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Summary

We use growth models with natural resources to study the con-
sequences of a ranking of intertamporal paths, due to Chichilnisky,
which places weight on their very long run or limiting characteristics
as well as on their charactenstics over any finite period. This criterion
shows more intertemporal symmetry or egalitarianism than the dis-
counted utilitanan approach, which clearly emphasizes the immediate
future at the expense of the long run. In this respect it captures the
concerns of those who argue for sustainability and for a heightened
sensa of responsibility to the future. In some of the examples that we
consider, the long-run characteristics of paths optimal by this cnterion
are a mixture of those of utilitarian paths and the “green golden rule”
(the configuration which maximizes long-run sustainable utility from
consumption and envirpnment).
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1. Introduction

The literature on intergenerational equity is largely built around
the discounted utilitarian approach to defining an optimal path,
and many authors have expressed reservations about the balance
this strikes between present and future, see, for example, Ramsey
(1928), Solow (1974) and others (thizs literature is summarized in
Dasgupta & Heal, 1974). Ramsey and Harrod were scathing about
the ethical dimensions of discounting in a more general context,

319
iM35-505494/040319 + 22 $08.0040 i 1994 University of Venice



320 A. BELTRATTI, G. CHICHILNISKY AND G, HEAL

commenting respectively that discounting “is ethically indefensible
and arises merely from the weakness of the imagination” and that
it is a “polite expression for rapacity and the conquest of reason by
passion” (see Ramsey, 1928; Harrod, 1948; Heal, 1993a7).

[t may be fair to say that discounted utilitarianism dominates
our approach more for lack of convincing alternatives} than because
of the conviction that it inspires. It has proven particularly con-
troversial with non-economists concerned with environmental valu-
ations. A positive discount rate forces a fundamental asymmetry
hetween present and future generations, particularly those very
far into the future. This asymmetry is troubling when dealing with
environmental matters such as climate change, species extinction
and disposal of nuclear waste, as many of the consequences of
these may be felt only in the very long run indeed, a hundred or
more years into the future. At any positive discount rate these
consequences will clearly not loom large (or even at all) in project
evaluations. If one discounts present world GNP over two hundred
years at 5% per annum, it is worth only a few hundred thousand
dollars, the price of a good apartment. Discounted at 10%, it is
equivalent to a used car. On the basis of such valuations, it 1s
irrational to be concerned about global warming, nuclear waste,
species extinction, and other long-run phenomena. Yet societies
are worried about these issues, and are actively considering de-
voting very substantial resources to them. So part of our concern
about the future is not captured by discounted utilitarianism.

Here we take a new approach to this issue, using a welfure
criterion developed by Chichilnisky (1993), and explore the im-
plications of an alternative formulation of intertemporal welfare
criteria which places positive weight on the very long run properties
of a growth path. Technically speaking, it places positive weight
on the limiting properties of a path. Chichilnisky (1983) notes that
selecting an objective in intertemporal planning involves solving
a social choice problem,§ the problem of combining the preferences
of different generations. Difficulties arise because the distinetive
feature of this problem is that there are infinitely many “voters”.
As Hotelling remarked, “problems with exhaustible resources are
peculiarly liable to become entangled with the infinite " Chichilnisky
presents a set of axioms for intergenerational social choice which
imply that positive weight be placed on the limiting properties of
alternative utility streams, as well as on their properties over

+ Heal (1993a) has argued that a zero consumption discount rate can be
consistent with a positive utilily discount rate in the context of environmental
projects.

t Other criteria, for example, the Ramsey criterion or the overtaking criterion,
are incomplete orders, and fail to rank many reasonable altermatives,

