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A general theory of stationary disclinations for a linearly elastic, infinitely extended, homogeneous
body is developed. Dislocation theory is extended in three different ways to include disclinations, i.e.,
from continuous distributions, discrete lines, and continuous distributions of infinitesimal loops. This
leads to three independent definitions of the disclination, which can be uniquely related to each other.
These interrelationships clarify Anthony and Mura’s approaches to disclination theory, which at first
appear to diverge from the present theory. Mura’s “plastic distortion”™ and “‘plastic rotation” are
identified as the dislocation and disclination loop densities. The elastic strain and bend-twist are
derived as closed integrals in terms of the defect densities, and shown to be state quantities. The
theory reduces to classical dislocation theory when the disclinations vanish. For every discrete dis-
clination line, it is always possible to find a “dislocation model,” which is a dislocation wall terminating
on the line that gives exactly the same elastic strain and stress.
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1. Introduction

This paper develops a general theory of stationary disclinations in a linearly elastic, infinitely
extended, homogeneous body.

Nabarro [1]' and Anthony [2] have already reviewed many of the geometrical aspects of dis-
crete disclinations. The author [3] and Anthony [2] have also treated the geometry of continuous
disclinations (i.e., continuous distributions of disclinations). We have a slight difference in inter-
pretation with Anthony over the meaning of the dislocation density tensor, and the continuity
equation for dislocations, in the presence of disclinations. This difference arises due to the essen-
tially independent definitions of continuous and discrete defects, and we believe this problem has
been resolved in the present paper. Furthermore, Anthony [2] has treated the statics of a wedge
disclination in isotropic couple-stress theory, and also given a nonlinear formulation of the geometry
of continuous disclinations.

The development of the theory we present owes much to Mura [4]. He has developed an anisot-
ropic theory of discrete disclinations and generalized this to continuous distributions. He does
not try to distinguish between geometry and statics. Mura introduced the concepts of “plastic
distortion,” B*, and “plastic rotation,” ¢*, which we [3] claimed could not be defined when dis-
clinations are present. However, these concepts can be incorporated into the general theory with
a slight modification in interpretation: They can logically be regarded as the dislocation and
disclination loop density tensors. Then these quantities, which have a clear definition for discrete
defects, retain their physical significance when the theory is generalized to continuous distribu-
tions. In this sense the dislocation loop theory of Kroupa [5] is then extended to disclinations.

Mura also introduces an “‘elastic distortion’ in the presence of disclinations. The physical
significance of this quantity still has to be assessed, because it turns out not to be a state quantity,
contrary to all previously defined elastic fields. By definition a state quantity is a continuously
varying quantity which can be measured (in principle) by macroscopic experiments without any
knowledge of the former states of the body. While for dislocations the elastic distortion is a state
quantity, we find that with disclinations the elastic strain and bend-twist are the relevant state
quantities. All of Mura’s results [4] have been incorporated in the present paper.

There are several ways in which we can divide the theory of disclinations for the purpose of
presentation. To clarify the logical structure of this paper we discuss them next, followed by an
outline of the paper.

1.1. Dislocations Versus Disclinations

We can juxtapose the two types of defects. We first discuss the known results for dislocations
to emphasize the new results that follow when disclinations are introduced. In this sense what has
been called “theory of disclinations” in the literature is really a combined theory of disclinations
and dislocations. For this reason, we shall use the term defects in this paper to denote the combi-

! Figures in brackets indicate the literature references at the end of this paper.
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nation of both disclinations and dislocations.? In this terminology, then, this paper deals with
continuous and discrete “defects” in anisotropic elasticity.
“Defect theory” is an extension of dislocation theory and reduces to it when the disclinations

vanish. Although it is possible to have a pure “dislocation theory,” it is not possible to have a
“disclination theory” without dislocations. Nevertheless we left the word “disclination” in the title

of this paper to emphasize that what is new is due to the introduction of disclinations.
1.2 Continuous Defects Versus Discrete Defect Lines Versus Defect Loop Densities

There are three essentially different ways to define defects:

The geometrical theory of continuous (distributions of) defects can be formulated by examining
the consequences of violating the classical compatibility conditions [3]. In view of this a body
with continuous defects is also called an incompatible body, whereas a defect-free body is called
compatible.

On the other hand, Weingarten’s theorem [3, 6] is the point of departure for the theory of dis-
crete defect lines. This theorem provides the two characteristic constants associated with the
discrete defect: The general Burgers vector, which reduces to the classical Burgers vector for a
discrete dislocation, and the characteristic rotation vector of the discrete disclination. Like the
Burgers vector for dislocations, the characteristic rotation vector plays just as important a role
for disclinations. We have therefore ventured to call it the Frank vector, in honor of F. C. Frank,
who coined the word ““disclination.’’3

A third way to formulate defect theory is in terms of (a continuous distribution of infinitesimal)
defect loop densities. This could be regarded as the simplest approach, because in general the
loop densities can be arbitrarily prescribed. Furthermore any given defect can be built up from
some loop distribution.

In relating the three concepts in the above three paragraphs complications arise. For dislo-
cations there is a straightforward correlation between the dislocation density, the Burgers vector,
and the dislocation loop density. When disclinations are introduced there is an analogous corre-
lation between the disclination density tensor, the Frank vector, and the disclination loop density.
However, it is found that there is no unique correlation between the dislocations defined in the
three formulations, but that they get mixed with the disclinations. This is basically the source of
our differences with Anthony (continuous versus discrete) and Mura (lines versus loops).

1.3. Geometry Versus Statics

These are the stationary equivalents of kinematics versus dynamics, a distinction made in
almost all other fields of science.

The relations described under geometry headings simply result from the properties of Euclidean
space and are independent of the properties of the body. The distinction between plastic and elastic
under this heading is therefore arbitrary, but it acquires physical significance under statics. In
every case, the results given under geometry in this paper are valid for a linearly elastic, homo-
geneous body, finite or infinite.

Under the statics headings the elastic quantities from geometry are related to the properties

2 This usage would seem to ignore the possibility of point defects. However, they can be represented in this theory by discrete defect loop densities. This will be
illustrated by an example elsewhere [24].

3 A historical remark is appropriate here: After Weingarten [6] published his theorem, Volterra [7] recognized its implications for the discrete defects, which
he called “distortions.”” This would then at first seem like the best word to use for disclinations and dislocations combined. Kriner [8] did refer to them as “Volterra
distortions,” but he subsequently used the term “distortion” for the gradient of the displacement, a usage which has now become widely accepted. Meanwhile Love
[9] ventured to call them “dislocations.” This name has stuck, but since the translational type defect played the more important role in plasticity, the name “dis-
location” gradually became more and more associated with this type of defect. It then became necessary to distinguish between translational and rotational dis-
locations, or, referring back to Volterra, between dislocations of the first, second, and third order, and dislocations of the fourth, fifth, and sixth order. Therefore,
Frank [10] coined the term “‘disinclinations” for the latter. He subsequently modified it to “disclinations.” Now the names “dislocations™ and “disclinations™ are
becoming well-established in the literature, but so far no suitable term has been introduced to describe the combination of both of them, which we have simply called
“defects.” For additional information see Nabarro [3], pp. 17-20. We also add a remark on the nomenclature: In the present linear theory the rotation is traditionally
represented by a vector, and successive rotations commute, in accordance with the usual vector addition rules. When the theory is extended to the nonlinear range
the rotations can be finite and may no longer commute. In this case the rotation can still be represented by a vector (sometimes called versor), which obeys a more
general addition rule. See section 5.1.
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of the body. We confine ourselves to linear elasticity, i.e., Hooke’s law, and a homogeneous body.
Furthermore the specific results in this paper are limited by boundary conditions. These are that
the body is infinitely extended and that the displacement and strain fields vanish at infinity faster
than r—1 and r—2, respectively.

1.4. Outline of Paper

In section 2 we derive a general solution of the plastic strain problem, which can be posed
without specifying the nature of the defects involved. This problem is a generalization of Eshelby’s
“transformation problem” [11]. The result forms the basis for all subsequent applications to statics.
In the derivation the general boundary conditions are introduced. Also the useful Green’s tensor
is defined. We show how Eshelby’s method of solution can be generalized. Finally we show that
a compatible plastic strain gives no elastic fields.

In section 3 we review classical dislocation theory to set the stage for the following sections.

In section 4 we derive the fields for a continuous distribution of defects. The geometry for this
case has already been treated [3] and equations quoted from this reference are denoted by (I1),
(I2), etc. In this section the useful incompatibility source tensor of Simmons and Bullough [12] is
used to find the elastic strain and show that it is a state quantity.

Section 5 treats the discrete defect line. Weingarten’s theorem is used to motivate the defini-
tion. Then the appropriate plastic strain and bend-twist are found, which are logically expressed
in terms of Mura’s B* and ¢*. The dislocation density tensor is found to depend on the Frank
vector, an example of the mixing referred to above. The static results are derived.

Section 6 shows the formulation in terms of a continuous distribution of infinitesimal defect
loops. Here we identify B* and ¢*, introduced for the discrete defect, with the dislocation and
disclination loop density tensors. Hence this gives meaning to them in Mura’s generalization to
continuous distributions. As another example of mixing we find that the dislocation density depends
on the disclination loop density.

In section 7 we derive some results for the discrete dipole line, and show how they are related
to the dislocation dipole.

Section 8 shows that the general results of sections 4—6 reduce to those of section 3 when no
disclinations are present.

Section 9 examines more closely the meaning of B8* introduced for a discrete defect loop.
Without ¢*, it is shown to represent a terminating dislocation wall, i.e., a constant dislocation
density on a surface terminating at the discrete dislocation line. This has been called the “dis-
location model” of the discrete defect line. The elastic fields are derived.

Section 10 examines the meaning of ¢ * for a discrete loop. Without 8%, it is shown to represent
a compensated disclination loop, i.e., a surface with a constant dislocation density (opposite to that
of sec. 9) terminating at a discrete disclination loop. The elastic fields of this defect vanish.

In an appendix we develop a special notation to deal with delta functions on curves and
surfaces. This notation is very convenient and simplifies the equations that occur when we treat
discrete defects.

Throughout the development of this paper we find that many concepts or quantities from dis-
location theory generalize into pairs in defect theory. For example, dislocations generalize to defects,
consisting of disclinations and dislocations, or the Burgers vector generalizes to the characteristic
vectors, consisting of the Frank vector and the total Burgers vector. We have found it useful to
introduce the new concept of “basic fields,” consisting of the strain and bend-twist. Then the dis-
tortion in dislocation theory generalizes to the basic fields in defect theory. The nomenclature that
has developed is summarized in tables 1 and 2.

This paper basically addresses itself to solving boundary value problems. The important sub-
ject of the forces on and the energy of the defects introduces additional complications. It is there-
fore omitted and will be treated elsewhere.

Neither shall we treat applications to special problems in the present paper. These will also be
left for future publications [25, 26].
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2. General Solution of the Plastic Strain Problem
2.1. Statement of the Problem

In this section we give a formal solution of the following problem, which can be posed without
specifying the nature of the defects involved: given an infinitely extended homogeneous anisotropic
body with the plastic strain e,{_'l given as a prescribed function of space. To find the resulting total
displacement u”, throughout the body.

This problem is a generalization of Eshelby’s [11] “transformation problem” to an anisotropic
medium and an inhomogeneous stress free strain. We remark here that the concept of “stress free
strain” is identical to that of plastic strain.

The statement of this problem can be rephrased in a manner that is almost identical to that of
the classical problem of elasticity, i.e., in terms of the equation of equilibrium, Hooke’s law,
and the definition of strain. Using this approach we shall derive the solution to both problems
simultaneously.

The equation of equilibrium for the stress oj is:*

agij,it+ =0, (i, j=1, 2, 3), (2.1)

where f; is the body force per unit volume. Here we have used the Einstein summation convention,
and the subscripted comma followed by the index i indicates partial differentiation: dor;j/dx;.
The stress is related to the elastic strain exi by Hooke’s law:

oij=Cijriexi, (2.2)

where the Ciji; are the anisotropic elastic constants. Since o; and e,; are symmetric it follows
that »

Cijii=Cjixi=Ciju. (2.3)

The total strain @l

is defined by ¢

el = u(TI_k). (2.4)

In general the total deformation is not completely elastic, but part of it is stress free or plastic, so
that

P = P
e = entt ey (2.5)
The above relations are conveniently combined into the expression
Tl = Cii1el
Cijr] .+ fi= Cijriegy ;.

This is the set of partial differential equations we wish to solve for u] when f; and e}/, are given.
2.2. Definition and Application of Green’s Tensor

To integrate the eq (2.6) it is useful to introduce Green’s tensor function Gj,(r), which repre-
sents the displacement in the x; direction at the field point r arising from a point force in the x,
direction at the origin. Thus Gj, for an infinitely extended body is defined by

4+ Cartesian coordinates are used for simplicity.

5 If an elastic strain energy function exists, we also have the symmetry condition Cjx; = Ckuj, but we do not need this relation in the present paper.

% We define the symmetric part of a tensor Ti; by T(ij,=1/2 (Ti;+Tj). When T}; is a complicated expression involving many other subscripts we shall also write
equivalently (Tij)j).

53



CijiGin, ir(r) +8,8(r) =0 2.7

together with boundary condition that Gj, vanish at infinity.? Here &, is the Kronecker delta and
8(r) is the three-dimensional Dirac delta function. The latter is defined in appendix B, where we
also show that it is homogeneous of degree (—3) in r. Therefore it follows from (2.7) and the
boundary conditions that Gj, (r) is homogeneous of degree (—1), i.e., Gj,(r) varies as r—'.

