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Approximate simulation of coupled fast and slow reactions for stochastic
chemical kinetics
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Exact methods are available for the simulation of isothermal, well-mixed stochastic chemical
kinetics. As increasingly complex physical systems are modeled, however, these methods become
difficult to solve because the computational burden scales with the number of reaction events. This
paper addresses one aspect of this problem: the case in which reacting species fluctuate by different
orders of magnitude. By partitioning the system into subsets of ‘‘fast’’ and ‘‘slow’’ reactions, it is
possible to bound the computational load by approximating ‘‘fast’’ reactions either deterministically
or as Langevin equations. This paper provides a theoretical background for such approximations and
outlines strategies for computing these approximations. Two motivating examples drawn from the
fields of particle technology and biotechnology illustrate the accuracy and computational efficiency
of these approximations. ©2002 American Institute of Physics.@DOI: 10.1063/1.1505860#
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I. INTRODUCTION

Recently, stochastic simulation of chemical kinetics h
received an increased amount of attention from the mode
community.1–3 Some of the popular methods of solving is
thermal, well-mixed kinetics models stem from semin
works by Gillespie.4,5 The simple algorithms outlined in
these works, the direct method and the first reaction meth
permit modeling of microscopic phenomena in terms of d
crete, molecular events. As models become progressi
more complex, however, these algorithms often become
pensive computationally. Some recent efforts have focu
upon reducing the computational load. He, Zhang, Chen,
Yang employ a deterministic equilibrium assumption on p
lymerization reaction kinetics.6 Gibson and Bruck refine
Gillespie’s first reaction algorithm to reduce the requir
number of random numbers, a technique that works bes
systems in which some reactions occur much more
quently than others.7 Rao and Arkin demonstrate how to nu
merically simulate systems reduced by the quasi-steady-
assumption.8 This work expands upon ideas by Janssen9,10

and Vlad and Pop11 who first examined the adiabatic elim
nation of fast relaxing variables in stochastic chemical kin
ics. Gillespie examines two approximate methods for ac
erating simulations, but these methods are currently
implementable for complex systems.12 Resat, Wiley, and
Dixon address systems with reaction rates varying by sev
orders of magnitude by applying a probability-weight
Monte Carlo approach, but this method increases erro
species fluctuations.13

In this paper, we propose a new approximation for
simulation of isothermal, well-mixed stochastic chemical
netics. For systems with species fluctuating by varying
ders of magnitude, the largest fluctuating species require
most time to simulate stochastically because exact stoch
simulation techniques scale with the number of react
events.7 We expand upon the idea of a partitioned system8,11

and simulation via Gillespie’s direct method4,5 to construct
6950021-9606/2002/117(15)/6959/11/$19.00

Downloaded 19 Feb 2007 to 128.104.198.19. Redistribution subject to AI
s
g

l

d,
-
ly
x-
d
d

-

or
-

te

t-
l-
ot

al

in

e
-
r-
he
tic
n

approximations that reduce the computational burden
simulation of these species. In particular, we partition
system into subsets of ‘‘fast’’ and ‘‘slow’’ reactions. We ap
proximate the ‘‘fast’’ reactions either deterministically or a
Langevin equations, and treat the ‘‘slow’’ reactions as s
chastic events with time-varying reaction rates. Such
proximations can significantly reduce computational lo
while accurately reconstructing at least the first two mome
of the probability distribution for each species.

This paper is organized as follows: First, we examine
theoretical underpinnings of the approximation. Next,
propose a numerical algorithm for performing the simu
tion, review several practical implementation issues, and p
pose a further approximation. We then consider two motiv
ing examples. Finally, we critically examine the techniq
and present conclusions.

II. STOCHASTIC PARTITIONING

The key ideas are to~1! model the state of the reactio
system using extents of reaction as opposed to molecule
species, and~2! partition the state into subsets of ‘‘fast’’ an
‘‘slow’’ reactions. With these two modeling choices, we ca
exploit the structure of the chemical master equation,
governing equation for the evolution of the system proba
ity density, by making order of magnitude arguments. W
then derive the master equations that govern the ‘‘fast’’ a
‘‘slow’’ reaction subsets. This section outlines these manip
lations in greater detail.

