
 Volume 123, Article No. 123021 (2018) https://doi.org/10.6028/jres.123.021  

 Journal of Research of the National Institute of Standards and Technology 
 
 

1 
 

How to cite this article:  
Davis RS (2018) How to Define the Units of the Revised SI Starting from 

Seven Constants with Fixed Numerical Values. 
J Res Natl Inst Stan 123:123021. https://doi.org/10.6028/jres.123.021  

How to Define the Units of the Revised SI 
Starting from Seven Constants with Fixed 

Numerical Values 
 
 
Richard S. Davis 
 
International Bureau of Weights and Measures 
Sèvres, France  
 
rdavis@bipm.org 
 
 
As part of a revision to the International System of Units (SI) approved in 2018 and to take effect in May 2019, the seven base units 
will be defined by giving fixed numerical values to seven defining constants. This article shows how the definitions of all seven base 
units can be derived efficiently from the defining constants, with the result appearing as a table. The table’s form makes evident a 
number of connections between the defining constants and the base units. Appendices show how the same methodology could have 
been used to define the same base units in the present SI, as well as the mathematics that underpins the methodology. Since the base 
units are now defined in terms of constants, then all units in the SI are now defined in terms of those constants. 
 
Key words: base units; defining constants; fundamental constants; International System of Units.  
 
Accepted: November 16, 2018 
 
Published: December 3, 2018 
 
https://doi.org/10.6028/jres.123.021   
 
 
 
1. Introduction 

 
Preparations for the upcoming revision of the International System of Units (SI) began in earnest with 

Resolution 1 of the 24th meeting of the General Conference on Weights and Measures (CGPM) in  
2011 [1]. The 26th CGPM in November 2018 gave its final approval to a revision of the present SI [2] 
based on the guidance that had already been laid down in Ref. [1]. The SI will consequently become a 
system of units based on exact numerical values of seven defining constants, ΔνCs, c, h, e, k, NA, and Kcd 
exactly as specified in the following bullet points:  

 
• The unperturbed ground-state hyperfine transition frequency of the cesium-133 atom ΔνCs is 

9 192 631 770 hertz.  
• The speed of light in vacuum c is 299 792 458 meters per second. 
• The Planck constant h is 6.626 070 15 × 10−34 joule second. 
• The elementary charge e is 1.602 176 634 × 10−19 coulomb. 
• The Boltzmann constant k is 1.380 649 × 10−23 joule per kelvin. 
• The Avogadro constant NA is 6.022 140 76 × 1023 reciprocal mole. 
• The luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lumens 

per watt.  
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The hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, lm and W, respectively, are 
related to the seven base units: second, meter, kilogram, ampere, kelvin, mole, and candela, with unit 
symbols s, m, kg, A, K, mol, and cd, respectively, through the relations Hz = s−1, J = kg m2 s−2, C = A s, 
lm = cd sr, and W = kg m2 s−3 [2].1 Only “coherent” units [2] are used here; just as in the bullet points, we 
will not affix numerical prefixes (such as mega or nano) either to the base units or to combinations of units 
that have special names (such as joule or watt). 

The numerical values of ΔνCs, c, and Kcd given in the bullet points have been fixed (defined to be 
exact) since 1967, 1983, and 1979 respectively [2]. It was premature in 2011 to specify exact values for h, 
e, k, and NA because their experimentally determined values were not yet known with sufficiently small 
uncertainty to assure a smooth transition to the proposed new definitions. That has changed, and the 
numerical values given above are those recommended in October 2017 by the CODATA Task Group on 
Fundamental Constants [3]. They have been accepted by the International Committee for Weights and 
Measures (CIPM) and were confirmed by the CGPM at its meeting in November 2018. 

This article describes an efficient method to convert the information contained in the seven bullet 
points to definitions of the SI base units, which are, not coincidentally, seven in number [2]. The reasons 
for this particular choice of defining constants are important but have been presented elsewhere [4].   

