
time t; a,(x)dt is the probability to ordedt that reactiork
occurs in the time intervdlt,t+dt); and é, is thekth col-
umn of the X m)-identity matrix 6. The structure ofé

arises for this particular chemical master equation because dP(zt)

the reactions are irreversible.

Now we examine the time scale over which the extents

i Pz, @
dP(zt) m _
T => > aly—8.z— )
y k=1
X P(y—8|z— 8;)P(z— 8, ;t)
—ay(y,2)P(y|z;t)P(z;1). (8)

By exploiting the structure of (an identity matriy, we solve
for the desired derivative,

dt

in which

|
=k§1 be(z— &)P(z— & :t) —b(2)P(z;t), (9)

of reaction change. We must first determine a relevant time

scale so that we can partition the extents into two subsets:

those that have small propensity functigrag(x)’s] and oc-
cur few if any times over the time scale, and those that hav

large propensity functions and occur numerous times ove

the given time scale. We designate these subsetsasfthe
(m—1)-vectory and thel-vectorz, respectively. Note that

50
0¢¥

6

S

and 5= )

X

in which 6 and &¥ are ( XI)- and (m—1XxXm—1)-identity
matrices, respectively. Equati¢®) becomes

dP(y,z;t)
dt

m
k=

, Ay~ S¢,2— 8)P(Y— 8,2~ ;)

_ak(y1Z)P(yvz;t)- (4)

If we can determine the governing equations for the evolu
tion of the marginal probability densitieB(z;t) andP(y;t),

we then know how the fast and slow reactions evolve ove
this time scale. Also, this partitioning is similar to that used
by Rao and Arkirf who partition the master equation by

species to treat the quasi-steady-state assumption. We parti

tion by reaction extents to treat fast and slow reactions.

A. Fast reaction subset

First we address the evolution of the marginal probabil-

ity density for the subset of fast reactionsFollowing Rao
and Arkin® we define the joint densitp(y,z;t) as the prod-
uct of the conditional densit?(y|z;t) and the desired mar-
ginal densityP(z;t),
P(y,z;t)=P(y|z;t)P(z;1).

Differentiating Eq.(5) with respect to time yields
dP(z;t)

dt

dP(y,z;t) dP(y|zt)
dt  dt

(6)

P(z;t)+ P(y|z;t).

bk<z>=§ aly,2)P(y|z;). (10)

e
the reaction propensitieg,(y,z) in Eq. (10) are linear
with respect toy, then the following equation holds:

bk(z)=ay(E[y|z],2). (11)

If the reaction propensities are nonlinear with respecy,to
Eq. (11) still provides a first order approximation to E4.0).
Also, note that Eqs(5)—(10) are the fast/slow reaction ana-
logs of the quasi-steady-state results developed by Rao and
Arkin.®

With the resulting partition, we are now in a position to
better handle the fast subset of reactian¥Ve proceed by
demonstrating as outlined by Garditfehow this subset can
be approximated using the Langevin approximation. Define
the characteristic size of the system to(beand use this size
to recast the master EQ) in terms of intensive variables
(let z—z/Q). Performing a Kramers—Moyal expansion on
this master equation results in a system size expansién in
In the limit asz and Q becomes large, the discrete master
equation can be approximated by its first two differential
moments with the continuous Fokker—Planck equation,

. |
PEV 5 Lampay
Jt =1 9z,
1 | | (92
+5 2 3 ——I[Bj@PP(z, (12
2 121 =1 az,02

j
in which (noting thatz consists of extents of reactign

|
A(z)=§l 87bi(2)=[b1(2)by(2)--by(2)]",

(13)
|
[B(z)]zzi; 8159 bi(2)
=diag b(2),bx(2), ... b(2). (14

Equation(12) has lfosolution of the form,
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| n—1 ow
dzizAi(z)dtJerl Bij(2)dW, (153 _ZH ak(y,z;t+T)<p2rty0t(t+r)sk_§‘,+l aw(y,zt+ 7).
=b;(z)dt+ Vbi(2)dW, (15b) . . . (20
_ _ _ _ _ _ Sincery, is a function oft,
in which W is the Wiener process. Equatidib5) is the
chemical Langevin equation, whose formulation was re-  drl(t) dr}(t) dz
cently addressed by GillesptéNote the difference between at a7 dt’ (21)
Eqgs.(12) and(15). The Fokker—Planck Eq12) specifies the
distribution of the stochastic process, whereas the stochastic 6 dr(ty)
differential Eq.(15) specifies how the trajectories of the state  rY (t;)= f t (;)t dt,. (22
2

