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Structure-Preserving Binary Representations
for RGB-D Action Recognition

Mengyang Yu, Student Member, IEEE, Li Liu and Ling Shao, Senior Member, IEEE

Abstract—In this paper, we propose a novel binary local representation for RGB-D video data fusion with a structure-preserving
projection. Our contribution consists of two aspects. To acquire a general feature for the video data, we convert the problem to
describing the gradient fields of RGB and depth information of video sequences. With the local fluxes of the gradient fields, which
include the orientation and the magnitude of the neighborhood of each point, a new kind of continuous local descriptor called
Local Flux Feature (LFF) is obtained. Then the LFFs from RGB and depth channels are fused into a Hamming space via the
Structure Preserving Projection (SPP). Specifically, an orthogonal projection matrix is applied to preserve the pairwise structure
with a shape constraint to avoid the collapse of data structure in the projected space. Furthermore, a bipartite graph structure of
data is taken into consideration, which is regarded as a higher level connection between samples and classes than the pairwise
structure of local features. The extensive experiments show not only the high efficiency of binary codes and the effectiveness of
combining LFFs from RGB-D channels via SPP on various action recognition benchmarks of RGB-D data, but also the potential
power of LFF for general action recognition.

Index Terms—RGB-D fusion, flux, binary, structure-preserving, dimensionality reduction, local feature

F

1 INTRODUCTION

RGB-D sensors such as Kinect receive increasing
attention in the computer vision community [1].

They have been widely applied to many areas such as:
human activity recognition [2], robot path planning
[3], object detection [4], scene labeling [5], interactive
gaming [6] and 3D mapping [7]. The combination of
RGB and depth information enables enhanced capa-
bilities of computer vision algorithms. It also provides
an alternative way to learn features from video data
for action recognition, especially through learning
fused RGB-D representations.

To gain a more robust and accurate representation
of samples, local feature descriptors such as: SIFT
[8], HOG3D [9], HOG [10], HOF [11] and MBH [12]
have been proposed and achieved notable success in
classification and recognition. Based on these local
features, the Bag-of-Words (BoW) model [13] and the
Sparse Coding (SC) algorithm [14] have shown their
effectiveness for both image classification and action
recognition. During the last decade, extensive efforts
have been put on the improvement of BoW and
SC. However, in most situations, there are millions
of local features with hundreds or even thousands
of dimensions in vision-based tasks, which poses a
severe restriction on the computational efficiency of
similarity search in recognition algorithms. It is, there-
fore, highly desirable to find a compact and efficient
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but discriminative representation for local features.
The fast bitwise operations in Hamming space mo-

tivate us to propose a local binary representation for
RGB-D video data. In this way, the similarity search is
simply computing Hamming distances which are con-
ducted by the XOR operation rather than computing
Euclidean distances by the addition and multiplica-
tion in real numbers. Then the efficiency of classifica-
tion and recognition algorithms will be significantly
improved. Our proposed scheme is two-fold.

First, towards constructing a common representa-
tion applicable for both RGB and depth data, we view
a video sequence in either RGB or depth as a scalar
field in R3 with the frame coordinate (x, y) and the
temporal axis t (for RGB data, we can use the three
channels of red, green and blue to form three scalar
fields in R3 separately. In the experiments, to alleviate
the computational complexity, we only use the gray-
scale information). To describe this scalar field, we
compute the local flux of its gradient field and obtain
a feature vector called Local Flux Feature (LFF) for
each pixel. Generally speaking, the local flux fr(P )
at point P is defined as the rate of the gradient field
(flow) passing through a sphere surface with radius r
centered at P . In other words, the local flux at point
P captures the information of the orientation and the
magnitude of the gradient field over a neighborhood
of P , and fr(P ), as a continuous function, represents
an average quantity of the flow over this neigh-
borhood. Many gradient-based features have been
successfully applied to practical situations, since the
gradient field represents the direction of the greatest
change of a function. Theoretically, the Helmholtz
theorem [15] in fluid mechanics states that we only
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need to know the divergence and curl of a twice
continuously differentiable vector field to determine
it. Given a C2-smooth function V (x, y, t) : R3 → R, its
gradient ∇V satisfies

∇×∇V
= (∇tyV −∇ytV,∇xtV −∇txV,∇yxV −∇xyV )

= 0,

which means curl(∇V ) = 0, showing that the diver-
gence of ∇V provides the vital information for the
gradient field. Fortunately, the divergence theorem
converts computing the flux fr(P ) through a closed
sphere to computing the volume integral of the diver-
gence inside the sphere. Obviously, computing fr(P )
for every pixel is time-consuming and unnecessary.
Thus we only calculate the local fluxes for the regions
around the interest points or the points selected by
dense sampling in RGB data and the corresponding
pixels in depth data.

Second, we fuse the LFFs from RGB and depth
channels of points into Hamming space. To make the
above features more discriminative and meaningful
in Hamming space, we propose a Structure Preserv-
ing Projection (SPP) method. Generally speaking, SP-
P preserves two levels of data structure. In terms
of low-level features, we consider the relationship
among local feature descriptors, i.e., their pairwise
structure, which is maintained in the binary repre-
sentation learning to embed high dimensional fea-
ture descriptors into a lower-dimensional structure-
preserved Hamming space. In the learning phase,
each pair of local features is given a weak label related
to their Euclidean distance. Specifically, a positive pair
is a pair of local features, if one feature of the pair is
within the k nearest neighbors of the other; otherwise,
it is a negative pair.

Considering the shape of the data distribution, the
pairwise structure also includes the angles between
each pair of local feature descriptors. Taking two neg-
ative pairs (x1,x2) and (x1,x3) as an example (since
the majority of pairs are negative), they are encoded to
the pairs which have large distances in the Hamming
space. Nevertheless, an over-fitting condition is that
pair (x2,x3) is possibly mapped to the pair with a
small distance as shown in Fig. 1. Therefore, preserv-
ing the angles can be regarded as a shape constraint
for the structure of pairwise Euclidean distances. It
ensures that the shape of data in the original space
would not collapse in the Hamming space while
pairwise distances are preserved.

Furthermore, in respect of high-level connection,
we also want to establish links between samples and
classes. The bipartite graph (a.k.a. bigraph) consisting
of samples and classes, shows the relationship be-
tween samples and classes. To quantize the edges, we
use the image-to-class (I2C) distance, which was first
introduced in the naive Bayes nearest neighbor (NBN-
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Fig. 1. Basic principle of the projection with angle-
preserving in a two-dimensional example. The dis-
tances of two negative pairs ‖x1 − x2‖ and ‖x1 − x3‖
are expected to be maximized after the projection. The
shape of (x1,x2,x3) has collapsed in the Hamming
space without angle-preserving, therefore, lost the dis-
criminative ability.