§ An early precedent for using a social choice [ramework for studying n-
tertemporal equity is Frerejohn and Page (19781,
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finite horizons. Her approach builds on her earlier axiomatization of
the social choice problem (Chichilnisky, 1980) combining continuity,
equal treatment and respect of unanimity with its application to
infinite populations by Lauwers (1993) and Lauwers and van
Liederkierke (1993), Chichilnisky introduces two axioms which
underlie our approach: these are that neither “the present” nor
“the future” should be dictatorial. Non-dictatorship of the present
means that it should not be possible to determine the ranking of
any two utility streams by looking only at finite numbers of their
components. Equivalently, it should always be possible to reverse
the ordering of any two sequences by changing elements that are
arbitrarily far along the sequences. Non-dictatorship of the future
means that the ranking of two utility streams should not depend
only on their limiting properties, but must be sensitive to their
characteristics over finite horizons. Again, it must be possible to
alter ratings of sequences by changing only “early” elements of the
sequences. These axioms suffice to characterize the valuation of
utility streams as the sum of two terms, one that is a discounted
integral of utilities and one that depends on the limiting properties
of the stream.t

In the following we use both the standard discounted and the
Chichilnisky eriteria in characterizing optimal use of en-
vironmental assets. We work with several different models of the
economy as a step towards understanding when the implications
of the two criteria are different, and whether such differences are
somehow connected with the description of the economic structure.
In a companion paper (Beltratti, Chichilnisky & Heal, 1994) we
study in detail one of the models presented here and use it to
formalize the concept of sustainable growth, an issue that in fact
seems very related to the comparative evaluation of the welfare of
current vs. future generations.

The plan of the paper is as follows: in Section 2 we introduce a
model of growth with an environmental asset that enters the utility
function. In Section 3 we formalize the Chichilnisky criterion
function, and in Sections 4 and 5 we separately solve the model
with both the utilitarian maximand and the long-run utility max-
imand. In Section 6 we apply the Chichilnisky criterion to two
simplified versions of the general model, which describe cases

# Technically, this result builds on the Yosida—Hewitt theorem (1952) of func-
ticnal analysis, which states that a eontinuous linear functional on a Banach
space can be represented as the sum of an integral against a countably additive
measure and an integral against a purely finitely additive measure, A measure
is countably additive if the measure of a countable family of disjoint sels is the
sum of their measures. For a purely finitely additive measure, this property holds
only for finite families of disjoint sets. In the theory of general equilibrium with
infinitely many commodities, Lrouble is taken to ensure that only countably
additive measures occur naturally—see Chichilnisky and Heal (1993).
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of exhaustible and renewable resources. Section 7 offers some
concluding remarks,

2. A model of growth with a natural asset

Dasgupta and Heal (1974) consider an economy that uses a stock
of an asset as source for an instantaneous flow that enters the
production function. We both extend and slightly modify that
model, On the one hand, we add a regeneration process for the
natural resource, so that it becomes a renewable rather than
exhaustible resource, which could be interpreted as an en-
vironmental resource, such as a rain forest, the climate, species
diversity, etc. To be coherent with this interpretation, we also
include the stock of such a resource in the utility function (as in
Krautkraemer, 1985).

The significance of these extensions is as follows, The presence
of a renewable resource means that it is possible in principle for a
positive stock of the resource to be maintained indefinitely. The
fact that the resource is an argument of the utility function caplures
the concern that environmental resources are an important de-
terminant of the quality of life, one of which our long-term suc-
cessors may ultimately be deprived.

[n our framework the social valuation of the state of the economy
at time ¢ depends on the level of consumption of a produced good
and on the existing stock of an environmental good. Formally:

ASSUMPTION 1: instantaneous utility is given by the strictlv concave
continuously differentiable real valued function w(C',, A,) defined on
consumption Ce# and on the stock of an environmental good 4 = #.
We also assume, without any loss of generality, that w(A,C) is
bounded above. We assume that du/0C>0 alwavs; u may show
satiation it A so that dw/cA may have etther sign.

