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Abstract: This paper solves the problem of findin

the number :_:r W’—

of ways in which a regular pelygon can be divided ijte polygonal 2Q5~7
regions by non-intersecting chords. The main problen is that .
for which two dissections are regarded as the same 1if e can
be obtained from the other by rotation or reflection, but tAhH
solution when rotation only is allowed is also given. For fixed
polygons the result is already known but is proved here 235 2
necessary preliminary.

All results are given in terms of the number of sides of
the polygon and the number of regions into which it is dissected.

Tables of values are given, and a few points of interest about

their preparation are briefly discussed.
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Or General Dissections of a Polygon

by Ronald C. Read
University of Waterloo

I. INTRODUCTION

A type of problem of recurrent interest relates to thek
nunber of ways of dividing up thé interior of a convex polygon
into a number of smaller polygons by means of nonintersecting
diagonals, i.e. line segments joining two nonadjacent vertices
of a polygon. The simplest problem of this type is that of
determining the number of ways of dissecting a fixed n-gon into
n - 2 triangles. This problem, for which the answer is the
sequence of Catalan numbers, has been extensively studied; an
excellent account of it and of its literature is given in [1].
Similar results for the dissection of an n-gon into k-sided
polygons (k > 3), were obtained by Motzkin [7]. 1In these
problems the n-gon 1is regarded as fixed in the plane, so that,
for example, the two dissections of a hexagon shown in figures
1(¢a) and L(b) are regarded as different.

If we choose to regard two dissections as equivalent 1f
one can be obtained from the other by rotating the n-gon (now
assumed to be regular) about its cenire, and ask for the number
of nonequivalent dissectlons, we have a different, and more
difficult, problem. Under these conditions dissa2ctions 1(2)
and 1(b) become equivalent, but are distinct from i(c). If we
alsc allow reflection in cur definition of equivalence then we
have yet another type of problem, ir which, fer example;
dissecticns 1(a), 1(b) and 1(c) are all egunivalent. This latter
problem, for dissections into triangles only, was solved soma

years ago by Guy (2] (see also {7]J.
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It was only recently that the solution was given for the
problem of enumerating dissections of an n-gon into k—gons
(k > 3) subject to equivalence under rotation, and po;sibly
reflection as well (there being, therefore, two problems for
each value of k according as reflection is or is not allowed).
The stratagem used in that paper - one that enabled the

symmetries of the configurations to be easily perceived - was to

convert the problem into a type of cell-growth problem. This,

so to speak, turmns the problem inside out; “instead of starting
with a polygon and dividing it up, one starts with a number

of small polygons (cells) and sticks them together to make the
larger polygon for a homeomorph of it). Such an assemblage of
regﬁlar cells will be called a "cluster". Since no vertex of
the dissected n-gon can belong to more than 2 cells, it follows
that the structure of these clusters {s essentially tree-like,
as observed in [5]. It is this which makes their enumeration
feasible, in contrast to the general cell-growth problem, which
appears to be quite intractable. (For general information on
the cell-growth problem sce [3, 4, 6, 91).

The precise details of this new way of looking at the
dissection problem are given in [5], to which the reader is
referred; but the general principle can be gleaned from Figures
2 and 3. Figure 2(a) shows a 27-gon dissected into eight
regions. 1In Figure 2(b) these regions have been made into
regular polygonal cells, a procedure which, of course, distorts
the boundary of -the figure as a whole. Figure 3 not only
{llustrates the two ways of drawing a particular dissection of

a 25-gon into 9 regions, but shows how, by forcing the cells
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to be regular polygons, we may cause the drawinngf the cluster
to overlap itself as shown in Figure 3(b). This overlapping
is allowed, and is of no consequence; it does not matter which
of two overlapping portions is drawn on top of the other.

