login
A000335
Euler transform of A000292.
(Formerly M3859 N1581)
35
1, 5, 15, 45, 120, 331, 855, 2214, 5545, 13741, 33362, 80091, 189339, 442799, 1023192, 2340904, 5302061, 11902618, 26488454, 58479965, 128120214, 278680698, 602009786, 1292027222, 2755684669, 5842618668, 12317175320, 25825429276, 53865355154, 111786084504, 230867856903, 474585792077, 971209629993
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p. 20.
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 - Zeta(3) / (8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8*Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2 / (90*Zeta(5)) + Zeta'(-3)/6 + (Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) - Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5)) - Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5))) * n^(2/5) + Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)). - Vaclav Kotesovec, Mar 12 2015
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+2, 3)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
max = 33; f[x_] := Exp[ Sum[ x^k/(1-x^k)^4/k, {k, 1, max}]]; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x], 1](* Jean-Fran�ois Alcover, Nov 21 2011, after Joerg Arndt *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)/6), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 11 2015 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, #*p[#] &]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Binomial[#+2, 3]&]; Table[a[n], {n, 1, 40}] (* Jean-Fran�ois Alcover, Nov 24 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^4/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
(PARI) N=66; x='x+O('x^66); gf=-1 + exp(sum(k=1, N, x^k/(1-x^k)^4/k)); Vec(gf) /* Joerg Arndt, Jul 06 2011 */
(Sage) # uses[EulerTransform from A166861] and prepends a(0) = 1.
a = EulerTransform(lambda n: n*(n+1)*(n+2)//6)
print([a(n) for n in range(33)]) # Peter Luschny, Nov 17 2022
KEYWORD
nonn,nice
STATUS
approved