ASSUMPTION 2: production occurs according to the production func-
tion F(K,) where K, is the stock of produced capital at time t. Capital
accumulation is therefore described by the usual equation:

K=FK)-C. (1)

In another paper (Beltratti, Chichilnisky & Heal, 1994) we allow
for the influence of the environmental stock in the production
function; such an extension complicates the dynamics and is not
essential to our main concern in this paper.

AssumPTION 3: the stock of the environmental good has the ability
to renew itself: the rate of renewal is given by the function R(A),
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satisfying R(0)=0. However, the act of consuming output may
deplete the environment, so that the net rate of change of the stock
of the environment is

Al:: —EC:+R{.AJ, 120' {2}

We assume that the renewal function R is bounded above fie.
1B:R(A)=BvA). R may exhibit a threshold effect, i.e. IH: R(A)=
OvA < H and R(A) is strictly concave for A= H. It is possible that
above a certain level of A, R(A) mayv be decreasing, t.e. R{A)<0
for A»A_. This i3 always the case for the most commonly used
reproduction function, the Pearl-Verhulst logistic model. In ad-
dition, it is assumed that the set of attatnable values of A ts bounded
above, so that there is a limit to the amount of the environmental
resource that can be accumulated.

In addition, certain initial conditions and non-negativity con-
straints are imposed:

Ky=K, Ay=A, K =20,A,=0,C =0 (3)

Because of (2) and the boundedness of R(A), the depletion of the
environment may exceed the environment’s capacity to regenerate
itself. [t is possible to attain consumption levels that are not
compatible with indefinite preservation of a positive stock of the
environmental good.

3. Maximization criteria

Chichilnisky's axioms establish a ecriterion function representing
the preferences of an infinite sequence of generations each of whom
lives for an instant of time. This criterion function depends both
on the sum of utilities over time and on the long-run behaviour of
utility values and has the form:

g

f w(C,, AJult)dt + (1 — (), (4)

w il

where 0e[0,1], u(t) is a countably additive measure, u represents
the entire consumption path u, te(0,>), and 4 is a singular or
purely finitely additive measure. A singular or purely finitely
additive measure is a function of a sequence that depends only on
the limiting properties of that sequence. Here without great loss
of generality we take it that

A@)=lm, ., w(C,A). (5)
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The measure u(f) is assumed to have the form u(t)=e ", so that
the criterion function as applied here takes the form

il

uJ W{(CoAde~dt +(1 =B lim, ., u(C,A). (6)
0

In effect, what we are doing here is rather simple and intuitive:
we are supplementing the conventional discounted utilitarian cri-
terion with a term that depends only on the very long run behaviour
of utility sequences. The value of the term lim.  w(C,A) is not
affected by changes in the values of C, or A, for any finite t. This
term only depends on the very long run or limiting behaviour of
utility values. The use in the criterion function of terms such as
lim inf, lim and long-run average which depend on the very long
run behaviour of the instantaneous payoff function is common in
dynamic programming and dynamic games (see Dutta, 1891)
These are conventional elements of an intertemporal criterion
function in situations where the very long run matters. Returning
to the perspective given by the sustainability debate, Chichilnisky's
axioms allow us to capture a concern for sustainability—the ca-
pacity to generate welfare in the very long run, for our distant
successors—by including in the maximand (6) a term commonly
used for valuing long-run characteristics of payoff sequences in
game theory and dynamic programming.

The overall optimization problem that we study is the max-
imization of () subject to the constraints on capital accumulation
(1), resource renewal (2) and to initial conditions (3). Our approach
to solving this problem is to note that it is solvable by conventional
methods in the extreme cases of /=1 (pure discounted util-
itarianism) and =0 (maximizing the long run value of utility),
and then to base a general argument on the solution in these two
cases. First, we consider the pure discounted utilitarian case in
which 6=1. Initially, we study the problem posed above in its full
generality: subsequently, it will prove necessary to simplify it in
order to derive precise results.