We can now derive the solution of (2.6) in terms of Green’s tensor. Writing for the relative
radius vector

R=r—r (2.8)

we have by (B3) and (2.7)

u:(r)=f dmd(R)u]l (x")dV’
=—f Cijklcjn,ik(R)u,T(r’)dV,a (2.9)

where the integrations are taken over all space. Now, for any tensor 7(R), which is a function of
R only, it follows from (2.8) that

Ti(R)=—T(R) =—0aT/ox; (2.10)

Therefore we can also write (2.9) as follows 8

() == [ ContGin (RYuT (). (2.11)

By the divergence theorem, (A1) in appendix A, this relation can be transformed into

u’(r) =—§ CijiGin, v (R)uT (") dS;, +§ CijiiGjn(R)u] , (r") dS; _f CiwGin(R)u] ., (x)adV",
(2.12)

where the surface integrals are taken at infinity. This step is usually called partial integration.
The above relations hold only if the integrals converge.
We now assume the following boundary condition: The total displacement u7(r) = 0 as r—

«, Then ul, (r) will approach zero faster than r—! as r— «. Hence in view of the behavior of Gjy,
the integrands of the surface integrals in (2.12) will approach zero faster than (r')-2 as r' — o,

and so these integrals will vanish. With this condition we also see that the volume integrals in
(2.9), (2.11), and (2.12) converge. Thus we have by (2.6)

Wi (r) = f Gin(R) [fi(r') — Cijneet, ,(x')]dV"- (2.13)

2.3. Solution of Classical Elasticity Problem

In classical elasticity, which we also call compatible theory, there is no plasticity, e/ =0,
and therefore (2.13) reduces to

W (r) = f Cin(R) f5(r')dV". 2.14)

7If Cijxi= Ciij, we also have the symmetry relation Gj, = G,; for an infinitely extended body, but we do not need this relation in the present paper.
8In (2,11) the Einstein summation convention also applies between the primed and unprimed indices.
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This is the well-known classical solution, which is almost obvious if we remember the meaning of
Green’s tensor. In view of (2.6) and the boundary condition on ], it is necessary to assume the
following condition: The prescribed body force f;(r) must approach zero faster than r—2 as r— o,
This requirement also insures that the integrand of (2.14) approaches zero faster than (r')=3 as
r'— o, so that the integral is finite.

2.4. Solution of the Plastic Strain Problem

In the present problem, which we also call incompatible theory, there is plasticity, but no
body force, f;j=0, and therefore (2.13) reduces to

ul (v) = fc,,k,q,,(n) er L (x))dV'

=_fCijklcjn.i(R)e,{.),(r’)dV, (2.15)

by another partial integration and (2.10). Again we have taken the surface integral to vanish in
the partial integration, and for this it is sufficient to assume the following condition: The pre-
scribed plastic strain ef (r) must approach zero faster than r-!' as r— . This requirement is
consistent with the boundary condition on «[ in view of (2.6). Furthermore, the integrand of (2.15)
will then approach zero faster than (r')-3 as r' — ®, so that the integral is finite.

Equation (2.15) applies to any defect which can be described by the given plastic strain. It
forms the basis for all subsequent applications to statics, where the same boundary condition on
wr and the condition on p:d must he satisfied. A similar result was derived by Mura [13], for a time-
dependent plastic deformation. The above derivation emphasizes that it is only necessary to know
the plastic strain (and not the plastic distortion), and it gives the condition it has to satisfy, as well
as the boundary condition on the displacement, to find the solution for an infinitely extended body.

In the subsequent developments the results under geometry will hold regardless of the behavior
at infinity, but those under statics are subject to the boundary conditions stated here because of the
partial integrations involved.

2.5. Eshelby’s Method

Physical science abounds with so-called ““tricks’ used to overcome mathematical difficulties.
During the development of the mathematical theory of dislocations, Eshelby’s bag of tricks has been
remarkable. We wish to show how one of his recipes can be generalized to obtain (2.15).

He calculates the displacement for his transformation problem with the help of a sequence of
imaginary cutting, straining and welding operations [11]. He does this so that he can introduce a
fictitious body force simultaneously with the transformed inclusion such that there is no displace-
ment. Then, he removes the body force and finds the resulting displacement from the classical
expression.

To generalize this approach to our case it is presumably necessary to conceive of a continuous
distribution of cutting, straining and welding operations. It is not important whether or not this can
be imagined, because the formal steps are the same as in Eshelby’s recipe. With the plastic strain

el, we introduce a fictitious body force given by

fi=Cijwi e, . (2.16)
Then (2.13) shows that there is no displacement Next, we remove this body force by applying an
equal but opposite body force —fj= — Cijxi ep, ; to the body. From (2.14) this leads to the displace-
ment

ul (r)= —fcijkl Gin(R) e, ,(r') dV’
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in agreement with (2.15). So the moral of Eshelby’s method is that a defect described by the plastic

strain e? can be simulated by the fictitious body force given by — Cjj e .
2.6 Compatible Plastic Strain

There is an interesting consequence of (2.15) if the plastic strain is derivable from a plastic
displacement

G (2.17)
This will be called a compatible plastic strain. Then we have
@) == [ ot Gy (R ut (x7) V"
_ _f Cit Cin, i (R) u? (¢') V'
= [ons®) ure) av
= ub (r). (2.18)

Here the second equality follows by a partial integration, and the third by (2.7). It follows therefore
that when the plastic strain is compatible, the elastic displacement vanishes:

up=ul—ul=0. (2.19)
Hence, in this case all elastic fields vanish.

3. Review of Dislocation Theory
3.1. Continuous Distribution of Dislocations

3.1.1. Geometry

If in addition to the plastic strain e}, the plastic rotation wé’

identify the defects as dislocations. In this case we can say that the plastic distortion (I5.1)?

is also prescribed, then we can

B = ekt €qwy (3.1)

is prescribed arbitrarily as a function of space, where €, is the permutation symbol. Here eZ, is
the symmetric part of 8%,

€= By (3.2)
and the second term in (3.1) is the antisymmetric part of 8%, or
0 =1/2 exqBl; . (3.3)
The dislocation density is defined by (I5.2)

Qpl = — €pmk BII;-)I, m> (34‘)
or, equivalently,

€pmpl = By, k. — B, m- (3.5)

9 The symbol (I5.1) refers to eq (5.1) in reference [3].
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This definition implies we are using sign convention A, or FS/RH [14]. The continuity condition for
dislocations (I5.4)

ap,p=10 (3.6)

follows directly from (3.4). It implies that dislocations can not end inside the body.
We define a Burgers circuit as any closed curve X inside the body (fig. 1). The Burgers vector

Defect
Surface S

Burgers
Circuit
A

Burgers
Surface
(o

FIGURE 1. Geometry of the discrete defect line L, its defect surface S, a Burgers circuit X, and its
Burgers surface o.

The surfaces S and o are arbitrary and curved, subject only to the condition that they terminate on L and \. The intersection of L with o
is labeled r'” and A crosses S at rS*. These are positive crossings by the right-hand rule.

associated with X is defined by he closed line integral

= ﬁ grdLy. (3.7

This relation can be interpreted as follows: Starting with a perfect crystal we can imagine that the
plastic deformation is produced by letting dislocations migrate into the crystal. A number of
dislocations cut through A, producing relative displacements — B2 dL; in the lattice at the curve.
By adding these contributions we measure the resultant Burgers vector of all the dislocations that
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remain stuck through the surface o bounded by A. From (3.4) and Stokes’ theorem (A2) we can also
write

bl:f apldSp. (3.8)

This relation shows that the dislocation density «;: represents the flux of dislocation (or Burgers
vector) in the x; direction that crosses unit area of a plane normal to the x, direction.

The existence of the plastic distortion implies the existence of the elastic distortion (I2.1 and
15.5)

an = uf,mle"l”_*_'Bfr)m' (39)

Since the existence of plastic distortion implies there are no disclinations, this relation holds only if
there are no disclinations present. This relation also allows us to draw the following conclusions
from the definitions (3.4) and (3.7)

€Epmk Bk!, m= Qpl, (310)
f Bri dLi= by (3.11)
A

These relations are called the basic geometric laws or field equations for a;; and b,.
Other quantities, which we shall find useful later, are the plastic bend-twist (I5.16)

Kh, =wf = 1/2 €1 BY, 5 (3.12)

kq

where the last equality follows from (3.3), the elastic strain

emn= B(mn), (3.13)
and the elastic bend-twist (I5.18)
Kst = ¢, s= 1/2 €mn Bmn, s- (3.14)
3.1.2. Statics

From (3.2) and (2.3) we find that the displacement (2.15) becomes

= f CisiCin, «(R) BE,(x') V", (3.15)

where Bf,(r) must satisfy the condition that it approaches zero faster than r—! as r— . From this
relation we find the total distortion

uy (1) =_fcijklcjn, im(R) B, (x") dV’
="f CijkiGjn, i(R) BEy e (") dV”
= [Cijk‘[cjn, i((R) [epmrop(x') — gL, . (x")] dV’

= f epmiCisiCin. i(R) ap(x') dV' + BE. (v). (3.16)
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Here the first equality follows simply by differentiating under the integral sign, where Green’s
tensor is the only function depending on r, the second equality by a partial integration, the third
from (3.5), and the fourth by a partial integration, (2.7) and (B3). From (3.9) we obtain the elastic
distortion

Bumn(r) =f €pmiCijriGin, i(R) api (") dV'. (3.17)

This is Mura’s half of the Mura-Willis formula [12, 13, 15]. Willis” half would be included if (2.14)
had also been included in the derivation. We note that from the above condition on g%, and (3.4)
that ay(r) must vanish faster than r—2 as r— . However, for the integral (3.17) to exist it is only
necessary that a;;(r) vanish faster than r—! as r— o,

Here we note that «,, is a state quaniity because it can be measured in the present state of the
body, (e.g., by electron microscopy or x rays). Therefore (3.17) shows that B, is also a state quantity,
because it is expressed entirely in terms of az. On the other hand, for example, B may not be a
state quantity, because one may not be able to measure it without knowledge of the former states

of the body.
3.2. The Discrete Dislocation Line
3.2.1. Geometry

The discrete dislocation line L is defined as the boundary of a surface S, where the material
below S has been plastically displaced with respect to the material above S by an amount given by
the constant Burgers vector b; (fig. 1).

Hence, the difference between the displacement just below and above S is given by

[wi(r)] = by. (3.18)

Our problem now is to find the corresponding plastic distortion. The following is a straightforward
procedure we have developed to find it. Assume first that S is closed, enclosing the volume V. Then

by (B7)
ul(r)=8(V) b (3.19)

represents a displacement that is equal to b; inside } and has the jump (3.18) at the surface S. The
corresponding distortion is by (3.9)

Bl (r)=uj ,(r)

= 8, ;\(V) 1)1
=—58,(S) b, (3.20)

where we have used the divergence theorem (B24). Here S is the closed boundary of V. We see that
the distortion is concentrated at the surface S. Since this deformation is just a rigid translation of
part of the body, there is no elastic distortion, and therefore the above distortion is all plastic. We
now simply generalize this expression to the open surface S of the dislocation loop:

The Burgers vector for continuous distributions of dislocations was defined in (3.7). We want
to show that this definition agrees with the constant b; introduced above. If X is any closed curve
that encircles L in the positive sense (fig. 1), it will cross S positively at some point r*. Therefore
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—f B;’,de=§8k(S)b,de=b, (3.22)
A A

by (3.21) and (B15).
Now we find the dislocation density from (3.4) and Stokes’ theorem (B26)

apl(r) = €pmk Ok, m(S) b
= 8,(L) by, (3.23)

where L is the closed boundary of S, i.e., the dislocation line. The vector 8,(L) is the Dirac delta
function on the curve L and it is always parallel to L. A discrete dislocation line is called screw or
edge when the Burgers vector is parallel or normal to the line, respectively. Therefore (3.23) shows
that the diagonal and off-diagonal components of a;; represent the screw and edge component of the
dislocation density, respectively (see table 1). Equation (3.23) shows how to make the transition

TABLE 1. Definition of various defect quantities

Dislocation Name of component
Quantity
Disclination Diagonal Off-diagonal
Density tensor for continuous dis- a screw edge
tribution of defects. 0 wedge twist
Density tensor for continuous dis- Y or B* prismatic slip
tribution of infinitesimal defect §ord* twist wedge
loops.

from a continuous distribution of dislocations to a discrete dislocation line. We note that it satisfies
the continuity condition (3.6)

apt, p(r) =8y, (L) =0, (3.24)

by (B28). As a cross-check we also show that (3.8) is satisfied by (3.23) (fig. 1)

f ay dS,,~——fS,,(I,) bidS, = by, (3.25)

where we have used (B15) again. This last relation remains valid for many dislocation lines, and
therefore can be used to show how to make the transition from discrete dislocation lines to a con-
tinuous distribution of dislocations: For many dislocation lines the average dislocation density
ay represents the x; component of the sum of the Burgers vectors of all the dislocation lines that
intersect unit area of a plane normal to the x, direction. For another interpretation of a, consider
the result

f ap(r) (1V=f Sp(L) by dV
.
=b1]8p(L) S(V) dV
=b,3§ 5 (V) dL,
L
=b dL,. (3.26)

L(V)
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Here the first equality follows from (3.23), the second from (B7), the third from (B11), and the fourth
from (B7), where L(V) is the part of the curve L inside V' only. From this expression we see that
the average dislocation density «y also represents the sum of the x;, component of the Burgers
vectors times the projected line length in the x), direction of all the dislocation lines per unit volume.
The equivalence of the above two interpretations of the average dislocation density can also be
shown by the methods of quantitative stereology [16].

We wish to point out here that there is also another type of dislocation density in wide use,
primarily by experimentalists. This is the total dislocation line length per unit volume, usually
designated by p:

ﬁ p(r) dV= dL. (3.27)

L)
It is easy to show that
p(r)=tyd,(L), (3.28)

where t, is the unit tangent to the dislocation line. Hence the relation between the two different
dislocation densities is

sz = t[)a[)lbl (329)

from (3.23).

3.2.2. Statics

Now we substitute (3.21) into (3.15) to find the displacement of a discrete dislocation line.
u? (r) zfcijklcjzz, i(R) 8,(S") buaV’
=f CiixiGjn, i(R) bdS,,, (3.30)
s

using (B12). This equation allows us to estimate the asymptotic behavior of the displacement at
large distances from a small dislocation loop. It is simply the same as the asymptotic behavior
of the integrand. Since Green’s tensor Gja(r) varies as r™!, we see that u’(r) will vary as r™* as
r— o, Since the strain emn(r) varies as the derivative of the displacement, it will go as r* as
r— o, These results are listed in table 3. A more accurate calculation of the asymptotic displace-
ment from a small loop can also be made from (3.30) by expanding Green’s tensor as a Taylor
series in r’ for a few terms and integrating over S. If this result is specialized to isotropy, we find
the same relations as were given by Kroupa [17]. The details will be shown in a future publication
[26].
We now find the total distortion from (3.30)

uz, m(l‘) =L C,'jk,Cj,,, im(R) b1d32 (331)
=ﬁ.€pml\-cijklcjn,i(ﬂ) bdL, +f CiixiGjn, i(R) bdS,,
. s
=5§ epmsCiiGom, i(R) bidL, + BE (x).
L

Here the first equality follows by simply differentiating under the integral sign, where Green’s
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tensor is the only function depending on r, the second equality follows from Stokes’ theorem (A4),
and the third from (2.7), (B5), and (3.21). From (3.9) we then obtain the elastic distortion

Bmn (r) =£ €omCiiiGin, i (R) bidLy, (3.32)

This relation can of course also be obtained directly from (3.17), (3.23), and (B11). A similar result
was derived by Mura [13] for a moving dislocation line.

