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ABSTRACT

Causality is a fundamental component in all fields of science. In contrast to

associational dependencies that are widely used in existing predictive machine

learning and data-mining methods, causality implies the mechanism of how vari-

ables take their values and how the change of causes would lead to the change

in the outcome. In the era of big data, for scientific discovery and rational

decision-making, we fundamentally need methods for learning causal relation-

ships between variables and estimating causal effects from observational data.

In this thesis, we aim to develop new models and algorithms for learning

causal relationships and estimating causal effects using observational data. In

particular, for the purpose of modelling and learning causal relationships from

observational data, we study dynamic causal systems with feedbacks. To over-

come the weakness of existing models that are unable to model both instanta-

neous and cross-temporal causal relations simultaneously, we propose a First-

order Causal Process (FoCP) model and a causal structure learning algorithm

to learn the causal graph of FoCPs from time series. For the purpose of esti-

mating treatment effects, we investigate a range of existing methods for causal

effect estimation, and propose three new methods using advanced machine learn-

ing techniques. First, to relieve the high-variance issue of the classic Inverse

Propensity Weighting (IPW) estimator and thus to get more stable treatment

effect estimates, we reframe it to the importance sampling framework and pro-

pose a novel Pareto-smoothing method using the generalized Pareto distribution
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from the extreme value statistics. Second, for causal inference with unobserved

confounders, we take advantage of proxy variables and use deep latent variable

models to model the underlying data-generating process. Building on recent ad-

vances in Bayesian inference and deep generative models, we propose a Causal

Effect Implicit Generative Model (CEIGM). Finally, with an observation that

most of existing methods for causal inference are essentially indirect in that they

estimate the target treatment effects by first estimating other auxiliary quanti-

ties, we propose the idea of direct treatment effect estimation. Based on this

idea, we further propose two deep neural networks for direct treatment effect

estimation.

We evaluate all the methods proposed in this thesis using simulated, semi-

simulated or real-world data. Experiment results show that they perform gener-

ally better than their competitors. Given the key importance of learning causal-

ity and causal inference in both theory and real-world applications, we argue

that our proposed models and algorithms are of both theoretical and practical

significance.

Dissertation directed by

Prof. Guangquan Zhang, Dist. Prof. Jie Lu, and Prof. Donghua Zhu

Center for Artificial Intelligence, School of Computer Science, FEIT
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Chapter 1

Introduction

1.1 Background

Recent advance in information collection and storage have made a huge amount

of observational data available for researchers and policy makers. Empowered by

the growing collection of big data and advances in computing power, during the

last decade, predictive machine learning and data-mining algorithms [49, 177]

have made spectacular progress, surpassing human performance in face recog-

nition [208], natural language understanding [64], machine translation [14, 25],

self-driving [17], etc. In general, these algorithms have mainly focused on elic-

iting associational knowledge and patterns from the collected data and making

associational predictions on new data.

To make scientific conclusions and rational decisions, we, however, need to

answer causal questions [9, 133], understand the causal relationships between

variables or events [41, 214, 223], and estimate the possible change or difference

in the outcome caused by a particular treatment or policy variable [61, 74]. For

instance, in biology, scientists conduct experiments to discover genes for certain

genotypes; in healthcare, patients need to known the effect of the medication

1



Chapter 1 1.1. BACKGROUND

on their health to decide whether to take a particular medication or not; in

economics, policy makers debate the possible effect of job training on employees’

earning; and in marketing, what ad companies are really interested is the causal

effect of an online advertisement on customers’ purchasing habits.

As a core topic in science and philosophy, the research of causality (or cau-

sation) can be dated back to the early 1700s. The philosopher Aristotle wrote

in his Physics that “we do not have knowledge of a thing until we have grasped

its why, that is to say, its cause.” In addition, David Hume defined causality as

“’constant conjunction’ in his book A Treaties of Human Nature [69]. Causality

connects one phenomenon (the cause) with another (the effect) and establishes

the relationship that the former is (partly) responsible for the latter to happen

[221]. In the last three decades, the research on causality has been rejuvenated.