4. The utilitarian solution

Setting #=1, our problem is
max j w(C,A)ye~"de, §>0, (7)
o

subject to (1), (2) and (3). The Hamiltonian is the following:
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H=e"u(C,A)+pe "[FK)—C]+ge "[—2C—R(A)]. (B)

The Hrst-order conditions are:

Up=p+ge, {9y
B—dp=—pFs, (10)
g —og=—u;—qly, (11}
lim, , e “pK=0, (12)
lim, .. e~"gA=0. (13)

A stationary solution to the necessary conditions (9)—(13) above
must satisfy the following:

udC,A)=p+qx, (14)
§=FdK), (15)

g = Lu4(C, A)+qRi(A). (16)
FK)=C, (17)
xC=R(A). (18)

According to equation (14), the marginal utility of stationary
consumption has to be equal to a linear combination of the prices
of the two stocks, in order to take into account the fact that
the consuming prevents capital accumulation and depletes the
environment, According to equation (15), capital must be such as to
malke its marginal productivity equal to the rate of time preference.
Equation (16} yields the shadow price of the environment as a
present discounted value of marginal utility and marginal pro-
ductivity, while (18) shows that in a stationary state the con-
sumption of goods must be proportional to the regenerative capacity
of the environment.

These conditions point to the following proposition:

PropPoSITION 1: if R(A) has a threshold and is strictly concave abote
this, then there may be zem, one or two stationary solulions with
a positive level of A. These are characterized as solutions to:

1F1Fy '(9)] = R(A).

PROOF: a stationary solution can be shown to exist in the following
way.
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RiA)

C=fK)

Increasing discaunt
rate

Ficure A.  Stationary solutions of Lhe utilitarian problem are
intersections of the line and the curve.

Given the rate of time preference, equation (15) determines the
optimal stock of capital, K'; equation (17) then determines the level
of consumption C” associated with such a level of capital. Equation
(18) then determines the stock of environment A’ that is necessary
to sustain such a level of consumption in the steady state. Finally,
from equations (14) and (16) it is possible to determine the shadow
prices of the stocks. There will be a stationary solution if the
various relationships are consistent, that is if the stock of capital
that is dictated by the rate of time preference is associated with a
level of consumption that does not exceed the maximum re-
gpenerative capacity of the environment.

The consistency or otherwise of these relationships is explored
in Figure A, where we plot the relationship between C and K given
by C=FIF, '(3)] and that given by C=2 'R(A). Regardless of the
existence of a threshold in the regeneration function, there may
be zero, one or two intersections. This completes the proof. (a1

Stability of stationary solutions to the system of differential
equations given by (9)=(13) is studied in the Appendix. Here we
summarize the results.

PROPOSITION 2: consider a stationary solution at which R,<0. It is
possible to show that for small enough values of the discount rale
3 the stationary solution is a saddle point.
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CoroLLary 1: if R>0 at a statianr:zr;v solution but the remaining
conditions of proposition 2 are satisfled, then for small enough
values of the discount rate & (which have to satisfy o<R.), the
stationary solution is a saddle point. In general the bound on d in
this corollary will be tighter than that in the proposition.

Intuitively, these results say that the right hand of the stationary
solutions in Figure A will be locally stable in the saddle point
sense. From the figure, one can also see that at the stationary
solution there exists a positive relationship between the rate of
time preference and the steady state stock of the environment.
This 1s due to including in the model (through the regeneration
function) a positive relationship between the steady state values
of consumption and the environment. A larger rate of time pref-
erence is associated with a lower level of the capital stock and of
consumption in the steady state, and this decreases the pressure
that the economic system puts on the stock of environmental asset,

It is also important to notice that the solution exists nnly as
long as the discount rate is larger than a positive value 4, due to
the assumption of a bounded reproduction function. For example,
in the case of the logistic function R(4)=rA —(rd%A'), which will
again be used in what follows, the largest flow of consumption that
can be deducted from the environment each instant in a steady
state (the maximum sustainable yield) corresponds to 4 = A%2, and
is equal to rd%4. In this case 3, is the solution to:

A*
IF[FK ll:arn.:l] = I .