We see that the state quantity Bm. can be written as a line integral along the discrete disloca-
tion, i.e., it is expressed entirely in terms of an integral over the only regions of the body where the
defect is localized. In general, we suggest that for a defect which is a state quantity, the necessary
and sufficient condition for an associated field quantity to be a state quantity is that it can be written
as an integral over the defect. For a line defect this means that the state quantity must be a line
integral along the defect.

Equation (3.32) also allows us to estimate the asymptotic behavior of the distortion, and hence
the strain, at large distances from a straight dislocation line. Due to the integration it is simply the
same as that of Green’s tensor, i.e., Bmn(r) and ema(r) vary as r=! as r = %, Since the displacement
u” is an integral of the distortion, it will vary as In r as r — . These well-known results are also

listed in table 3.

3.3. Continuous Distribution of Infinitesimal Dislocation Loops

In section 3.1 the dislocation density and the Burgers vector were defined by (3.4) and (3.7) in
terms of the given plastic distortion. A consequence of these definitions is (3.8), relating the Burgers
vector to the dislocation density. This equation could alternatively be used to define the dislocation
density in terms of the Burgers vector, if this quantity is prescribed in a suitable manner. It is con-
venient to put this relation into differential form. When the dislocations are continuously distributed
the density tensor is defined locally by

— o0
B ASI,-

apl

(3.33)

As we noted above, for a distribution of discrete dislocations this represents the average dislocation
density, where Ab; is the /th component of the resulting Burgers vectors of all the dislocations
which pierce througn a surface element AS,, oriented normal to the x,, direction at the given point.

In a similar way Kroupa [5] introduced the dislocation loop density tensor. He defined it as
follows: i represents the flux of dislocation (or Burgers vector) in the x; direction that encloses a
unit vector in the x; direction. When the loops are continuously distributed the density tensor yx,
is a function of the position and is defined locally by

Ab;
Vil = AL, (3.34)
Again, for a distribution of discrete loops this represents the average dislocation loop density,
where now Ab; is the /th component of the resulting Burgers vectors of all the loops which are
pierced by the line element AL, oriented in the x; direction at the given point.
To find the relation between the dislocation loop density and the plastic distortion, we first
convert (3.34) to integral form

= ﬁ'Yklde- (3.35)

Now we compare this relation to the definition (3.7). The integrands can only differ by a gradient
with respect to xx. Therefore we can set
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Biy ==Y+ up (3.36)

where u! is an arbitrary vector field. This relation identifies the plastic distortion for a continuous

distribution of dislocation loops. With it we can find all the relations derived in section 3.1 in terms
of loops. For example, (3.4) leads to

Apt = €pmk Yki, m- (3.37)

This is the fundamental relation between the dislocation loop density and the corresponding dis-
location density. Since a plastic displacement does not contribute to the elastic fields, (c.f. sec. 2.6),
we can set ul’ =0, without loss of generality and so we can use

Br = — Vit (3.38)

for the purpose of calculating the fields of a continuous distribution of dislocation loops. This agrees
with Kroupa’s identification. Hence we can identity the plastic distortion with the dislocation loop
density, except for a minus sign.

We now also can give an interpretation of (3.21) in terms of infinitesimal loops. To construct
a discrete dislocation line L, we distribute a constant density of infinitesimal dislocation loops of
strength b; over any surface S, whose boundary is L. This method could be taken as an alternative
to the definition of the discrete dislocation line given at the beginning of section 3.2. So we conclude
that for a finite dislocation loop the loop density is given by

Yo () =0k (S) b, (3.39)

where S is a surface that spans the dislocation line. The vector 8, (S) is the Dirac delta function on
the surface S and it is always normal to S. In a plane we have a prismatic or a slip loop according
to whether the Burgers vector is normal or parallel to S, respectively. Therefore (3.39) shows that
the diagonal and off-diagonal components of y, represent the prismatic and slip components of
the dislocation loop density, respectively (see table 1). Equation (3.39) shows how to make the transi-
tion from a continuous distribution of infinitesimal loops to a finite loop. By (B15) we see that it
satisfies (3.35), which also remains valid for many finite loops, and therefore can be used for the
transition from finite loops to a continuous distribution: For many finite dislocation loops the average
dislocation loop density yx; represents the x; component of the sum of the Burgers vectors of all the
loops whose surfaces are intersected by a unit vector in the x; direction. For another interpretation
of i consider the result

[ty ar=[ u(s) buav

=bzf6k(S) (V) dv

=b,L8(V) dSy

. ,Lm e (3.40)

Here the first equality follows from (3.39), the second from (B7), the third from (B12), and the fourth
from (B7), where S (V) is the part of the surface S inside ¥ only. From this expression we see that
the average dislocation loop density vy, also represents the sum of the x; component of the Burgers
vectors times the projected area on a plane normal to the x; direction of all the dislocation loops
per unit volume. The equivalence of the above two interpretations of the average dislocation loop
density can also be shown by the methods of quantitative stereology [16].
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3.4. The Dislocation Dipole

Kroupa [18] has also treated the fields of a dislocation dipole, i.e., a close pair of dislocations
with opposite Burgers vectors. In this section we wish to present some general formulas for such a
defect.

3.4.1. General Definition of a Dipole

We first give a very general definition of the dipole conjugate to any defect, following a similar
line of reasoning as Kroupa used. The dipole is composed of two parts: the first is obtained from the
basic defect by translating it through a small distance, and the second is the negative of the basic
defect at its original position. To give this concept a mathematical formulation, let the basic defect
be given as a function of position r by the source function S(r). For example, this could be e,
of section 2, or ay; of section 3.1. If this defect is rigidly translated through a distance &, the scurce
function of the new defect configuration becomes S(r — £). Hence the source function of the
conjugate dipole is given by

SP(r)=S(r—§ —S(r). (3.41)

This result applies to a finite dipole.

For a discrete defect concentrated on a point, line, or surface, it is customary to deal with the
infinitesimal dipole. It is obtained by letting & approach zero and the strength of the basic defect
approach infinity in such a way that the field of the dipole remains finite. If £is infinitesimal, we can
use Taylor’s expansion to write (3.41) as follows:

SP(r)=—¢&S,i(r). (3.42)

We see that our definition has the opposite sign from Kroupa’s, but it agrees with the convention in
electrodynamics. We shall now show that a similar relation holds between the fields of a defect and
its conjugate dipole. Let the field of the basic defect be given by the generic expression:

f(r)=JG(R)S(r’)dV’, (3.43)

where G(R) is some kernel of integration. For example, (2.15) and (3.17) have this form. The corre-
sponding field of the conjugate dipole is

fD(r)=fG(R)S"(r')dV’
=—§JG(R)S,,-:(r’)dV’
=—§if0,i(R)S(r’)dV’

=—E&ifu(r). (3.44)

Here the second equality follows from (3.42), the third by a partial integration, and the fourth from
(3.43).

Equations (3.42) and (3.44) are the fundamental relations between functions of the basic defect
and the corresponding function of its conjugate dipole. The basic defect here is arbitrary. It could
for example be a dipole itself; in this case we obtain the dipole of a dipole, or a quadrupole. In this
way all higher order multipoles are defined.
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3.4.2. Application to the Discrete Dislocation Dipole

We now apply the above results to the case of a discrete dislocation line, figure 2. For example,
the basic equation for the dislocation density is given by (3.23). Therefore the dislocation density

FIGURE 2. The discrete defect dipole line conjugate to the basic defect line of figure 1.

This figure shows the finite case. For the infinitesimai case ¢ — 0.

of the conjugate dislocation dipole is by (3.42):
(Xgl (I‘) == fmapl. m(l')
(3.45)
= 81». m(L) blf:n-

With this explicit expression we can clarify the meaning of the infinitesimal displacement &,: We
leg £, — 0 and b, — < in such a way that b,£,, remains constant.
Next we find the displacement field of a dislocation dipole from (3.44)

u{l) (r)=— f"’uz;. m (r)

=S '—é €1nnkCijk[Cjn, 1(R) blfnldL[’; Ar Sm (S) bnfm, (346)
L

where we have used (3.31) and (3.21). It is interesting to note that the last term in (3.46) can be made
to vanish by choosing S to lie along &, or £,dS; =0, i.e., by letting S be an infinitesimal strip con-
necting the basic dislocation to its displaced partner. As a consequence we see that the displace-
ment of a dislocation dipole is a state quantity.

From (3.46) other static quantities can be derived, such as the distortion 85,. The same result
can alternatively be obtained by substituting (3.45) into (3.17).

Equation (3.46) also allows us to estimate the asymptotic behavior of the displacement at large
distances from a straight dislocation dipole line. By comparison with (3.32) it is the same as that
of the distortion of a straight dislocation line, i.e., it varies as r! as r— o. Hence the strain will
vary as r—2 as r—> %, These results are also listed in table 3. We note from the table that the disloca-
tion dipole can be classified as a defect with properties between those of the dislocation line and the
dislocation loop.
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Sometimes a narrow elongated dislocation loop is regarded as a dipole. This is not possible
with our definition, since the two components of our dipole must be disjoint. However, two parallel,
infinite, straight dislocations with opposite Burgers vectors are included in our definition of a dipole.
This dipole resembles an elongated loop. By contrast, it is possible to regard a dislocation dipole
as a special type of loop.

4. Continuous Distribution of Defects

As discussed in section 1.1, we shall denote the combination of dislocations and disclinations
by the word defects, see table 2.

TABLE 2. Generalization from dislocation theory to defect theory

Quantity Dislocation theory Defect theory

Defect density tensors....................... Dislocation density a Dislocation density a
Disclination density 6

Basic plastic fields..................... Plastic distortion 8" Plastic strain e”
Plastic bend-twist k”

Characteristic vectors.........cc.oeoeeunen... Burgers vector b Total Burgers vector B
Frank vector

Basic elastic fields....................... Elastic distortion 8 Elastic strain e
Elastic bend-twist &

Jump conditions...........ocooooiii. Displacement jump [u] Displacement jump [u]
Rotation jump [w]

Defect loop density tensors................. Dislocation loop density y(B") Dislocation loop density y(B8%*)
Disclination loop density (™)

4.1. Geometry

Consider now an infinitely extended body in which the plastic strain e}, and bend-twist K:;q are
given as independently prescribed functions of space. For convenience we refer to these two func-
tions as the basic plastic fields. Then we may have disclinations as well as dislocations. The dis-
location and disclination densities are defined by (16.3, 16.1)

apt = —€pmk (fy, m + EquKf,,.q) ’ (4.1)

l)
kq, m>

(Ogp= —€quic}, ,)- (4.2)

Opq = — €pmik -

The continuity equations (16.8, 16.2)
apl, pt fI])qopq: 0, (43)
Opq, p=0 (4.4)

follow immediately from (4.1) and (4.2). The former means that dislocations can only end on dis-
clinations, and conversely, if the disclination density is asymmetric, dislocations must emerge from
it. The latter shows that disclinations cannot end inside the body.

Associated with the Burgers circuit X we now define the characteristic vectors, the general
Burgers vector B; and the characteristic rotation vector )4, which we have agreed to call the Frank
vector in section 1.2, by
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B = —5#; (ef,— €tqricixr) dL. (4.5)
A

o= —#3 khgdL. (4.6)
A

These relations can be interpreted as follows: Starting with a perfect crystal we can imagine that
the plastic deformation is produced by letting defects migrate into the crystal. A number of them cut
through . Every disclination that cuts through A produces a relative rotation — K’C dLy in the lattice
at the curve. These contributions added around the contour A give the resultant Frank vector of
all disclinations that remain stuck through the surface o bounded by A. The relation (4.5) is easily
seen to be identical to (3.7), when K";q is given by (3.12), by doing a partial integration, where the
integrated part vanishes, and using (3.1) or (3.2). Therefore, it is simply a generalization of (3.7).
It represents the resultant Burgers vector of all defects (dislocations and disclinations) that have
cut through A and remain stuck through o. We wish to emphasize that B; does not represent the
relative displacements added around the contour A. The latter quantity is not an invariant for the
curve A, but depends on the point where the integration is started. The definition (4.5) is essentially
motivated by Weingarten’s theorem (section 5.1). By Stokes’ theorem (A2) we have from (4.5-6),
(17.4,17.3)

Bi—— f gt (&5, w—EtgmkEy — EtgricEy o %r) dSp
¢ g
= f (ctpt— €igrBpgs) dSp, @.7)
o
Q,1= —f Epka:;q‘ mdSp
a

ZL bp0 dS», (4.8)

using (4.1) and (4.2). Relation (4.7) shows that the disclination density 6,, also contributes to the gen-
eral Burgers vector, in addition to the dislocation density ap.. Relation (4.8) shows that the disclina-
tion density 6,, represents the flux of disclination (or Frank vector) in the x4 direction that crosses
unit area of a plane normal to the x,, direction.
For later application we also write (4.1-2) in their equivalent forms
€pmkOpl = ei,',[, Kk e;c)l, o €pka;;, — €kimk”, (4.9)

>

Gpmkopq = K;;lq, kK K]I:q, ms (eqnloqp = K:,p, 1 K{;J, n)- (4. 10)

The incompatibility tensor is defined by (14.1, 16.6)
Npg = Epmk€qni€ry, mn (4.11)
=— (€quapt, n+ Opg) wo), (4.12)
where the second equality follows from (4.1-2). The continuity equation for the compatibility (14.2),
Npa.p=0, (4.13)

follows immediately from (4.11).
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With disclinations we claim that the total distortion is no longer the sum of an elastic and
plastic part, (3.9), simply because B%, is not defined. For, if B2 existed, the plastic bend-twist
would be the gradient of the plastic rotation, (3.12), and consequently the disclination density
(4.1) would vanish.! Instead, since the plastic strain ej; and bend-twist kj, are prescribed, we
postulate the existence of the elastic strain ey and bend-twist kx4, which are called the basic elastic

fields. So we have (12.3,14.3,12.16, and 15.17):

T =yT = P
Comn = u(n,m) e"l"+emn’ (414)
T = T — T —_ 12
kKl = w] ,;=1/2 €mnul ,,=ks+«k,. 4.15)

Since it follows from (4.14—15) that
€pmk (617‘:1,,,, + €xiq K,T,,q) = €pmk u?k,,,z 0, 4.16)

these relations allow us to derive the following basic geometric laws or field equations for a,
and 6p, from (4.1-2), (I6.11, 16.10)

€pmk (ekl,m+€k1q Kmq) = apl, (417)
€Epmk Kkq,m= Opq- (4-18)

The geometric meaning of these equations is that the defects (dislocations and disclinations)
are the sources of the basic elastic fields (elastic strain and bend-twist). It also follows from (4.14—
15) that

efI_GIW KIT\:q Xr= (u’lT_u’[Tl,r]xT) ) (4419)
and hence these relations also allow us to derive the basic geometric laws for B; and Qg from
4.5-6), 17.2,17.1)

ff; (exi— €1gr Krqxr) dLy=By, (4.20)
A

f KrqdLi=yq. 4.21)

X

These may be regarded as the field equations in integral form, equivalent to (4.17-18). Finally,
the relation (4.14) allows us to derive the basic geometric law or field equation for the incompati-
bility Npq frOm (4‘.11), (I 4‘.4‘)

— €pmk €qnl €kl,mn= Mpq (422)
which shows that we can isolate the incompatibility as the source of the elastic strain.