Moreover, researchers from the Artificial Intelligence (AI) community argue that

the ability to learn causality from data is a significant component of human-level

intelligence [97, 101, 133, 138], and causal inference is a central topic for both

scientific discovery and decision-making [9, 74, 105].

While causal claims have been used as common sense on a daily basis, mak-

ing a causal conclusion from an observed dependence is not straight forward. A

causal relation indicates the mechanism of the cause determines the effect, and

the causal effect measures the strength of this determination process. In prin-

ciple, scientists usually conduct randomized controlled trails (RCTs) to discover

causal relationships and to make causal claims [44, 152]. In a RCT, subjects

are randomly assigned to different treatment groups. Except for the treatment,

all other conditions are considered identical for subjects. As a result, if we ob-

serve any statistically significant difference between these groups, we can then

attribute it to the influence of the treatment variable and claim that the treat-

ment is a cause for the difference.

2



1.2. MOTIVATIONS Chapter 1

Though RCTs are golden standard for learning causality and estimating

causal effects, in many real-world applications, it will be expensive, unethical,

or even impossible to conduct RCTs [61, 74]. As a result, we focus on learning

causal relationships and estimating causal effects from purely observational data

in this thesis.

1.2 Motivations

In his recent book The Book of Why, Judea Pearl, a Turing Award winner and

pioneering researcher in AI, states that we are in an era of Causal Revolution

and a human-like AI must master three levels of cognitive ability by climbing

the Ladder of Causation 1 [135]: seeing, doing, and imagining.

While the ability of seeing and making observational predictions is based on

associational analysis, we need to learn causality to acquire the ability of doing

via intervention and imagining via introspection. To explain the motivation for

studying causality in a high level, we cite the words of Pearl from [134]:

The answer to the question “why study causation?” is almost as im-

mediate as the answer to “why study statistics.” We study causation

because we need to make sense of data, to guide actions and policies,

and to learn from our success and failures . . . causation is not merely

an aspect of statistics; it is an addition to statistics, and enrichment

that allows statistics to uncover workings of the world that traditional

methods alone cannot.

This thesis focus on learning causal relationships and estimating causal effects

from observational data. Specifically, we explain the motivations of our research

1http://bayes.cs.ucla.edu/WHY/why-ch1.pdf

3
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Chapter 1 1.2. MOTIVATIONS

B D

(a) B causes D

B D

(b) D causes B

B D

G

(c) Confounder

Figure 1.1: Several possible causal graphs that might explain the association
between the biomarker B and the disease D. In (c), G stands for unobserved
gene defect.

by showing that association does not imply causation and associational prediction

is different from causal prediction in this section.

1.2.1 Motivation for Learning Causal Relationships

Without distinguishing association from causation, many observed associations

have been over-interpreted as causal relationships in the literature. For example,

in [115], Messerli observed a positive correlation between chocolate consumption

and the number of Nobel laureates from a country, and claimed that choco-

late consumption causes the sprouting of Nobel laureates. This is obviously a

misinterpretation and the suggestion for winning more Nobel Prize by consum-

ing more chocolate would be really farcical. To explain the difference between

association and causation, and to emphasize the importance of understanding

the causal relationship between variables in real-world applications, consider the

simple example discussed in [84]:

In clinical diagnosis, suppose we have detected a positive correlation between

the occurrence of a biomarker B and a disease D. To predict the occurrence

of D, we can conduct a blood test and use the occurrence of B as a predictor

for the disease D. After the diagnosis, doctors are often interested in a cure for

this disease. For this purpose, if we could infer that the biomarker is a cause of

the disease (i.e., B cause D Fig.1.1(a)), we may suggest that manipulating the

4



1.2. MOTIVATIONS Chapter 1

biomarker B in a proper way will cure the disease.