We model the state of the system,x, using an extent for
each irreversible reaction.14 An extent of reaction model is
consistent with a molecule balance model since

n5n01nTx, ~1!

where, assuming that there arem extents of reaction andp
chemical species:x is the state of the system in terms
extents ~an m-vector!; n is the number of molecules o
9 © 2002 American Institute of Physics
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each species~a p-vector!; n0 is the initial number of mol-
ecules of each species~a p-vector!; and n is the stoichio-
metric matrix~an m3p-matrix!.

The upper and lower bounds ofx are constrained by the
limiting reactant species. We arbitrarily set the initial con
tion to the origin. Given assumptions outlined by Gillespie15

the governing equations for this system is the chemical m
ter equation,

dP~x;t !

dt
5 (

k51

m

ak~x2dk!P~x2dk ;t !2ak~x!P~x;t !,

~2!

whereP(x;t) is the probability that the system is in statex at
time t; ak(x)dt is the probability to orderdt that reactionk
occurs in the time interval@ t,t1dt); and dk is the kth col-
umn of the (m3m)-identity matrix d. The structure ofd
arises for this particular chemical master equation beca
the reactions are irreversible.

Now we examine the time scale over which the exte
of reaction change. We must first determine a relevant t
scale so that we can partition the extents into two subs
those that have small propensity functions@ak(x)’s# and oc-
cur few if any times over the time scale, and those that h
large propensity functions and occur numerous times o
the given time scale. We designate these subsets ofx as the
(m2 l )-vectory and thel-vectorz, respectively. Note that

x5F z
yG and d5F dz 0

0 dyG5F d̄

dI
G ~3!

in which dz and dy are (l 3 l )- and (m2 l 3m2 l )-identity
matrices, respectively. Equation~2! becomes

dP~y,z;t !

dt
5 (

k51

m

ak~y2dI k ,z2 d̄k!P~y2dI k ,z2 d̄k ;t !

2ak~y,z!P~y,z;t !. ~4!

If we can determine the governing equations for the evo
tion of the marginal probability densities,P(z;t) andP(y;t),
we then know how the fast and slow reactions evolve o
this time scale. Also, this partitioning is similar to that us
by Rao and Arkin,8 who partition the master equation b
species to treat the quasi-steady-state assumption. We p
tion by reaction extents to treat fast and slow reactions.

A. Fast reaction subset

First we address the evolution of the marginal proba
ity density for the subset of fast reactionsz. Following Rao
and Arkin,8 we define the joint densityP(y,z;t) as the prod-
uct of the conditional densityP(yuz;t) and the desired mar
ginal densityP(z;t),

P~y,z;t !5P~yuz;t !P~z;t !. ~5!

Differentiating Eq.~5! with respect to time yields

dP~y,z;t !

dt
5

dP~yuz;t !

dt
P~z;t !1

dP~z;t !

dt
P~yuz;t !. ~6!
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Over our chosen time scale, it is highly improbable that a
reactions in subsety will occur. Using order of magnitude
arguments, Eq.~6! becomes

dP~y,z;t !

dt
'

dP~z;t !

dt
P~yuz;t !. ~7!

Manipulating Eq.~7! yields

dP~z;t !

dt
5(

y
(
k51

m

ak~y2dI k ,z2 d̄k!

3P~y2dI kuz2 d̄k ;t !P~z2 d̄k ;t !

2ak~y,z!P~yuz;t !P~z;t !. ~8!

By exploiting the structure ofd ~an identity matrix!, we solve
for the desired derivative,

dP~z;t !

dt
5 (

k51

l

bk~z2dk
z!P~z2db

z ;t !2bk~z!P~z;t !, ~9!

in which

bk~z!5(
y

ak~y,z!P~yuz;t !. ~10!

If the reaction propensitiesak(y,z) in Eq. ~10! are linear
with respect toy, then the following equation holds:

bk~z!5ak~E@yuz#,z!. ~11!

If the reaction propensities are nonlinear with respect toy,
Eq. ~11! still provides a first order approximation to Eq.~10!.
Also, note that Eqs.~5!–~10! are the fast/slow reaction ana
logs of the quasi-steady-state results developed by Rao
Arkin.8

With the resulting partition, we are now in a position
better handle the fast subset of reactionsz. We proceed by
demonstrating as outlined by Gardiner16 how this subset can
be approximated using the Langevin approximation. Defi
the characteristic size of the system to beV, and use this size
to recast the master Eq.~9! in terms of intensive variables
~let z̄←z/V). Performing a Kramers—Moyal expansion o
this master equation results in a system size expansion iV.
In the limit asz and V becomes large, the discrete mas
equation can be approximated by its first two different
moments with the continuous Fokker–Planck equation,

]P~z;t !