Starting with the seven bullet points, we derive in one step the combinations of the seven defining 
constants that define the base units of the SI. The algorithm results in an easy-to-read table. The exact 
numerical values given in the bullet points are then introduced to complete the definitions of the base units. 
Appendix A applies the same method to the present SI, illustrating the method’s generality as well as 
providing a novel contrast to the revision. Each base unit will be defined without reference to any of the 
others. Appendix B describes a more abstract method of defining the base units from the values of the 
defining constants and compares the abstract formalism with that presented in the two sections below. 

If all seven base units of the SI can be defined in terms of the seven defining constants, an obvious but 
important corollary follows: All SI units can be defined in terms of the seven defining constants.   

The distinction between base and derived units remains useful, but not essential for many purposes.2  
The following method is consistent with a more rigorous analysis provided by Mohr in 2008 [6], which 

the interested reader is encouraged to consult. 
 
 

2. Defining Constants Written in Terms of Base Units 
 

We begin with Table 1, which presents much of the information given in the bullet points of Section 
1 in more usable form. Note that the defining constants are shown as labels in the first column. The four 
new defining constants and the base units which are redefined in consequence are shown in red. The units 
of the defining constants can be expressed as the product of powers of the base units, sα mβ kgγ Aδ Kε molζ 
cdη [2], as specified in the bullet points of Section 1. The required exponents appear in the rows of Table 1 
for each of the defining constants; for example, the coherent unit of the Planck constant h is J s = kg m2 s−1, 
so that for the row labeled h the exponents α through η are (-1, 2, 1, 0, 0, 0, 0). The columns show whether 
a unit appears in a particular bullet point. We see, for instance, that the second appears in the unit of every 
constant except NA, but with four different exponents. 

 
 

 

                                                           
1 sr is the symbol for steradian, the unit of solid angle. Although sr = m2/m2 = 1, sr is used when needed for clarity [2]. 
2 Even early editions of the SI Brochure remarked that separate classes of base and derived units are “not essential to the physics of the 
subject” [5], but added that the classifications were useful, considering the goal of “a single, practical, worldwide system [of units] for 
international relations, for teaching and scientific work.” 
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Table 1. Units of the defining constants in terms of powers of the base units.  
 

 s m kg A K mol cd 
∆νCs -1 0 0 0 0 0 0 

c -1 1 0 0 0 0 0 
h -1 2 1 0 0 0 0 
e 1 0 0 1 0 0 0 
k -2 2 1 0 -1 0 0 

NA 0 0 0 0 0 -1 0 
Kcd 3 -2 -1 0 0 0 1 

 
 
The sequence of the seven defining constants in the left column of labels follows the order in which 

they are presented in the CGPM Resolution and in Section 1. The sequence of base units in the top row of 
labels follows the order in which these units are defined in Ref. [4]. This results in a table where the 
exponents above the diagonal cells are all zero (as are most exponents below the diagonal). The diagonal 
cells (those with a violet background) associate each defining constant with a “primary” base unit. The cells 
with a yellow background show that “helping” units are also needed. For instance, the Planck constant h is 
key to redefining the kilogram (violet cell), but the unit of h also contains the inverse second and the meter 
squared (yellow cells). 

 
 

3. Base Units as Defined by the “Defining Constants” 
 

The seven SI base units can be defined in terms of the seven defining constants. To do this, we create a 
second table, Table 2, that shows the combination of defining constants required to define each base unit. 
Table 2 is the major contribution of this report. 

The numbers in Table 2 are also exponents, this time used to show the combination of defining 
constants (labeled in the top row) that has the same unit as each base unit (labeled in the left column). 
Except for an exact scaling factor, which is easily derived as shown below, each base unit is defined by the 
product ΔνCs

α′ cβ′ hγ′ eδ′ kε′ NA
ζ′ Kcd

η′, where the required exponents for each row appear in the table. If an 
exponent is zero, it means that its constant is not needed, and its cell, though containing zero, has been left 
blank for visual clarity. Each column shows which defining constants are needed in the definition of the 
base units. We see that ΔνCs is needed to define six of the seven base units (using three different 
exponents), c is only needed to define two base units, etc.  