4.2. Statics

This section extends the work of reference [3], which gave only the geometry of a continuous
distribution of defects, reviewed in section 4.1. The main result we shall find is an explicit and new
expression for the elastic strain, eq (4.29), in terms of defect densities. We shall also find the elastic
bend-twist.

10 This situation is analogous to the case of pure dislocations: There the total displacement is no longer the sum of an elastic and plastic part, uf=u;+u}. For,

if up existed, the plastic distortion would be a gradient, 82, = u{k, and the dislocation density (3.4) would vanish.
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We find the total distortion from (2.15)
u?  (r) =—fCijk,Gj,,,i,,,(R)e’kf,(r’)dV’
=_fCijklcjn‘i(R)ef,'m,(I")dV’
= fCi_ilejn.i(R)[fpmkal)l(r,) —eb 1w (r") —€pmrk, (v')1dV"
= [ i (ROlen(s') =y (e V" + e, (1), .23
Here the second equality follows by a partial integration, the third from (4.9) and (2.3), and the fourth

by a partial integration, (2.7) and (B3). We see that for the integral to converge it is only necessary
that i (r) and «f,(r) vanish faster than r=1 as r— . From this relation we now proceed to derive

the basic elastic fields and show that they are state quantities.
The elastic strain is found from (4.14)"

€mn (l‘) — J’ el)ml.'cijklcjn,i(R)[al)l(r,) - K{;,(PI)]dV’(mn)- (424‘)

To show this is a state quantity we shall use the concept of an incompatibility source tensor, intro-
duced by Simmons and Bullough [12]. In contrast to Simmons and Bullough, who derived several
forms of it from a general definition, we define it directly as follows

lmn[)q(r) = (4'77') =1 [Gpmkeqslcijklcjn,i’s’(r, )R_ldV’(mn)- (425)

We see from this relation that the homogeneity of Inupq(r) is the same as that of Gj,(r), i.e., of
degree (—1), so that they both vary as r—!. By using the identity

81)(] 8]}.\' 8111
€pmk€qst = amq Oms Omi (426)
Okq Oks Ok
and (2.7) it can also be written as
Lnnpg(r) = (477) "1 [(8mndpg— Smg®np) 7™ — (Cijpg— CijxiBpq) fcjn, im (2" )R-V’
=+ (Cijmqg— CijkkOmq) fCjn,i’p’(r’)R-]dV,](mn)- (4.27)

Except for the last line, this expression agrees with the one Simmons and Bullough have called the
Eshelby-Eddington formula. Now the incompatibility source tensor satisfies the following relation-
ship:
Eqsllmnpq,s‘(l'): (4‘77) =L fflﬁrnk'[cijk'l(;jll.i’.\" (rl) - Cij’\'s("jll,i"'(r,)]R:qldV(,m")
= (4'77) = fellllll\‘[cijl\'l(;jll,i'(r, )R:: - Cijk's(;jrz,i’s’(rI)R,_ll] (lV(,mn)
="fel)rnk'[CijA’l(;jrl,i’(r’)S(R) —8rnd(r’) (4R) ,‘,’](W(',,,,,,

=—[€pmCijkiGjn,i(r) ) (mny. (4.28)

11 See footnote 6 on page 53.
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Here the second equality follows by partial integrations, and the third from R-\=—4m8(R) and
(2.7). From the above the term in (4.24) containing «f, becomes

feqsllmn,,q,s(R)K{’p(r')dV':feqsllm,,pq(R)K{'p,s,(r')dV'

- f Lnpa(R) 8y (') dV"

by a partial integration and (4.2). Note that in the partial integration the surface integral vanishes
because of the asymptotic behavior of Innpq and k7, discussed above. Hence we find for (4.24)

emn(r) :fepmkcijkl(;jll,i(R)alll(r/)dV(,mn)_fl"l'lllfl(R)eql'(r,)dV,‘ (4.29)

This is the result we seek. We see it is a state quantity because it depends entirely on the defect
quantities a;; and 0 4.

The incompatibility source tensor Imapq was originally introduced by Simmons and Bullough
to solve the so-called incompatibility problem, i.e., to find the elastic strain e, when the incom-
patibility 7,4 is given as a prescribed function of space. We show here how this can be done. From
(4.28)

Eprl.-éqsllmnpq,rs(r) = [Cijk'l(;jrz,im(r) - 6IcmCijrlGjn, ir(r)](mn)
= [Cijkl(;jrz,iln(r) + Skmalns(r)](mn) ’ (430)

using (2.7). Therefore we find
emn(1) == [ CiniCin.im(RYEL(F )V = el ()
= [ Cermiantmmma.re(R) + Bundud (R)] efy(')dV" el ()
=f€,,rkeq311mn,,q(R)e,{f,,,,s,(r’)dV’
:f[m"pq(R)npq(rl)dV,. 4.31)
Here the first equality follows from (4.14) and (2.15), the second from (4.30), the third from a partial

integration, and the fourth from (4.11).

We next wish to derive the elastic bend-twist. First we find the derivative of the total distortion
(4.23)

Uy, ms(T) =f €pmkCijgiGjn,is(R) [om (') — kfp (¢')1dV'" + e, (). (4.32)
The «[, term in this expression becomes by a partial integration
_fGpkaijlejn,i(R)Kll;’s,(r’)dV’
=fepkaijszjn,i(R)[eqsz(iqp(r’) — kb o (x)]aV’
=fepmkeqszC,-jszjn,i(R)Gw(r’)dV’+e,,,,m:<§’p(r).
Here the first equality follows from (4.10), and the second by a partial integration and (2.7). Hence

Uy, ms(r) =f €omiCijiiGin,is(R) ap(r')dV' + f €pmk€ gsiCijkiGin,i (R) O gp (r" ) dV’
+e£:m’s(l‘) +€pmnK§,(r)- (4.33)
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Finally we have from (4.15)
Ksz(l‘)=1/2f etmnepmkcijklcjn,is(R)apl(r’)dV,+1/2J’Etmnepmkeqslcijklcjn,i(R)qu(rl)dV"
(4.34)

which is seen to be a state quantity too.

This section then has extended the results for dislocation theory of section 3.1.2 to a more
general defect theory. The central result there, eq (3.17), has been replaced by (4.29) and (4.34).
We note that concepts, quantities, or equations from dislocation theory generalize into pairs of
concepts, quantities, or equations in defect theory. Some of these ideas have been summarized in
table 2.

5. The Discrete Defect Line
5.1. Weingarten’s Theorem

The point of departure for the discrete defect line is the following theorem [3]:

WEINGARTEN’S THEOREM: On following around an irreducible circuit in a multiply-connected
body, the displacement and rotation change by an amount that represents a rigid body motion, if
and only if the classical elastic compatibility conditions are satisfied throughout the body.

Explicitly these changes are given by (13.4, 13.3).

[ul]:Bl+ €I(ITQQ-XT9 (5.].)
[mq] = &Alq, (5.2)

where the constants B; and (), are given by line integrals along the irreducible circuit A(13.6,
13.5):
B, = ﬁ (ex1— €lgrk kX r) dLy, (5.3)

Qq — § K);qu;;. (54)
A

That these quantities are constant is easily shown by Stokes’ theorem and the compatibility
equations, i.e. (4.17-18) with a;;;=0, 6,,=0. We note incidentally that the definitions (5.3—4) are
consistent with the relations (4.20-21).1?

5.2. Geometry

The discrete defect line L is defined as the boundary of a surface S, where the material below
S has been plastically displaced with respect to the material above S by an amount which represents
a rigid motion (fig. 1).

Hence, the difference between the displacement just below and above S is given by

[wi(r)]=bi+ €10 g(xr —x7), (5.5)

where b, represents a rigid translation and the second term a superposed constant rotation of
amount (), around an axis through x% The constant b; will be called the Burgers vector for the

discrete dislocation line contained in the defect line, and is to be distinguished from the general

12 For the nonlinear generalization of the present theory it would be necessary to determine if Weingarten’s theorem still holds. Then for a finite rotation (5.1) would
have to be modified into [u/]= B+ (€1g:fdox, + 302 ex ;. —$#02x,) (1 +40Q2) -'. Here the Frank vector or versor has the direction of the rotation axis and the magnitude
2tan @, where @ is the angle of rotation. The addition rule becomes 0,= (2 ’+ﬂ‘:’—k,wﬂ‘r‘ @) (1 —{Q‘P‘ QM) = for a rotation (1) followed by a rotation (2).
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Burgers vector defined by (4.5). The constant ), will be identified with the Frank vector (4.6). The
relation (5.5) implies there is also a jump in rotation across S given by

[wq(r)]=1/2€x1g[ui(r)] 1= Q. (5.6)

If we visualize the material in a tube around L removed (fig. 1), we have a doubly connected
body, and since the jump across S represents a rigid body motion, Weingarten’s theorem applies.
Hence, this doubly connected body is compatible, i.e., the basic elastic fields satisfy the compati-
bility equations, even on S. Therefore, the results (5.5—6) should also follow from (5.1-4). The
real, incompatible, simply connected body is obtained by letting the cross section of the tube
vanish. Then (5.3—4) become identical to (4.20—21), and by the compatibility of the total deformation
these relations are e(luivalent to (4.5-6).

Our problem now is how to embody the statements (5.5-6) into definitions for the basic plastic
fields, i.e., the plastic strain and bend-twist. We give a straightforward operational procedure to
obtain these quantities and then verify that they are correct by (5.1-2) and (4.5-6). Assume first
that S is closed, enclosing the volume V. Then by (B7)

uf (r) =8(V){bi+€1qrQq(xr—x2)} (6.7)

represents a displacement, which is the same as (5.5) inside V" and vanishes outside V. Thus, it
has the required jump across S. Equation (5.7) could be regarded as describing a grain of volume
V' and boundary S, whose orientation with respect to the surrounding material is given by the rigid
motion (5.5). We assume that the deformation (5.7) comes about by means of a plastic deformation
on the surface S and an elastic translation and rotation in V. To find the basic plastic fields we just
calculate the basic total fields, i.e., the total strain and bend-twist. In general these can be split
into elastic and plastic parts, (4.14—15). But since the only elastic deformation is a rigid motion,
the basic elastic fields will vanish and the plastic fields will equal the total fields. We have from
(3.9) and (5.7)

B (r) =8 (V) {bi+ €1-Qq(xr—x2)} + (V) €110
=—8k(S){b1+ €10 (xr— )} + 8(V) €R1gLgs (5.8)

using the divergence theorem (B24). From this we find
ef 1 (r) =—8:(S) {bi+ €1 Qg (- =) }ixo), (5.9)

wl(r)=—1/2 €x1dx(S){b + qurﬂq(xr —x‘r’)} +&(V)Q,. (5.10)

q

We see that (5.10) represents a rotation, which is the same inside V" as (5.6) and vanishes outside
V. Thus, it has the required jump across S. We next find the bend-twist from (4.15)

K,T,;q(l') =—1/2 €xiq[8x(S) {b:+ €lquq(xr_x3)}] = 8m(S8)Qq, (5.11)

using the divergence theorem again. We see that the basic total fields are concentrated at the
surface S. As mentioned before, since the deformation is just a rigid motion of part of the body,
there are no basic elastic fields, and therefore the fields are all plastic. The next step is to assume
that (5.9) and (5.11) hold in the same form for the open surface S of the defect loop. To write down
the final results it is convenient to introduce the “plastic distortion” and ‘““plastic rotation’ defined

by Mura [4]:
B (r) =—8k(S) {bi+ €1g:Qq(x,—x2) }, (5.12)

Giq(r) =—8k(S)Qq. (5.13)
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These quantities will be interpreted in section 6 as the dislocation and disclination loop densities.
Until then they serve as convenient intermediate quantities for the purpose of calculation. Now

we write
b, =By (5.14)
kb =12ex148, ,, bk
(kb,=12€1BY, ,+bf,)- (5.15)

These are the results we looked for. Equations (5.14—15) together with (5.12—13) represent the basic
plastic fields for a discrete defect line L spanned by the surface S. From (5.14—15) we also have the
result

P P — Q% *
ekl,m+€"‘lquq Bkl,m+€k[q¢mq’ (516)

which will be useful for later purposes. As we mentioned above, we now check the validity of
results (5.14—15). From (4.5)

Blz—ﬁ (ﬁ();cl) —Bfkrl],er - €Iqrd);f(lxr)dl,k
z—i (B;fl_flqr‘ﬁ:qxr)dL,‘.

=§ Sk(S){bl—EmrquQ}de
A

=b/—elqu,pc‘r’, (517)

by a partial integration, (5.12—13), and (B15). This then is the relation between the general Burgers
vector and the dislocation Burgers vector. Next we have by (5.15), (5.13), and (B15)

—ﬁqude=—£dﬁ dLy

=§ 5.(5) 0L

=0 (5.18)
From (4.6) this relation identifies ()4 as the Frank vector. If we substitute these results into (5.1—-2)
we obtain (5.5—6), as was required.
We now find the dislocation density from (4.1) and (5.16)
apl(l") S Gpmk(B,T,’ o TR leq(t':lq)
= epmk[sk, m(S){bl ar €Iquq (xr—xg)} + &k (S)flququm ar Ek[q8m(S)Qq]
=8p(L){b:+ €1g-Qq(xr—x2)}, (5.19)

73



where the first equality follows from (5.16), the second from (5.12-13), and the third by Stokes’
theorem (B26) and a cancellation. The disclination density is obtained from (4.2)

qu(l‘) = = Epmkd)*kq, m
= €pmdk, m(S)Qy
=8,(L)Q, (5.20)

where we have used (5.15), (5.13), and (B26). Relations (5.19-20) represent the defect densities for a
discrete defect line. We see from (5.19) that the Frank vector ()4 also contributes to the dislocation
density, in addition to the dislocation Burgers vector b;. In these relations L is the closed boundary
of S. The vector §,(L) is the Dirac delta function on the curve L and it is always parallel to L. A
discrete disclination line is called wedge or twist when the Frank vector is parallel or normal to the
line, respectively. Therefore, (5.20) shows that the diagonal and off-diagonal components of 6,
represent the wedge and twist components of the disclination density, respectively (see table 1).
Equations (5.19-20) show how to make the transition from a continuous distribution of defects to a
discrete defect line.