]t
52(

i 51

l
]

]zi

Ai~z!P~z;t !

1
1

2 (
i 51

l

(
j 51

l
]2

]zi]zj

@Bi j ~z!#2P~z;t !, ~12!

in which ~noting thatz consists of extents of reaction!,

A~z!5(
i 51

l

d i
zbi~z!5@b1~z!b2~z!¯bl~z!#T, ~13!

@B~z!#25(
i 51

l

d i
z~d i

z!Tbi~z!

5diag~b1~z!,b2~z!, . . . ,bl~z!!. ~14!

Equation~12! has Itôsolution of the form,
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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dzi5Ai~z!dt1(
j 51

l

Bi j ~z!dWj ~15a!

5bi~z!dt1Abi~z!dWi ~15b!

in which W is the Wiener process. Equation~15! is the
chemical Langevin equation, whose formulation was
cently addressed by Gillespie.17 Note the difference betwee
Eqs.~12! and~15!. The Fokker–Planck Eq.~12! specifies the
distribution of the stochastic process, whereas the stoch
differential Eq.~15! specifies how the trajectories of the sta
evolve. Also, bear in mind that whether or not a givenV is
large enough to permit truncation of the system size exp
sion is relative. In this case,V is of sufficient magnitude to
make this approximation valid for only a subset of the re
tions, not the entire system.

B. Slow reaction subset

Since the subset of slow reaction extentsy is a function
of the fast reaction extentsz, the problem of interest is a
master equation subject to constraints,

dP~y;t !

dt
5 (

k5 l 11

m

ak~y2dI k ,z;t !P~y2dI k ;t !

2ak~y,z;t !P~y;t ! ~16a!

s.t.: dzi5bi~z!dt1Abi~z!dWi , i 51, . . . ,l . ~16b!

Gillespie18 outlines a general method for exact stochas
simulation of time dependent propensities that is applica
for solution of the desired problem, Eq.~16!. This method
examines the joint probability function,P(t,m), that gov-
erns when the next reaction occurs, and which reaction
curs. ConditioningP(t,m) indicates that the probability of a
reaction occurring in timet is

P~t!5r tot
y ~ t1t!expS 2E

t

t1t

r tot
y ~ t1!dt1D ~17!

and the probability that reactionm occurs is

P~mut!5
am~y,z;t1t!

r tot
y ~ t1t!

~18!

in which

r tot
y ~ t !5 (

k5 l 11

m

ak~y,z;t !. ~19!

III. NUMERICAL IMPLEMENTATION

We now outline a procedure for implementing the a
proximation of the previous section. Using Monte Ca
simulation, we obtain realizations of the desired joint pro
ability function P(t,m) by randomly selectingt andm from
the probability densities defined by Eqs.~17! and~18!. Given
two random numbersp1 and p2 uniformly distributed on
(0,1), t andm are constrained accordingly,

E
t

t1t

r tot
y ~ t1!dt11 log~p1!50, ~20a!
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m21

ak~y,z;t1t!,p2r tot
y ~ t1t!< (

k5 l 11

m

ak~y,z;t1t!.

~20b!

Sincer tot
y is a function oft,

dr tot
y ~ t !

dt
5

]r tot
y ~ t !

]zT

dz

dt
, ~21!

r tot
y ~ t1!5E

t

t1 dr tot
y ~ t2!

dt2
dt2 . ~22!

Hence for practical implementation, we satisfy Eq.~20a! by
integratingr tot

y and the fast subset of reactionsz forward in
time until the following condition is met,

E
t

t1tE
t

t1 dr tot
y ~ t2!

dt2
dt2dt11 log~p1!50. ~23!

We now propose an algorithm for solving the partition
reaction system.