All exponents have been derived from Table 1 in one step using the following mathematical operation.  
Note that the cells containing numbers in Table 1 constitute a 7 × 7 matrix. Invert that matrix using, for 
example, the MINVERSE command in Excel. The inverse obtained is the 7 × 7 matrix of exponents shown 
in Table 2.3 Remember that the blank cells actually contain zero. 

From the “kg” row of Table 2 we may infer that the following combination of three defining constants 
has the kilogram as its unit [6]: 

 
   ∆𝜈𝜈Cs1  𝑐𝑐−2 ℎ1 𝑒𝑒0 𝑘𝑘0 𝑁𝑁A0 𝐾𝐾cd0 =  ∆𝜈𝜈Cs1  𝑐𝑐−2 ℎ1 =  ∆𝜈𝜈Cs ℎ

𝑐𝑐2
 .         (1) 

 
 

                                                           
3 The 7 × 7 squares of numbers in Tables 1 and 2 are called “lower triangular matrices” because all numbers above the diagonal are 
zero. The inverse of a triangular matrix is triangular as well, provided that the inverse exists. The inverse exists if and only if none of 
the numbers in the diagonal cells is zero. 
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Table 2. The revised SI [4]. Blank cells all contain zero (not displayed). 
 

 ∆νCs  c h e k NA Kcd 

s -1       
m -1 1      
kg 1 -2 1     
A 1   1    
K 1  1  -1   

mol      -1  
cd 2  1    1 

 
 
In the revised SI, all mass determinations must ultimately be traceable to this quantity because its 

numerical value in kilograms has been fixed. The exact values of ∆νCs, c and h given in the bullet points of 
Section 1 provide the fixed value. Substituting the information in the first three bullet points into the left 
side of the following equation, which is a combination of physical constants, gives us the right side, which 
is the value of the combination in the revised SI: 

 
∆𝜈𝜈Cs ℎ
𝑐𝑐2

=  (9 192 631 770)�6.626 070 15 ×10−34�
(299 792 458)2

 kg . 

 
The numbers in parentheses are obviously the exact numerical values of ∆νCs, c, and h specified in 

Section 1. The base units associated with these numerical values cancel (unit symbols can be treated 
algebraically)—except for the kilogram! Then, by simple arithmetic,  
 

                  1 kg =  (299 792 458)2

(9 192 631 770)�6.626 070 15 ×10−34�
 ∆𝜈𝜈Cs ℎ

𝑐𝑐2 = 1.475 521 3997 … × 1040  ∆𝜈𝜈Cs ℎ
𝑐𝑐2  .     (2) 

 
Any given base unit can be defined similarly, without knowing the definitions of any other base units. 

Only the exact numerical values of the defining constants are required. This definition of the kilogram 
appears in Section 2.3.1 of Ref. [4]. A more formal derivation of the seven definitions, of which Eq. (2) is 
an example, is provided in Appendix B, along with a comparison to the simplified approach adopted above. 
Reference [7] reaches the same conclusions following a different path. 

It is irrelevant that the mass ∆νCs h / c2 is so miniscule that it must be scaled up by 40 orders of 
magnitude to equal one kilogram. It has always been true that “any method consistent with the laws of 
physics could be used to realize any SI unit” [2] and such methods already exist for the kilogram as it will 
be defined by Eq. (2) [4].  Appendix A discusses in more detail the condition that assures continuity of the 
redefined kilogram with the present kilogram.  
 
 
4. Summary and Discussion 

 
Several pictorial illustrations of the revised SI have been available [8], [9]. In one case, readers are 

cautioned that the illustration is not an explanation [8]. By contrast, Table 2 has been derived 
mathematically from the seven defining constants, knowing only their units. It is easily noted in Table 2 
that: 
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• The violet cells on the diagonal connect a base unit in the left column with the constant which 
defines it, in the top row. This is loose terminology because, in most instances, one or two 
“helping constants” are essential, and these are shown in the yellow cells of each row. All other 
cells contain zero, and these are left blank.  