However, besides this causal relationship B → D, it is easy to find at least two

other scenarios that could explain the observed dependence, and the association

between the occurrence of the biomarker and the disease may be explained by

three causal relationships shown in Fig.1.1: (a) the causal relationship from the

occurrence of the biomarker to the disease, (b) the causal relationship from the

disease to the occurrence of the biomarker, and (c) there is no causal relationship

between them but they both are caused by a common unobserved variable (e.g.,

gene defect).

As a result, we can conclude that while it is enough to make predictive con-

clusions using associational relationships, we need to understand the underlying

causal relationship between variables to take effective actions. Since it is not

trivial to infer causation from observed associations, we argue that the problem

of how to learn causal relationships from observational data is of both theoretical

and practical importance.

1.2.2 Motivation for Estimating Causal Effects

We have shown that associational relationships does not necessarily entail causal

relationships. In this section, we introduce the motivation for estimating causal

effects by showing the difference between associational prediction and causal

prediction.

Given an actionable variable T that we can actively intervene to set its value

and an outcome variable Y , associational prediction tries to estimate the con-

ditional expectation of Y if we see that T = t, and causal prediction aims to

estimate the conditional expectation Y if we set T to take the value t (denoted as

do(T = t)). Obviously, the ability to make associational prediction of E[Y |T = t]

reflects the cognitive ability of seeing and the ability to make causal prediction

5



Chapter 1 1.2. MOTIVATIONS

T Y

X X ∼ N (0, 1)

T ← 2X

Y ← T − 4X

(a) seeing :observational model

T Y

X X ∼ N (0, 1)

do(T = t)

Y ← T − 4X

(b) doing :interventional model

Figure 1.2: Data-generating processes for the example.

of E[Y |do(T = t)] reflects the cognitive ability of doing along Pearl’s Ladder of

Causation [135].

To explain their difference explicitly, consider the data-generating process as

illustrated in Fig.1.2(a). With this model, suppose we see that T = 1, then

according to the associational relationship between X and T , we get that X =

0.5. Consequently, we can easily make the associational prediction as

E[Y |T = 1] = 1− 4× 0.5 = −1

In fact, we can derive the close-form formula for associational prediction as

E[Y |T = t] = −t for this example. For the purpose of causal prediction, we now

obstruct the data-generating process and perform intervention do(T = 1). The

intervened data-generating model, then, becomes one shown in Fig.1.2(b) and

we can make a causal prediction that

E[Y |do(T = 1)] = 1− 4× 0 = 1

As we can see from the example, the observational expectation E[Y |T = t]

and the interventional expectation E[Y |do(T = t)] can be very different and even

have different valences. This suggests that we need to be very cautious in making

causal predictions using observational data and it is important to develop ad-hoc

methods for causal inference in order to make rational decisions.
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1.3 Research Problems

The objective of this thesis is to develop new models and algorithms for learning

causality from observational data. This can be further divided into two problems:

(1) How to learn causal relationships from observational data; and (2) How to

estimate causal effect from observational data. The most significant point of this

research is to use advanced machine learning techniques for learning causality

and estimate causal effects. We introduce the above two research problems in

this section and list four specific tasks for solving them as follows:

i. To conduct studies of causal modelling and learning for causal systems with

feedback causal relationship by using time series data and incorporating

temporal asymmetry into causal modelling. (Chapter 3)

ii. To investigate existing weighting estimators for causal inference and pro-

pose methods to improve their functionality. (Chapter 4)

iii. To conduct studies of causal inference with proxy variables and develop a

latent-variable model-based causal inference method. (Chapter 5)

iv. To investigate recent advanced machine learning techniques so as to adapt

them to develop direct treatment effect estimation algorithms. (Chapter

6)

1.3.1 Causal Discovery: Learning Causal Relationship

Causality connects one process (the cause) with another (the effect) and es-

tablishes the relationship that the former is (partly) responsible for the latter to

happen [221]. Given its fundamental importance in science and the accumulation

of observational data in the big data era, our first research problem is whether

7
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Figure 1.3: A diagram for causal structure learning.

we can learn the underlying causal relationships from observational data. This

problem is also known as causal structure learning or causal discovery. We for-

mally define the problem of learning causal relationships from observational data

as follows:

Problem 1 (Causal Discovery, or Causal Structure Learning). Given a set of

data and assumptions, how to infer the causal relationship between the variables

and reveal the underlying causal graph G that have generated the observed data?