Little attenticn appears to have been pald to the problem
of dissecting an n-gon into poiygoas with arbitrary (i.e. not
necessarily equal) numbers of sides, although this problem for
a fixed n-gon has been solved by Motzkin [7]. 1In this paper
we shall give the solutions to the two problems of this general
type for which equivalence excludes and includes reflection
as well as rotation. In these problems there is no connection
between the number of cells and the number of sides of the
polygon being dissected. Thus our dissections will be
classified according to these two numbers, and we shall therefore
be working with generating functions in two variables. This
is the most noticeable difference between this paper and [5].
The general pian of campaign is otherwise much the same, and to‘
avoid needless repetition some theorems and results that were
discussed in [5] are merely quoted here.

The edges of a cluster that lie on its boundary, and
therefore corvespond to the edges of the n-gon being dissected,
are called "outer'" edges; the others, corresponding to the
diagonals, are called "inner" edges. A cluster is sazid to be
"yooted" at a certain edge (the root edge) if that edge is
distinguished from the others. Two such rooted clusters will
be regarded as equivalent if, and only if, there is a mapping
0f one ontc the other {by rotation cr reflection) which makes

their root edges correcspond. In an analogoue way we define a



cluster "rooted at a cell".

2. CLUSTERS ROOTED AT AN OUTER EDGE

Following--the same general plan of campaign that was
adopted in [5] we first consider clusters that are rooted at an
outer edge (called, feor brevity, "out-rooted clusters™), and
we let vr,s be the number of these for which the number of
cells is r and the number of outer edges, not counting the
root edge, is s. For the time being we shall regard such a
cluster and its mirror image as being distinct unless, of course,
they are identical. We shall include the "empty out-rooted

cluster" consisting of the root edge alone; thus =1,

, Vo,1
The counting series for these clusters will be denoted by
V(x, y). Thus

V(x, y) = & V xy

Consider those out-rooted clusters for which the cell
containing the root edge is a (k + 1l)-gon. Such clusters
can be constructed by taking a (k + 1)-gon, one side of which
is to be the root edge, and attaching an out-rooted cluster
(possibly empty) to each of the otﬁer sides (see Figure 4). It

is easily seen that the counting series for such clusters is

ka(x, v)
the factor x beilng required to accommodate the criginal
(k + 1y-gon, which adds 1 to the number of cells.
Nowvevery out-rooted cluster 1s eilther ewmpty or is a.
cluster of the above type for some value of k 2 2. Hence we

have
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. 2 3 .
V(x, y) =y + x[V (x, y) + V (x, ¥y} +....]
or

- . - - xV (X, 4Y);
(2.1) = VG YY) =Y TN ETD

Applying Lagrange's Theorem to equatina (2.1), regarding
V(x, y) as a power series in x , we find that the coecfficient

of x" in V(x, y) 1is

2 o
1 d .r-1,z T 1 d r-1 . ,r+m=-1, 2r+m
=l (=—=1"1___ = =l z ( <z ‘
r!" tdz l-z z=y r!i"dz n=0 r-1 ]z=y
21 ® Lr+m-l, Qrimyt  r+mil
ri qigc r-1 )(r+m+l)! y

provided r 2 1. Trom this it follows that

(2.2) Vv =

s=-2. {r4+a-1)! 1,8-2. ,r+s-1
= = (
r,s r!(r-l) s! r(r-l TS )

3. CLUSTERS ROOTED AT A CELL

If, in a cluster, one cell is distinguished from the
others, the cluster will be said to be rooted at that cell, and
will be called a cell-rocted cluster. Such clusters can be
obtained by taking a k-gon as the roct cell and attaching tc
each of its sides an out-rooted cluster. As before, we do not
regard two clusters as being the‘same if they are no more than
mirror images of each other, tut we do regard two clusters as
the same if one can be .cbtained from the other by a rotation
about the centre of the root cell. Thus the problem of counting
cell-vooted clusters is a straightforward applicztion of P6lya's
Theorem (see [4, 8]) for which the figure counting series is
v(x, y), and the group is the cyclic group C, . From the

k

theorem we have that the couating series for these clusters for



a given value of k 1s Z(C,; V(x, y)). Therefore, if we let
F(x, y) be the counting series for all such clusters (any

value of k) we have

(3.1) F(x, y) = I Z(C ;5 V(x, ¥))
k=3 .