The discrete defect line, characterized by the dislocation Burgers vector b; and the Frank
vector (,, was defined in this section independent of the defect density tensors «,; and 0,, defined
by (4.1-2) in section 4.1. The question arises whether there is a unique correlation between these
definitions. For dislocations only there is a straightforward relation between the Burgers vector and
the dislocation density of a continuous distribution, given by (3.8), or between the dislocation density
for a discrete line and its Burgers vector, given by (3.23). When disclinations are introduced there is
a similar straightforward relation between the Frank vector and the disclination density of a con-
tinuous distribution, given by (4.8), or between the disclination density for a discrete line and its
Frank vector, given by (5.20). However, as we noted, the general Burgers vector now contains a
contribution from the disclination density, eq (4.7), or the dislocation density for a discrete defect
line contains a contribution from the Frank vector, eq (5.19). What this means is that the definitions
of the “dislocation” are not identical in both approaches. Therefore, as we see from the relations
quoted, in the transition from one formulation to the other a certain amount of mixing occurs.
Anthony [2] has handled this difficulty by adopting the discrete disclination loop as the true definition
of the disclination. Then our dislocation density tensor «j; in (5.19) partly describes the discrete
disclination. He therefore divides ay; into two parts, a true component that corresponds to the dislo-
cation line with Burgers vector b;, and a component that belongs to the disclination line with Frank
vector {},. Hence our difference with Anthony merely reduces to a difference in point of view.

We prefer to retain our own point of view with ditterent definitions of the “dislocation’ be-
cause it is in fact difficult to identify the dislocation line in a discrete defect line, as will be seen
from (5.19). For example, let us change the axis of rotation and the dislocation Burgers vector to

x2 =0+ &, (5.21)

bl, =b+ Elquqfr- (5.22)

Then oy in (5.19) is unaltered. So the dislocation Burgers vector b; is not uniquely defined, but de-
pends on the location of the axis. On the other hand, the general Burgers vector B; in (5.17) is un-
altered by (5.21-22), and, therefore this is the quantity which is invariant for a discrete defect
loop. This is another motivation for introducing it.

The significance of (5.19) can further be illustrated as follows. Consider an infinitesimal
volume dV centered about some point on L. The jump across S is given by (5.5). The rotational
part of (5.5) can be approximated by a constant inside dV, since it is so small, i.e., locally we can-
not determine if the displacement jump is due to a rotation or a translation, even if we know the
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rotation jump locally. Now the dislocation density is a local tensor field. Therefore the dislocation
density tensor can be found by replacing &; in (3.23) by the jump (5.5), in agreement with (5.19).
Hence, the dislocation density (5.19) at a point on the line L is exactly what would be expected on
the basis of the local plastic displacement near the point, or a small Burgers circuit around L at
the point. We shall illustrate this point more explicitly by examples in future publications [25, 26].

From (5.21-22) it would seem at first that we could eliminate the discrete dislocation from
(5.19), by choosing &, such that b= 0, but this is only possible if b, is normal to (),. However, we
can draw the following important conclusion from (5.19). The axis of a discrete disclination line
can be translated from the point x? to the point x?" by adding a discrete dislocation to the line
with a Burgers vector given by

b= €1grdq(x2— '), (5.23)

which is normal to the Frank vector (), In other words, we can move the axis by adding the dis-
location density
api(r) =8, (L)€igrQq(x0—x2"), (5.24)
as is evident from (5.19).
The above development suggests the possibility that a dislocation could end on or originate
from a disclination line. Consider the three curves L, L', and L", illustrated in figure 3, which

L L
FIGURE 3.  Defect lines which join at nodes.

meet at nodes. These curves could represent the discrete defect lines described by the following
expressions:

ap(r) =8y (L){bi+ €grQq(xxr —x2) } + 8, (L") { b1+ €1r Qg —x2") }
+ 8 (L") €1gr Qg (20— 20", (5.25)
Opg(r) =8p(L+ L") (5.26)

There are several ways in which one can view this defect. First, it consists of a defect line as
described by (5.19-20) along the curve L and L' to which a dislocation line with Burgers vector
(5.23) has been added along L' and L". Second, it is a dislocation line along L”, which connects
two points of a defect line along L and L’; as a consequence the axis goes thru 9 for L and thru
x%" for L'. Third, it consists of two defect loops with the same Frank vector, one along L' and L”
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with axis thru x*', and one along L and minus L" with axis thru x% along the line of overlap L" the
rotational parts cancel and only a dislocation line is left. So we see how the defect described by
the relations (5.25-26) can be regarded as a combination of two simpler defects. We also see here
how a discrete dislocation line can end on a discrete disclination line. A special case of this geom-
etry has already been discussed [19] and a detailed mathematical analysis of this particular example
will be presented in a future publication [25].

We note that (5.19-20) satisfy the continuity equations (4.3—4) by (B28):

apt,p+ €ipglpg = 8p (L) €1grdeBrp + €1pgdp (L) Q= 0, (5.27)
Opg.p = 8p,p(L)Qq=0, (5.28)
Similarly, it is easy to show that (5.25-26) also satisfy the continuity equations, confirming an

assertion we have made [19].
As a cross-check we also show that (5.19-20) give consistent results for (4.7-8)

Bi— f 8p(L) {b1— €12} dSp = bi — e, (5.29)

[ trats,= [ 801005, = 0, (5.30)

by (B15), in agreement with (5.17-18). These relations remain valid for many defect lines as well,
and could therefore be used to show how to make the transition from discrete lines to a continuous
distribution of defects. However, the following relations are more convenient to make this point:

[ aws, = f 8(L) {b1+ €10 (s — x2) YLy

= bi— ey (2" — )

= [w]*e, (5.31)

Lopqup: [wq]- (5.32)

Here the first equality follows from (5.19), the second from (B16) where x. is the point of inter-
section of the curve L with the surface o (fig. 1), the third from (5.5), and the last from (5.6). So
for many defect lines the average dislocation density oy represents the x; component of the sum of
the displacement jump vectors and the average disclination density 6p, the x4 component of the
sum of the rotation jump (or Frank) vectors of all the defect lines that intersect unit area of a
plane normal to the x, direction.

5.3. Statics

In this section we find the basic elastic fields, i.e., the elastic strain and bend-twist, for a dis-
crete defect line.
If we substitute (5.14) and (5.12) into (2.15) we find the displacement

u;{(r)=fCijkIGjn,i(R)Sk(S,){bl+€lqrﬂq(x;_x2)}dVl

— [ Conton i (RY b1+ ey~ 1), 5.33)
S
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by (B12). This is the expression for the total displacement due to a finite discrete defect loop. It
allows us to estimate the asymptotic behavior of the displacement at large distances from a small
disclination loop, =0. Since Green’s tensor Gj,(r) varies as r-', we see that u7(r) will in general
vary as r~2 as r— <, However, for special cases such as a symmetric loop centered on its axis, the
integral vanishes to first order by symmetry. Therefore a finite symmetric disclination ldop has
the anomalous asymptotic dependence of r—3 as r— o, Since the strain em.(r) is obtained from
the derivative of the displacement, it will vary as r— as r— . These results are listed in table 3.

TABLE 3

Asymptotic behavior of the displacement u” and the strain e at large distances from certain defect configurations.
The numbers in parentheses refer to the equations from which the estimate is obtained. A symmetric disclination loop is

one for whichf (x;,—20)dS,;=0.
S

Dislocation Disclination
u” e u? e
| LA N So0neomoaosooond In r rt (3.32) rinr Inr (5.37)
Dipole............... r-1 (3.46) r-2 Inr (7.6) Tl
General: r2 (5.33) r-3
—2 -3
Loop...ccoveuinnn. r-z (3.30) r Symmetric: r-* (5.33) —

For infinitesimal symmetric disclination loops both «! and e, vanish. A more accurate calculation
of the asymptotic displacement from a small but finite disclination loop can also be made from
(5.33) by expanding the Green’s tensor as a Taylor series in r’ for a few terms and integrating
over S. The details will be worked out in a subsequent publication [26], where it will be shown
that for the isotropic case the results reduce to those of Li and Gilman [20].

We now find the total distortion from (5.33)

u,{_m(r):Lc,-,-k,(;,.,,,,.,,,(R){b,+e,qrs),,(x;—xi)}flsk
:ﬁE,I,nkCij,,,(;j,,,i(R){b1+e:quq(x;—x‘,’)}dL,',
+f CiiGin.i(R) €10 QdrmidS s
s
+Lc,-,.k.,c,-,,,,-k(n){b,+e,,,,ﬂq(x;—x‘i)}dsln

=f €pIIlI\'CijkIGjll.i(R){bl+ €Iqr~()q(1;_X$) }dLlll
L

+f €pmkcijkl("jn,i(R)QI)dS;+B:,,(r)' (5.34)
S

Here the second equality follows from Stokes’ theorem (A4), and the third from (2.7), (B5), and (5.12).
Now if we call Bmn=ul ,,—B), the “elastic distortion,” it is not a state quantity because the
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second integral in (5.34) cannot be written as a line integral. The proof of this consists merely in
showing that the integrand in this term is not divergence-free; using (2.7) we find

[eprrlkcijkl(;jrz,i(r)] ,I:€pkaijlejn,il(r)
:_Epmna(r)
#0. (5.35)

If we compare the second integral of (5.34) with (3.30) we notice a great deal of similarity. As is
well-known the jump of u” in (3.30) across the surface S is given by [u”]=b, according to (3.18).
From this we deduce that the second integral in (5.34) leads to a jump of the total distortion B7,,
across the surface S of [B7,]= €pmn{2y. This is a jump in rotation of [w?]=1/2€pmu[B7,]1=Qp,
in agreement with (5.6). In the older approach to dislocation theory where the surface S was ignored,
the displacement of a discrete dislocation line was regarded as a multiple-valued function with a
period of the Burgers vector. Equation (5.34) shows that from this point of view the rotation (or
distortion) of a discrete disclination line is a multiple-valued function with a period of the Frank
vector.

The elastic strain is from (4.14), (5.14), and (5.34)
emn(r) = % €pnzkcijklcjn,i (R){bl+ €lquq(x;_x?)}dL‘,)(mn)+ f €1nnkCijkl("jn,i (R)des[l(mn). (536)
L S

The integrand of the second integral now is divergence-free and so it can be written as a line
integral

- fs €11311"”11)(1,3 (R)des; = ﬁ Imnpq(R)deL;
by (4.28) and Stokes’ theorem. Hence
€mn (l‘) == ﬁ €pmkcijklcjn, i (R) {bI + €lquq (x; - xor) }dL;,(mn) - ﬁ Imnpq (R)deLI’, (537)

This result could of course also be obtained directly from (4.29), (5.19—-20) and (B11). This is the
relation we sought. We see that the elastic strain can be written as a line integral along the discrete
defect line. Therefore it is a state quantity.

Equation (5.37) also allows us to estimate the asymptotic behavior of the strain at large dis-
tances from a straight disclination line. The second integral will give the dominant term. The
incompatibility source tensor Innpq(r) varies as r~1. Due to the integration then em,(r) will vary
as In r as r— . Since the displacement is an integral of the strain, it will vary as r In r as r— o,
These results are also listed in table 3.

We wish next to derive the elastic bend-twist. First we find the derivative of the total distortion
(5.34)

ul ms(l‘)=£ Epmkcijklcjn,is(R){bl+€lquq(x:-—x(r))}dL,,,+L €pmkCij1Gin,is (R)QpdS; + B,y o (1).

(5.38)

The second term becomes by Stokes’ theorem

f; epmkeqstcijucjn,i(R)deL;‘f'f €pmiCijiGin, it (R)QpdS;.
. s
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The second term in this expression becomes by (2.7), (BS), and (5.13)

= L €pmiOind (R)QdS. = — €pmnds (S) Q= €pmu ), (r).
Hence (5.38) becomes
(= ﬁ €pmiCijkiGin, is (R) {bi+ €1 Qq(x, — x0) }dL,
+ ﬁ €pmi€qsiCijkiGn, i (R)QpdL, (5.39)
+ By, {r) + €pmach’: (x).

We now find from (4.15) and (5.15)

Kkst(r) =1/2 f €mn€pmiCijkiGjn, is (R ) { b1+ €1g-€dq (2, — x?) }dL;’
- (5.40)
+1/2 §§ eomEpmieaCuGon, «( R) QpdL, .

This could also have been obtained directly by substituting into (4.34) from (5.19-20). It is also seen
to be a state quantity.

This section has extended the results for a discrete dislocation line of section 3.2.2 to a more
general discrete defect line. The central result there, equation (3.32), has been replaced by (5.37) and
(5.40). Again we see the elastic distortion of dislocation theory is generalized into the basic elastic
fields of defect theory.

6. Continuous Distribution of Infinitesimal Defect Loops

In section 4.1 the defects were defined by (4.1-2) and the characteristic vectors by (4.5-6) in
terms of the given basic plastic fields, strain and bend-twist. Eliminating the basic plastic fields from
these definitions led to (4.7-8), relations between the characteristic vectors and the defect densities.
These equations could alternatively be used to define the defect densities in terms of the character-
istic vectors, if they are prescribed in a suitable manner. It is convenient to put these relations into
differential form. First we define the disclination density. When the defects are continuously distrib-
uted the disclination density tensor is defined locally by

AQ
b0= 33, (6.1)

For a distribution of discrete defect lines this represents the average disclination density where A(),
is the gth component of the resulting Frank vectors of all the disclinations which pierce through a
surface element AS, oriented normal to the x;, direction at the given point. In view of (4.7) it is neces-
sary to modify the definition (3.33) for the dislocation density ay. For an inhomogeneous continuous
distribution of defects we define it locally by the relation

AB
QApl — €lqr0pqxr = K’l’ . (6.2)

For discrete defect lines this relation will give us the average dislocation density, where AB; is the

[th component of the resulting total Burgers vectors of all the defects (dislocations and disclinations)

which pierce through a surface element AS, normal to the x, direction at the given point.
Reference to (5.31) suggests that a more convenient way to write (6.2) is

apl = AA[;:)] 5 (6.3)
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where we have defined

A [ul] =AB+ elqrAqur’ (64)

as suggested by (5.1). For discrete defect lines A[u;] represents the [th component of the resulting
displacement jumps of all the defect lines which pierce through a surface element AS, oriented
normal to the x, direction at the given point. Relation (6.3) is what would be expected if the dis-
location density is determined by the local plastic deformation, regardless of whether it is due to
discrete dislocations or disclinations. For generality relation (3.33) could also have have been put
in the form (6.3) by reference to (3.18).