evolve. Also, bear in mind that whether or not a giv@ns

large enough to permit truncation of the system size expanyence for practical implementation, we satisfy E2pa by

sion is refative. In this casé) is of sufficient magnitude 0 jyieqratingr?, and the fast subset of reactiongorward in
make this approximation valid for only a subset of the reacsjme until the following condition is met

tions, not the entire system.

J~t+7-J*t1 dr%lot(tz) dt.dt. +1 )=0 (23
+ 1o =0.
B. Slow reaction subset ¢ ¢ t 24 9(p1

d

Since the subset of slow reaction extepts a function  We now propose an algorithm for solving the partitioned

of the fast reaction extents the problem of interest is a reaction system.

master equation subject to constraints, Off-line: Determine the criteria for when and how the set
dP(y:t) m x of m extents of reaction should be partitioned. Determine
= 2 a(y— 8¢, Z,H)P(y—8¢;t) the stoichiometric matrices of the form given in Ed) and
dt k=11 reaction propensity laws for the unpartitiongtie (mxp)-
—a (y,Z)P(y:t) (163 matrix » anday(x)’s] and partitioned casdshe (m—IXp)-

matrix ¥, the ( X p)-matrix v*, anday(y,z)’s]. Also, deter-

s.t.. dz=b;(z)dt+ Jyb;(2)dW;, i=1,...]. (16b mine the necessary Langevin equations in the form of Eq.

Gillespie® outlines a general method for exact stochastic(ls) fqr_ the fast reactpns in the partitioned case.
Initialize: Set the timet, equal to zero.

simulation of time dependent propensities that is applicable .
. : . Set the number of speciesto ng.
for solution of the desired problem, EL6). This method L o . .
examines the joint probability functio®(r, ), that gov (1) If the partitioning criteria established off-line are
erns when the next reaction occurs, and which reaction oc':net’ go to steQS).. . L
(2) Calculate:(a) the reaction propensities, = ay(x),

curs._Condltlon!ng?(r,_,u) |nd|cates that the probability of a and (b) the total reaction propensity= =" 1.
reaction occurring in time- is .
(3) Select two random numbeps, p, from the uniform

t+r distribution (0,1). Let 7= —log(p;)/r:. Choosg such that
P(T)zr%’ot(t-i-r)exr(—J’t rtyot(tl)dtl) (17) - _ pitet
1= J
and the probability that reactiom occurs is k§=:1 k= P2ltors g«l M-
a JZit+ T T o .
P(u|7) = (Y ) (18) (4) Lettt+ 7. Letn—n+v;, wherey; is thejth row
ri(t+7) of v. Go to step(1).
in which (5) For subsety, calculate(a) the reaction propensities,
n whic ri=al(y,z), and (b) the total reaction propensityry,
m =smlry.
r%/ot(t):k;l a(y,zt). (19 (6) Select two random numbeps , p, from the uniform

distribution (0,1).
(7) Determinev,=(v?)[z(t+ 7)—z(t)] by integrating
ri.(t) and the subset of fast reactionsintil the following
We now outline a procedure for implementing the ap-condition is met:
proximation of the previous section. Using Monte Carlo

IIl. NUMERICAL IMPLEMENTATION

simulation, we obtain realizations of the desired joint prob- Jt”fl dri(ts) dt,dt,+ log(py) = 0
ability function P(7, ) by randomly selecting and x from t t dt,
the probability densities defined by Eq§7) and(18). Given .
two random numberp,; and p, uniformly distributed on oy _2 i o
(0,1), 7and w are constrained accordingly, St rtot(t)_k:1 a(y.z;b).
Ty — (8) Lett—t+ 7. Letn—n+v,.
ft Mo t2)dts +log(p,) =0, (209 (9) Choosej such that®
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ji—1

i (7) Let 7=—log(p1)/ri- Integrate subset over the
3 H<par=3 .

range[t,t+ 7) to determiner,=(v?)[z(t+ ) —z(t)]. Let
t—t+ 7. Letn—n+vp,.