That the discount rate cannot be too low can also be seen from
the first-order conditions (14)—(18), which do not admit any solution
for 6—0, as a discount rate tending to zero would imply an infinite
capital stock from (15), and this would be associated with an
infinite consumption from (17), which contrasts with the constraint
provided by (18).

The non-existence of the solution for a low discount rate points
out that for some models one cannot think of improving on an
equilibrium which discriminates against the future generations
simply by lowering the effective discount rate. Maximizing long-
run utility in the way described in the next section is a way to
find a solution which gives more weight than the utilitarian to the
welfare of future generations.

5. Maximizing long-run utility

Now we consider the case in which, in (6), #=0 and society is only
concerned with the very long run values of consumption and
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environment. We seek a path of consumption and capital ac-
cumulation that maximizes lim,_, u(C,A,) over the set of feasible
paths. Then the solution admits a straightforward characterization
given in the following proposition. Note that in the model used
here, the maximization of lim inf, lim sup, lim, or any increasing
function of any of these would lead to the same characterization.

ProrosimioNn 3: there exist values (A*, K*, C*) such that
lim, ., (A, K, C={A* K* C*}

is a necessary and sufficient condition for a feasible path
(A, K, Cl¥t to be a solution of the problem “maxtmize lim, _,
u(C.A,) over all feasible paths”. (A*, K*,C*) is characterized by
ue/ Uy =—1/Ry.

ProoF: the maximand is independent of the values of A and C at
any finite dates. The solution of the problem therefore requires
that we find the indefinitely maintainable values of C and A which
give the maximum utility level over all such levels. As indefinitely
maintainable values of C and A satisfy R(A)=xC, this means that
the problem

max lim, . w(C,A) over feasible paths satisfying (1)~3)
reduces to:
max u(C,A) subject to R(A)==C. (19}

The stock of capital is not a concern in this situation because any
stock of capital can be accumulated given a sufficiently long period
of time. The set of |C,A} pairs satisfying the constraint in (19)
is compact, so this problem is well-defined. The maximum is
characterized by the first order condition:

Ly R,

{(20)

Ll x
This completes the proof. [

The solution given in the proposition invelves equality between
the marginal rate of transformation and the marginal rate of
substitution between consumption and environment across steady
states. [t can be depicted in graphical terms as the point of tangency
between the indifference curve and the renewal function (see
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Green golden rule

R(A)a

A* A
Ficure B. The path which maximizes lim w(C,A) approaches (4% C*},

the “green golden rule” and the point giving the highest sustainable
utility level.

Figure B). It is clear that the solution to the problem of maximizing
the limiting utility value does not define a growth path for the
economy: it merely defines a long-run or limiting configuration.
There are many paths that will lead to this, some efficient, others
inefficient. Amongst the efficient paths, some will give higher
values of the integral of discounted utilities than others.

There is a close connection between optimality according to the
Chichilnisky criterion with =0 (all weight on the long run) and
the Meade—Phelps—Robinson golden rule of economic growth (see
Phelps, 1961). Such a connection is not surprising: Phelps described
the golden rule as the growth path that gives the highest in-
definitely maintainable level of consumption per head. Clearly,
there is an implicit concept of sustainability here: the golden rule
path is the best sustainable path. Our green golden rule gives the
highest indefinitely maintainable level of instantaneous utility, in
a framework where environmental goods are valued in their own
rights, i.e. are a source of utility. It is a generalization of the earlier
concept. It is an easily-defined concept which is an essential element
in the task of making operational the Chichilnisky criterion. Our
green golden rule has points in common with Brock's “polluted
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golden age” (Brock, 1977), although he models a pollution stock
rather than an environmental asset.