We next consider a continuous distribution of infinitesimal defect loops differently oriented in
space. We introduce the disclination loop density tensor following Kroupa’s [5] line of reasoning.
We can define it as follows: {4 represents the flux of disclination (or Frank vector) in the x4 direction
that encloses a unit vector in the x; direction. When the loops are continuously and inhomogene-
ously distributed the density tensor {xq is a function of the position and is defined locally by

=3 (6.5)
For a distribution of discrete loops this represents the average disclination loop density where now
AQ), is the gth component of the resulting Frank vectors of all the loops which are pierced by the
line element AL, oriented in the x; direction at the given point. It is now also necessary to modify
the definition (3-34) for the dislocation loop density. For a continuous distribution of defect loops
it is defined locally by

_Alw] |
Ykl = ALk

(6.6)

For discrete loops this represents the average dislocation loop density, where now A[u] is the /th
component of the resulting displacement jumps of all the loops which are pierced by the line
element AL, oriented in the x; direction at the given point. By (6.4) we also have the alternative
definition

AB, AQ,
ALk + €lgr ALk Xr,

Yel = (67)

where for discrete loops AB; is the [th component of the resulting total Burgers vectors of all the
defect loops which are pierced by the line element AL, oriented in the x; direction at the given
point.

To derive the relations between the defect loop densities and the basic plastic fields, we first
combine (6.5) and (6.7) into

AB
Ykz—ezqrékqxr=E;' (6.8)

The relations (6.8) and (6.5) are easily converted to integral form
Bz=ﬁ (Yr1— €1grLrgxr) dLy, (6.9)

- 55 GuadLs (6.10)

Now we compare these relations with the definitions (4.5-6). The integrands can only differ by a
gradient with respect to xx. Therefore we can set
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Kig= — Srat g 4, (6.11)

el{:)l - equKIlc)qxr = =Ykl + Elqrgkqxr F (ul,‘ - elqrwl(;Xr) g (6 12)

where w(’l’ and u;" are arbitrary vector fields, subject only to the condition that e”, is symmetric. This

last condition will provide a relation between them, as we shall show. If we substitute (6.11) into
(6.12) we obtain

€= Ykl — €xig) T u . (6.13)
Now the symmetry condition on el gives the relation between w;' and u/

o = —1/2€uq(yii—uy ). (6.14)
From this we get for (6.13) and (6.11)

e]/;[ = —'Y(kl)_i_ u(l;, k) (6.15)

P

Kg™ — Cmg— 1/2€Iclq')’kl, m+ 1/2€quul,: T (616)

These are the relations that identify the basic plastic fields for a continuous distribution of defect
loops. With them we can find all the relations derived in section 4 in terms of a loop distribution.
For example, from (4.1-2) we find

ap1= Epmk(Ykl, m+ equgmq) , (617)

Opa= €pmilicq, m-

(6.18)

This is the fundamental relationship between the defect loop densities and the corresponding
defect densities. We see from (6.17) that the disclination loop density {»q also contributes to the
dislocation density, in addition to the dislocation loop density y.

Since a plastic displacement such as u!" in (6.15-16) does not contribute to the elastic fields
(c.f. section 2.6), we can set u; =0 without loss of generality, and so we can use

e = — Y, (6.19)
King = — {mq— 1/2€x1qYr1, m (6.20)

for the purpose of calculating the fields of a continuous distribution of infinitesimal defect loops.
Furthermore, we note from (2.15) and (6.19) that only the dislocation loop density yx; will contribute
to the total displacement. Hence the elastic strain and stress are unaffected by the disclination
loop density, {mq, as we already hinted at in section 5.3. We also note that all the above results
reduce to those of section 3.3 when the disclination loop density vanishes, {.q=0.

Mura [4] generalized his “plastic distortion” and ‘““plastic rotation,” which he had defined for
a discrete loop as in section 5.2, to a continuous distribution. We shall now interpret his approach.
If we compare (5.14—15) with (6.19-20) we can make the following identification:

By = — Y, (6.21)
1
d)r’fzq +§ €qu,B;ckI, m = gmq — €klgYkl, m- (622)
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These equations can be solved for Mura’s plastic quantities as follows:
B = — Yri— €xiqw;), (6.23)
Pmg= —Lmgt @F o, (6.24)

where w; is an arbitrary vector field. These relations identify Mura’s quantities for a continuous
distribution of defect loops. The basic plastic fields are obtained in terms of Mura’s quantities by
substituting in (6.19—20)

ef1 = By (6.25)

1
King= P 5 €xtaBis, m. (6.26)

These relations are identical in form with (5.14—15), but are now also valid for a continuous distri-
bution. We find the defect densities by substituting in (4.1-2)

opr=— €pmk (Bi1, m + €xigPma) » 6.27)
Opq= — €pmrditq, m, (6.28)

which are identical to relations in section 5.2. The interesting vector wg does not affect the basic
plastic fields and the defect densities, and hence it does not affect the elastic fields either. In (6.23)
it contributes the antisymmetric term — €xqw} to Bif. Mura [30] has called the dislocations resulting
from an antisymmetric plastic distortion an impotent distribution of dislocations, because, as can
be deduced from (2.15), such a distortion does not contribute to the total displacement, and hence
gives no elastic fields. In general an antisymmetric plastic distortion will give a finite dislocation
density, c.f. (3.4). However, the term w; ,, in (6.24) is exactly right to annihilate both defect den-
sities (6.27-28) due to w}. Hence, we can set w; =0 without loss of generality for the purpose of

calculating the elastic fields due to a given distribution of 8;5; and ¢, or
Bit= — Vi (6.29)

d);;q: - gmq' (6.30)
This shows that Mura’s “plastic distortion’ and ‘“plastic rotation,” introduced in section 5 for a
discrete defect line, can be interpreted as the dislocation and disclination loop densities, except
for a minus sign. This then resolves a difference we had with Mura. Relations (6.25—26) are the basic

relations that connect Mura’s approach with ours. For example the characteristic vectors are
found from (4.5—6) to be

Bi=—§ (81— euabtr)dLe, (6.31)
00=—$ oL (632)

which correspond to (6.9-10).

We can now also give an interpretation to (5.12-13) in terms of infinitesimal loops. To construct
a discrete defect line L, we first distribute a constant density of infinitesimal disclination loops of
strength (), over any surface S whose boundary is L. This distribution only gives a rotation across
S, but no stress, and furthermore no unique axis is defined. Rather, each infinitesimal loop has its
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own axis, so that the resultant axis is continuously distributed over S. Now we add a distribution
of infinitesimal dislocation loops to S, consisting of two parts. One, containing the dislocation
Burgers vector, is a constant distribution of strength b, which gives the discrete dislocation line.
The other, containing the Frank vector ()4, has just the right strength to bring the axis of each
infinitesimal disclination loop to the point x% We see that this is done by increasing the dislocation
loop strength proportional to the distance from the chosen axis. The combination of this linear
infinitesimal dislocation loop density with the constant infinitesimal disclination loop density men-
tioned above gives the discrete disclination line. It is the infinitesimal dislocation loop distribution
that gives rise to the elastic strain of the discrete disclination line.
So we conclude that for a finite defect loop the defect loop densities are given by

yir(r) = 8k (S) {bi+ €1 Qq (xr — x2) }, (6.33)
Liq(r) = 81 (S) Qq. (6.34)

The vector 8x(S) is the Dirac delta function on the surface S and it is always normal to S. In a
plane we have a twist or a wedge disclination loop according to whether the Frank vector is normal
or parallel to S, respectively. Therefore (6.34) shows that the diagonal and off-diagonal components
of {xq represent the twist and wedge components of the disclination loop density, respectively (see
table 1). Equations (6.33-34) show how to make the transition from a continuous distribution of
infinitesimal defect loops to a finite defect loop. By (B15) and (5.17) we see that they satisfy (6.9-10),
which also remain valid for many finite loops, and therefore can be used for the transition from finite
loops to a continuous distribution: For many finite defect loops the average dislocation and disclina-
tion loop densities yx and (xq represent the sum of the x; component of the displacement jump
vectors and the x, component of the Frank vectors, respectively, of all the loops whose surfaces
are intersected by a unit vector in the x; direction.

The infinitesimal defect loop density tensors {xq and yx; were defined in this section independ-
ent of the definitions of the defects densities in section 4.1 and the discrete defects in section 5.1.
What is the correlation?

Let us first examine the relation between continuous distributions of defects and loop den-
sities. For dislocations only there is a straightforward relation between them given by (3.37). When
disclinations are introduced there is a similar straightforward relation between the disclination
loop density and the disclination density tensor, given by (6.18). However, the dislocation density
now contains a contribution from the disclination loops, equation (6.17). This means that the two
definitions of the ‘‘dislocation” are not identical, and that a certain amount of mixing occurs in
going from one formulation to the other.

Now let us examine the relation between a discrete defect line and a continuous distribution
of loops. For dislocations only there is again a straightforward relation between the dislocation loop
density and the Burgers vector, given by (3.39), or between the Burgers vector and the dislocation
loop density, given by (3.35). When disclinations are introduced there is a similar straightforward
relation between the disclination loop density and the Frank vector, given by (6.34), or between the
Frank vector and the disclination loop density, given by (6.10). However, the dislocation loop den-
sity for a discrete defect line now contains a contribution from the Frank vector, equation (6.33),
or the general Burgers vector contains a contribution from the disclination loop density, equation
(6.9). Therefore the definitions of the dislocation are not identical in both approaches, and as we see
from the relations quoted, a certain amount of mixing occurs in going from one formulation to the
other.

There are, therefore, at least three independent ways to define the dislocation content of de-
fects: in terms of a continuous distribution, a discrete line, or a continuous distribution of infini-
tesimal loops. For dislocations only, these definitions are equivalent but with disclinations they are
essentially different.
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7. The Discrete Dipole Line
7.1. Basic Relations: The Biaxial Dipole

Extending Kroupa’s [18] definition of the dislocation dipole, we define the discrete dipole
line as a close pair of discrete defect lines with opposite characteristic vectors. We call it the
biaxial dipole because this defect would have two rotation axes. We wish to present in this section
some of the relations analogous to those for the dislocation dipole in section 3.4.2. From (3.42),
we find the defect densities of the biaxial dipole conjugate to the basic dislocation and disclination
densities and 6,4 to be

o) (r)=—&motpr, m(r), (7.1)
00,(r) =— Enbpg, m(r). (7.2)
By (5.19-20) these relations become for the discrete dipole line
aby (r)=—"8p, m(L){bi+ €1g-Qq (xr —x7) }ém — 8p(L) €1rfLetr, (7.3)
Oy (r)=—8p, m(L)Qqém. (7.4)

The meaning of the displacement &, is as follows: We let £,— 0, b, — ©, and (}4— ® in such a
way that b&n and Q€ remain constant.
The displacement of the dipole line is from (3.44)

up(r)=—&muy ,

(r) (7.5)
= —ﬁ €pmiCijriGjn, i(R) {bi+ €lqr~Qq(x’r_ x‘;) }fmdL;,
_fs €pmi CijiaGin, i(R) QpéndS;

+8m(S) {b1+ €ngrQq(xr —x0) } €m, (7.6)

where we have used (5.34) and (5.12). In this expression the third line can be made to vanish by
choosing S near the line to lie along ¢, or £,dS, =0 along L. Nevertheless, due to the surface
integral, the displacement is not a state quantity in contrast to the case of the dislocation dipole.

From (7.1-6) all other relevant quantities for a discrete biaxial dipole line can be derived if
desired.

Equation (7.6) allows us to estimate the asymptotic behavior of the displacement at large
distances from a straight biaxial dipole line. It is easily deduced that it will vary as In r as r— o,
Hence the strain will vary as r—! as r— . These results are also listed in table 3.

7.2. Influence of the Axis: The Uniaxial Dipole

The dipole of section 7.1 is obtained from the basic discrete defect line of section 5 by trans-,
lating it through the infinitesimal distance &, including the axis of rotation, and then subtracting
the basic defect at its original position.

In this section we first wish to isolate the influence of the motion of the axis, when the position
of the defect line is held fixed. We therefore consider the following defect, again composed of two
parts: the first is obtained from the basic defect by translating its axis only through an infinitesimal
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distance &, and the second part is the negative of the basic defect at its original position. The
defect densities of this defect are given by

(X;},zfmaap[/ax?" 9 (7.7)
0;:q:§maepq/ax21. (78)
By (5.19-20) these relations become
aﬁl(r)Z—S,,(L)ezquqfr, (7.9)
qu(r)=0. (7.10)
The displacement is
ut (r)=§&noul (r)/ox’, (7.11)

= —L CijriGjn, i(R) €1g:Q2eé1dS;,
= _J‘S G])mkcijl.'lcjn, i(R)prmdS,', (7]2)

where the second equality follows from (5.33), and the third by rearranging the indices using the
symmetry condition (2.3).
On comparing (7.9) and (7.12) with (3.23) and (3.30), we see that they represent the

density and displacement of a discrete dislocation line with Burgers vector

b1= —e/,,rQ,,fr. (713)

This was to be expected, since the motion of the axis through the distance ¢, has the effect of
translating the two sides of S by the distance b, given in (7.13), as we can see from (5.5). This con-
clusion complements the statement in section 5.2 that the axis of a discrete defect line can be
moved by adding a dislocation to the line, c.f. (5.23).

Next we want to examine the effect of holding the axis fixed and moving the defect line only.
This type of the defect will be called a uniaxial dipole because it has only one axis. It could alterna-
tively have been used as the definition of the discrete dipole line. It is composed of the following
two parts: the first is obtained from the basic discrete defect line by translating it through an infin-
itesimal distance & keeping its axis fixed, and the second part is the negative of the basic defect
at its original position. The resulting fields are simply the difference between those in section 7.1
and the above. So the dislocation density and displacement of the uniaxial dipole are

ak (r)=ab(r) —ap(r) (7.14)
=—8p,m(L) {bi+ €1gg (2, — x2) } Em, (7.15)
uh(r)=uh(r) —ui(r) (7.16)
— 581 eomiCintGin,i(R) {bi+ €igrq(x.—29)} mdL)» @.17)

whereas the disclination density is the same for either type of dipole,

05, =00, (7.18)
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We note that the displacement of the uniaxial dipole is a state quantity.