This expression for F(x, y) 1is adequate as a theoretical
result, but presents some difficulties when it comes to actual
computation. We shall consider later the interesting
computational aspects of this problem, and in particular see
how a certain amount of manipulation enables the coefficients
in ¥F(x, y) to be easily calculated. For the present we

continue deriving the necessary theoretical formulae.

4. UNROOTED CLUSTERS

The transition from cell-rooted to unrcoted clusters is
effected by means of the formula

(4.1) 1 =p ~-q + s

(see [5] for the necessary details). We shall sum equation

(4.1) for all unrooted clusters, thus obtaining on the left-hand
side the number of these clusters, which is what we want to find.
Sumning p* - the number of equivalence clases of cells under
rotations which leave the cluster invariant - gives us the

total which counts each cluster as many times as it has

equivalence classes of cells, i.e. this total is the number c£

cell-rooted clusters, erumerated by F(x, y). 1In a similar way
® - £ ~

the summation of g« =~ the number of equivalence classes ol

inner edges - gives ns the number of clusters rocted at an

inner edpe.

These latter clusters, which we may call "in-rcoted clusters"



can be obtained by taking an edge and adding, on each side of
it, a Egﬁ:emnﬁz out-rooted cluster. Since rotatien is allowed
we can find the counting series for these clusters bf an
application of P6lya's Theorem in which the figure counting

series is U(x, v) = V(x, y) - ¥ aﬁd the group is 82 , the
symmetric group of degree 2. We obtain

UG IR OOy
as the counting seriles for these clusters.

The summation of s over all clusters simply gives us
the number of clusters having a symmetric edge. These can be
obtained by taking an edge, choosing any nonempty out-rooted
cluster, and then placing this cluster on cne side of the edge
and the same cluster (rotated through 180°) on the other side
(see Figure 5). This gives the counting series U(xz, yz).
Collecting these results together we find that the

counting series for unrooted clusters is

i
o1
m
»

«

(4.2) H(x, ¥)

Flx, y) - S0P (x, y) - UG, )

5, ENUMERATION OF CLUSTERS WHEN MIRROR IMAGES ARE NOT REGARDED

AS DISTINCT CELL-ROOTED CLUSTERS

Yhen, as a first step, we come to enumerate cell-rooted

ciusters under the condition that mirror 1mages are not regarded
as different, we run into a difficulty that was remarked in [5].
The root cell, a2 k-gon, say, can be mapped oato itself by any

element of the dihedral group Dk ; but half the elements of
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this group will not only permute‘the figures (the out-rooted
clusters attached to the sides of the root cell) but will alse
replace these by other figures, nzmely their mirror ihages.
Under these circumstances P6lya's Theorem cannot be directly
applied. Instead we make use of Burnside's Lemma (see {47,
page 38) and first ask which figures are left invariant by a
given permutaticn of D,.

K

Those permutations of Dk that do not cerrespond to

reflection, and which are therefore elements of Ck , give no
trouble; it is easily verified that the results that we get
from them will be exactly what we get by applying P6élya's

Theorem for the elements of C . We therefore look at the

k
elements of Dk which are reflections.
If k is odd, say k = 2m + 1 , these elements have one

cycle of length 1 and m cycles of length 2, and correspond

to terms of the form slsg in the cycle index Z(Dk). To be
invariant under such a reflection, the out-rooted clusters
attached to corresponding pairs of edges (that are interchanged)
must be identical, and the cluster rooted at the edge that maps
onto itself must be symmetric, i.e. symmetrical about the
perpendicular bisector of its root edge (see Figure 6). From
this it follows that the counting series for such cell-rooted

clusters is

(5.1) xT(x, y) VP x?, v
wvhere T(x, y) 1is the counting series for symmetric clusters -
a counting series that we shall derive shortly.