6. The Chichilnisky criterion

We have developed a methodology for analysing paths which are op-
timal with respect to the very long run properties of a growth path.
Now we combine this with the utilitarian approach and then apply
this methodology to two problems, each a special case of the general
problem above. In one case, there is a solution to the overall problem
which is intermediate between the discounted utilitarian and the
sreen golden rule solutions. In the second case, there appears to be
no solution to the overall optimization problem, although there are
solutions to the two components taken separately. These special cases
of the earlier problem are obtained by dropping the production side
of that problem and considering only a natural resource that is con-
sumed and whose stock is a source of utility. [n one case the resource
is taken to be exhaustible: in the other, renewable. The most general
form of the problem, with two state variables, remains to be solved.

6.1. AN EXHAUSTIBLE RESOURCE

In this case, the overall optimization problem is

LB

max [}J [ (C) +uslAdte "dt+ (1 —6) im, ., fuC) - u AL
a

i

subject to Cdt=A,.
wl

The discounted utilitarian part of this is closely related to a problem
considered in Krautkraemer (1985), except that the choice of an ad-
ditively separable utility function makes it possible to characterize a
solution with greater precision than was possible in his case.

[t is obvious that the “green golden rule” solution in this case
involves setting C,=0vt, and maintaining the initial stock intact for
ever, A, = 4,7t. Complete preservation of the resource is required.

The following equations give necessary conditions for a solution
to the discounted utilitarian problem:

hdC)=q,

dg o
E— aq_ u%{.ﬂ.}i
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3l A
ERe L u,(C)

Slope satisfies i
ol A% = ) T

Figure C. Determining the stationary stock of the environmental
asset.

where g is as before the shadow price associated with the resource
constraint, ;¢ is the marginal utility of consumption and u,, the
marginal utility of the stock. These equations have the following
stationary solution:

C.=0, A=A where du;(0) = ua,(A*). (21)

The determination of A* is illustrated in Figure C: this also shows
that there may be no stationary solution satisfying (21) if the
derivative of us is evervwhere less than du,-(0). Assuming that a
stationary solution exists, the optimal path in the discounted
utilitarian case is to follow a consumption path that goes to zero
as the remaining stock goes to A*. The solution in this case is very
intuitive: the stock which is preserved for ever, A*, is smaller, the
higher the discount rate, and the relationship between the marginal
utilities in (21) equates the marginal utility of consumption with the
present value of the marginal utility of a permanent incremental
addition to the capital stock at a stock level of A*. If there is no
value of 4 which satisfies (21), then the discounted utilitarian
optimum involves running the stock asymptotically to zero. Also,
there is a value of the discount rate 4, which implies optimal
preservation of the initial stock even under the utilitarian criterion;
such a value is defined by 3,,u,d0) = ue(A). For 6<d, the relevant
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Total payoff aa function of T

L A-T)

k% , |

Utilitarian optimal cumulative consumption r

Ficure D. The overall objective as a function of cumulative
consumption I,

first-order condition becomes an inequality, ou,{0)<uz,(Aq).
Now consider the solution to the overall problem. Let

o

D(l"}zmaxU. {u (C) + ul(A ) e *dt
0
subject to

j Cdt=T <A,

o

The constraints here allow the consumption of only a part, [, of
the initial stock of the resource, Of course, if [ = A;—A*, then this
additional constraint is not binding, as the fully optimal amount
can be consumed. We can now express the overall problem as
maxy ., [0D(M)+(1 = Mux(Ag— ). The solution to the overall prob-
lem is obtained by choosing I to maximize this expression, both
terms of which are plotted against [ in Figure D. In general the
solution will be between I'=0, which is the “green golden rule”
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solution, and I'=A,-4* which is the discounted utilitarian
solution,
B.2. A RENEWABLE RESOURCE.