• There are only three helping constants, ΔνCs, c, and h, and these also serve as the defining 
constants for the second, meter and kilogram, respectively. [It is perhaps noteworthy that the 
second, meter, and kilogram are the mechanical units of the old meter-kilogram-second (MKS) 
system, from which the SI evolved.] 

• In each row, the product of powers of the constants in the violet cell and any yellow cells form a 
quantity (which is also a constant) whose unit is the base unit of the row. The exponents needed 
are shown. 

• At most, two helping constants are required to define any base unit. [The appearance of helping 
constants can be viewed as a mathematical requirement which reconciles continued use of the 
historical base units with the most useful selection of defining constants. See Appendix A, which 
shows that the present SI [2] is not very different in this respect.] 

• Helping constants are not needed to define either the second or the mole.  
• The ground state hyperfine transition frequency of the cesium-133 atom ΔνCs is needed in the 

definitions of all base units except the mole.  
• The speed of light in vacuum c is needed only in the definitions of the meter and kilogram.  
• The Planck constant h is needed only in the definitions of the kilogram, kelvin and candela. 
• The elementary charge e, the Boltzmann constant k, the Avogadro constant NA and the luminous 

efficacy of a specified wavelength Kcd are each needed to define a single base unit (ampere, kelvin, 
mole, and candela respectively). They are not used as helping constants. 

• The importance of the unit of time to the revised SI is evident. 
• As emphasized in the Introduction, all SI units can be written in terms of the seven defining 

constants. As examples of this, the reader may wish to verify that the joule is defined in terms of 
h ΔνCs, and the ohm in terms of h/e2. 

 
There is no general requirement that exponents in Tables 1 and 2 must be displayed as lower triangular 

matrices (see Appendix B), although this arrangement makes the tables easier to scan visually and therefore 
has merit. Because Table 1 is a lower triangular matrix, one can see that the units can also be defined in 
seven separate steps rather than as a group, as we have done. The step-by-step method, also used in the 
draft 9th edition of the SI Brochure [4], first defines the SI second from the upper left corner of Table 1. 
The meter can then be defined from the next row because the helping unit of c, the second, has already 
been defined. The kilogram can be defined from the third row because the two helping units of h have 
already been defined. All helping units have now been defined and so the remaining four SI units can be 
defined in any order one wishes, including of course the order found in [4].  

The seven unique combinations of defining constants whose unit is a base unit [Eq. (1) shows the 
combination for the kilogram] were derived together by matrix inversion. Since any order of units and 
defining constants used as labels in Table 1 leads to identical definitions of the base units, we have chosen 
an order that makes Table 2 visually simple. It is also the order found in the major reference for the revised 
SI [4]. 
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5. Appendix A: The SI Prior to May 20, 2019 
 
The SI in use at present [2] could also have been formulated in terms of the six defining constants and 

one defining quantity that had been the most-recently specified by the CGPM, either explicitly or 
implicitly, prior to November 2018 (see Ref. [10]): 

 
• The unperturbed ground state hyperfine transition frequency of the cesium-133 atom ΔνCs is 

9 192 631 770 hertz (1967). 
• The speed of light in vacuum c is 299 792 458 meters per second (1983). 
• The mass of the international prototype of the kilogram mK is 1 kilogram (1889). 
• The permeability of vacuum µ0 is 4π × 10−7 newton per ampere squared (1948, 1954). 
• The thermodynamic temperature of the triple point of water TTPW is 273.16 kelvin (1954). 
• The molar mass of carbon-12, M(12C), is 0.012 kilogram per mole (1971). 
• The luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lumens 

per watt (1979). 
 