The diagram for causal structure learning is illustrated in Fig.1.3. While

most of existing work considers learning the causal structure of static systems,

in this thesis, we study causal structure learning of dynamic systems from time

series.

1.3.2 Causal Inference: Estimating Causal Effects

Causal structures discussed in the previous section indicates which variables have

a direct effect on other variables. However, it does not indicate how strong this

effect is (or whether it is positive or negative). In this section, we introduce the

second research problem of estimating causal effects.

8
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Causal effect estimation is also called causal inference [74] and is the problem

of estimating the treatment effect of some intervention on a target outcome

variable. We formally define it as follows:

Problem 2 (Causal Effect Estimation, or Causal Inference). For a target pop-

ulation, how can we consistently quantify and estimate the causal effect of the

treatment T on an outcome variable Y ?

In this thesis, we investigate existing methods for causal inference and develop

new treatment effect estimators based on advanced machine learning techniques.

1.4 Contributions and Significances

The main contributions of this thesis are summarized as follows:

• We propose a novel First-order Causal Process (FoCP) and a correspond-

ing learning algorithm for modelling and learning the causal structure of

dynamic causal systems with both instantaneous and cross-temporal causal

relations.

• We reframe the classic IPW estimator for causal inference as an impor-

tance sampling method for estimating expectations and propose a Pareto-

smoothing method for weight stabilization to achieve more stable propen-

sity weighted causal estimates.

• We model the underlying data-generating process of a causal model with

proxy variables using deep generative models and propose a causal effect

implicit generative model (CEIGM) for treatment effect estimation.

• We propose direct treatment effect estimation as a complementary of exist-

ing indirect causal inference methods. In addition, we propose two neural

network architectures for direct treatment effect estimation.
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In this research, we investigate existing methods and develop new methods

for learning causal relationships and estimating causal effects from observational

data. In particular, we proposed models for representing and learning dynamic

causal systems with feedbacks. New causal estimators are also proposed for treat-

ment effect estimation. All the proposed methods are validated using simulated

and real-world dataset.

In data science, most existing machine learning and data mining algorithms

aim to achieve high predictive accuracy for a target outcome variable [177].

This goal is mainly realized by learning associational relationships between the

observed variables from a training dataset and extend the elicited associational

knowledge to make predictions on new data. In contrast, causality implies the

mechanism of how variables take their values and how the change of causes would

lead to the change in the outcome. In contrast to associational relationships,

causality is universal and is a fundamental component in all fields of science

[162]. Given the fundamental importance of causality in all these disciplines,

our research is of theoretical significance.

Methods for learning causal relationships have been used in many real world

applications. For example, in bio-informatics, learning Bayesian networks have

been used for the interpretation and discovery of gene regulatory pathways [164]

[94], analysing information flow in brain networks [37], and recovering causal re-

lationships from neuro-imaging data [209]. In addition, causal inference methods

have also been used in many real-world applications, including precise medicine

[8], computational advertisement [18], social program evaluation [9, 62] and ma-

chine learning systems [191, 192]. As a result, the methods proposed in this

thesis are of practical significance. We have also applied our proposed methods

to real-world climate data analysis (Chapter 3), heath data analysis (Chapter

4), and job training program evaluation (Chapter 5 and Chapter 6).
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1.5 Thesis Organization

Te remainder of this thesis is organised as follows:

• Chapter 2: This chapter presents a literature review of existing methods

for causal discovery and causal inference.

• Chapter 3: This chapter studies causal structure learning from time series.

We propose graphical representation models and a structure learning al-

gorithm for dynamic systems with both instantaneous and cross-temporal

relations.