N) classifier [16] and was also proven to be an optimal
distance for classification in [16]. It represents the sum
of all distances from the local features of an image to
their corresponding nearest neighbors in each class.
Although it was proposed for image classification, it
can be applied to any kind of samples represented by
local feature descriptors. I2C distances can effectively
avoid the quantization error in the bag-of-features
model. Our algorithm shows that the performance
can be enhanced by combining the sample-to-class
structure (bigraph regularization) and the pairwise
geometrical structure. It is worthwhile to highlight
several properties of the proposed scheme:

• LFF is a continuous feature descriptor without
loss of orientations and magnitudes of the gradi-
ent field, which makes it more suitable for the
discretization of the final binary representation
since every discretization will bring the deviation
into results.

• SPP simultaneously preserves two independent
aspects of geometrical structure: Euclidean dis-
tances and angles, which could balance each oth-
er and avoid over-fitting.

• SPP considers two levels of the relationship of
data structure based on local feature descrip-
tors. Preserving the local structure and the global
structure in the original feature space makes local
feature descriptors more discriminative in the
lower-dimensional space.

• Our scheme fuses RGB and depth information.
The fused local feature descriptors have learned
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the complementary nature of RGB and depth
information.

• Our representation is linear and binary. This
makes it extremely fast and useful for many
practical applications.

2 RELATED WORK

Feature extraction from RGB video data has been
well explored [17], [18], [19], [20]. Detectors such
as Spatio-Temporal Interest Points (STIP) [21] and
Dollar’s [22] are usually used to locate interest points
before feature extraction. Many video descriptors are
extended from their counterparts in the image domain
[8], [9], [23], [12], [24]. As 3D versions of SURF [25],
SIFT [8] and HOF [11], 3D speeded up robust features
(SURF3D) [26], 3D scale invariant feature transforms
(3D-SIFT) [27] and 3D motion features [28], [29] have
been proposed for action recognition respectively. The
Histogram of Oriented Gradients (HOG) is widely
used in the above schemes, which discretizes the gra-
dient orientations. In our work, however, discretiza-
tion only performs in the pixel computation. Fathi
et al. [30] developed a method to extract mid-level
motion features by using the low-level optical flow
for action recognition. Recently, the dense trajectories
[31] gained high accuracies in most action recogni-
tion datasets. However, this method suffers from ex-
tremely high computational complexity. More feature
extraction methods for action recognition could be
found in a survey provided by Poppe [32].

Compared to the conventional RGB cameras, the
depth cameras are relatively new. The existing fea-
tures are specifically extracted for the depth informa-
tion, since characteristics such as color and texture on
depth data are far less than on the RGB data. Motion
History Image (MHI) [33] is a typical template match-
ing method for the analysis of depth information and
the applications of human motion recognition [34].
Using the depth information only, Shotton et al. [35]
proposed a method for human body joints analysis
which is the core component of the Kinect gaming
system. Nevertheless, more feature extraction meth-
ods are for the fusion with RGB information. Based
on HOG, Spinello and Arras [4] proposed a method
called Histogram of Oriented Depths (HOD) for depth
description and probabilistically combined HOD and
HOG into a Combo-HOD to detect people in urban
environments. Methods in [36] and [37] simply op-
timize all available information in their algorithms
for object detection and recognition respectively. Sim-
ilarly, Ni et al. [38] designed two color-depth fusion
schemes for human activity recognition. Using the
depth and skeleton information of actions, Wang et
al. [2] proposed a new feature called Local Occupancy
Pattern (LOP) and an actionlet ensemble model which
indicates a structure of features. Recently, the HON4D
descriptor [39] was proposed to build the histogram

of the normal unit vectors from the depth channel for
activity recognition.

Apart from feature extraction, there are also many
approaches to analyze actions with a temporal model.
A typical one is dynamic time warping (DTW) [40],
which was proposed for speech processing first. Due
to the time-sequential property, DTW was also widely
used as a measurement method in human action
recognition for both depth data [41] and body joints
of skeletons [42].

The above works are specifically designed for either
RGB or depth data. In our work, LFF is a general
descriptor which is suitable for both RGB and depth
data. Besides, by calculating the local flux of the
continuous gradient vector field, there are no bins
and histograms in the computation of LFF, which can
avoid the quantization error in most histogram-based
methods. The Gradient Vector Flow (GVF) [43] has
been successfully used in active contour alignments
by solving the PDEs for an energy minimization prob-
lem. Engel et al. [44] calculated the flux flow on the
GVF and adopted it for pedestrian detection. Based
on the 3D vector field, a rotation invariant descriptor
called 3D-Div [45] was proposed for 3D object recog-
nition by computing the divergence of the vector field.
Nonetheless, the point-wise divergence in [45] cannot
capture the neighborhood information of each point.
In our work, we focus on the discriminative ability
of the local flux and its advantage in RGB-D action
recognition.

Preserving the intrinsic manifold/subspace struc-
ture is also involved in our algorithm to seek a more
discriminative representation of local features. Mani-
fold learning methods such as ISOMAP [46], Lapla-
cian Eigenmap (LE) [47] and Locally Linear Embed-
ding (LLE) [48], were designed to preserve the mani-
fold structure of data in the original space. A unified
review and other manifold learning algorithms can be
seen in [49]. Normally, linear methods possess high
efficiency. Locality Preserving Projection (LPP) [50] is
the first linear projection preserving algorithm that
preserves the high-dimensional local structure. Neigh-
borhood Preserving Embedding (NPE) [51] also tries
to preserve the local representation of data. Capturing
the intrinsic geometrical structure of data, Sparse Con-
cept Coding (SCC) [52], which is a matrix factorization
method, provides a sparse representation of the image
space. For pairwise structure preserving, a related
work for fast vision applications [53] represents each
image using a binary vector calculated via boosted
coding. In contrast, few works have attempted angle
preserving in dimensionality reduction. Caseiro et al.
[54] applied rolling map to the classification problem.
Although the angles measured by geodesics in the
original manifold are equal to the ones in the mapped
manifold, the algorithm is not linear.

However, these works mainly focused on the global
representations rather than preserving both pairwise
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Interest points detection over a video sequence 

(or dense sampling)
Computing the local flux (with radius 1) of 

the gradient field for each pixel in the cuboid
Local flux feature

Fig. 2. Illustration of the computation of local fluxes in the gradient field. The output LFF is regarded as a
foundation for learning binary codes.

structure of local feature descriptors and bipartite
graph structure between samples and classes in the
original space for designing efficient binary codes in
Hamming space.