(8) Recalculate the reaction propensiti¢s and the to-
tal reaction propensity,(t). Choosg such that

i-1 i
> ri<pariti=2 ri.
k=0 k=0

(10 Letn—n+(»})", wherey! is thejth row of . Go
to step().

Over the time intervalr, implementation of this algo-
rithm actually enforces the more stringent requirement that

dPyyl2)

n (9) Let n<—n+(v}')T, wherev! is thejth row of »¥. Go

to step(1).

(24

Hence Eq(7) is exact, not approximate. V. PRACTICAL IMPLEMENTATION
Partitioning of the stat® into “fast” and “slow” extents
should be intuitive. We recommend maintaining at least two
orders of magnitude difference between the values of the
partitioned reaction probabilities. It may also be helpful to
generate results for a full stochastic simulation, and then

identify which reactions are bottleneckis., ones occurring

most frequently. Note that there may exist several regimes
that require different partitioning of the state. Also, care
should be exercised to maintain the validity of the order of

magnitude partition betwegnandz. It is obviously undesir-

in step(7) of the proposed numerical algorithm as opposed,pje for “slow” reaction extents to become the same order of

to the simple algebraic relation ferused in the unmodified magnitude of the “fast” extents during the time increment

Gillespie algorithni.e., step(3)]. This constraint can prove In the thermodynamic limit Z—%, Q—w, z=2/Q

to be computationally expensive. =finite), the intensive variables for the fast subset of reac-
If the reaction propensities for the fast subset of extentgjgng @'s) evolve deterministicall* Accordingly, we pro-

z change insignificantly over the stochastic time stephe pose approximating the Langevin Ed5) with
unmodified Gillespie algorithm can still provide an approxi-
dz(t)

mate solution. When the reaction propensities change signifi-
cantly overr, steps can be taken to reduce the error of the T:bi(z(t))'
Gillespie algorithm. One idea is to scale the stochastic time

step by artificially introducing a probability of no reaction The benefit of this assumption is that Eg6) can be solved

into the system. Lehydt be the contrived probability, first figorously using an ODE solver. Unfortunately for physical
order indt, that no reaction occurs in the next time interval Systems, the thermodynamic limit is obviously unattainable.
dt. This probability does not effect the number of moleculesHowever, knowledge of the modeled system can lead to this
of the modeled reaction system while allowing adjustment ogimplification. If the magnitude of the fluctuations in this
the stochastic time step by changing the magnituda,of term is small compared to the sensitivity i3f(z(t)) to the
Theoretically, as the magnitude af, becomes infinite, the Subsety, then Eq.(26) is a valid approximation. This ap-
total reaction rate becomes infinite. As the total reaction rat@roximation is also valid if one is primarily concerned with
approaches infinity, the error of the stochastic simulatiorfhe fluctuations in the small-numbered species as opposed to
subject to constraints approaches zero because the algoritdhe large-numbered species, assuming that the extents ap-
checks whether or not a reaction occurs at every time. EveRroximated by Eq(26) predominantly affect the population

IV. A FURTHER APPROXIMATION: SCALING
THE STOCHASTIC TIME STEP

One major difficulty in this method is satisfying the con-
straint

t+7
Jt Mot dt;+log(py)=0 (25

(26)

though the method outlined by Gillesffeand Jansefi is
“exact,” for this case there is still error associated with

the number of simulations performed since it is a Monte

Carlo method, and?) integration of the Langevin equations

size of large-numbered species.

VI. EXAMPLES
We now consider two motivating examples that illustrate

for the fast extents of reaction. Thus it is plausible that thes¢he accuracy of the presented stochastic approximations. For
errors may be greater than the error introduced by the apelarity, we first briefly review the nomenclature that indicates
proximation. Hence our approximation may often prove towhich approximations, if any, are performed in a given simu-
be less computationally expensive than the exact solutiotation. We can either perform a puretyochasticsimulation
while generating an acceptable amount of simulation error.on the unpartitioned reaction system, or we can partition the

The approximation modifies stegs)—(10) of the nu-  system into “fast” and “slow” reactions. For this partitioned
merical algorithm as follows: case, astochastic-Langevirsimulation treats the fast reac-

(5) For subsety, calculate(a) the reaction propensities, tions as Langevin equations, whilestochastic-deterministic
re=aj(y,z), and (b) the total reaction propensityr},,  simulation treats the fast reactions deterministically. We can
=3mor. then simulate this partitioned reaction systemegactsimu-

(6) Select two random numbeps , p, from the uniform lation, in which the next reaction time exactly accounts for
distribution (0,2). the time dependence of the “fast” reactions upon the “slow”
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TABLE I. Model parameters and reaction extents for the simple crystalliza-The model parameters and the reaction extents are given in

tion example.