A special case of (7.17) is of particular interest, namely, the one corresponding to the wedge
disclination coinciding with its axis as the basic defect. In this case b,=0. For a wedge disclination
the Frank vector is parallel to the disclination line, £ |dL’. The point r' lies on the line and the
point r° on the axis. Since the line coincides with the axis, the difference, is also parallel to the line,
(r'—r°) || dL". So Q| (r' —r°), and hence €, Qq(x,—x2) =0. We conclude that (7.17) vanishes
for this case. Therefore u2=u4. This means that the conjugate dipole, corresponding to this wedge
disclination with Frank vector (g, is the dislocation with Burgers vector b, given by (7.13). It is an
edge dislocation because b L Q| dL’. Eshelby [21] used this approach to give a simple derivation
of the elastic field of an edge dislocation, when the field of the wedge disclination is known.

Equation (7.17) shows that the asymptotic behavior of the displacement at large distances from
a straight uniaxial dipole is the same as for a biaxial dipole. Table 3 shows there is a gap in the
asymptotic behavior between a disclination dipole and loop, i.e., there is no disclination type defect
with the r—! behavior for the displacement.

8. Application to Dislocations

The purpose of this section is to check the internal consistency of the results for dislocations
and the more general defects. It contains no new material. We want to show that the results of
section 3 fall out of section 4—6, when no disclinations are present, i.e., when the plastic deformation
of the body is completely described by the plastic distortion 3%,

8.1. Continuous Distribution of Dislocations

8.1.1. Geometry

The plastic strain and rotation are now given by (c.f. 3.2-3)

€k =Bf;cz), 8.1)

w{; = 1/2€quB£l, (8.2)
so that

ef T €xgwy = B 8.3)

in agreement with (3.1). The plastic bend-twist is (c.f. 3.12)

Kkg™ @,k (8.4)
Hence we find from (4.1)
apl:*€pmk(ellzl,m+€quw§,m) =— €pmkPBy, m> 8.5)
in agreement with (3.4), and from (4.2)
0p¢=—€pmkwl 1., =0, 8.6)

as expected. The Burgers vector is found from (4.5)

Bl=—§ (ef,— €grw? xr)dLi
N
= —i (eb,+ €lqk'w§)de

=— f BPdLy. ®8.7)
N
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Here the first equality follows from (8.4), the second from a partial integration where the integrated
part vanishes around the closed curve A, and the third from (8.3). The result agrees with (3.7).
Furthermore we also see that (8.6) in (4.7) agrees with (3.8). The Frank vector is found from (4.6)
and (8.4):

Qq=—3£ wordLi=0, ©.8)
A

as expected. This also agrees with (8.6) in (4.8).
In a similar way it is easily shown that (4.17) and (4.20) reduce to (3.10) and (3.11), whereas
(4.18) and (4.21) vanish.

8.1.2. Statics

The «}, term in (4.23) becomes by (8.4)

_fEpkaijkICjn,i(R)w;)),[r(r,)dV, =_f €1)kaijkICjn,il(R)wz(r,)dV’
=e,,mnw§(r).

Here the first equality follows by a partial integration, and the second by (2.7). Hence we have for
the total distortion (4.23).

ul , (r) =fe,mszUk,(}j,,,,-(R)a,,;(r')dV’ +eb, (r) + €pmnw? (r), (8.9)
in agreement with (3.16) and (3.1). From (4.14) we find the elastic strain
emn(r)zff}nnkCijl\-lcjn,i(R)Ofpl(l',)dV’(mn)- (810)

This relation can also be obtained from (4.29) with (8.6). It is in agreement with (3.13) and (3.17).
We next find the bend-twist. From (8.9) and (8.4) we find

u;rz,ms(r) = j €pmkCijiiGin,is(R) ap (r")dV' + ef,m,s(l') ar Gpmanp(r)- 8.11)
Hence we find from (4.15)
Kst(r) = l/zfftmnfpmkcijklcjn,is(R)apl(rl)dV’- (8.12)

This relation can also be obtained from (4.34) with (8.6). We see it is in agreement with (3.14) and
(3.17).
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8.2. The Discrete Dislocation Line
8.2.1. Geometry
When a discrete defect line contains no disclination, {1,=0, as we saw from (8.8). For this
case (5.5) reduces to (3.18) and (5.6) becomes
[wq(r)]=0, (8.13)

while (5.7) reduces to (3.19) and (5.8) reduces to (3.20).
Next we find that (5.12-13) become

B () =—8k(S) by, (8.14)
k(1) =0. (8.15)

This shows from (3.21) that
=B (8.16)

as expected, since both sides represent the dislocation loop density by (6.29) and (3.38). Equation
(8.15) shows that the disclination loop density vanishes. Now (5.14—15) become from (8.14—15)

el (r) =—1/2[8,(S)bi+ 8:(S) bxl, 8.17)

kb (l‘) S 1/2€k1q8k,m(s)bl’

" 8.18)
(Kfq(r) == 1/26[(]7‘87‘,];(5)[)1) &

We see that (8.17) is in agreement with (3.2) and (3.21) and that (8.18) agrees with (3.12) and (3.21).
From (5.17) we find that

Bi=b, 8.19)

showing that the total Burgers vector reduces to the dislocation Burgers vector. From (4.1) and
(8.17-18) we find

apl(l') = €pmk8k,m(s)bl = Bp(L)bl (820)

This result can also be obtained directly from (5.19) and is in agreement with (3.23). Next we find
from (4.2) and (8.18) or directly from (5.20)

opq(r) =i 1/2 €pmk €lgr 8r, km (S) bl = O, (821)
as expected, in agreement with (8.6).

8.2.2. Statics

Again for ), = 0, we see that (5.33) reduces to (3.30), and (5.34) reduces to (3.31) with (8.16).
The elastic strain is

emn(l') = %,‘ epka,-jlej,l, l(R)b[(lL /P(mn)- (822)
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This result can be found in two ways: first from (5.37), or second from (4.29) with (8.20-21). It is in
agreement with (3.13) and (3.32).
Next we find the elastic bend-twist from (5.40)

Kst(r) =1/2 é elmn€pmk(;ijl\‘l("jn, is(R)bIdLlp- (823)

L

This could also have been found from (4.34) with (8.20-21), and is in agreement with (3.14) and
(3.32).

So we have shown in this section that the more general defect theory, including disclinations,
completely reduces to the well-known dislocation theory in the special case that the disclinations
vanish.

9. The “Dislocation Model” of a Discrete Defect Line

Li and Gilman [20] considered the finite disclination loop as a continuous distribution of dis-
locations, and called this the “dislocation model” of the disclination. Mura [22] used the same
concept, which he ascribed to Eshelby, discussing also the case where he replaced a wedge dis-
clination by a semi-infinite edge dislocation wall. We wish to make clear the distinction between the

two concepts.
We start with the observation, made in section 6, that only the dislocation loop density, or
Mura’s “plastic distortion” B)5, contributes to the elastic strain. For a discrete defect line, this

quantity is given by (5.12). So the elastic strain obtained from this expression does not depend on
what we choose for the disclination loop density, or Mura’s “plastic rotation” d),’fq. If we choose it

to vanish

:'(q =0, (91)

then we have a distribution of dislocation loops over the surface S that gives exactly the same elastic
strain as the discrete defect line of section 5. We call the corresponding dislocation distribution the
dislocation model of the defect line. We note that this dislocation model is clearly a different defect
from the discrete defect line it corresponds to. Specifically, we obtain the dislocation model by
setting

w1 = B 9.2)
where

H(r) = — 8, (S){b: + €1 Qq(xr — X3 )}, (9.3)

and where b; and (), are constants. We can then use the methods of section 3.1 to find any other
desired relations. Furthermore (5.14-16) become by (9.1)

1= B (9-4)
Kl{l’q = 1/26“03:1, mo (95)
ell."l,m+ fl\'lqK:;zq::B:l,m’ (96)

With these relations we can alternatively use the methods of section 4 to find any other desired
results
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9.1. Geometry

We find the dislocation density from (3.4) with (9.2) or (4.1) with (9.6)
ap(r)=— el""’\‘BI;kl,m

= €pmidk,m(S) {b1+ €1 Qq(xr — x9) } + €pmds (S) €1g:- L S rm

= SP(L) {b1+ elquq(xr—x‘r’)} ar 81(8)9,,— 8,,18;;(5)9,;\-. (97)
Here the second equality follows from (9.3), and the third from Stokes’ theorem (B26) and the
expansion (A3). We see now that the dislocation model is a dislocation distribution consisting of
the following two parts: First a dislocation line along L, which is the same as for the corresponding
discrete defect line, (5.19), and second a constant dislocation distribution over the surface S. In
other words it is a dislocation wall at the surface S, which terminates on a dislocation line at its

boundary L. The disclination density vanishes from (4.2) and (9.5)

91}(1:_El)mkl/zflqrﬁfl,km: 0, (9.8)

as expected.
We see that the continuity equation (3.6) or (4.3) is satisfied

apt,p(r) =8, p(L) {b1+ €1 (x, —x3) Yok 8p(L) €1gplq~+ 81,p(S)Qp— 8x,1(S) i

=0, 9.9

where we have used (B27-28).
We next find the total Burgers vector from (4.5) with (9.4-5)

BIZ—ﬁ (B(ﬂ;\-l)—ﬁ["‘rl],er)de
:—§ BridLk
A
:% 8x(S) {bi+ €1 Qq(xr—x°) } dLy
A

=bi+ €1grg(xS* —x2). (9.10)

Here the second equality follows by a partial integration, the third from (9.3), and the fourth from
(B15-16), where x3* is the point where A crosses S (fig. 1).

9.2. Statics

If we substitute (9.3—4) into (2.15) we find for the displacement

u:(r) = j Cij“Cjn, 1(R){b1 + ezqrﬂq‘(x,'.—x:)} ds,'., 9.11)
S

which is identical to (5.33). So we see that the displacement of the dislocation model is exactly the
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same as the displacement of the corresponding discrete defect line. Hence (5.34) follows in exactly
the same way

ur (r)= % €pmkCijkiGjn, iR){b1 + €1grQg(x] — x:)}dL;' + j €pmiCijiiG jn i R)Qpd S; + B, (r).
L s

9.12)
So we find the elastic distortion from (3.9) and (9.2)

an(l‘) = f Gpm/;Cijlej",,'(R){bl ar Elqp()q(x; - xr) }dLll)-i- J‘ €pmkcklmn Gjn, z(R)Q pds; (913)

L S

This relation could also be obtained froimn (3.17) and (9.7). It follows from the discussion in section
3.1.2 that this elastic distortion is a state quantity for the dislocation model, but according to the
discussion of section 5.3 it is not a state quantity for the discrete defect line. This may be the physical
significance of Mura’s “‘elastic distortion” for a discrete disclination.

emn(r) = % €pmiCijiiGin,i(R){b1+ €1g-Qq(x,.—x7) }dL!
L

P(mn)

9.14)
+f €pkaijkICjn.i(R)QPdS;(nm)'
S
This relation also follows from (4.14) with (9.4) and (9.12), or (4.29) with (9.7-8). We see that this
expression is identical to (5.36). So the elastic strain and hence stress of the dislocation model is
identical to that of the corresponding defect line, as we stated before.
We next find the bend-twist. From (9.12) we have

~

gl = i €pmiCijiiGin is(R){bi+ €10:Q (x, —x7) }dL),

9.15)
+Lepka,-;qun,.-s(R)deS;+B§,,.,_\.(r),
and from (4.15) and (9.5)
Kkse(r) =1/2 § €mn€pmiCijiiGin.is(R){b1+ €10:Qq(x, —x7) }dL,
L 9.16)

+ 1/2] €tmn€pmijn,is(R)desl"
S

This relation could also have been obtained from (3.14) with (9.13), or from (4.34) with (9.7-8).

We see from this section that there is a great similarity between the dislocation model and its
corresponding discrete defect line. Therefore it is important to distinguish carefully between them.
For example, the defect densities for the discrete line are given by (5.19-20), while for the dis-
location model they are given by (9.7-8). So we see that in the transition the disclination density
in (5.20) has been traded for the constant surface dislocation density in (9.7). As we saw both
defects give the same elastic strain; explicit expressions for it can be obtained by substituting the
above densities into (4.29). For the discrete defect line we find (5.37) and for the dislocation model
(9.14) for the elastic strain. We see that the second term in (5.37) represents the contribution from
the disclination density; it equals the second term in (9.14) which represents the contribution from
the constant surface dislocation density. We shall illustrate some special cases of the dislocation
model in future publications [25, 26].

Li and Gilman have also calculated the force on a discrete disclination line by assuming that
it equals the force on the corresponding dislocation model. Since the present paper does not deal
with forces a formal proof of this interesting result will be published elsewhere [23].
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10. The Compensated Disclination Line

We now want to investigate a problem that complements the one of section 9. Consider a
vanishing dislocation loop density and a disclination loop density given by (5.13)

*=0, (10.1)

kl

1 (r) =—8:(S)Qy, (10.2)

where (2, is a constant. This represents just a constant distribution of disclination loops on the
surface S. Since there is no dislocation loop distribution, we shall find that there is no elastic
strain for this defect. We find the plastic quantities from (5.14—16)

e = (10.3)
Kig= b (10.4)
We now use the methods of section 4 to find any further desired results.
10.1. Geometry
The dislocation and disclination densities are from (4.1—2)
api(r) = €pmr€rigdm(S) Qg
= 8,0k (S) ) — 8:(5)Q,, (10.5)
Opq(r)= €pmdi, m(S){y

=38p(L)Qq, (1L,

where we have used Stokes’ theorem (B26). Therefore the defect in this case is a dislocation wall
at the surface S, which terminates on a disclination at its boundary L. It consists of the same dis-
crete disclination line as treated in section 5, (5.20), and a dislocation distribution on S, which is
just right to make the elastic strain vanish. Therefore we have called it the compensated disclination
line. Note that the sum of (10.5) and (9.7) gives (5.20), and that (10.6) is the same as (5.19). This
was of course to be expected, because sections 9 and 10 represent a decomposition of the problem
of section 5. We find that the above results satisfy the continuity equations (4.3—4)

ap, p(r)+ flﬂq()m(r) =, 1(S)Q;;—8,,,,(S)Q,;+ elpqsp(L)Qq: 0, (10.7)
Bpq, p(r) =8, (L) Q= 0, (10.8)

using (B27-28).
We next find the total Burgers vector from (4.5) and (10.2—4)

Bi=— f}‘ Elqrsk(s)ﬂqxrde

= — €1 dgxS, (10.9)
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by (B16), where x3* is the point of intersection between the curve A and the surface S (fig. 1). We

note that the sum of (10.9) and (9.10) is the same as (5.17). We find the Frank vector from (4.6),
(10.4), and (10.2)

= é kP dLy= § 81 (S)QgdLi = Qy, (10.10)
A A

kq

using (B15). This identifies the constant ), as the Frank vector. The same results can be obtained
from (4.7-8) and (10.5-6).