In the aspect of hash/binary code learning [55], one
classical method is Locality-Sensitive Hashing (LSH)
[56]. Another popular technique called Spectral Hash-
ing (SpH) [57] was also proposed to preserve the local-
ity information of data. Recently, a supervised method
called Kernel-Based Supervised Hashing (KSH) [58]
has shown good discriminative ability of binary codes
and outperformed other supervised methods such as
Linear Discriminant Analysis Hashing (LDAH) [59],
Binary Reconstructive Embeddings (BRE) [60] and
Minimal Loss Hashing (MLH) [61]. The above works
mainly focus on preserving the pairwise distance,
which is one part of SPP. To avoid overfitting as
shown in Fig. 1, SPP also takes the pairwise angle
into account. Towards local descriptors, Hamming
Embedding (HE) [62] was proposed to map real-
valued local features to binary codes. SPP contains
a sample-to-class relationship [63] when each sample
is represented by a set of local descriptors, since most
visual tasks are sample-oriented. Experimental results
show that these three terms, i.e., the pairwise distance,
the pairwise angle and the sample-to-class relation-
ship, all contribute to the outstanding performance of
the proposed method.

3 LOCAL FLUX FEATURE

Local features extracted from local regions in an image
or a video sequence are used to describe the local
structure of a sample. Usually, local regions are the
neighborhoods of points which are determined by
using an interest point detector or by dense sampling
of the image plane or video volume. And then, a
feature vector is computed for each local region by
characterizing its properties. In our algorithm, we
compute the new Local Flux Features (LFFs) from
the RGB-D video data and then combine the local
feature xRGB from RGB information with the local

feature xDepth from depth information to obtain a
concatenated feature vector X ∈ RD.

3.1 Flux Computation

The concept of flux has been studied deeply in ap-
plied physics, especially in fluid mechanics and elec-
tromagnetic theory. The flux of a vector field over
a simply-connected closed district (a sphere in this
paper) is defined as the quantity of this vector field
passing through the district. This quantity includes
the information of the orientation and the magnitude
of the vector field over the district. It is used for a
description of the vector field. To describe a video
sequence which is regarded as a scalar field, we
consider its gradient field and compute the local flux
of the gradient field.

Given a video sequence V (x, y, t) in either RGB1 or
depth, it can be seen as a function V : R3 → R. We
assume V is a C2-smooth function, i.e., V ∈ C2(Ω),
where Ω is the district of the video sequence, usually
an L ×W × H cuboid. In fact, in discrete condition,
derivative computation can be regarded as an ap-
proximation by a convolution operation of matrices.
Then for scalar field V (x, y, t), we consider its gradient
field ∇V (x, y, t) = (∇xV,∇yV,∇tV ). To describe the
gradient field ∇V , we assign an l × w × h cuboid
centered at each candidate point (interest points or
dense samples) and compute the local flux of every
pixel (or lattice point if we regard the coordinates of a
pixel as integers) in the cuboid. To be specific, denote
BP (r) = {(x′, y′, t′)|(x′−x)2 +(y′−y)2 +(t′− t)2 ≤ r2}
as the sphere with the center P = (x, y, t) and radius
r, the local flux at the point P over the sphere ∂BP (r)
is calculated as

fr(P ) =

∮
∂BP (r)

∇V · dS, (1)

where dS represents the directed area unit of the
boundary surface ∂BP (r). However, computing on

1. In fact, we only need the gray-scale information in our algo-
rithm.
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the lattice points on the boundary ∂BP (r) is difficult
and inaccurate. According to the divergence theorem,
we have∮

∂BP (r)

∇V · dS =

∫
BP (r)

∇ · ∇V dBP (r), (2)

i.e., we only need to compute for the points insid-
e the sphere BP (r). Note that in the light of the
Helmholtz theorem [15] in fluid mechanics, we only
need to know the divergence and the curl of a twice
continuously differentiable vector field to determine
it. Hence, the fact that curl(∇V ) = ∇ × ∇V = 0
implies that the divergence of ∇V provides the vital
information, which is captured by the local flux fr(P ).
For realistic computation, we adopt the numerical
approximation for the discrete condition of pixels:

fr(P ) =

∫
BP (r)

∆V dBP (r) ≈
∑

Q∈BP (r)∩Z3

∆V (Q), (3)

where ∆ is the Laplace operator. Suppose there are
D/2 pixels in an l × w × h cuboid, then we compute
D/2 local fluxes in a specific order2 and obtain an LFF
vector x = (x1, · · · , xD/2) ∈ RD/2. Fig. 2 illustrates
the outline of the computation of local fluxes. Having
computed the LFF xRGB from the RGB channel and
xDepth in the corresponding point from the depth
channel, we concatenate their normalizations and ob-
tain the new feature

X =

[
xRGB

‖xRGB‖
,

xDepth

‖xDepth‖

]T
∈ RD. (4)

The combined LFF is regarded as the basic feature for
the later learning of binary codes in our algorithm.

4 STRUCTURE PRESERVING PROJECTION

In this section, we introduce our Structure Preserving
Projection (SPP) algorithm. SPP simultaneously pre-
serves the local structure and the integrated shape
of local features. In addition, SPP also considers a
higher level relationship among local features, i.e., the
bipartite graph consisting of samples and classes. SPP
aims to seek a specific matrix Θ ∈ RD×d (d < D) to
construct a binary function

H(X) = sgn(ΘTX), (5)

such that their discriminative ability for action recog-
nition is improved. For computational convenience,
we choose {−1,+1} rather than {0, 1} to represent
binary codes in our algorithm.

2. In the experiments, we obtain the LFF by listing the
corresponding local flux values in the following pixel order:
(1, 1, 1), · · · , (l, 1, 1), (1, 2, 1), · · · , (l, 2, 1), · · · , (l, w, 1), · · · , (l, w, h).
In fact, the order has no effect on the final recognition results. The
only requirement is the consistency of order in a vision task.

4.1 Pairwise Structure Preserving

We denote the set composed of all local features by
F = {X1, · · · , XN}, where N is the number of local
features in training data. As mentioned above, we aim
to seek the binary representations with discriminative
ability in the lower-dimensional space. We are con-
cerned about the relationship between every two local
features in the high-dimensional space, which should
also be retained in the lower-dimensional space.

4.1.1 Pairwise Label

First, we assign a weak label for each pair of lo-
cal features. With the pairwise labels, acquiring the
class information of each local feature is unnecessary.
Besides, similar local features with small Euclidean
distances may appear in samples from many different
classes. Motivated by the binary property of H(X), we
employ the pairwise label {−1,+1} to represent the
relationship between two local features based on the
pairwise distance between them. Thus we have the
pairwise label

`ij =

{
+1, Xi ∈ Nk(Xj) or Xj ∈ Nk(Xi)
−1, otherwise ,

where Nk(X) is the set of k nearest neighbors of X . To
maintain the local structure, we make the product of
each component in H(Xi) and H(Xj) consistent with
their pairwise label `ij , i.e., H(Xi)m · H(Xj)m = `ij ,
∀m. We denote P = {(i, j)|Xi, Xj ∈ F}. Therefore, we
need to minimize the following function

∑
(i,j)∈P

D∑
m=1

(`ij −H(Xi)mH(Xj)m)2

=
∑

(i,j)∈P

D∑
m=1

(2− 2`ijH(Xi)mH(Xj)m)

=
∑

(i,j)∈P

(
2D − 2`ij

D∑
m=1

H(Xi)mH(Xj)m

)
=
∑

(i,j)∈P

2D − 2`ij〈H(Xi), H(Xj)〉.