Now the cycle index of the dihedral group Dk for k

odd can be written



72(C, ) + slsg

LT
(S

(5.2) z(p,) = %

In the first term on the right-hand side we make the usual

substitucion of V(xi, yi) for s, » as for P6lya's Theorem;
n o y
- the second term must ba replaced by xT(x, y) Vm(xz, yz). Thus

the counting serfes which enumerates the cell-rooted clusters

for a given odd valve ¢f k is

~

X 2 2
k(x, y) + ET(x, y) vi(x“, v5)

N

T

(5.3) £,0(x, )

If k 4is even, say kX = 2m + 2, then the eiements of Dk

which represent reflections correspond to terms of the form

m+1 2 m - .
s, or sls; To the first of these theve corresponds the
. . m+1l, 2 2
counting series V (x“, y°). To the second there correspocnds

2 m, 2 2 .
T(x, y) V (x°, y°), since the two edges that map onto themselves
must independently receive a symmetric out-rooted cluster, while

the other out-rooted clusters must be allocated in symmetrical

&- pairs. Since, for k = 2m + 2, we have
: 1 mtl 1 2 m
Z(Dk) 2Z(Ck) + Zsz + ?°152

we derive
1 )
£,00 y) = 5F (x, y) + 7V (x
{5.4)
xr-\
+ Zl

Yo find the counting series, call it £(x, y), for the

total number of cell-rooted ciusters we must sum eguations

(5.3) and (5.4) for all relevant values of m. We obtain

1 , i 2 2 2. 2 2
f(x, y) = 3F(x, y) + %1(X» yIIV (xS, v5)y + vixT, v7) +..l]

X2 2 Z
+ T{V (x > Y
+

2.2 p pA 2, 2 2 .
+ 5T (x, YIIVxE, vy + vigx", y7) +..01

y + vi(xZ, yh) 4.l

~

e - .
(2T (x, y) + V(xZ, yo) + T°(x, y)Ix(x, ¥)

2t

Lv- _ = %F(x, y) +
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' xvgxz, y2>
z

1 - V(xz, v7)

7

where R(x, y) =

It now only remains to determine T(x; y); the counting
series for symimetric out-rooted clusters; Let the cell
containing the root edge of such a cluster have k other edges.
Then if k 1s even, equal to 2m say, we can obtain these
symmetric out-rooted clusters by disposing m out-rooted
clusters in symmetric pairs on the m pairs of edges that
change places under reflection. Thus the counting seriles 1s
xvm(xz, yz). If k 1s odd, equal to m + 1 say, we must, in
addition, place a2 symmetric out-rooted cluster on the edge
opposite the root-edge (see Figure 7). The counting series is

then xT(x, y) Vm(xz, y2). Summing these counting series for

m 2 1 , and remembering that the empty out-rooted cluster (which

must be included) is also symmetric, we have

T(x, y) =y + x[1 + T(x, ¥ V&2, v2) + V32, y5) +...)
{(5.6) -y 4 xV (x“, Z“) . (1 + T(x, y)1
1 - v(x", y7)
whence

_ Yy + R(x, y)
TOG V) = T RG, v

6. IN-ROOTED CLUSTERS

With the same convention about mirror images we now count
the clusters rooted at an internal edge. As in [5] we do this
by enumerating thoce in-rooted clusters that are invariant
under the four kinds of transformation of the plarne that map
the root edge onto itself, namely,

{(a) The identity mapping,
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(k) Refleccion about the root edge,
(c} Kotation about 130°,
(@) Reflection about the perpendicular bisector cf the
root edge.
Those clusters invariant vnder (a) are enumerated by Uz(x, v}

2

Thosz2 invariant under (b) are exumerated by U(xz, y“) since
whichever (non-empty) out-rooted cluster goes on the one side
of the root-edge must be duplicated on the cther. The same isg
true of the clusters that are invariant under (c). Clusters
invariant under (&) are obtained by placing together at the
root edge two independently chosen non-empty symmetric out-rooted
clusters, and are therefore cnumerated by wz(x, y) where
W(x, y) = T(x, ¥) - y.