Parameter Symbol Value
Extent of reactior(27a € Tk, A(A-D)
Extent of reaction27b) € k,AC
Reaction(273 rate constant ky 1E-7
Reaction(27b) rate constant ks 1E-7
Initial number of A molecules A 1E+6
Initial number of B molecules B 0
Initial number of C molecules £ 10
Initial number of D molecules D 0

Table I. For this example, the first reaction occurs many
more times than the second reaction. Hence we patrtition the
extents of reactiong;’s) as follows?? e, comprises the sub-
set of slow reactiony; and e; comprises the subset of fast
reactionsz.

We first perform an approximate stochastic-Langevin
simulation. Here we approximate the fast reaction subset us-
ing the Langevin approximation and attempt to reconstruct
the first two moments of each species. The Langevin equa-
tions are integrated using the Euler—Murayama method
with a time increment of 0.01. We account for the time-
varying propensity of the slow reaction by employing the

reactions; or by ampproximatesimulation, which neglects approximate scheme, setting the propensity of no reaction
this time dependence but scales the next reaction time with o) to 10. Figure 1 compares these results to the exact sto-

propensity of no reaction.

A. Simple crystallization

chastic results for 10 000 simulations. The approximation ac-
curately reconstructs the mean and standard deviation for all
species.

Next, we approximate the fast reaction subset determin-

Consider a simplified reaction system for the crystalliza-istically and attempt to reconstruct the first two moments of

tion of species A:
k
JA— B e, (273
k
A+C— D e,. (27

1e+6 r T y T ; T T y

(@)

8e+5 1

6e+5 1

4e+5 | 1

Number of Molecules

2e+5 A 1

0 1 1 1 1 L 1 1 J 1
0 10 20 30 40 50 60 70 80 90 100

Time

Number of Molecules

O L L 1 1 L M ——— -
0 10 20 30 40 50 60 70 80 90 100
Time

each species based upon 10 000 simulations. For this case,
we consider both the exact and approximate stochastic-
deterministic simulations.

Figure 2 compares the results of exact stochastic simu-
lation to the exact stochastic-deterministic solution. This ap-

600 T T T T " T r T T

500

400 §

300

200 B

Number of Molecules

100 1

0 1 1 1 Il 1 I 1 L 1
0 10 20 30 40 50 60 70 80 90 100

Time

Number of Molecules

(d)

0 10 20 30 40 50 60 70 80 90 100
Time

0 1 ! 2 L L A 1

FIG. 1. Comparison of approximate stochastic-Langevin simulgpomts to exact stochastic simulatigfines) based on 10 000 simulations, propensity of
no reactionay= 10, and Langevin time step of 0.0(e) Compares the mean for species A and.Compares the standard deviations for species A and B.
(c) Compares the mea€) and standard deviatiof- o) for species C(d) Compares the meaiD) and standard deviatioft- o) for species D.

Downloaded 19 Feb 2007 to 128.104.198.19. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6964 J. Chem. Phys., Vol. 117, No. 15, 15 October 2002 E. L. Haseltine and J. B. Rawlings

1e+6 T T r T T T T T T 1000 T T : T T T T T .
o A __
(a) —
o 8e+5 1 ® 100 B E
2 Q@
S 6e+s | . € 10 :
= =
k] B k)
g | = e A )
g 4e+5 g 1 -:;:m’_ -
£ [S “ B
Z Z
Zz
2e+45 A b o
(b)
O 1 1 1 1 1 1 1 1 L L 1 I 1 1 1 I 1 L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time
10 T T 10 T T T T T e
(c)
8 8
8 3
=] 3
3 g
g ° g
kS ©
g 4 g 4
%
Z 5 2
(d)
O 1 1 L It 1 i 0 L L 1 L I L 1 L i
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 6 70 80 90 100
Time Time