(6)

Then equivalently, we only need to maximize∑
(i,j)∈P

`ij〈H(Xi), H(Xj)〉. (7)

The above function reaches its maximum value when
`ijsgn(ΘTXi) and sgn(ΘTXj) are similarly sorted due
to the rearrangement inequality [64]. In other words,
if `ij = 1, Xi and Xj are then similarly encoded and
vice versa.

Considering the effect of noise, we additionally
assign a pairwise weight WP

ij to the local feature pair
(i, j) to avoid the disturbance:

WP
ij = exp

(
−lij‖Xi −Xj‖2

)
. (8)
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Then the objective function for pairwise labels be-
comes ∑

(i,j)∈P

WP
ij `ij〈H(Xi), H(Xj)〉. (9)

4.1.2 Pairwise Angle
In addition to the distance factor, we are also con-
cerned about the shape of the entire set of local
features, which is regarded as a constraint for pre-
serving the pairwise Euclidean distances. The shape
constraint firms the data structure in the projected
space and avoids some certain errors caused by the
pairwise labels. We denote the angle between two
local features Xi and Xj by θij . Note that angle θij
is with the vertex at coordinate origin. Thus, the
local features should be centralized before the further
learning process. Orthogonal transformation (d = D
and ΘT Θ = ΘΘT = I) preserves the lengths of local
features and the angles between them since we have
〈ΘTXi,Θ

TXj〉 = XT
i ΘΘTXj = XT

i Xj = 〈Xi, Xj〉,
∀i, j. When d < D, however, this property does not
hold in orthogonal projection. We hope the angle θ̂ij
in the projected space3 is (approximately) equal to θij .
Note that the distances are irrelevant with the angles,
i.e., the pair of local features with a long distance can
have a small angle and the pair with a short distance
may have a large angle. Thus it is desirable to retain
the angles of all pairs. We define our optimization
problem for angle preserving in the low dimensional
space:

arg max
Θ

∑
(i,j)∈P

〈Xi, Xj〉 · 〈ΘTXi,Θ
TXj〉. (10)

Although it is the optimization for preserving the
inner product, the following proposition shows that
the optimal Θ∗ preserves the pairwise angles.

Proposition 1: Suppose Θ∗ is the optimal solution of
the optimization problem (10), then for any 1 ≤ i, j ≤
N , the projection Θ∗ preserves the angle between the
local features Xi and Xj .

Proof: According to the Cauchy-Schwarz inequal-
ity, we have∑

(i,j)∈P

〈Xi, Xj〉 · 〈ΘTXi,Θ
TXj〉

≤

 ∑
(i,j)∈P

〈Xi, Xj〉2
 1

2
 ∑

(i,j)∈P

〈ΘTXi,Θ
TXj〉2

 1
2

,

and the equality holds if and only if 〈Xi, Xj〉 ((i, j) ∈
P) and 〈ΘTXi,Θ

TXj〉 ((i, j) ∈ P) are collinear. We can
first set a norm constraint

∑
(i,j)∈P〈ΘTXi,Θ

TXj〉2 = 1
for Θ. Then the objective function in Eq. (10) is smaller
than a constant. If Θ∗ is the optimal solution of the
optimization problem (10), the left-hand-side of the

3. Since Hamming space is a discrete space, we first consider the
angles in the linear subspace before taking the sign function.

above inequality reaches its maximum value at Θ∗.
Then there exists a constant λ ∈ R such that

〈(Θ∗)TXi, (Θ
∗)TXj〉

〈Xi, Xj〉
= λ, ∀(i, j) ∈ P.

Since for i = j, we have ‖(Θ∗)TXi‖ = λ‖Xi‖, then
λ > 0. Therefore, for the projected angle θ̂ij , it satisfies

cos θ̂ij =
〈(Θ∗)TXi, (Θ

∗)TXj〉
‖(Θ∗)TXi‖‖(Θ∗)TXj‖

=
〈(Θ∗)TXi, (Θ

∗)TXj〉√
〈(Θ∗)TXi, (Θ∗)TXi〉

√
〈(Θ∗)TXj , (Θ∗)TXj〉

=
λ〈Xi, Xj〉√

λ〈Xi, Xi〉
√
λ〈Xj , Xj〉

=
〈Xi, Xj〉√

〈Xi, Xi〉
√
〈Xj , Xj〉

=
〈Xi, Xj〉
‖Xi‖‖Xj‖

= cos θij ,

which implies that the projection matrix Θ∗ is an
angle-preserving projection.

4.2 Bigraph Regularization
Not only the pairwise structure of local features, but
also the connection between samples and classes,
which is regarded as a higher level relationship a-
mong local features, is considered in our algorithm.
We use the image-to-class (I2C) distance to measure
the bipartite graph (a.k.a. bigraph) that consists of
video samples and classes. Although the I2C distance
was first introduced to measure the distances between
images and classes, it can also be applied to all kinds
of samples that are represented by local features. Our
goal is to preserve the I2C distances in the lower-
dimensional space. Given the set of local features of a
sample Xi = {Xi1, · · · , Ximi

}, which contains all local
features of sample i, the distance between sample i
and class c is defined as

IcXi
=
∑
X∈Xi

‖X −NNc(X)‖2, (11)

where NNc(X) is the nearest neighbor (NN) of the
local feature X in class c and ‖ · ‖ is the L2-norm.