Hence by Burnside's Lemma the in-rooted clusters are

enumerated by

%{Uz(x, y) + 2U(x2, y2) + Wz(x, vl

7. UNROODTED CLUSTERS

Ve now determine the countlug series for the unrooted

clusters, This will be done using the methed given in Sectién

5, and there is no point in repeating the argument given there.
The only necessary counting series that we have not already
derived is that which enumerates the clusters having a symmetric
edge. Such clusters can be constructed by taking an out-rooted
cluster and joining it at the root-edge tc & duplicate cf itself.
For 2 symmetric out-rocoted cluster this can be done in only

one way, whercas for an asymmetwic cluster this car be dene in

two distinct ways. Thus we see, as in [5], that there is a



one-to-one correspondence between the clusters that we are now
enumerating and the out-rooted clusters, which also occur
singly when symmetrical and in pairs when asymmetricél. It
follows that the counting series for non-empty clusters with a
. 2 2

symmetric-edge is U(x", y ).

Applying Equation (4.1) we obtain the counting series
h(x, y) where

2

(02 (x, y) - 20¢x%, y2) + wi(x, y)l.

s

h{x, y) = f£(x, y) -

This, in theory, completes the enumeration of the clusters
that we are interested in. These formulae however are not in
a very suitable form for computation, and we shall now consider

how they may be improved.

8. SOME COMPUTATIONAL CONSIDERATIONS

it is common, in papers on enumeration problems, to include
éome tables of coefficients for the counting series that have
beenr obtained, and we do so here. It is not customary to
describe in detail how these numerical results were obtained,
but in this respect the present problem is unusual. To obtain
numeric#l resﬁlts from the counting series that have been
Aderived requires the manipulation on a computer of double power
series. fhis is quite feasible, and for the purposes of this
paper routines were written in APL for the 360/75 computer at
the University of Waterloo to handle such series. It was found
that the multiplication of two double series of any size was a
very time-consuming process, and this prompted the investigation
of ways and means of modifying the calculations so that

multiplication could be avoided wherever possible. These



modifications are of some interest and will briefly be described.
The method of computing the coefficients in the functien
V(x, y) has already heen described; they are given by equation
(2.2).
The function F{x, y) 1is given by eguation (3.1} but Its

coefficients are not at all easily computer thereby. Instead

we write equation {(3.1) as

(8.1) 1,.,2 2 2 ®
F(x, y) = -V(x, y) - 5[V7(x, y) + V(z", y)] + I Z(C, ;3 Vix, y))
k=1
and note that =
.. S | kia, o ]
£ 2(C; V(x, y)) = I AL T ¢V (x", v )}
k=1 k=1 “a/k
- ¢(0) . m, o o
D (A2 v, y))
m, o
{(8.2)
_ ¢ (o) lm,. « o
= Z{ o hX mV (x y )}
o m
= E{ ¢ (o) logl[l - V(xa, va3]} .
a
Now by Lagrange's Theorem, the coefficient of x" in
L(x, y) = -log(l ~ V){x, y), for = 21 , is
i,,d r=1, z . r 1
21 =2 —_—
r[‘dz) (l-z) lnz]z=y
which reduces tc
i ( +1)(2r+i)! r+i+l
et T, & T (mRidl)

Thus the coefficient of xrys in L(x, y) 1is, for r > (,

w

¢

=1, (r+s-1)! 1,8-1, ,r+s-1
i Rt R S T

"~
Lo}
w

which formula alsc gives the correct value (L/s) when 1 = C.
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Using this resuli the summation (8.2) can be evaluated
withcut the need for any multiplicatien of two double series,
Even the Vz(x, y) which occurs in equation (8.1} can be
evaluated without multiplication by a further simple application

of Lagrange's Equation. The coefficient of xry in Vz(x, y)

turns out to be

2,8-3, ,r+s-1
r(r-l)( r-1 )

for r 2 1 , while the term independent of x 1is y2 .
The coefficients in H(x, y) give little trouble. We
avoid the multiplication implied in Uz(g, y) by using the fact

that

2 2 2
U%(x, y) = V7(x, y) - 2y V(x, y) + ¥

and that the coefficients in Vz(x, y) are already known. The
multiplication of V(x, y) by y 1is, of course, accomplished
by merely increasing the indices of y in Vix, y).