Off-line: Determine the criteria for when and how the s
x of m extents of reaction should be partitioned. Determ
the stoichiometric matrices of the form given in Eq.~1! and
reaction propensity laws for the unpartitioned@the (m3p)-
matrix n andak(x)’s# and partitioned cases@the (m2 l 3p)-
matrix ny, the (l 3p)-matrix nz, andak

y(y,z)’s#. Also, deter-
mine the necessary Langevin equations in the form of
~15! for the fast reactions in the partitioned case.

Initialize: Set the time,t, equal to zero.
Set the number of speciesn to n0 .
~1! If the partitioning criteria established off-line ar

met, go to step~5!.
~2! Calculate:~a! the reaction propensities,r k5ak(x),

and ~b! the total reaction propensity,r tot5(k51
m r k .

~3! Select two random numbersp1 , p2 from the uniform
distribution ~0,1!. Let t52 log(p1)/r tot . Choosej such that

(
k51

j 21

r k,p2r tot<(
k51

j

r k .

~4! Let t←t1t. Let n←n1n j
T , wheren j is the jth row

of n. Go to step~1!.
~5! For subsety, calculate~a! the reaction propensities

r k
y5ak

y(y,z), and ~b! the total reaction propensity,r tot
y

5(k51
m2 l r k

y .
~6! Select two random numbersp1 , p2 from the uniform

distribution ~0,1!.
~7! Determinen̂z5(nz)T@z(t1t)2z(t)# by integrating

r tot
y (t) and the subset of fast reactionsz until the following

condition is met:

E
t

t1tE
t

t1 dr tot
y ~ t2!

dt2
dt2dt11 log~p1!50

s.t.: r tot
y ~ t !5 (

k51

m2 l

ak
y~y,z;t !.

~8! Let t←t1t. Let n←n1 n̂z .
~9! Choosej such that19
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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(
k51

j 21

r k
y,p2r tot

y ~ t !<(
k51

j

r k
y .

~10! Let n←n1(n j
y)T, wheren j

y is thejth row of ny. Go
to step~1!.

Over the time intervalt, implementation of this algo-
rithm actually enforces the more stringent requirement th

dP~yuz!

dt
50. ~24!

Hence Eq.~7! is exact, not approximate.

IV. A FURTHER APPROXIMATION: SCALING
THE STOCHASTIC TIME STEP

One major difficulty in this method is satisfying the co
straint

E
t

t1t

r tot
y ~ t1!dt11 log~p1!50 ~25!

in step~7! of the proposed numerical algorithm as oppos
to the simple algebraic relation fort used in the unmodified
Gillespie algorithm@i.e., step~3!#. This constraint can prove
to be computationally expensive.

If the reaction propensities for the fast subset of exte
z change insignificantly over the stochastic time stept, the
unmodified Gillespie algorithm can still provide an appro
mate solution. When the reaction propensities change sig
cantly overt, steps can be taken to reduce the error of
Gillespie algorithm. One idea is to scale the stochastic t
stept by artificially introducing a probability of no reactio
into the system. Leta0dt be the contrived probability, firs
order indt, that no reaction occurs in the next time interv
dt. This probability does not effect the number of molecu
of the modeled reaction system while allowing adjustmen
the stochastic time step by changing the magnitude ofa0 .
Theoretically, as the magnitude ofa0 becomes infinite, the
total reaction rate becomes infinite. As the total reaction r
approaches infinity, the error of the stochastic simulat
subject to constraints approaches zero because the algo
checks whether or not a reaction occurs at every time. E
though the method outlined by Gillespie18 and Jansen20 is
‘‘exact,’’ for this case there is still error associated with~1!
the number of simulations performed since it is a Mon
Carlo method, and~2! integration of the Langevin equation
for the fast extents of reaction. Thus it is plausible that th
errors may be greater than the error introduced by the
proximation. Hence our approximation may often prove
be less computationally expensive than the exact solu
while generating an acceptable amount of simulation err

The approximation modifies steps~5!–~10! of the nu-
merical algorithm as follows:

~5! For subsety, calculate~a! the reaction propensities
r k

y5ak
y(y,z), and ~b! the total reaction propensity,r tot

y

5(k50
m2 l r k

y .
~6! Select two random numbersp1 , p2 from the uniform

distribution ~0,1!.
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~7! Let t52 log(p1)/r tot . Integrate subsetz over the
range@ t,t1t) to determinen̂z5(nz)T@z(t1t)2z(t)#. Let
t←t1t. Let n←n1 n̂z .