However, the complexity of NN-search linearly de-
pends on the number of local features, which renders
the nearest neighbor search in such a large-scale space
of local features of each class will still cost much time.
Hence, we first implement a K-means clustering algo-
rithm for each class. In other words, we first find K
centroids for each set

⋃
C(Xi)=c Xi, c = 1, · · · , C, where

C is the number of classes and C(·) ∈ {1, · · · , C}
is the label information function that represents the
class label of the input. In this way, the searching
range of nearest neighbors is reduced to the set of
cluster centers, which has a much smaller size than
the original space, i.e., for c = 1, · · · , C, we set

NNc(X) ∈ Centroids {S1, · · · , SK} of
⋃

C(Xi)=c

Xi.
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Having obtained I2C distances, we build a bigraph
G = (V1, V2, E), where V1 and V2 are the node sets
of samples and classes respectively. G is a complete
and weighted bigraph. For each edge in E connecting
sample i and class c, it has the weight WD

ic determined
by the I2C distance, named the I2C similarity. By heat
kernel, we define the I2C similarity as follows:

W I2C
ic = exp

(
−(IcXi

)2/σ
)
, i = 1, · · · , n, c = 1, · · · , C,

(12)
where σ is the Gaussian smoothing parameter and n
is the number of training samples. Correspondingly,
we have the I2C distance in the objective Hamming
space:

ÎcXi
=
∑
X∈Xi

‖H(X)−NNc(H(X))‖2. (13)

With the above defined I2C similarity W I2C
ic and the

projected I2C distance ÎcXi
, we can define the follow-

ing optimization problem to quantize the bigraph reg-
ularization, i.e., I2C structure in the low dimensional
space:

arg min
Θ

n∑
i=1

C∑
c=1

ÎcXi
·W I2C

ic . (14)

By minimizing the above equation, the sample which
has a small I2C distance to class c in the high di-
mensional space is still close to class c in the low
dimensional space. According to the rearrangement
inequality [64], the above objective function reaches
its minimum value if and only if {ÎcXi

} and {IcXi
}

are similarly sorted, which means the projected I2C
distances preserve the bigraph structure in the high
dimensional space.

4.3 Objective Function and Optimization

In addition, to make the projected space more com-
pact, we set the orthogonality constraint on the pro-
jection matrix, i.e., ΘT Θ = I . Combining the objective
functions for the pairwise structure and the bigraph
regularizer, we obtain our final optimization problem
for SPP:

arg max
ΘT Θ=I

∑
(i,j)∈P

WP
ij `ij〈H(Xi), H(Xj)〉

+
∑

(i,j)∈P

〈Xi, Xj〉 · 〈ΘTXi,Θ
TXj〉

− β
n∑

i=1

C∑
c=1

ÎcXi
·W I2C

ic ,

(15)

where β is the regularization parameter.
Optimization: Considering the discreteness of the

binary function, we first use approximation sgn(x) ≈
x to relax the objective function in the optimization
problem (15) into a real-valued space. Then the objec-
tive function of the pairwise label part (see Eq. (9))

becomes ∑
(i,j)∈P

WP
ij `ij〈H(Xi), H(Xj)〉

=
∑

(i,j)∈P

WP
ij `ij〈sgn(ΘTXi), sgn(ΘTXj)〉

≈
∑

(i,j)∈P

WP
ij `ij〈ΘTXi,Θ

TXj〉

=
∑

(i,j)∈P

WP
ij `ij tr(ΘTXi(Θ

TXj)
T )

=
∑

(i,j)∈P

WP
ij `ij tr(ΘTXiX

T
j Θ).

And for I2C distances, we denote NNc(X) = Xc. Note
that after applying projection matrix Θ, the nearest
neighbors may change. However, for the large-scale
local feature space, we approximately adopt the sum
of the distances from ΘTX to the projected nearest
neighbor ΘTXc. Then the projected I2C distance (see
Eq. (13)) after applying matrix Θ becomes

ÎcXi
≈
∑
X∈Xi

‖ΘTX −ΘTXc‖2

=
∑
X∈Xi

‖ΘT (X −Xc)‖2

=

mi∑
k=1

tr(ΘT (Xik −Xc
ik)(ΘT (Xik −Xc

ik))T )

=

mi∑
k=1

tr(ΘT (Xik −Xc
ik)(Xik −Xc

ik)T Θ)

=:

mi∑
k=1

tr(ΘT ∆Xc
ik(∆Xc

ik)T Θ),

where ∆Xc
ik = Xik − Xc

ik, k = 1, · · · ,mi. Thus, by
simple algebraic derivation, the optimization problem
(15) is reduced to

arg max
ΘT Θ=I

tr(ΘTMΘ), (16)

where

M =
∑

(i,j)∈P

(WP
ij `ij + 〈Xi, Xj〉)XiX

T
j

− β
n∑

i=1

C∑
c=1

mi∑
j=1

W I2C
ic ∆Xij∆X

T
ij .

(17)

Notice that WP
ij `ij +〈Xi, Xj〉 = WP

ji `ji+〈Xj , Xi〉, ∀i, j,
then we have

M =
∑

1≤i<j≤N

(WP
ij `ij + 〈Xi, Xj〉)(XiX

T
j +XjX

T
i )

+

N∑
i=1

(WP
ii `ii + 〈Xi, Xi〉)XiX

T
i

− β
n∑

i=1

C∑
c=1

mi∑
j=1

W I2C
ic ∆Xij∆X

T
ij .
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Thus M is a real-valued symmetric matrix. It is clear
that the solution to the optimization problem (16)
is the eigenvectors corresponding to the largest d
eigenvalues of M . We summarize our algorithm in
the following Algorithm 1.

Algorithm 1 Structure Preserving Projection for Local
Flux Feature
Input: Training video sequences V1, · · · , Vn in gray-scale

and V ′1 , · · · , V ′n in depth, the radius r for the sphere
BP (r), the parameter k for pairwise structure preserv-
ing, the number of centroids K in K-means, the label
information function C(·) ∈ {1, · · · , C}, the regulariza-
tion parameter β and the objective dimension d.

Output: The projection matrix Θ.
1: Detect interest points (or densely sample) {P1, · · · , Pmi}

from the i-th training video Vi, i = 1, · · · , n;
2: Compute two LFFs for each point in gray-scale and

depth respectively by Eq. (3) and combine them by Eq.
(4) to obtain the local feature set of the i-th training
video Xi = {Xi1, · · · , Ximi} and the whole local feature
set F =

⋃
Xi = {X1, · · · , XN};

3: Centralize Xi ← 1
N

∑N
j=1Xj , ∀i;

4: Construct local feature pairing set P = {(i, j)|Xi, Xj ∈
F} and their corresponding pairwise labels `ij =
{−1,+1}, where `ij = +1 if Xi ∈ Nk(Xj) or Xj ∈
Nk(Xi), and `ij = −1 otherwise;

5: Employ the K-means clustering algorithm on the set of
local features of each class

⋃
C(Xi)=c Xi, c = 1, · · · , C;

6: Compute pairwise weight WP
ij and I2C similarity W I2C

ic

by Eqs. (8) and (12);
7: Compute the matrix M by Eq. (17);
8: return the eigenvectors corresponding to the largest d

eigenvalues of M .