FIG. 2. Comparison of exact stochastic-deterministic simulajpmnts to exact stochastic simulatidiines) based on 10 000 simulations) Compares the
mean for species A and Bo) Compares the standard deviations for species A anid)BCompares the meai€) and standard deviatiof1-o) for species C.
(d) Compares the mea() and standard deviation- o) for species D.

proximation does an excellent job of reconstructing all of thetional expense per limiting time step than the exact stochastic
means as well as the standard deviations for species C and Bolution method. However, we still observed an order of
However, we are not able to reconstruct the standard devianagnitude improvement in computational expense by em-
tions for species A and B. This phenomenon is expectegloying the approximate solution methods.
because by approximating; deterministically, we neglect
all fluctuations caused by the first reaction.

Figure 3 compares the results of exact stochastic SImug. |ntracellular viral infection
lation to the approximate stochastic-deterministic solution
given a small value for the propensity of no reactiag, For
this value ofay, the approximation accurately reconstructs
the means of species A and B, but fails to reconstruct th

We now consider a general model of an infection of a
cell by a virus. A reduced system model consists of the fol-
éowing reaction mechanis#f:

moments of species C and D as well as the standard devia- ., template

tions of species A and B. This phenomenon indicates that the nucleotides genomee, (289
value of a; is too small. By examining the cumulative nucleotides-genome——— template e, (28b)
squared error, however, Fig. 4 demonstrates that increasing template

the value ofa, results in comparable error for the approxi- nucleotides-amino acids——— struct ez, (280

mate and exact stochastic-deterministic simulations. Here,
the least squares error is based on the deviation of the species
C trajectories between the approximation techniques and the struct——— secreted/degrades, (280
exact stochastic simulation.

Table Il compares the order of magnitude of the limiting
time step for the different methods in this example. The mawhere genome and template are the genomic and template
jor improvement in the approximate methods is that the timeviral nucleic acids, respectively, and struct is the viral struc-
step is now limited by the “slow” reaction time as opposed tural protein. Additional assumptions includé&) nucleotides
to the “fast” reaction time. Note that the solution methods and amino acids are available at constant concentrations, and
for the partitioned reaction system require more computa¢2) template catalyzes reactiof28a and(28¢).

template——— degradede,, (280

genome-struct——— secreted Viruseg, (28f)
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1e+6 T T T T T T T T T 1000 T T T T T T T T T
. A
@ —————*
® 8e+5 1 - 100 B -
o 2
=3 =3
[8] [&]
< 6e+5 | T 3 10 3
= =
D B ks
o - A 1
g de+5 8 1
2e+5 A E “
(b)
0 L 1 1 1 ‘I L 1 1 1 1 1 1 1 Il 1 1 1 L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time
10 T . . . . . . . T T
(c)
[%2] 8 [%2]
2 o
= 3
3 g
5 6 °
= =
© ks
g 4 I
Ke) L0
£ [S
z z
2
(d)
0 L L 1 0 L I Il 1. 1 ) 1 Fl 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time

FIG. 3. Comparison of approximate stochastic-deterministic simulgpomts to exact stochastic simulatiofiines) based on 10 000 simulations and
propensity of no reactiony=0.01.(a) Compares the mean for species A and.Compares the standard deviations for species A and)BCompares the
mean(C) and standard deviatiofr-o) for species C(d) Compares the meai) and standard deviatiofxi-o) for species D.

We are interested in the time evolution of the templatemany more times than the remaining reactions. Hence when
genome, and struct species. We assume that the initial “intemplate >0 and struct>100, we partition the system as
fection” of a cell corresponds to the insertion of one templatefollows: €;, €,, €,, and eg comprise the subset of slow
molecule into the cell. The model parameters and reactioneactionsy; and e; and e5 comprise the subset of fast reac-
extents are presented in Table III. tions z.