~8! Recalculate the reaction propensitiesr k
y’s and the to-

tal reaction propensityr tot
y (t). Choosej such that

(
k50

j 21

r k
y,p2r tot

y ~ t !<(
k50

j

r k
y .

~9! Let n←n1(n j
y)T, wheren j

y is the jth row of ny. Go
to step~1!.

V. PRACTICAL IMPLEMENTATION

Partitioning of the statex into ‘‘fast’’ and ‘‘slow’’ extents
should be intuitive. We recommend maintaining at least t
orders of magnitude difference between the values of
partitioned reaction probabilities. It may also be helpful
generate results for a full stochastic simulation, and th
identify which reactions are bottlenecks~i.e., ones occurring
most frequently!. Note that there may exist several regim
that require different partitioning of the state. Also, ca
should be exercised to maintain the validity of the order
magnitude partition betweeny andz. It is obviously undesir-
able for ‘‘slow’’ reaction extents to become the same order
magnitude of the ‘‘fast’’ extents during the time incrementt.

In the thermodynamic limit (z→`, V→`, z̄5z/V
5finite), the intensive variables for the fast subset of re
tions (z̄’s! evolve deterministically.21 Accordingly, we pro-
pose approximating the Langevin Eq.~15! with

dzi~ t !

dt
5bi~z~ t !!. ~26!

The benefit of this assumption is that Eq.~26! can be solved
rigorously using an ODE solver. Unfortunately for physic
systems, the thermodynamic limit is obviously unattainab
However, knowledge of the modeled system can lead to
simplification. If the magnitude of the fluctuations in th
term is small compared to the sensitivity ofbi(z(t)) to the
subsety, then Eq.~26! is a valid approximation. This ap
proximation is also valid if one is primarily concerned wi
the fluctuations in the small-numbered species as oppose
the large-numbered species, assuming that the extents
proximated by Eq.~26! predominantly affect the populatio
size of large-numbered species.

VI. EXAMPLES

We now consider two motivating examples that illustra
the accuracy of the presented stochastic approximations.
clarity, we first briefly review the nomenclature that indicat
which approximations, if any, are performed in a given sim
lation. We can either perform a purelystochasticsimulation
on the unpartitioned reaction system, or we can partition
system into ‘‘fast’’ and ‘‘slow’’ reactions. For this partitioned
case, astochastic-Langevinsimulation treats the fast reac
tions as Langevin equations, while astochastic-deterministic
simulation treats the fast reactions deterministically. We c
then simulate this partitioned reaction system byexactsimu-
lation, in which the next reaction time exactly accounts
the time dependence of the ‘‘fast’’ reactions upon the ‘‘slow
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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reactions; or by anapproximatesimulation, which neglects
this time dependence but scales the next reaction time w
propensity of no reaction.

A. Simple crystallization

Consider a simplified reaction system for the crystalliz
tion of species A:

2A ——→
k1

B e1 , ~27a!

A1C ——→
k2

D e2 . ~27b!

TABLE I. Model parameters and reaction extents for the simple crystall
tion example.

Parameter Symbol Value

Extent of reaction~27a! e1
1
2k1A~A-1!

Extent of reaction~27b! e2 k2AC
Reaction~27a! rate constant k1 1E-7
Reaction~27b! rate constant k2 1E-7
Initial number of A molecules Ao 1E16
Initial number of B molecules Bo 0
Initial number of C molecules Co 10
Initial number of D molecules Do 0
Downloaded 19 Feb 2007 to 128.104.198.19. Redistribution subject to AI
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The model parameters and the reaction extents are give
Table I. For this example, the first reaction occurs ma
more times than the second reaction. Hence we partition
extents of reaction (e i ’s! as follows:22 e2 comprises the sub
set of slow reactionsy; and e1 comprises the subset of fas
reactionsz.

We first perform an approximate stochastic-Lange
simulation. Here we approximate the fast reaction subset
ing the Langevin approximation and attempt to reconstr
the first two moments of each species. The Langevin eq
tions are integrated using the Euler–Murayama metho23

with a time increment of 0.01. We account for the tim
varying propensity of the slow reaction by employing t
approximate scheme, setting the propensity of no reac
(a0) to 10. Figure 1 compares these results to the exact
chastic results for 10 000 simulations. The approximation
curately reconstructs the mean and standard deviation fo
species.