4.4 Complexity Analysis
In this section, we provide a time complexity anal-
ysis of our algorithm. During the training phase,
our algorithm mainly consists of three parts. The
first part is the computation of LFFs. The derivative
computation is actually the convolution of matri-
ces which at most needs O(3DLm logLm) time [65],
where Lm = max{L,W,H}. The second part is the
computation of pairwise structure preserving. The k-
NN algorithm in the construction of pairwise labels
and the computation of pairwise angles cost O(kN2)
and O(N2) time respectively. The last part is the
construction of the I2C similarity matrix

(
W I2C

ic

)
. The

time complexity of this part is O(nCKDN). In total,
the time complexity of the training phase is at most
O(3DLm logLm) +O((k + 1)N2) +O(nCKDN).

In the test phase, binary codes can significantly
reduce the runtime of the recognition algorithm since
the distance computation in Hamming space is simply
based on the XOR operation. Denote τm and τXOR as
the time of one multiplication and one XOR operation
respectively. Then the computational complexity of
NBNN in the original space is O(NtrainNtestD)τm,
where Ntrain and Ntest are the numbers of local
features in training and test sets respectively. With the

binary local features, the time complexity is reduced
to O(NtrainNtestd)τXOR. In general, we have d � D
and τXOR � τm. Thereby, when Ntrain and Ntest

are in the magnitude of millions or even greater, the
hashing algorithm’s effect is self-evident. We will list
the run-time in the following section.

5 EXPERIMENTS AND RESULTS

In this section, we systematically evaluate our pro-
posed method on three different RGB-D benchmarks:
the SKIG hand gesture dataset [66], the MSRDailyAc-
tivity3D dataset [2] and the CAD-60 activity dataset
[67]. Fig. 3 shows some example frames of these three
datasets. Details of the datasets are introduced in the
following subsection.

5.1 Datasets and Settings
The SKIG dataset has 2160 hand gesture sequences
(1080 RGB sequences and 1080 depth sequences)
collected from 6 subjects. All these sequences are
synchronously captured with a Kinect sensor (in-
cluding a RGB camera and a depth camera). This
dataset collects 10 categories of hand gestures in
total: circle (clockwise), triangle (anti-clockwise), up-down,
right-left, wave, “Z”, cross, comehere, turnaround and
pat. In the collection process, all these ten categories
are performed with three hand postures: fist, index
and flat. To increase the diversity, the sequences
are recorded under 3 different backgrounds (i.e.,
wooden board, white plain paper and paper with
characters) and 2 illumination conditions (i.e., strong
light and poor light). Consequently, for each subject,
there are 10(categories)×3(poses)×3(backgrounds)×
2(illumination) × 2(RGB and depth) = 360 gesture
sequences. The training size for each category is var-
ied as one of {10, 20, 35, 45, 60, 70} and the rest of the
sequences are used for testing.

The MSRDailyActivity3D dataset is a human ac-
tivity dataset captured with the RGB channel and
the depth channel using the Kinect sensor. The total
sequence number is 640 (i.e., 320 sequences for each
channel) with 16 activities: drink, eat, read book, call
cellphone, write on a paper, use laptop, use vacuum cleaner,
cheer up, sit still, toss paper, play game, lie down on
sofa, walk, play guitar, stand up, sit down. There are 10
subjects in the dataset and each subject performs each
activity twice, once in standing position, and once in
sitting position. The training size for each subject is
chosen as one of {5, 10, 15, 20, 25} and the rest is used
for testing.

The Cornell Activity dataset (CAD-60) contains
60 RGB-depth sequences acted by four subjects and
captured with a Kinect camera. The actions in this
dataset are categorized into five different environ-
ments: office, kitchen, bedroom, bathroom, and living
room. Three or four common activities were identified
for each environment, giving a total of twelve unique
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Fig. 3. Example frames of the three RGB-D datasets we used in the experiments. From top to bottom: SKIG,
MSRDailyActivity3D and CAD-60.

TABLE 1
Performance comparison (%) of NBNN with the LFFs computed on detected points with different radii. The

training sizes are 70, 25 and 4 in each class for SKIG, MSRDailyActivity3D and CAD-60, respectively. All the
code lengths are 96-bit.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

SKIG 88.5 90.3 92.4 93.7 93.1 92.5 91.6 91.2 90.7 88.4
MSRDailyActivity3D 85.7 86.2 88.7 89.8 88.9 88.1 87.6 87.5 86.7 85.2

CAD-60 93.2 94.1 94.9 95.2 95.7 94.8 94.1 93.5 92.2 90.8

actions: rinsing mouth, brushing teeth, wearing con-
tact lens, drinking water, opening pill container, cook-
ing (chopping), cooking (stirring), talking on couch,
relaxing on couch, talking on the phone, writing on
whiteboard, working on computer. The training size
for each action is assigned as one of {1, 2, 3, 4} and
remaining sequences are adopted for testing.

All the training samples are selected randomly from
every class in each dataset and all the procedures are
repeated five times. We report the averages as the final
results.

For the experimental settings, we fix the size of
the cuboid l × w × h in the computation of LFF as
7×7×9. We set r = 4, 4, 5 in each dataset respectively
due to the comparison results with different radii

r in Table 1. If the radius r is too small, the LFF
degenerates to the second order derivative, and if r is
too big, LFFs are almost the same for adjacent pixels,
which tends to be less discriminative. We always set
k = 15 for the pairwise data structure. Actually, we
utilize the training data as the cross-validation set
in SPP. The parameter K of the K-means is selected
from one of {100, 200, · · · , 1000} with the step of 100
, which yields the best performance by 10-fold cross-
validation. The optimal parameter β is selected from
{0.1, 0.2, · · · , 1.0} with the step of 0.1 by 10-fold cross-
validation on the cross-validation set, as well. In par-
ticular, the nested cross-validation strategy is applied
to these two parameters, i.e., K and β. We always first
fix the value of K as one of {100, 200, · · · , 1000} and
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TABLE 2
Performance comparison (%) of different variants of

LFF+SPP to prove the effectiveness of the
improvement on RGB-D fusion. All the code lengths