10.2. Statics
If we substitute (10.3) into (2.15) we find the displacement

ul=0. (10.11)
Hence from (4.14) and (10.3)
exl1— 0. (1012)

So we see that there is no elastic strain and hence stress, as we discussed before. The elastic bend-
twist is from (4.15), (10.11), (10.4), and (10.2)

For consistency we show that this relation can alsc be derived another way. If we substitute (10.5-6)
into (4.34) we find

Ksl(r) = 1/2 f€rmn€pml.'CijkIGjn.is(R)deS‘ll + 1/2 §Elmnf)nnquleijk[Cjn‘ i(R)deLq’, (1014)
S L
which by Stokes’ theorem (A2), (2.7), and (B5) becomes
K.s'l(r) = 1/2 Jl‘ EImn€pkaijkIGjn, 1I(R)deS:

=1/2 f €rmn€]1ml.'6kn8(R)deS;.
S
= 85(S) L, (10.15)

in agreement with (10.13). Note that the sum of (10.14) and (9.16) gives (5.40), as expected.
Summarizing, we see that when the compensated disclination line is added to the dislocation
model we obtain the discrete defect line.

11. Summary

We started this paper with the general solution of the plastic strain problem which is just an
extension of Eshelby’s transformation problem and essentially equivalent to Mura’s plastic dis-
tortion problem. It formed the basis of all static defect fields. We then reviewed dislocation theory,
including the continuous distribution, the discrete line, Kroupa’s continuous distribution of in-
finitesimal loops, and the dipole. This introductory material formed the point of departure for the
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general theory of defects, i.e., disclinations and dislocation combined. On the other hand, it formed
a basis of comparison, because the general defect theory reduces to it when the disclinations
vanish.

We defined the continuous distribution of defects. This definition was motivated by a violation
of the compatibility equations. We also defined the Frank vector, which is the characteristic
rotation vector of the disclinations, analogous to the Burgers vector for dislocations. We derived
closed integral expressions for the basic elastic fields, the elastic strain and bend-twist, in terms
of the defect densities, showing that they are state quantities. These integrals contain kernels
with Green’s tensor and the incompatibility source tensor, a type of Green’s tensor introduced
by Simmons and Bullough.

The definition of the discrete defect line was motivated by Weingarten’s theorem. A new
quantity introduced here is the axis of rotation, which did not exist for a continuous distribution.
After finding the basic plastic fields, the plastic strain and bend-twist, all the results for the con-
tinuous distribution can be specialized to the discrete case. We found that the calculations were
simplified by using two new quantities, Mura’s “plastic distortion” and “‘plastic rotation,”” which
we later identified as the dislocation and disclination loop densities. We found that the axis of a
disclination can be translated to a new position by adding a discrete dislocation line to it. We
found the basic elastic fields as closed line integral, which confirmed again their nature as state
quantities.

The continuous distribution of infinitesimal defect loops was defined by extending Kroupa’s
definition for dislocation loops. The complete correlation to the continuous distribution of defects
was established by finding the basic plastic fields in terms of the loop densities. It was then simple
to identify Mura’s plastic quantities, as mentioned above, which resolves a difference we had
with Mura.

We found that the three independent definitions for defects, i.e., for continuous distributions,
discrete lines, and infinitesimal loops, do not lead to a single concept of the disclination. Rather,
the disclination defined in one formulation contains a certain amount of dislocation in the two other
formulations. So a certain amount of mixing occurs in going from one formulation to another, but
the amount can be uniquely determined. Our difference with Anthony for example originates from
this mixing between continuous defect distributions and discrete defect lines. As another example
we interpreted the discrete defect line in terms of a continuous distribution of defect loops, which
clarifies our difference with Mura.

The discrete dipole line was defined by extending Kroupa’s definition of the dislocation dipole.
We find there is a great similarity between disclination dipoles and dislocation lines.

Then we showed that the general defect theory reduces to the classical dislocation theory when
the disclinations vanish.

We clarified the concept of the ‘““dislocation model” of a discrete defect line, introduced by Li
and Gilman. We found that it is a distribution of dislocation loops identical to that for the corre-
sponding discrete defect, but without any distribution of disclination loops. In Mura’s terms it is
given by the “plastic distortion” without “plastic rotation.”” We found that the dislocation model is a
dislocation wall which terminates on a discrete dislocation lying along the same line as the corre-
sponding defect line. The dislocation model has the same total displacement, elastic strain, and stress
as the corresponding discrete defect line. The “‘elastic distortion” of the dislocation model is
Mura’s “elastic distortion” of the discrete defect line. The great similarity between the dislocation
model and its corresponding discrete defect line makes it important to distinguish clearly between
these two concepts.

We concluded the paper with the “compensated disclination line,” which is a constant distribu-
tion of disclination loops over a surface. In Mura’s terms it is given by the “plastic rotation’” without
“plastic distortion.”” We found that it is a dislocation wall terminating at a discrete disclination
line, giving no displacement, strain, and stress. The sum of the compensated disclination line and
the dislocation model gives the discrete defect line.

In an appendix we have developed a special notation, adapted from Kunin. It is very helpful
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for the treatment of discrete defects where generalized functions appear, such as the Dirac delta
function.

So we have presented a general theory of stationary defects for a linearly elastic, infinitely
extended, homogeneous body. In future publications we shall specialize these results to isotropy [24]
and apply them to straight disclinations [25] and disclination loops [26].

The major shortcoming of the present treatment might be the use of linear theory. This means
that in a real solid the resulting fields close to discrete defects will deviate considerably from our
formulas, but they will become more realistic the further away we are from a defect. This point
will be more clearly illustrated in the future publications where we obtain specific results for par-
ticular geometries. However, without the linear assumption we certainly could not have pushed
the theory as far as we did. This is the price we paid for a fairly complete analytic treatment.

Within its limitations the present theory is completely self-consistent. Aside from its possible
intrinsic usefulness, it can be used as a starting point for generalizations, such as dynamics,
nonlinear effects, couple-stresses, a finite body, or inhomogeneities.

12. Appendix A. The Divergence Theorem and Stokes’ Theorem

The rank (also called order by some authors) of a tensor equals the number of subscripts on
the tensor. In the following let T be a tensor of any rank, where we have suppressed the subscripts.
The divergence theorem is formulated as follows

f T,idV=fﬁ TdS;. (A1)
| %4 Ay

where the integrations are restricted to the arbitrary volume ¥ and its bounding surface S, which is
therefore a closed surface.
Stokes’ theorem can be formulated in two ways. The first one is

f EijkT,dei=§ TdL,, (A2)
S L

where €;j; is the permutation symbol. By using the identity
€ijk€xim = 0u10jm — 8imd ji (A3)

we find the second formulation
§ eumTdLi= [, . ns 1= 5. (Ad)

Here the integrations are restricted to the arbitrary surface S and its bounding curve L, which is
therefore a closed curve. We use the right-hand rule in relating the curve L to the surface S.

13. Appendix B. Delta Functions on Curves and Surfaces

This appendix is an adaptation of a treatment by Kunin [27]. Let ¢p(x) be an infinitely differentia-
ble finite function of x, called a test function. We can define the Dirac delta function §(x) by

" 0, if x' < a,
f d(x—x")p(x)dx=1 ¢(x'), ifa<ax' <b, (B1)
“ 0, if b<ax',

where a and b are arbitrary constants. Since §(x) is a generalized function, the integrals in this
and subsequent equations are meaningless in the sense of classical analysis. Instead they are to be
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regarded as a symbolic notation. This notation has been treated in detail by Gel’fand and Shilov
[28]. The meaning to be attached to the following integrals then follows from the fact that all
subsequent results are derived from the definition (B1).

The three-dimensional Dirac delta function §(r) is defined by

S(r—r') = 8(x1—x;)6(x2 — x,) (x5 — x3) (B2)

Let the test function ¢ (r) be an infinitely differentiable finite function of position r. Then it follows
from (B1-2) that

o(r'), if risin V,

fv 3(r—r')p(r)dV= { 0, if ' is not in ¥, (B3)
where dV = dx,dx:dx; and V is an arbitrary volume.
The Dirac delta functions for a curve L, a surface S, or a volume V are defined by
& (L) Efl‘ﬁ(r—r')dLlf, (B4)
8i(S) ng 8(r—r')ds], (B5)
8(V) = fVS(r—r')dV" (B6)

We see that §;(L) and §;(S), in addition to being delta functions, are also vectors parallel to the
curve L and normal to the surface S, respectively. From (B3) we see that

L T e )
We now have the following relations

[swsmar=[ swaL, (B8)

[s0war=[ s, (B9)

fa(V)¢(r)dV= fV b(r)dvV, (B10)

where the integrals in the left-hand sides are over all space, and those on the right-hand sides are
restricted to the curve ., surface S, and volume V, respectively. To prove the first relation, (B8),
substitute (B4) in the left-hand side, and we have

ff/‘S(r_r,)dL;‘b(")dV:ﬁf5(1‘—r’)¢(r)dVdL;.=ﬁ¢(r')dLri

by interchanging integration and using (B3). The proofs of (B9) and (B10) follow in a similar way.
By a slight change of variable we can also write (B8—10) as follows
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f&(l,')d)(r—r')dV':ﬁ $p(r—r')dL, (B11)

f6,—(8’)¢>(r—r’)dV’=L¢(r—r’)d${, B12)

f&(V')d)(r—r’)dV’:ﬁd)(r—r’)dV’. (B13)

If the curve . crosses the surface S once, we also have the relation

ff‘o‘(r—r')dL;de= L (B14)
SJL

[tini|’

where ¢; is the unit tangent to the curve L, and n; the unit normal to the surface S, at the point of
intersection, r’S. To prove this relation, note that the integrals in (B14) contribute only at the
point r”S. Therefore we can replace the curve L by a straight line tangent to L at r’S, and the surface
S by a plane tangent to S at r’S. We shall next calculate the integral in (B14) for the special case
n;j=(001), i.e., when S is the x;x, plane. For j=1, 2 the integrals then vanish in agreement with
(B14). For j=3 we have by (B2) and (B1)

[ [ [ ota—xpa (= x)s = ) iesdes = [ o(xs =)L
L

—xJ-xJL

* ’ ti ’
:f S(x;;—x:,) | . ' dxs
5500 3

L

| 3]

Here we have used the fact that for a straight line dL;= (ti/t3)dx;, and that the range of x/ is

(— o, ) for t5 positive and (0, — ) for 3 negative. This result also agrees with (B14) for this special
case. Hence (B14) holds in a particular coordinate system. By tensor analysis it is therefore also
true in a general coordinate system. The specific form of (B14) can be derived from the above
results by the method of Appendix II of reference [29]. From (B4), (B5), and (B14) we have

1, if L crosses S positively,
f 8;(L)dS,-=f $:(S)dL;= 0, if L does not cross S, (B15)
s I . .
-1, if L crosses S negatively.

It is not difficult to generalize these relations to

¢ (rls), if L crosses S positively,
f 8,~(L)¢(r)dS,-~——f Si(S)p(r)dL;= 10, if L does not cross S, (B16)
§ r — ¢ (rS), if L crusses S negatively.

The derivative of delta functions is defined by switching the operation to the test function

[ sse=rrgmar == [ see—r1o,mav, B17)
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as suggested by classical analysis. Now we can write the derivatives of the delta functions (B4—6)

as follows
8i5(L) = f 5, (r—r')dL!, B18)
L
3s(S) = [ B(r—r)as;. B19)
S
8,,-(V)=f 8,j(r—r')dV'. (B20)
| %4

From these relations, it follows that

[ ustrgmar=- [ .00 dLs (B21)
[s160ar=— [ #amas. )
JB,,-(V)(b(r)dV:—J;V b,j(r)dV. (B23)

For example, to prove (B21), substitute (B18) into the left hand side, and we have by (B17) and (B3)

ffl 8.5(r—r')dLi$(r)dV = J;fS,;(r—r')¢(r)dVdL£
:_J'Lf 8(r—r')¢,;(r)dVdL;

=—L .y (r')dL].

The proofs of (B22) and (B23) follow in a similar way.
The divergence theorem also holds for delta functions and is expressed as follows

8.:(V)=—5i(S), (B24)

where S is the closed surface which is the boundary of V. This theorem is proved showing the
follo wing relationship:

[a.010@ar=—= s.wav
= _§S¢(l‘)dsi

_ —fSi(S)(b(r)dV,

which follows from (B23), (A1), and (B9). Since ¢(r) can be chosen arbitrarily, (B24) follows. We
also conclude from this relation that

Eijkak,j(S) =) (825)
for a closed surface S.
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Furthermore Stokes’ theorem also holds for delta functions as follows

E.’»,'k8i,_;(S)=—8/.-(L), (826)

or
EI.'ImSI.‘(L) = Om, I(S) = (), m(S), (B27)

where L is the closed curve which is the boundary of S. This theorem is proved by showing the
following relationship:

[eundis )6 017 =~ [ s smas,
~—$p(r)dL.

=—fak<L>¢(r)dV,

which follows from (B22), (A2), and (B8). Since ¢(r) can be chosen arbitrarily, (B26) follows, and
(B27) follows directly from (B26). We conclude from (B26) that

O, k(L)=0 (B28)

for a closed curve L.
A homogeneous function of degree \ is defined by the equation

flkx) =k M (x) (B29)

for any positive k. We wish to show that §(r) is a homogeneous function of degree (—3) inr. From
(B3) we have

[swpmar=s0. (B30)
By a change of variable and (B3) we have

IS(kr)¢(r)dV= k—3f8(r)¢(k—‘r)dV .
(B31)

= k3(0).
Therefore, since ¢ (r) is arbitrary

&8(kr) =k=35(r), (B32)

which shows the contention.
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