The newton (symbol N) is expressed in terms of base units as N = kg m s−2 [2]. Expressions for the 

hertz, lumen, and watt in terms of base units are found in Section 1.  
Carrying out the same procedure as described in Sections 2 and 3 for the revised SI, we start with 

Table 3, which contains an embedded 7 × 7 matrix. Again, this matrix is a table of exponents inferred from 
seven bullet points, but now they are the bullet points found in this Appendix. For ease of comparison with 
Tables 1 and 2, the order of units in the top row of Table 3 is chosen to be identical to that of Table 1, and 
the order of quantities in the left column is chosen to produce a lower triangular matrix. The order of 
quantities shown is the only one that does this. 

 
 

Table 3. Units of the defining quantities in terms of powers of the base units (for the SI described in [2]. 
 

 s m kg A K mol cd 
∆νCs -1 0 0 0 0 0 0 

c -1 1 0 0 0 0 0 
mK 0 0 1 0 0 0 0 
µ0 -2 1 1 -2 0 0 0 

TTPW 0 0 0 0 1 0 0 
M(12C) 0 0 1 0 0 -1 0 

Kcd 3 -2 -1 0 0 0 1 
 

 
Now transpose the labels of Table 3 and invert its embedded matrix to arrive at Table 4. As with Table 

2, cells containing zero are left blank. 
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Table 4. The SI described in [2]. The blank cells all contain zero (not displayed). 
 

 ∆νCs  c mK µ0 TTPW M(12C) Kcd 

s -1       
m -1 1      
kg   1     
A 1/2 1/2 1/2 -1/2    
K     1   

mol   1   -1  
cd 1 2 1    1 

 
 
This table can easily be compared to Table 2. Note that only the first two rows, those for the second 

and meter, are identical in the two tables. 
There is no reason that the exponents must be integers, as this example illustrates. Thus, in the SI 

described in Ref. [2], the ampere is realized by traceability to the quantity (∆νCs c mK /µ0)½ which, 
according to the information in the first four bullet points, has an exact value of about 1.5 × 1012 A. Note 
that the SI unit of ∆νCs c mK is the newton and that of µ0 is the newton per ampere squared. 

The exponents appearing in Table 4 and the exact numerical values of the six constants and one 
physical quantity listed in the bullet points of Appendix A would have been sufficient to define all base 
units in Ref. [2]. For example, a definition equivalent to the present definition of the ampere [2] would be: 
 

            1 A =  � 4π × 10−7

(9 192 631 770)(299 792 458)(1)
�
1/2

�∆𝜈𝜈Cs 𝑐𝑐 𝑚𝑚𝒦𝒦
𝜇𝜇0

�
1/2

= 6.752 656 … × 10−13 �∆𝜈𝜈Cs 𝑐𝑐 𝑚𝑚𝒦𝒦
𝜇𝜇0

�
1/2

. 

 
In this adaptation of Ref. [2], mK is the sole defining quantity that is not some kind of constant. Rather, 

it is the mass of an artefact known as the International Prototype of the Kilogram, K, which has been used 
since 1889 to define one kilogram [2]. This artefact definition of the kilogram is simple, understandable, 
and independent of the six constants. Unfortunately, since the mass of K is not a physical constant, the 
stability over time of the unit it defines cannot be assured. The same lack of assurance affects, at least in 
principle, the three units for which mK is a “helper,” one of which is the ampere (see yellow cells in the 
column of Table 4 labeled “mK”). When the SI was first approved by the 11th CGPM in 1960, it was 
recognized that the artefact definition of the kilogram was a weakness of the International System of 
Units—to be remedied “sooner or later” [11]. 

The present definition of the kilogram [2] is contained entirely in the third bullet point of Appendix A. 
In symbols, 1 kg =  𝑚𝑚𝒦𝒦 . 

The revised definition of the kilogram [4] is given by Eq. (2),  
 
                                            1 kg =  1.475 521 3997 … × 1040  ∆𝜈𝜈Cs ℎ

𝑐𝑐2  . 
 