Again we have only one good, the resource, but we now consider
this to be renewable, The optimization problem is now:

I‘i‘

Max ,;;J w(C, Ae " dt (1 =) lim, ., w(C,,A)
0

subject to
A=—C +R(4).
Tuo be even more specific, we agsume

u'(ctr A) =ln C! s In A,
F"AE
RA)=rA, ",

Fy
This reproduction function is logistic with A* the carrying capacity
of the environment. In this case the Hamiltonian of the system is:

H=[InC+vInA) +q[—C+rA— {a42:|

The first-order conditions for a utilitarian optimum are now:

é=q, (22)
o I-" EA\.
¢—0g=—t~qr|1-"%), (23)
1 r o
A= —C‘l‘TA—A—SA, i24)

lim,_, e "gA =0.
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The steady states of the two variables implied by these necessary
conditions are:

ANyr—d+n
A=TRE R
2r+vr

o-[Kirsen]
L2+ 24y

When y=0, corresponding to the case of no utility of the en-
vironment, we have:

¥

> 7

4R fr=B
2\

and this means that the steady state level of environment is lower
than the one that gives the maximum sustainable vield. This result
resembles the one obtained in standard growth theory, in which
impatience prevents society from accumulating the stock of capital
that maximizes steady state consumption, The lines along which
values of A and C are constant are given respectively by

C'=R(4),
+C
R(A)=6- R

The characterization of the dynamies of the discounted utilitarian
solution is given in Figure E, which shows that the utilitarian
stationary solution is a saddle point.

We can also characterize the green golden rule: in that case the
steady state stock of environment is

[ ¥ ) .

A=aly

This is in general larger than the value at the utilitarian stationary
solution, although the two stationary states converge as the dis-
count rate is reduced to zero.

For this framework, the solution to the overall optimization
problem is not well-defined, unless §=0. To see this, suppose that
the initial stock is A, in Figure E. Pick an initial value of C below
the path leading to the saddle-point, follow the path satisfying the
utilitarian necessary conditions (22)+24) until it leads to the
resource stock corresponding to the green golden rule, and then
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dCide=0
2| davde=d
; Green golden rule
3 -
Ap Environmental stock 4

Fioure E. Dynamics of the utilitarian solution for the simple case of
one state variable A and no production.

increase consumption to the level corresponding to the green golden
rule. Any such path will satisfy the necessary conditions and lead
to the green golden rule in finite time, so the utility integral which
constitutes the first part of the maximand can be improved by
picking a slightly higher value of C; and reaching the green golden
rule slightly later. This does not detract from the second term in
the maximand. By this process it will be possible to approximate
the independent maximization of both terms in the maximand:
the discounted utilitarian term, by staying long enough on the
stable manifold leading to the utilitarian stationary solution, and
the purely finitely additive term, by moving very far into the future
to the green golden rule. Although it is possible to approximate
the maximization of both terms in the maximand independently,
there is no feasible path that actually achieves this maximum.
The supremum of the values of the maximand over feasible paths
is approximated arbitrarily closely by paths which reach the green
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golden rule at later and later dates, but the limit of these paths
never reaches the green golden rule.

We cannot currently give a sharp characterization of the class
of problems for which a solution to the overall problem exists,
although we can, of course, do this for the two compoenent problems

viewed as independent problems. This issue is explored further in
Heal (1993¢).

7. Conclusions

We have explored the implications of an axiomatization of the
ranking of intertemporal utility sequences that places weight both
on the characteristics of the sequence over any finite period and
its very long run or limiting characteristics. The criterion shows
more intertemporal symmetry than the discounted utilitarian ap-
proach, which clearly emphasizes the immediate future at the
expense of the long run. [n this respect the criterion captures some
of the concerns of those who argue for sustainability and {or a
heightened sense of responsibility to the future. An exploration of
this criterion has led us to define the “green golden rule” con-
figuration, which plays an important role in characterizing the
long-run behaviour of paths optimal according to this eriterion.