This model has two interesting features best illustrated Figure 5 indicates that the simulation should traverse
by the two exact stochastic simulations presented in Fig. Sbetween the partitioned and unpartitioned reaction systems.
First, the three components of the model exhibit fluctuationsSince our approximation makes fast reactions continuous
that vary by differing orders of magnitude. For the same timeevents as opposed to discrete ones, we round all species
scale, the struct species fluctuates by hundreds to thousand$ien transitioning from the approximate to exact stochastic
of molecules, whereas the template and genome species flusimulation to prevent noninteger values. This rounding only
tuate by tens of molecules. Second, the model solution exaffects the struct species, and therefore introduces negligible
hibits a bimodal distribution. In particular, a cell may exhibit error into the system.

either a “typical” infection in which all species become We choose to approximate the fast reaction subset deter-
populated, or an “aborted” infection in which all species are ministically, so we employ the approximate stochastic-
eliminated from the cell. deterministic simulation with propensity of no reactiag

When the number of template and struct molecules are=0. We compare the approximate stochastic-deterministic
>0 and 100, respectively, reactiof®8c) and (286 occur  simulation to the exact stochastic simulation by reconstruct-

TABLE Il. Comparison of time steps for the simple crystallization example.

Solution method System type Limiting time step O (time step Relative CPU time
Exact stochastic Unpartitioned Fast reaction time O(1E-H 30
Stochastic-Langevin Partitioned Slow reaction tithangevin integration 0(0.0) 1.28
Stochastic-deterministic Partitioned Slow reaction tif@®E solvey O(1) 1
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FIG. 5. (a) Typical and(b) aborted intracellular viral infections.
FIG. 4. Squared error trends for the exact and approximate stochastic-
deterministic simulations based on 10 000 simulations. The squared error is
calculated from the deviation of the moments for species C between the
approximation techniques and the exact stochastic simuld@pilots the
error in the mean of species () Plots the error in the standard deviation

of species C. These figures indicate that the approximate stochastic-

deterministic simulation accurately reconstructs the entire
template probability distribution. Note that the purely deter-
ing the statistics for each species based upon 1000 simulaainistic model, however, is unable to accurately reconstruct
tions. We also compare the evolution of the mean for theseven the evolution of the mean. This phenomena occurs be-
two simulations to the solution of the purely deterministic cause the deterministic model cannot describe the bimodal
model. nature of the probability density.
Figures 6—8 compare the time evolution of the probabil-  Figure 9 compares the evolution of the mean and stan-
ity distribution for the template, the small numbered speciesdard deviation for the genome species. Again, the approxi-

TABLE IIl. Model parameters and reaction extents for the intracellular viral infection example.

Parameter Symbol Value
Extent of reaction(28a €, k, (template
Extent of reaction28b) € k, (genomé
Extent of reaction28c) €3 ks (template
Extent of reaction280) €4 k, (template
Extent of reaction28e €5 ks (struch
Extent of reaction(28f) € ke (genome(struch
Reaction(289 rate constant ky 1 day*?
Reaction(28b) rate constant k, 0.025 day*
Reaction(28¢) rate constant ks 1000 day*
Reaction(28d) rate constant K4 0.25 day?!
Reaction(28e rate constant ks 1.9985 day*
Reaction(28f) rate constant Keg 7.5E-6(molecules day*
Initial number of template molecules template 1
Initial number of genome molecules gengme 0
Initial number of struct molecules stryct 0
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FIG. 6. Evolution of the template probability distribution for tt@ exact ~ simulations.
stochastic andb) approximate stochastic-deterministic simulations.

Template Molecules

) ] ] . system over a much larger time step than the exact stochastic
mate simulation accurately reconstructs the time evolution oy, 1ation. However, we must now employ schemes for in-
these moments. _ tegrating stochastic differential equations. By approximating

Figure 10 compares the evolution of the mean and stanyg fast reaction subset deterministically, we can bound the
dard deviation for struct, the large numbered species. Sukomputational requirements for simulation of the system. For
prisingly, the approximate stochastic-deterministic simulaynis case, we can employ existing and robust ordinary differ-
tion accurately reconstructs the time evolution of both ofgniial equation solvers for integration of this reaction subset.
these statistics. Since we approximated the fast reactions dg; contrast, the computational expense for exact stochastic
terministically, we did not expect to accurately reconstrucisjmyation scales with the number of reaction events. For an
moments higher than the mean for the large numbered spe-
cies. For this example, though, fluctuations in the small num-
bered species, template, are amplified into the struct species
via reaction(28¢). Thus we are able to accurately reconstruct
moments of order higher than zero.

