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GHACIELA CHICHILNISEY ™

Department of Eeonomics, Calumbia University, New York 10027

1. INTRODUCTION

Social choice theory is concerned with providing a rationale for social
decisions when individuals have diverse opinions. Voting is an obvious way
in which societies aggregate individual preferences to obtain social ones. The
procedure of voting registers mdividual comparisons between alternatives,
called ordinal preferences, rather than the intensitics of preferences among
these alternatives, called eardinal preferences, and this is one source of so-called
paradoxes of social choice.!

The possibility that majority voting may be in contradiction to some criteria
of rationality of preferences, such as the property of transitivity of the social
choice, has been known for a long time, and is usually called the “paradox
of voting” or the Condorcet effect, published first in 1785 by Condorcet in
a book on the theory of elections.? More recently the general theory of elections
became a fertile field of rescarch, beginning with the work of Black published
in 1948 and 1949, and Arrow's 1951 monograph. Arrow stated in a formal
way a set of seemningly reasonable criteria for social choice and proved that
they are inconsistent.®

* This research was supported in part by the ONR Project on Efficiency of [Decision
Making in Feonomic Systems, Ilarverd University. 1 am grateful to K. Arrow, DL
Anderson, H. Halkin, M, Hirsch, F. Peterson, and R. Willig for their valuable comments
und suggestiona,

1 In this context, it is usual to call a “paradox' a contradiction within'a set of seemingly
ressonable axioms, or propertics, of the rule that relutes the individual preferences to
the social onea,

* For a historical discussion of formal theories of social choice, see [2). The Condorcet
paradox ean be sumarized as follows, let there be three choices denoted A, B, and
and three voters, denoted x, 3, and z. If x's preferences among the choices are (in descend-
ing order} 4, B, and C, ¥'s preferences C, A, and £, and 2's preferences B, C, and A,
then a majority prefer 4 o B, B to C, and also  to A, so that the social choice rule
cannot be transitive. This evclical element in the Condorcet paradox is indicative of a
topological problem.

9 Arrow's conditions on the social decision rule are: (1) For any possible set of in-
dividual preference orderings, there should be defined a social preference ordering
{connected and transitive) thut governs social choices, (2) I everybody prefers alternative
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It is the purposc of this paper to study a paradox of social choiee and to
show that it arises, in part, because of the topological structure of spaces of
ardinal preferences.

The problem can be summarized as follows. When intensitics of com-
parisons among alternatives are considered, each (cardinal} preference can
be represented by a unique utility or welfare function, a real-valued function
defined on the space of available choices; higher values corrcspond to more
preferable choices. In this case, the spaces of cardinal preferences are function
spaces, which are linear, and hence topologically trivial. This cardinalist
approach goes back to Bernoulli (1730) [2]. The linearity of these spaces of
preferences is necessary for defining certain criteria of aggregation based on
sums or on averages of the individual wtility functions. Such criteria were
introduced for normative reasons, such as impartiality of the social choices.?
For example, in 1945 Vickrey applied to social choice the Von Neumann—
Morgenstern theory of utility for nsk bearing, to yield a criterion of aggregating
individual preferences into social ones, that consisted of averaging individual
utilitics. Even before, Bentham (1780) and Edgeworth (1881) proposcd adding
up the utilities of the individuals to obtain the social welfare function.

However, when ordinal preferences are considered, linear or locally lincar
structures are not available, and this is 4 source of problems of aggregation
of individual preferences in social choice theory, For instance normative
criteria of aggregation of individual preferences into social ones that rely on
addition or averaging are not well defined for ordinal preferences. More in
general, as we show in this paper, spaces of ordinal preferences are not con-
contractible, and their topological structure produces paradoxes of social
choice. We discuss this next.

While a cardinal preference is a utility function, ordinal preference can
actually be thought of as an equivalence class of such functions ® T'he equivalence
relation (~) is given by #; ~ uy iff for all x in the choice space, the preferred
set of x according to m, (i.e., the set {y: m(¥) = w(x)}) is the same as the

A to alternative B, then society must have the same preference (Parcto optimulity).
(3} The social choice made from any set of alternatives should depend on the individual
preferences among the slternative of this set, and be independent of the individual
preferences outside the set (independence of irrelevunt alternatives). {4) The social
procedure should not be dictatorial, in the sense that there is no one whose preference
prevails regurdless of the preferences of others.