The characterization of optimal paths that emerge from this
criterion is eminently intuitive. Their long-run characteristics are
a mixture of utilitarianism and the green golden rule: locally, they
always satisfy the utilitarian first-order conditions familiar from
optimal growth theory. It is also intuitive that they cannot be
supported by the maximization of present value profits and by
consumer maximizing behaviour with present wvalue budget
constraints,

Our objective function (6) has some point of contact with the
Rawlsian approach to optimal resource use, so some comparative
comments are in order. The key distinction is that the Rawlsian
approach ranks paths only by the lowest of their utility values:
we replace the lowest value of utility by the limiting value and
gupplement this by the discounted integral of utilities along the
path. This has two great advantages. One is that it avoids trapping
an economy into low consumption levels because it has poor initial
endowments (see Solow, 1974; Dasgupta & Heal, 1979). The other
is that it ensures that any solution path is dynamically locally
optimal because the path satisfies the local optimality conditions
{see Heal, 1973).
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Appendix

In order to study stability we linearize the system of four dif-
ferential equations governing prices and state variables. We first
invert u;-=p+qx to obtain:

C=®[p+gzAl, where @.<0.
We then rewrite the linearized system as:
p=0p—pFegK — Fyp, (23)
G =8q — s Dp—ual,g—uud —gRuA—Rg—u\d A, (26)
K=F,E—®p—axbg—DA, (27)
A= —adp—2*Dg— 20,4+ RA, (28)
which can be summarized as:

=85z, {29)

where 2z’ =(p,q,K,A). After imposing separability in the utility
function, the determinant of the matrix S— ., necessary to find
the eigenvalues of the system, may be written as:

(i—R,a_, —al D _u.ﬂ_qﬂ;hh
_il —2®, Fr—i 0
—1’2'1',‘ {] RA ""f ‘
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By solving one obtains:
AT 224 Ti+03=0, (30)
where:

l_'; IdFK-l-(liR_.‘ —Z{E:IFK—R‘:& +12¢1HM 5 = :izq}[qR_M _pFII‘Dh
[y=- ij.sz_'-" RiFy—x'0yu, Fy — 2 DigR(Fy + 0pFyehy,
[= 'D'PFHRi —0pFeed R,

PrOPOSITION 4: consider a stationary solution at which R,<0. For
small enough values of the discount rate & the guartic equation
(30) has four real roots, two positive and two negative, so that the
stationary solution is a saddle point.

PRrRoOOF: in this case the quartic equation is
.-;..-1 + ]._|.'i.-.z+ !._Q.;.."' I.-'g =D|
where

[ =06"+Ry(6— R\ —pFydy,
[=0R(Ry—0)+0pFee®,,
[y =pFyeh R, (R, —0).

Noting that ©,<0, we see that if I' <0, I';>0 but small, and I'; is
small, then there are four real roots, two positive and two negative.
Under the assumptions of the proposition, I'; is always pesitive.
The second two terms in [, are negative, and the only positive
term goes to zero with the square of 4. This establishes the
proposition. [ ]

In this case a stationary sclution is a saddle point and so is
locally stable in the sense that, for any initial stocks of capital and
the environment, there exist prices which if chosen will lead the
system to the stationary point. [n terms of Figure A, we have
established that any stationary solution on the downward-sloping
part of the R(A) curve is stable in the saddle-point sense.

CoOROLLARY 2: if R,>0 but the remaining conditions of the proposition
are satisfied, then for small enough values of the discount rate o
{which have fo satisfy 6<R,) there are four real rools, lwo positive
and two negative. In general the bound on 8 in the corollary will
be tighter than that in the proposition.

The proof follows immediately. [ ]
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For completeness, note that if >0, then there will be at most
two real roots, and there will be two if and only if I ;<0. Otherwise
(i.e. if [7>0) there will be no real roots. In these cases there may
still be a stationary solution that is saddle point stable, but it will
be approached by a damped spiral.