are 96-bit. The bold numbers represent the best
performance for each dataset.

``````````Methods
Datasets SKIG MSRDaily

Activity3D CAD-60

LFF+SPP1 85.1 82.4 90.4
LFF+SPP2 89.6 83.1 93.5
LFF+SPP3 91.2 85.8 94.2
LFF+SPP 93.7 89.8 95.7

(SPP1 is the original SPP without the bigraph regularization;
SPP2 denotes the original SPP without the pairwise label
preserving term; SPP3 represents the original SPP without
the pairwise angle preserving term.)

select the best parameter β from {0.1, 0.2, · · · , 1.0},
and then assign another value to K and select the
best parameter β from {0.1, 0.2, · · · , 1.0} again. In this
way, the optimal pair of parameters K and β can be
obtained under the nested cross-validation strategy.

Since the acceleration of NBNN is quite conspicu-
ous using the Hamming distance instead of the L2-
norm in the NN-search and NBNN classifier always
outperforms the BoW model, we mainly use NBNN
to evaluate our recognition precision.

5.2 Compared Results

First of all, we illustrate the effectiveness of all the
three terms used in SPP, i.e., the pairwise label p-
reserving term, the pairwise angle preserving term
and the bigraph regularization. We remove one of
them and keep the other two terms, and optimize the
problem in (15). The results are listed in Table 2, from
which we can observe that the bigraph regularization
contributes the most to the accuracies.

Next, for all three datasets, we apply three different
schemes to achieve RGB-D video classification: (1)
Detected interest points4 + LFF + SPP; (2) Dense
sampling5 + LFF + SPP; (3) Detected interest points
+ LFF + SPP + Bag-of-Words. For (1) and (2), we
adopt NBNN as the classifier and the linear SVM is
applied for the third scheme for classification. The
codebook lengths of BoW for each dataset are chosen
as one of {500, 1000, 1500, 2000} and the best results
are reported.

For each scheme, we apply SPP on LFFs from
RGB and depth information. According to all the
possible combinations, we evaluate four different kind
of local binary codes on three datasets: LFF(RGB-
D)+SPP denotes our full algorithm; LFF(RGB)+SPP

4. Dollar’s interest points detector [22] is used in our experi-
ments. We only detect the interest points on the RGB data and
find the corresponding locations on the depth video as the detected
points for depth data.

5. We set the distance between adjacent pixels as 5.

only uses RGB information to compute LFFs and then
apply SPP; LFF(D)+SPP only uses depth information
to compute LFFs and then apply SPP; LFF+SPP(RGB-
D) concatenates LFF(RGB)+SPP and LFF(D)+SPP.

From Figs. 4–6, we can observe that the perfor-
mance of our full algorithm is consistently higher
than that of other versions on the three datasets. And
dense sampling generally outperforms interest points
detection due to the large amount of local feature
descriptors. Another observation is that LFF(RGB-
D)+SPP always outperforms LFF+SPP(RGB-D), since
the former outputs the fused binary representation
with the consideration of the structures of RGB-D
features. In contrast, LFF+SPP(RGB-D) outputs binary
codes separately for RGB and depth features, there-
fore, loses the connection between RGB and depth
features.

In Fig. 7, we also compare the performance of
our algorithm with different code lengths by using
different point selection methods, i.e., interest points
detection (Dollar’s detector and STIP) and dense sam-
pling, on the three datasets. It is noticeable that, on
the CAD-60 dataset, the accuracy of dense sampling
is slightly lower than that of interest points detection
because the noise of the background has a negative
effect on the dense sampling when the code length
increases. In this situation, the detection method is
more effective than dense sampling.

Finally, Fig. 8 shows the average runtime compar-
ison. Our learned binary codes show a significant
advantage compared to the original LFF consisting
of real numbers since NBNN largely depends on
NN-search. All the experiments are conducted using
Matlab 2013a on a server configured with a 12-core
processor and 128G of RAM running the Linux OS.

5.3 Comparison with Other Methods

In Table 3, we first compare the proposed LFF de-
scriptor with state-of-the-art video descriptors (i.e.,
HOG, HOF, MBH, HON4D and HOG3D) for RGB-D
action recognition. All the methods are computed on
the interest points from the RGB channel detected by
Dollar’s detector and the corresponding points from
the depth channel. As we can see, LFF outperforms
HOG, HOF, MBH and HOG3D in the RGB and depth
channels and the RGB-D concatenation scheme. Al-
though HON4D, as a descriptor specifically designed
for depth sequences, achieves better performance in
the depth channel, it can only be extracted from depth
data and the recognition accuracies are relatively low.
In contrast, our LFF is considered to be a general
feature descriptor for both RGB and depth data and
LFF in the RGB-D concatenation scheme reaches the
highest accuracy in the experiment of feature compar-
ison.

Since SPP is a projection for learning binary codes,
we can also compare our SPP algorithm with other
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Fig. 4. Performance comparison with different training sizes in each category and different versions of LFFs on
the SKIG dataset at 96-bit.
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Fig. 5. Performance comparison with different training sizes for each subject and different versions of LFFs on
the MSRDailyActivity3D dataset at 96-bit.
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Fig. 6. Performance comparison with different training sizes in each action and different versions of LFFs on the
CAD-60 dataset at 96-bit.

hashing methods. In our experiments, we compare
the proposed method against seven general hashing
algorithms including KSH [58], BRE [60], MLH [61],
LSH [56], SpH [57], AGH [68], PCAH [69], BSSC [53]
and RBM [70]. All the above methods are computed
on the same extracted LFFs for a unified standard.
All the compared methods are then evaluated on five
different lengths of codes (32, 48, 64, 80, 96) and their
results at 96-bit, which appear to be the best, are
reported. Under the same experimental setting, all
the parameters used in the compared methods have

been strictly chosen according to their original papers.
We list the compared results in Table 3 where RGB
channel and depth channel represent only employing
the methods in RGB and depth respectively, RGB-D
fusion is the procedure of our algorithm and RGB-
D cat is the concatenation of the features gained in
RGB channel and depth channel. The results of the
above mentioned other hashing methods in RGB-
D fusion are not consistently higher than that in
RGB-D concatenation, since not all of them preserve
data structure. The training sizes are 70, 25 and 4
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Fig. 7. Performance comparison of NBNN with different point selection methods on three datasets.