* The criterion of impartiality was interpreted to mean that the social rule should
choose as if it were equally likely to have any position in society. One decision would
then be preferred to another if the expected utility of the first were higher. Since all
positions  are assumed to be equally likely, expected utility (i.e., Von Meumann—
Morgenstern utility function that explaina hehavior in risk bearing) is the same as the
average utilities of the individuals.

® For general conditions under which an ordinal preference relation can be represented
by & utility function, see, for instance, Debreu [4].




SOCIAL CHOICE, TOFPOLOGY OF PREFERENCE SPACES 167

preferred set of x according to . Under certain conditions it suffices, in
order that 4, and %, be equivalent, that for each x the hypersurfaces of u, and
of u, that contain x be equal, and that both &, and %, increase at the same side
of them at x. These hypersurfaces are called indifference surfaces because the
individual is indifferent between any two of its points.

Even though the space of utility equations is linear, the quotient space
under ~ is not linear under the inherited sum, because ~ does not respect
the linearity of the space,

If, for instance the utility function is ' (& = 2), and the space of choices
is a smooth manifold, then under certain conditions an ordinal preference
is uniquely described by the set of all the hypersurfaces of the function and
an orientation, and thus is uniquely represented by a globally integrable oriented
(%1 podimension-] foliation. Such spaces of ordinal preferences can then be
thought of as spaces of globally integrable oriented codimension-1 foliations
of the choice space. For a more detailed discussion of these points sec
Chichilnisky [3].

More in general, ordinal preferences are defined sometimes by a unit vector
field, such as, for instance, the unit vector ficld normal to the indifference
surfaces at each point, Such a vector field indicates the mnst preferred direction.
This was, in fact, Antonelli's definition in 1886 [4], in which the vector field
1s only assumed to be locally integrable, so that the associated oriented foliation
need not be globally integrable. For further discussion of smooth preferences
and their properties, see, for instance, Debreu [4]. In the latter formulation,
which is the one used in this paper, spaces of ordinal preferences are, then,
spaces of oriented codimension-1 foliations of the choice space.

If one proposes to define aggregation rules based on desired normative
properties of the social choice rule, such as, for instance, the addition rules
of Bentham and Edgeworth, or the Von Neumann-Morgenstern—Vickrey
averaging rule, a natural question is whether any linear structure can be given
to these spaces of ordinal preferences, such as, for instance, spaces of oriented
codimension-1 foliations of the manifolds of choices without singularities,
so as to be consistent with a natural topology, More generally, can such a space
of preferences admit any continuous averaging rule for aggregating prefercoces,
or iz it contractible !

It turns out that the answer to these questions, a negative one, is contained
as a special case of a new paradox of social choice, which, however, has certain
elements in common with the Condorcet and Arrow paradoxes. 'We prove
that the following three axioms on the rule ¢ that assigns to an #-tuple of ordinal
preferences (the voters”) the social preference are inconsistent:

{a) ¢ is continuous;

{b) ¢ respects anonymity of the voters, i.e., ¢ 18 invariant under permutation

of its arguments; and
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{c) o respects unanimity, ie, if all the voters have the same preference,
the social preference is the same as theirs.

This paradox is different in nature from existing social choice paradoxes:
this result is topological while existing work in the arca is alpebraic or com-
binatorial ®

Two of the axioms ({b) and (c}) are similar to Arrow’s in some respects;
axiom (c) is strictly weaker than his Pareto condition. The first axiom, (a),
is the main difference with Arrow’s result: his axiom of independence of
irrelevant alternatives (which effectively reduces the problem to a choice set
with three elements) is not required for our result, while continuity of the map
that assigns a social preference to the set of individuals is required here.

This requirement of mntinuit}r of ¢ can be considered natural. It arises
from cither (1) the desirability of the cxistence of sufficient statistics for mea-
suring individual preferences under imperfect information, since, when ¢ is
continuous, further statistical information about individual preferences that
approach their real ones can be expected to get us closer to the appropriate
social preference; or (2) a basic form of stability of society’s choices with respect
to small changes in individual preferences. Both these arguments are reminiscent
of questions of “structural stability™ of society's rules.