We must next deal with series R(x, y). From equation

(2.1), we have

xvz(x, v)
1 - v{x,

(1 + x) V(x, y) =y + + xV(x, y)

y)

xV(x, v)
1 - V(x, y)

=y+

Replacing x by x and y by y2 wve have

2 2 2
2 2 2 2 v

(1 + xDVE, y2) =yt e EEOy

1-V(x,y)

whence
2.2 2 2
xR(x, y) = (1L + x")v({x", y7) - vy
from which R(x, y) can be computed without any need for

multiplication except of a trivial kind.

The cowmputation of T{x, y) 1is another matter. There
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probably exists some elepaunt acthod of avoiding multlplication
in Qsing equation (5.7), but I have been unable to find one.
The need here is not so urgent, however, since R(#, ;) is a
more sparse series, half the coefficients being zeros. &
suitable method, ﬁsing multipiication, 1s to define
Yl = R(x, y)
and Yn = {1 + Yn_l)R(x, v).

Continue until n is the highest power of 'y that is being
retained, then multiply by 1 + y. This gives the function
W(x, y), needed later, and T(x, y) 1is “W(x, y) + v.
Multiplication is also needed to find Wz(x, y) Dbut Tz(x, y)
can then be obtained without it.

One further multiplication is needed to find f(x, v),
but h{x, y) can then be found without multiplication from data
already available. Tables 1-5 were computed in just this sort
of way. Note that the extent of computation was not timited by
the size of the numbers but by the work space size. 1L was
cccasionally necessary to have two double series in the work
space at one and the same time (in addition to the necessary
programmes) and the tables represeant the most that could be

caccommodated under these conditions.

9, TOTAL NUMBERS OF DISSECTIONS

It is of some interest to look at the total numbexrs of ways
of dissecting a polygon into other polygons by chords. These
numbers will, of course, be the column sums in Tables 1-5, so
that this problem has, in a sense, already been solved., But

copeidered on its ecwn merits, this problem is one which can be

(1)
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solved by manipulating counting series in a single variable,

and”one might reasonably exvect that with the same computing

facilities one could extend the results much further, since

single series take up so much less computer space than double

series, This is indeed the case‘and I briefly outline the method.
The total numbers of out-rooted clusters with s outer

edges are enumerated by the series V(1l, y). These numbers are

the same as the numbers of dissections of a fixed polygon, and

their enumeration has been studied by Motzkin [7] who gives what

is probably the easiest way of calculating them. If we write
co
v(y) = V{1, y) = I vy

then his result is equivalent to

v = v,V + 2(v3v

n-1
from which the v, are readily computed.

"Since multiplication of single series is no great problem
we need not break our necks trying to avoid it, and equations
(3.1), (4.2), (5.5), with x = 1 can be used in a straightforward
manner. Note that we get an unexpected bonus in the computation
of T(1, y). It will be left 25 an exercise for the reader
to show that

R(1l, v)
1 - R(1, Y)

reduces to y-gv(yz) - 1 , thus enabling the computation of
W(l, y), and hence of T(l, y) to be greatly simplified.

The numbers in Table 6 represent these calculations taken
as far as the integer size limit (16 digits) of APL would
allow. Note that the value of (g} for s = 8 does not agree

with the &igure of 73 given in Mctzkin [7], and hence in
\
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Sloane ([10], sequence number 339). Howevei, Motzkin's result
appe;rs to have been obtained by an exhaustive enuneration -

a method that is notoriously prone to errer. By way éf
confirmation that the figure of 75 is indeed the correclt one,
I display 75 dissections of the octagon in figure §. They

appear to be all distinct.
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Cell-rooted clusters wlthout reflection.

Table 2.
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