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Fig. 8. Average runtime of one test sample of NBNN by using 96-bit binary codes after SPP and the original
882-dimensional LFF with different training sizes.

TABLE 3
Performance comparison (%) of our algorithm and other coding methods on three datasets. In the RGB-D

fusion scheme, we first concatenate features in RGB and depth, then apply hashing methods. In the RGB-D
concatenation (Cat) scheme, we first apply hashing methods to features in RGB and depth separately, then

concatenate them. The bold numbers represent the best performance for each dataset.

Methods SKIG MSRDailyActivity3D CAD-60
RGB

Channel
Depth

Channel
RGB-D

Cat
RGB-D
Fusion

RGB
Channel

Depth
Channel

RGB-D
Cat

RGB-D
Fusion

RGB
Channel

Depth
Channel

RGB-D
Cat

RGB-D
Fusion

HOG 81.4 72.7 82.9 - 76.4 62.3 79.2 - 78.4 60.3 79.6 -
HOF 79.0 71.2 80.6 - 75.6 62.2 78.9 - 77.0 58.5 77.8 -
MBH 82.1 74.7 83.2 - 76.7 63.1 80.1 - 79.5 61.2 81.8 -

HON4D - 80.1 - - - 78.4 - - - 69.2 - -
HOG3D 81.8 73.4 83.1 - 77.2 62.4 79.5 - 78.5 60.4 80.5 -

LFF 84.0 76.2 85.4 - 80.6 72.8 81.6 - 81.0 63.6 83.2 -
Action ensemble∗ - - - - - 87.6 - - - 91.8 - -

HOG3D+IFV 86.9 79.8 89.7 92.1 83.1 75.1 85.6 89.5 91.0 80.8 92.4 94.8
LFF+IFV 88.7 80.5 91.5 93.2 84.8 76.0 87.4 91.1 91.4 82.0 93.4 95.1

HOG3D+SPP 86.3 78.6 88.2 91.4 84.3 71.5 85.2 87.4 88.1 67.4 92.1 93.0
LFF+SPP 88.5 81.1 91.0 93.7 83.2 76.1 86.0 89.8 92.2 82.5 94.0 95.7

LFF+KSH 81.7 67.9 82.4 80.1 80.1 72.1 82.5 81.0 76.0 52.5 77.2 76.8
LFF+BRE 79.8 63.4 80.2 80.8 78.1 68.1 81.3 79.8 75.5 56.7 76.0 76.1
LFF+MLH 77.5 63.8 78.4 78.8 74.2 69.3 75.0 76.2 75.3 48.6 75.8 74.7
LFF+LSH 69.4 54.2 71.4 68.2 60.5 41.1 62.3 58.4 61.4 30.7 62.5 60.2
LFF+SpH 77.5 68.1 78.5 79.0 76.2 60.7 78.3 78.2 70.7 50.4 71.3 73.1
LFF+AGH 74.2 70.5 77.4 78.3 77.5 63.2 78.4 79.5 73.6 48.2 74.7 74.0

LFF+PCAH 68.0 60.2 68.3 60.4 61.3 48.7 63.0 62.1 65.3 41.0 67.9 60.1
LFF+BSSC 77.8 55.4 80.3 81.3 76.9 65.3 76.7 78.0 74.2 48.2 76.8 77.2
LFF+RBM 78.5 67.6 79.5 79.7 77.2 60.0 78.3 78.5 77.4 58.3 79.7 78.8

∗ The action ensemble method adopted the depth and skeleton information with real-valued features. The skeleton information is only available in MSRDailyActivity3D
and CAD-60.
All the results (except action ensemble, LFF+IFV and HOG3D+IFV) are calculated by the NBNN classifier. The linear SVM is applied to LFF+IFV and HOG3D+IFV.
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TABLE 4
t-Test on performance improvements.

hhhhhhhhDatasets
Methods LFF+SPP vs. LFF+KSH LFF+SPP vs. LFF+BRE LFF+SPP vs. LFF+MLH LFF+SPP vs. LFF+SpH LFF+SPP vs. LFF+LSH LFF+SPP vs. HOG3D+SPP

SKIG 9.97 × 10−13 4.31 × 10−12 1.52 × 10−14 3.09 × 10−12 1.45 × 10−14 2.49 × 10−7

MSRDailyActivity3D 3.98 × 10−12 9.72 × 10−12 3.26 × 10−13 2.27 × 10−12 5.78 × 10−16 1.52 × 10−6

CAD-60 3.57 × 10−13 8.58 × 10−15 3.55 × 10−15 8.88 × 10−14 1.46 × 10−17 2.34 × 10−6

TABLE 5
Recognition accuracy (%) of LFF and dense trajectory
features on the UCF YouTube and HMDB51 datasets.

Feature UCF YouTube HMDB51
Trajectory 67.5 28.0

HOG 72.6 27.9
HOF 70.0 31.5
MBH 80.6 43.2

Trajectory/HOG/HOF/MBH combined 84.1 46.6
LFF (r = 1) 79.6 41.5
LFF (r = 3) 84.3 45.8
LFF (r = 5) 85.2 46.9
LFF (r = 7) 84.7 46.0
LFF (r = 9) 83.2 45.5

The LFF features are extracted along the same trajectories in the video
sequences as the dense trajectory features.

for datasets SKIG, MSRDailyActivity3D and CAD-
60, respectively. Table 3 also reports the recognition
accuracies of LFF and HOG3D using the improved
Fisher vector (IFV) [71], for which 200 Gaussians are
used in the GMM. The results show two phenomena:
1. LFF as a continuous feature outperforms other
discrete histogram based features; 2. SPP outperforms
other hashing methods.

5.4 Statistical Significance Test
To show the statistical significance of improvements,
we conduct a t-test on the MAP improvements. In
testing the null hypothesis that the population mean
is equal to a specified value µ0, the statistic

t =
x− µ0

s/
√
m

is used, where x is the sample mean, s is the sample
standard deviation of the sample and m is the sample
size. Then the degree of freedom used in the test is
m − 1. We set m = 10 and code length d = 96 for
this experiment. Table 4 lists the one-tail results of
the t-test, which shows that the improvements are
statistically significant.

5.5 Results on RGB Video dataset
To further illustrate the effectiveness of LFF, in this
experiment, we compare the RGB version of LFF with
the state-of-the-art feature: dense trajectory features
on the UCF YouTube [72] and HMDB51 [73] datasets
for action recognition. The UCF YouTube dataset con-
tains 1168 video sequences collected from 11 action
categories. Most of them are sports activities, which
are drawn from existing YouTube videos; therefore,
the dataset contains large variations and approximates

a real-world database. For this dataset, we deliberate-
ly use the full-sized sequences without any bounding
boxes as the input to evaluate our method’s robust-
ness against complex and noisy backgrounds. We use
the Leave-One-Out setup, i.e., testing on each original
sequence while training on all the other sequences.
The HMDB51 dataset contains 6849 realistic action
sequences collected from a variety of movies and
online videos. Specifically, it has 51 action classes
and each has at least 101 positive samples. We adopt
the official setting of [73] with three train/test splits.
Each split has 70 training and 30 testing clips for
each class. Table 5 illustrates that our proposed LFF
(r = 5) can achieve competitive results with dense
trajectory feature (DTF) which produces the state-of-
the-art performance on recent publications [31], [74].
Note that for fair comparison of feature descriptors,
all the compared features are extracted around the
same points, i.e., the points on the trajectories.

6 CONCLUSION

The basic goal of this paper is to obtain a fused local
binary representation for RGB-D action recognition.
To achieve this goal, we first introduced a continuous
local descriptor called Local Flux Feature (LFF) based
on the gradient field of video data, which is more
suitable for the discretization of binary codes than
histogram based local descriptors. After acquiring
LFFs from RGB and depth channels, we applied the
Structure Preserving Projection (SPP) to learn discrim-
inative local binary representations. SPP preserves the
characteristics in two levels including pairwise struc-
ture of local features and the relationship between
video samples and classes at the same time without
the collapse of data structure. The systematical ex-
periments have shown not only the high efficiency
of the proposed local binary representations, but also
its superior performance than other local features
and other hashing methods in terms of recognition
accuracy on three RGB-D datasets.
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