2. A SgciaL CHoick PARADOX: INCONSISTENCY OF THE PROPERTIES OF ANONYMITY,
ResrecT oF UNANIMITY, AND STABILITY OF CONSTITUTIONS

We assume that there are & (& 2> 1) individuals in society, each with prefer-
ences over a space of all possible choices available, called the chotce space,
denoted M. M is assumed to be a manifold of dimension at least 2. A typical
example in ceonomics i3 the unit ball in B Another typical example in
economics is the interior of the positive quadrant of A", denoted A"+, Both
these cases are considered here as models for M7

Each individual preference is represented, as discussed above, by a O (r = 1)
codimension-1 foliation® of M which is transversally oriented. Thus, the space

"It has been proved that certain special subspaces of these spaces of preferences
cin actually be given {infinite dimensional) manifold structures; under certain conditions
there are even isomarphic to convex subscts of a linear topological apace; see Chichilnisky
[3]. Such suhspaces do admit averaging functiona. The fact that the whole space docs
not admit such a function, i.e., that a certain function defined on a subapace does naot
admit an adequate extension to the whole space, describes a topological property of the
Jspace. This is discussed in Section 2

T M cun slso be a manifofd with boundary, such as the (closed) unit ball in K" In
that case one has to specify that the foliations be defined in o neighborhood of the (closed)
unit ball. The results given here also apply for the closed unit ball in R®

A 7 eodimension-] folistion is given by a C7 locully integruble hvperplane feld,
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of preferences, denoted P, 1s a space of ' codimension-1 transversally oriented
foliations of the choice space M. We also use here other spaces of preferences
which appear frequently in economics. One is the subspace of P consisting
of globally integrable foliations in P. This space, denoted 0, is a quotient
space of a function space,

0 — Fl~,

where F is the space of all real-valued C*f! functions on M, and ~ is the
equivalence relation defined in the Introduction. Another subspace frequently
used in economics is K the space of all convex preferences of , ie., the space
of preferences p in { which satisfy, for all x in M, that set {y: u{ ¥} = u(x)}
is convex, where @ is any function in the equivalence class that defines p. The
results given here apply to the spaces (0 and A as well. A comstitation o is a rule
that assigns, to a k-tuple of individual preferences, another, the social preference.
Hence, ¢ i3 a map

B-times
d:Px-x PP

Note that the puints in the choice space M may represent choices of all the
individuals: an individual may have preferences not only over his/her choices
but also over the choices of others. In this case, the dimension of M is a multiple
of k.

We work here with foliations without singularities; ie., the vector ficlds
defining these foliations do not have zeros in the interior of M. This corresponds
to a property of nonsatiation of the individual's preferences in M, When the
gpace of choices M is a manifold with boundary, such as the closed unit ball,
then the singularitics will lie in the boundary of M. An extension of the results
to foliations with singularities is given elsewhere. In the latter case the condi-
tions needed arc more stringent: (¢) is replaced by a Pareto-type condition,

Since we study stability of the constitution, which refers to continuity of
the map ¢, we now discuss the topology of the spaces of preferences, The
space P has a natural topology induced by the inclusion PC 7 = {C7 vector
ficlds of M}, If M is compact, the €7 sup norm induces a natural topology + on P,

We consider a case where M is the closed ball in B, 3 manifold with
boundary; then the usual definition of a €7 preference, say, in @, would be
an equivalence class of O™ functions which admit an extension to a neigh-
borhood of M. ) inherits a topology from that of the space of functions F,
since (3 = F/~. If F iz a space of 7! real-valued functions on M and F is
given a O™ sup norm, the preferences are gradient ficlds of functions in F
and thus the inherited topology on () is equivalent to r.

When the choice space is the interior of R, and thus unbounded, a casc
frequently appearing in economics, other topologies are needed since the sup
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norms may not be well defined. In Chichilnisky [3], a Sobolev-Hilbert manifold
structure denoted H* is given to certain subspaces of preferences. The Sobolev
theoremm, which asserts that H*C 7 if 5 = n/2 | r, does not give continuity
of the inclusion H* C € if the base manifold is not compact. However, this
inclusion is locally continuous, locally in the sense of restricting the If* space
of preferences to be defined on a compact neighborhood of a peint in the choice
space. Such local continuity is all that is needed to extend our results to
M — Hnt, as seen in the proof of Theorem 1. Sce also [3] for more details.

We now assume that P ((J or R) is given one of the topologies above: either ,
or a Sobolev H* norm with § = n/2 +— v if M is unbounded.

TugoreM 1.  There doer not exist a constifution

k-times

@:PI"'.':P—FP

satisfying: _
(1} stability, f.e., ¢ f5 contimions;

(2) amonymity, i.e., $(Py oos 1) — B Potry 1oves Pati): for any permutation o
of {1,..., k}; and

(3) respect of unanimity, ie., $(p,..p) — p. forallp e P.