The value of the prefactor on the right side ensures that there will be no perceptible discontinuity in the 
kilogram unit when the redefinition comes into force [3], [4]. The continuity condition requires that the 
weighted mean of the most accurate experimental values of h has become fixed [3] so that, just after the 
redefinition comes into force on 20 May 2019,  

 
                                            𝑥𝑥 ∙ 𝑚𝑚𝒦𝒦 = 1.475 521 3997 … × 1040  ∆𝜈𝜈Cs ℎ

𝑐𝑐2  , 
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where the experimental value of x is unity to within a relative uncertainty that is sufficiently small  
(1 × 10-8 [3]) to make the redefinition imperceptible to the vast majority of users. (Subsequently, the 
experimental value of x might change simply because mK is not a physical constant. Time will tell.) The 
impact of the revised SI on most users of the present SI has been assessed to be small by international 
experts [12]. 
 
 
6. Appendix B: Derivation of Definitions of the Base Units in the Revised SI4  
 
6.1 Preliminary Consideration of the Defining Constants Specified in the Bullet Points of Section 1 
 

Let Ci be the symbol for the ith defining constant and let its fixed numerical value be Ni when expressed 
in the SI coherent unit Ui. Because Ci is one of seven defining constants, the index i runs from 1 to 7. The 
set of Ci is comprised of ∆νCs, c, h, e, k, NA, and Kcd. The subscript i assigned to the defining constants is an 
arbitrary choice. We have chosen here the order in which the bullet points are listed in Section 1.  

The ith bullet point of Section 1 can be written in generic symbols as 
 

                                                                          𝐶𝐶𝑖𝑖 = 𝑁𝑁𝑖𝑖 ∙ 𝑈𝑈𝑖𝑖 .                          (B1) 
 
The defining constants are quantities that appear in the equations of physics. The right side of Eq. (B1) 

is the exact value of each Ci in the revised SI because the numerical values Ni have been chosen to be exact. 
The bullet points of Section 1 therefore define the coherent unit Ui in terms of the quantity Ci, which is a 
constant of some type [4]. 

Any coherent unit of the SI can be expressed as the product of powers of the seven base units [2, 4]. 
We refer below to the ith base unit as Bi. The symbols for the seven base units are: s, m, kg, A, K, mol, and 
cd. Because units are commutative, the index i assigned to each base unit is also an arbitrary choice and 
need not follow the order shown here, although this is the order adopted in Sections 2 and 3 of this report 
and in Ref. [4]. Reference [2], for instance, adopts a different order. The SI unit Ui of each defining 
constant is given in terms of the base units by 

 
                                                                          𝑈𝑈𝑖𝑖 =  ∏ 𝐵𝐵𝑗𝑗

𝑎𝑎𝑖𝑖𝑖𝑖7
𝑗𝑗=1  .    (B2) 

 
The exponents aij are easily inferred from the seven bullet points in Section 1 and the supplementary 

information written just below them. The exponents turn out to be integers ranging from −2 through +3. 
Note that Eq. (B2) is merely a consequence of each defining constant being a quantity which has an SI unit.  

 
6.2 The Definitions of the Base Units 
 

Combining Eqs. (B1) and (B2) to eliminate Ui , we obtain 
 
                                                                           𝐶𝐶𝑖𝑖

𝑁𝑁𝑖𝑖
=  ∏ 𝐵𝐵𝑗𝑗

𝑎𝑎𝑖𝑖𝑖𝑖7
𝑗𝑗=1 .               (B3) 

 
The task now is to express any given base unit Bi as the product of powers of the seven ratios Cj /Nj . 

We therefore seek the “inverse form” of Eq. (B3).  
Temporarily treating the symbols of quantities and units as algebraic abstractions, we take the 

logarithm5 of both sides of Eq. (B3): 

                                                           
4 See Ref. [4] Section 2.3.1; comparison with the method presented in Sections 2 and 3 of this report. 
5 See Ref. [6] for a formal derivation that avoids the use of logarithms.   
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                                                                    ln �𝐶𝐶𝑖𝑖

𝑁𝑁𝑖𝑖
� =  ∑ 𝑎𝑎𝑖𝑖𝑖𝑖  ln�𝐵𝐵𝑗𝑗�7

𝑗𝑗=1  .       (B4) 

 
Let wi = ln(Ci/Ni) and zi = ln(Bi). The set of seven equations represented by Eq. (B4) can now be 

written compactly in matrix form as 
 

            W = A Z ,                 (B5) 
 
where W and Z are 1 × 7 arrays containing seven logarithmic elements of the form wi and zi respectively 
and A is the 7 × 7 matrix of exponents consisting of the elements aij. 