Next, we approximate the fast reaction subset determ
istically and attempt to reconstruct the first two moments
each species based upon 10 000 simulations. For this c
we consider both the exact and approximate stochas
deterministic simulations.

Figure 2 compares the results of exact stochastic si
lation to the exact stochastic-deterministic solution. This

-

of
B.
FIG. 1. Comparison of approximate stochastic-Langevin simulation~points! to exact stochastic simulation~lines! based on 10 000 simulations, propensity
no reactiona0510, and Langevin time step of 0.01.~a! Compares the mean for species A and B.~b! Compares the standard deviations for species A and
~c! Compares the mean~C! and standard deviation~6s! for species C.~d! Compares the mean~D! and standard deviation~6s! for species D.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Comparison of exact stochastic-deterministic simulation~points! to exact stochastic simulation~lines! based on 10 000 simulations.~a! Compares the
mean for species A and B.~b! Compares the standard deviations for species A and B.~c! Compares the mean~C! and standard deviation~6s! for species C.
~d! Compares the mean~D! and standard deviation~6s! for species D.
th
d
v
te
t

m
io

ts
th
v
th

e
si
i-
er
ec
t

ng
a

m
d

ds
ta

stic
of
m-

f a
ol-

late
c-

and
proximation does an excellent job of reconstructing all of
means as well as the standard deviations for species C an
However, we are not able to reconstruct the standard de
tions for species A and B. This phenomenon is expec
because by approximatinge1 deterministically, we neglec
all fluctuations caused by the first reaction.

Figure 3 compares the results of exact stochastic si
lation to the approximate stochastic-deterministic solut
given a small value for the propensity of no reaction,a0 . For
this value ofa0 , the approximation accurately reconstruc
the means of species A and B, but fails to reconstruct
moments of species C and D as well as the standard de
tions of species A and B. This phenomenon indicates that
value of a0 is too small. By examining the cumulativ
squared error, however, Fig. 4 demonstrates that increa
the value ofa0 results in comparable error for the approx
mate and exact stochastic-deterministic simulations. H
the least squares error is based on the deviation of the sp
C trajectories between the approximation techniques and
exact stochastic simulation.

Table II compares the order of magnitude of the limiti
time step for the different methods in this example. The m
jor improvement in the approximate methods is that the ti
step is now limited by the ‘‘slow’’ reaction time as oppose
to the ‘‘fast’’ reaction time. Note that the solution metho
for the partitioned reaction system require more compu
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tional expense per limiting time step than the exact stocha
solution method. However, we still observed an order
magnitude improvement in computational expense by e
ploying the approximate solution methods.

B. Intracellular viral infection

We now consider a general model of an infection o
cell by a virus. A reduced system model consists of the f
lowing reaction mechanism:24

nucleotides——→
template

genomee1, ~28a!

nucleotides1genome——→ templatee2, ~28b!

nucleotides1amino acids——→
template

struct e3, ~28c!

template——→ degradede4, ~28d!

struct——→ secreted/degradede5, ~28e!

genome1struct——→ secreted viruse6, ~28f!

where genome and template are the genomic and temp
viral nucleic acids, respectively, and struct is the viral stru
tural protein. Additional assumptions include:~1! nucleotides
and amino acids are available at constant concentrations,
~2! template catalyzes reactions~28a! and ~28c!.
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FIG. 3. Comparison of approximate stochastic-deterministic simulation~points! to exact stochastic simulation~lines! based on 10 000 simulations an
propensity of no reactiona050.01.~a! Compares the mean for species A and B.~b! Compares the standard deviations for species A and B.~c! Compares the
mean~C! and standard deviation~6s! for species C.~d! Compares the mean~D! and standard deviation~6s! for species D.
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We are interested in the time evolution of the templa
genome, and struct species. We assume that the initial
fection’’ of a cell corresponds to the insertion of one templ
molecule into the cell. The model parameters and reac
extents are presented in Table III.

This model has two interesting features best illustra
by the two exact stochastic simulations presented in Fig
First, the three components of the model exhibit fluctuatio
that vary by differing orders of magnitude. For the same ti
scale, the struct species fluctuates by hundreds to thous
of molecules, whereas the template and genome species
tuate by tens of molecules. Second, the model solution
hibits a bimodal distribution. In particular, a cell may exhib
either a ‘‘typical’’ infection in which all species becom
populated, or an ‘‘aborted’’ infection in which all species a
eliminated from the cell.