Proof. Let x be a choice in the space M, and let 5™ be the unit sphere
in R®. Given a chart for M at x, each preference p in P determines uniquely
a point 7 in S*-1 given by the normal unit vector » of the indifference surface
i.c., the leaf of p, at = in the orienting direction (see Fig. 1). This determines
a map I" from P to S 1 which is continuous by the choice of topology of P.
Also, if z & 81, there is some preference in P that projects onto z under I'.
For instance, consider a preference p, in P such that restricted to some neigh-
horhood of x is a foliation orthogonal to the vector = at p, and oriented by

Fieure |
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Ficure 2

{sce Fig. 2). Such a foliation p, can always be constructed: since M is cither
a ball or else the positive orthant of A%, the map A defined by Mz) = p, can
alse be chosen to be continuous from 571 to £, Also, the composition map
I"o A is the identity map on 5%,

Assume now that there exists a map ¢: P % — x P = P satisfying (1),
(2), and (3). We shall show that this implies the existence of a map : S =

< 81— 5L satisfying conditions analogous to (1), (2), and (3).

Let i be defined by the diagram

Px -xP %P

Sﬂ—l X ex S"_l T An 1

That is, lz, ,.... 2.} = LAz, Mz,)) Then o is continuous, since [
and A are, and  satisfies (1), 1t is casy to check that  satisfies conditions (2)
and (3} also, by its definition. However, as we shall now show, such a map o
cannot exist, We consider first the case of two individuals, e, & — 2, We
now give a heuristic argument for a special case of this nonexistence result
which illustrates the gencral result. 'The complete proof s given following this
illustration.

Let o 8§ x 51—+ 5 be a smooth function satisfyving (1), (2), and (3). Let
£} be the diggonal in S x S te, D —{fa, ) in 8 < 8 with « = gl
{See Fig. 3 for an illustration.) Let (x, a) be a point in £, At (x, o) the deter-
minant of the Jacoblan matrix J{b/ L=, o) + 0 and the index mod 2 of /D
at (=, =) must be |. This follows from the condition of respect unanimity (3),

#/D(B, B) = B,

oo Tnel, — Td(SY),
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15! A gl
ahak W
B ¥
-—+ -
D

i

{251 AlH !
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Fiouse 3

where Inclpy: St — D is the inclusion map Inclg{8) — (8, £), and Td(57) is
the identity map on S

Let (x, £) be a regular point of ¢ restricted to the set AU B = (§' x o) U
{a » 5, for some a in S

By the condition of anonymity (2),

(e, B) = (B w),

which implies that for any point in AU B that maps into a regular value,
there must exist another point in 4 U B mapping into the same value If A U B
were smooth, this would imply that the index of the map i restricted to AW B
is zero (mod 2) when restricted to any regular point of AW 8. However,
since 4 W B is not smooth, we can consider instead a smooth path, a deformation
Ay, Bof 4w B as indicated in Fig. 3. If (w, 8) is a regular point of /4 v, B,
when 4 1, B and i are appropriately chusen smooth approximations of 4 U B
and of a continuous map satisfyving (1), (2), (3), the index at (=, f)of /A, B
can be shown to be zero (mod 2).°

However, since £ can be smonthly deformed into 4w, B, it follows that
the index (mod 2) of ¢ on O should be the same as the index (mod 2) of & on
Ay, B. See, for instance, the results on index module 2 of mappings that are
smoothly homotopic in [5, Chap. 5, Theorem 1.6]. Since, as we saw above,

“I'his can be seen by noting that for o £ 8", = a regular value of A ' B, we can
choose an e small enough that the inverse image of o under ¢/ v B is contained in
A B, Therefore, there will be an even number of points in the inverse image of o
i.e., the index of /4 w, B at (=, 8) should be zero {mod 2).
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index mod 2 of {1 is 1, we have a contradiction; such a smooth map cannot
exisl.

The above argument can be completed to provide a proof for a general casc.
For instance, to complete the proof for  continuous but not necessarily smooth,
one proves that any continuous i can be approximated arbitrarily close by a
smooth map which has index () {mod 2) on A U B and mdex 1 (mod 2) on £,

However, this argument, though intuitively appealing, does not provide the
best proof since it requires that somewhat cumbersome approximation arguments
be made. Instead, one can use algebraic topology tools that reguire only con-
tinuity of the maps, and allow the underlying spaces to be simplicial complex
rather than smooth manifolds,

A simpler, if perhaps less intuitive, proof is given for i continuous, by
examining the map * induced by  on the # — | dimensional cohomology
groups of 5% and S7-1 x §71 with Z, coefficients. This proof actually re-
produces at the cohomology level the argument given above for the smooth
case. As illustrated in Fig. 3, in view of property (3) of o, the following
diagram is commutative:

Hn 1{‘:;"-1 W el z:} - Hn—l(Sﬂ—l, zz:'

el 5l /i;-n 1

Hr- (51 2

Let G* he a generator of A4S0 Z), and A* and B* the generators of
fn-Y -l o Sl ) == Z, % Zysupported on 4 and B, respectively. Then
by (2) it must be that cither

y*(GY) = AY + B*,
or elsc

$*(G*) = 0 (mod 2),
since the cases when cither

$HG*) — A*  or  $HG*) = B

would contradict the fact that  is symmetric on A U B, condition (2). But
¥*(G*) = 0 would contradict the commutativity of the above diagram, since

Incl® « ¢*{(G*) = 0 £ G* — [d¥%,,(G*).
We will now check that the above diagram also contradicts r*((7*) = 4% | B*,

Au B is homotopic to [ Hence Inclp(5"Y) = D, which is homotopic
to AU B, implies Incl}{4*) = G* and Incl}(B*) = G* and thus
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Incl¥(1* + B*) == 0 mod 2. This again contradicts the commutativity of the
diagram, since then,

Tnels = ¢*(G*) = 0 + G = MG (GT).

This completes the proof of the case when there are two voters, Le, k = 2.
For & = 2 the same result obtains. The proof is analogous, studying the action
of 4= on the n — | cohomaology groups of S7-1 and (57)F with coefficients
in 2.

Note that in the above result it is not necessary 1o require that the preferences
of the individuals be allowed to vary over the whole space P, The same result
applics when the preferences of the individuals are restricted to the spaces ()
and R of globally integrable and convex preferences, respectively, which are
frequently used in ECOTOTIICS.

Also, the results are preseryed when the resulting social preference is allowed
to vary over the whole space P, The next two corollaries follow immediately
from the above result:

CoroLLary |, Even if all individuals have globally integrable and convex
preferences there does nol exist @ comstitution © that assigns to an n-tuple of
preferences a social preference in P, satisfying conditions (1), (2), and (3} of
Thearem 1.

The results of Theorem 1 and Corollary | prove, further:

CoroLLary 2. Neither the space of preferences P (Q or R} nor any contintous
deformation of P (O or ) adwmits constitutions hased on additive or averaging
rules. In particular, P (Q or R) is not a contractible space,

Proof. First we prove that contractability is sufficicnt for the existence of a
constitution or aggregation rule satisfying conditions (1), (2), and (3) of
Theorem 1.

Note that if the space of preferences at I is convex, then a tule satisfying
(1), (2), and (3) always exists; it is defined by

k
PPy P2) = L X po

where the addition in the right-hand side is the vector addition for vector fields.

More generally, if P is contractible, then P is a retraction of a convex space
(the space of all C7 vector fields V) because in this case there is no topological
ohstruction to extending the inclusion map & P+ I to a continugus map
ri V—» V. Since r/p = idp, it follows that r is a retraction from V" onto P.
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Therefore, the social ageregation rule @ defined by

r‘ﬁ{;ﬂl r"ﬂpkj = G‘EP:)

clearly satisfics all the required conditions. Thus any contractible space P
can he given an aggregation rule satisfying (1), (2), and (3). In view of Theorem |
and Corollary | this completes the proof.

A natural question is to find out what other restrictions on P, (J, or R, other
than contractibility, would assure the existence of constitutions with the
desired properties. Chichilnisky [3] describes such a subspace of preferences P
for the case when M iz the unit ball in R, with the property that each foliation
in the space P admits the same global cross section, given by a one-dimensional
contractability submanifold N of M with #¥ C #M. Such a subspace P can be
shown to admit a smooth manifold structure, under certain regularity conditions
on the foliations; see [3]. In such a subspace & of P, a constitution @ satisfying
conditions (1), (2), and (3) exists, and it is exhibited. It is constructed using
the local linear structure of N, since each foliation in # can be uniquely repre-
sented by a retraction from M to N. The question of the nonexistence of an
analogous constitution for the space of preferences P becomes the nonexistence
of a lifting, i.e,, a continuous map ¢ making the following diagram commuta-
tive:

ik
\.\ R
" k
(el gy \
P —
Hm:ly.jﬂi

The nonexistence of such a lifting & can be cxpressed as an obstruction, an
element of the cohomology of P* relative to 9. The study of such obstruc-
tions could give further information on the topology of P, and on social choice
theory,
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