To solve for Z, multiply Eq. (B5) from the left by A−1:  
 

          Z = A−1 W .                 (B6) 
 
The existence of A−1 is obviously a necessary condition.  

Equation (B6) represents seven individual equations. We now exponentiate each of these to eliminate 
the logarithms they contain.  If the elements of A−1 are symbolized by dij, then the definition of the ith base 
unit is found to be: 

 

                                                            𝐵𝐵𝑖𝑖 = ∏ �
𝐶𝐶𝑗𝑗
𝑁𝑁𝑗𝑗
�
𝑑𝑑𝑖𝑖𝑖𝑖

7
𝑗𝑗=1  ,     (B7) 

 
which defines each base unit in terms of the defining constants and their fixed numerical values. The same 
procedure can be used to show that  
 
                                                                                𝐵𝐵𝑖𝑖 = ∏ 𝑈𝑈𝑗𝑗

𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗   

 
is the inverse form of Eq. (B2). The definitions of the base units given in Ref. [4] can be recognized as 
following from Eq. (B7) when it is written with separate factors for the terms containing the Nj and the Cj: 
 

𝐵𝐵𝑖𝑖 =  �∏ 𝑁𝑁𝑗𝑗
−𝑑𝑑𝑖𝑖𝑖𝑖7

𝑗𝑗=1 � �∏ 𝐶𝐶𝑗𝑗
𝑑𝑑𝑖𝑖𝑖𝑖7

𝑗𝑗=1 � . 
 
Equation (B7) can also be used to define the same base units in terms of the present SI when account is 
taken of the different set of seven bullet points, which are shown in Appendix A.  
 
6.3 Comparison with the Approach Taken in Sections 2 and 3 
 

Sections 2 and 3 take advantage of the simplicity of Eq. (B2). The information required for each Ui 
seems practically self-evident. Nevertheless, the set of equations contains all exponents aij that are needed 
to create matrix A. 

In Section 2, Table 1 is described as representing “much of the information” contained in the bullet 
points of Section 1. The information contained is that that the unit Ui of the ith defining constant Ci can be 
expressed in terms of the base units as sα mβ kgγ Aδ Kε molζ cdη, where the required exponents are inferred 
from the ith bullet point of Section 1 (and, when needed, the supplementary information given below the 
bullet points). Table 1 thus provides an example of how the information contained in Eq. (B2) can be 
displayed. The important point is that Table 1 contains A, and the cells of Table 1 contain the array of 
individual exponents aij for the chosen ordering of base units and defining constants. The ordering is 
arbitrary from a mathematical point of view and was therefore chosen in Section 2 for didactic reasons. 
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It is also true that the exact value of the ith defining constant Ci will be expressed in the revised SI in 
terms of the base units multiplied by an exact number. The SI value of each Ci in the revised SI will 
therefore be Ni sα mβ kgγ Aδ Kε molζ cdη, where the exact number Ni is stated in the ith bullet point of 
Section 1. Multiplication by a pure number does not affect the exponents. 

Table 2 is designed to present a useful picture of the revised SI. With that in mind, Section 3 refers to 
combinations of the defining constants that have the same SI unit as the ith base unit Bi. The ith row of Table 
2 is labeled with base unit Bi; the jth column of Table 2 is labeled with the defining constant Cj. The 
elements dij of the table were obtained by inverting matrix A, which is contained in Table 1. Table 2 can 
therefore be used to find the combination of defining constants that has Bi as its unit. The definition of each 
Bi can be obtained by changing the column labels from Cj to Cj/Nj thereby making Table 2 equivalent to 
Eq. (B7). However, a more intuitive method is adopted for the example presented in Section 3. 
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