When the number of template and struct molecules
.0 and 100, respectively, reactions~28c! and ~28e! occur
Downloaded 19 Feb 2007 to 128.104.198.19. Redistribution subject to AI
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many more times than the remaining reactions. Hence w
template.0 and struct.100, we partition the system a
follows: e1 , e2 , e4 , and e6 comprise the subset of slow
reactionsy; ande3 ande5 comprise the subset of fast rea
tions z.

Figure 5 indicates that the simulation should trave
between the partitioned and unpartitioned reaction syste
Since our approximation makes fast reactions continu
events as opposed to discrete ones, we round all spe
when transitioning from the approximate to exact stocha
simulation to prevent noninteger values. This rounding o
affects the struct species, and therefore introduces neglig
error into the system.

We choose to approximate the fast reaction subset de
ministically, so we employ the approximate stochast
deterministic simulation with propensity of no reactiona0

50. We compare the approximate stochastic-determini
simulation to the exact stochastic simulation by reconstru
TABLE II. Comparison of time steps for the simple crystallization example.

Solution method System type Limiting time step O ~time step! Relative CPU time

Exact stochastic Unpartitioned Fast reaction time O~1E-5! 30
Stochastic-Langevin Partitioned Slow reaction time~Langevin integration! O~0.01! 1.28
Stochastic-deterministic Partitioned Slow reaction time~ODE solver! O~1! 1
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ing the statistics for each species based upon 1000 sim
tions. We also compare the evolution of the mean for th
two simulations to the solution of the purely determinis
model.

Figures 6–8 compare the time evolution of the proba
ity distribution for the template, the small numbered spec

FIG. 4. Squared error trends for the exact and approximate stocha
deterministic simulations based on 10 000 simulations. The squared er
calculated from the deviation of the moments for species C between
approximation techniques and the exact stochastic simulation.~a! Plots the
error in the mean of species C.~b! Plots the error in the standard deviatio
of species C.
Downloaded 19 Feb 2007 to 128.104.198.19. Redistribution subject to AI
la-
e

-
s.

These figures indicate that the approximate stochas
deterministic simulation accurately reconstructs the en
template probability distribution. Note that the purely det
ministic model, however, is unable to accurately reconstr
even the evolution of the mean. This phenomena occurs
cause the deterministic model cannot describe the bimo
nature of the probability density.

Figure 9 compares the evolution of the mean and st
dard deviation for the genome species. Again, the appr

ic-
is

he

FIG. 5. ~a! Typical and~b! aborted intracellular viral infections.
TABLE III. Model parameters and reaction extents for the intracellular viral infection example.

Parameter Symbol Value

Extent of reaction~28a! e1 k1 ~template!
Extent of reaction~28b! e2 k2 ~genome!
Extent of reaction~28c! e3 k3 ~template!
Extent of reaction~28d! e4 k4 ~template!
Extent of reaction~28e! e5 k5 ~struct!
Extent of reaction~28f! e6 k6 ~genome!~struct!
Reaction~28a! rate constant k1 1 day21

Reaction~28b! rate constant k2 0.025 day21

Reaction~28c! rate constant k3 1000 day21

Reaction~28d! rate constant k4 0.25 day21

Reaction~28e! rate constant k5 1.9985 day21

Reaction~28f! rate constant k6 7.5E-6~molecules day!21

Initial number of template molecules templateo 1
Initial number of genome molecules genomeo 0
Initial number of struct molecules structo 0
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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mate simulation accurately reconstructs the time evolution
these moments.

Figure 10 compares the evolution of the mean and s
dard deviation for struct, the large numbered species. S
prisingly, the approximate stochastic-deterministic simu
tion accurately reconstructs the time evolution of both
these statistics. Since we approximated the fast reactions
terministically, we did not expect to accurately reconstr
moments higher than the mean for the large numbered
cies. For this example, though, fluctuations in the small nu
bered species, template, are amplified into the struct spe
via reaction~28c!. Thus we are able to accurately reconstru
moments of order higher than zero.

