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ABSTRACT

Causality is a fundamental component in all fields of science. In contrast to
associational dependencies that are widely used in existing predictive machine
learning and data-mining methods, causality implies the mechanism of how vari-
ables take their values and how the change of causes would lead to the change
in the outcome. In the era of big data, for scientific discovery and rational
decision-making, we fundamentally need methods for learning causal relation-
ships between variables and estimating causal effects from observational data.
In this thesis, we aim to develop new models and algorithms for learning
causal relationships and estimating causal effects using observational data. In
particular, for the purpose of modelling and learning causal relationships from
observational data, we study dynamic causal systems with feedbacks. To over-
come the weakness of existing models that are unable to model both instanta-
neous and cross-temporal causal relations simultaneously, we propose a First-
order Causal Process (FoCP) model and a causal structure learning algorithm
to learn the causal graph of FoCPs from time series. For the purpose of esti-
mating treatment effects, we investigate a range of existing methods for causal
effect estimation, and propose three new methods using advanced machine learn-
ing techniques. First, to relieve the high-variance issue of the classic Inverse
Propensity Weighting (IPW) estimator and thus to get more stable treatment
effect estimates, we reframe it to the importance sampling framework and pro-

pose a novel Pareto-smoothing method using the generalized Pareto distribution
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from the extreme value statistics. Second, for causal inference with unobserved
confounders, we take advantage of proxy variables and use deep latent variable
models to model the underlying data-generating process. Building on recent ad-
vances in Bayesian inference and deep generative models, we propose a Causal
Effect Implicit Generative Model (CEIGM). Finally, with an observation that
most of existing methods for causal inference are essentially indirect in that they
estimate the target treatment effects by first estimating other auxiliary quanti-
ties, we propose the idea of direct treatment effect estimation. Based on this
idea, we further propose two deep neural networks for direct treatment effect
estimation.

We evaluate all the methods proposed in this thesis using simulated, semi-
simulated or real-world data. Experiment results show that they perform gener-
ally better than their competitors. Given the key importance of learning causal-
ity and causal inference in both theory and real-world applications, we argue
that our proposed models and algorithms are of both theoretical and practical

significance.

Dissertation directed by
Prof. Guangquan Zhang, Dist. Prof. Jie Lu, and Prof. Donghua Zhu
Center for Artificial Intelligence, School of Computer Science, FEIT
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