Table IV compares the computational expense between
the exact stochastic and approximate stochastic-deterministic
solution methods. The approximate solution method results
in a 50-fold reduction in computational expense over the
exact solution method.

Template Molecules

VII. CRITICAL ANALYSIS OF THE STOCHASTIC
APPROXIMATIONS

The primary contribution of this work is the idea of par- 0 50 100 150 200
titioning a purely stochastic reaction system using extents of Time (Days)
rea(.:tlon Into SUbsetS. of slow and .faSt reactlo_ns. By apprOXII-:IG. 8. Comparison of the template mean and standard deviation for
mating the fast reaction subset using Langevin equations, Wgaet stochastiésolid lines, approximate stochastic-deterministiashed

can reduce the computational requirement by integrating thimes), and deterministi¢pointg simulations.
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250 . : . TABLE IV. Simulation time comparison for the intracellular viral infection
example.
Deterministic
200 r - ) -
genome Solution method System type Relative CPU time
e N Exact stochastic Unpartitioned 51.5
- Stochastic-deterministic Partitioned 1

100

Genome Molecules

ol LT

acceptable. In the intracellular viral infection example, the
approximate stochastic-deterministic simulation accurately
. s reconstructed the evolution of the probability distribution for
0 50 100 150 200 the small numbered species, as well as the means and stan-
Time (Days) dard deviations for the large numbered species. Here, ampli-
FIG. 9. Comparison of the genome mean and standard deviation for fi_cation of fluctuations from the small to Iarge.numbered spe-
exact stochasti¢solid lines, approximate stochastic-deterministashed ~ Ci€s (template to strugtled to accurate estimates of the
lines), and deterministi¢points simulations. statistics of the large numbered species.
A secondary contribution of this paper is an approximate
, , ) , ... simulation for master equations subject to time-varying con-
example, reconS|d¢r simulation of theIS|mpIe _Cr,YSta”'Zat'onstraints. As demonstrated by the simple crystallization ex-
system presented in Sec. VI A._ Doubling the |n|t|al. amo“ntample, this approximate simulation approaches the accuracy
of A doubles thg nprnber C?f times the fast reactlpn MUSLyt the exact simulation as the magnitude of the propensity of
occur, and thus S|gn|f_|ca|_1tly increases the Computatlona_l loady reaction increases. This approximation is most useful for
of an exact stochastic simulation. On the other hand, if thecases in which the total reaction rate,, is not integrable

fast reaction is approximated deterministically, then dOUb”nganaIyticaIIy For this case. we must use an ODE solver with

the initial amount of A does not require stochastic S|mulat|ona stopping criterion to determine the next reaction time.

of any additional reaction events, and thus results in NGjnce calling such an ODE solver requires some “overhead”

chan%e n th_e- cqmputaﬂopal load. d'in thi computational expense, performing the approximate simula-
The partitioning technique presented in this paper sacrig,, may be computationally favorable.

f?ces some numeripal accuracy for a bound on the Comtha' We envision that the primary benefit of the tools pre-
tional load. Apprommatmg some discrete, mqlecular re,aCt'(_)réented in this work is bridging the gap from the microscopic
events as continuous events via the Langevin approximatio, the macroscopic. In particular, researchers are becoming
!Icl)ses thz dt;scrﬁte n_atulre of the"_enn_re system.IHOV\égver, 3fcreasingly interested in modeling nanomaterials, phenom-
llustrated by the simple crystallization example, this ap-qn,5 4t interfaces, and site interactions on catalysts. In each of
proximation still accurately reconstructs at least the first WQpese problems, macroscopic interactions in the bulk influ-
moments of ‘?aCh reacting species. Eur_thermore, approximay, -q microscopic interactions at interfaces. Although most of
ing fast reactions deterministically eliminates all ﬂuctuatlonsthe action is at the interface, we cannot neglect the bulk or
contributed to the system by these reactions. Dependinge oe the ability to model the effect of process design and

upor)'the system and the modeling objgctive, though., th,eS@ontroI strategies. The techniques presented here provide one
sacrifices may be acceptable. In the simple crystallization, .4 of modeling these interactions.

example, the stochastic-deterministic simulations accurately

reconstructed the means of all species as well as the standard

deviations for the small numbered species. If fluctuations iIPACKNOWLEDGMENTS
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