Table IV compares the computational expense betw
the exact stochastic and approximate stochastic-determin
solution methods. The approximate solution method res
in a 50-fold reduction in computational expense over
exact solution method.

VII. CRITICAL ANALYSIS OF THE STOCHASTIC
APPROXIMATIONS

The primary contribution of this work is the idea of pa
titioning a purely stochastic reaction system using extent
reaction into subsets of slow and fast reactions. By appr
mating the fast reaction subset using Langevin equations
can reduce the computational requirement by integrating

FIG. 6. Evolution of the template probability distribution for the~a! exact
stochastic and~b! approximate stochastic-deterministic simulations.
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system over a much larger time step than the exact stoch
simulation. However, we must now employ schemes for
tegrating stochastic differential equations. By approximat
the fast reaction subset deterministically, we can bound
computational requirements for simulation of the system.
this case, we can employ existing and robust ordinary dif
ential equation solvers for integration of this reaction subs
In contrast, the computational expense for exact stocha
simulation scales with the number of reaction events. For

FIG. 7. Comparisons of the~a! (template50, t) and ~b! ~template,t5200
days! cross sections of the template probability distribution for the ex
stochastic~solid line! and approximate stochastic-deterministic~dashed line!
simulations.

FIG. 8. Comparison of the template mean and standard deviation~6s! for
exact stochastic~solid lines!, approximate stochastic-deterministic~dashed
lines!, and deterministic~points! simulations.
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example, reconsider simulation of the simple crystallizat
system presented in Sec. VI A. Doubling the initial amou
of A doubles the number of times the fast reaction m
occur, and thus significantly increases the computational l
of an exact stochastic simulation. On the other hand, if
fast reaction is approximated deterministically, then doubl
the initial amount of A does not require stochastic simulat
of any additional reaction events, and thus results in
change in the computational load.

The partitioning technique presented in this paper sa
fices some numerical accuracy for a bound on the comp
tional load. Approximating some discrete, molecular react
events as continuous events via the Langevin approxima
loses the discrete nature of the entire system. Howeve
illustrated by the simple crystallization example, this a
proximation still accurately reconstructs at least the first t
moments of each reacting species. Furthermore, approxi
ing fast reactions deterministically eliminates all fluctuatio
contributed to the system by these reactions. Depend
upon the system and the modeling objective, though, th
sacrifices may be acceptable. In the simple crystalliza
example, the stochastic-deterministic simulations accura
reconstructed the means of all species as well as the stan
deviations for the small numbered species. If fluctuations
the larger species are not of interest, then these results

FIG. 9. Comparison of the genome mean and standard deviation~6s! for
exact stochastic~solid lines!, approximate stochastic-deterministic~dashed
lines!, and deterministic~points! simulations.

FIG. 10. Comparison of the structural protein~struct! mean and standard
deviation ~6s! for exact stochastic~solid lines!, approximate stochastic
deterministic~dashed lines!, and deterministic~points! simulations.
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acceptable. In the intracellular viral infection example, t
approximate stochastic-deterministic simulation accura
reconstructed the evolution of the probability distribution f
the small numbered species, as well as the means and
dard deviations for the large numbered species. Here, am
fication of fluctuations from the small to large numbered s
cies ~template to struct! led to accurate estimates of th
statistics of the large numbered species.

A secondary contribution of this paper is an approxim
simulation for master equations subject to time-varying c
straints. As demonstrated by the simple crystallization
ample, this approximate simulation approaches the accu
of the exact simulation as the magnitude of the propensity
no reaction increases. This approximation is most useful
cases in which the total reaction rate,r tot , is not integrable
analytically. For this case, we must use an ODE solver w
a stopping criterion to determine the next reaction tim
Since calling such an ODE solver requires some ‘‘overhea
computational expense, performing the approximate sim
tion may be computationally favorable.

We envision that the primary benefit of the tools pr
sented in this work is bridging the gap from the microsco
to the macroscopic. In particular, researchers are becom
increasingly interested in modeling nanomaterials, pheno
ena at interfaces, and site interactions on catalysts. In eac
these problems, macroscopic interactions in the bulk in
ence microscopic interactions at interfaces. Although mos
the action is at the interface, we cannot neglect the bulk
we lose the ability to model the effect of process design a
control strategies. The techniques presented here provide
method of modeling these interactions.
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