• Chapter 4: This chapter investigates the classic IPW-based estimators for

causal inference. To ease their high-variance and unstable issue, we de-

velop a Pareto-smoothing method for stabilizing importance weights used

in these estimators and propose two Pareto-smoothed causal estimators.

• Chapter 5: This chapter focuses on causal inference with proxy variables

using counterfactual inference. We model the data-generating process us-

ing latent-variable models and then estimate treatment effects using fitted

counterfactuals.

• Chapter 6: This chapter studies causal inference using deep neural net-

works. We propose a new idea for treatment effect estimation, i.e., mod-

elling and learning the target treatment effect function directly. In addi-

tion, we extend on this idea by proposing two deep neural network archi-

tectures for direct treatment effect estimation.

• Chapter 7: We give a brief summary of the thesis contents and its contri-

butions in this final chapter. Future research directions are also discussed.

We illustrate the structure of this thesis in Fig.1.4 .
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Figure 1.4: Thesis structure.
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Chapter 2

Literature Review

In fields such as epidemiology [21, 149], economics [12, 73, 75], political science

[7, 45, 54] and statistics [152, 161], an observational study draws inference from

a sample to a population where the independent variable is not under the con-

trol of the researcher. One of the most important tasks is to understand the

underlying causal mechanism and further estimate the causal effect of a treat-

ment on subjects. In this chapter, we will give a brief review of two popular

mathematical languages for communicating causality and existing methods for

causal relationship learning and treatment effect estimation.

2.1 Mathematical Languages of Causality

There are mainly two languages for causal modelling and reasoning: Pearl’s

Structural Causal Models (SCMs) based on the do-calculus [131, 134, 136], and

Rubin’s potential outcomes framework [74, 160]. The two languages of causality

are complementary to each other and have different strengths suitable for dif-

ferent tasks. For a more comprehensive understanding of both frameworks, we

refer the readers to [55, 73].
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2.1.1 Structural Causal Models and Causal Graph

From an interventional perspective, we say that X causes Y (X → Y ) if the con-

ditional distribution of Y changes upon intervening on X. That is, P (Y |do(X =

x)) ̸= P (Y |do(X = x′)) where the do-operator do(X = x) is proposed by Pearl

[131, 132] and corresponds to forcing X to take the value x. This is the un-

derlying idea of the structural causal model language for causality. In a SCM,

to specify the quantitative characteristics of the causal variables, we specify a

structural equation for each variable Xi as:

Xi = fi (pa(Xi), Ui) , i = 1, 2, . . . , n (2.1)

where pa(Xi) are the parents (or direct causes) of Xi, {U1, U2, , Un} are the error

variables, and fi is the causal mechanism for assigning the value of Xi from

its parents and other disturbance errors. We can also represent these causal

relationships with a causal graph defined as

Definition 2.1 (Causal Graph [55]). A Causal graph G = (V ,E) is a directed

graph that describes the causal relationship between variables, where V is the

set of nodes and E the set of all edges. In a causal graph, each node Xi ∈ V

represents a causal variable; a direct edge X → Y denotes a causal relationship

from X to Y .

SCMs use causal graphs to represent causal relationships and are very popu-

lar for modelling and learning causal relationships. Usually, a causal graph G for

V = {X1, X1, · · · , Xn} is a directed acyclic graph (DAG) and is called a Causal

Bayesian Network (CBN) [131, 183]. By taking advantage of their probabilis-

tic reasoning ability and causal semantics, CBNs play a very important role for

causal modelling and reasoning. The set of parents of a node Xi in the causal

graph G, denoted as pa(Xi), corresponds to the direct causes of the Xi. Every
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fi in Eq.(2.1) is a conditional distribution P (Xi|pa(Xi)) that encodes an au-

tonomous and modular causal mechanism for generating the value of Xi. With

this representation, a CBN G implicitly encodes the joint distribution over V as

a product of local conditional distributions:

P (V ) = P (X1, · · · , Xn) =
∏
Xi∈V

P (Xi|pa (Xi)) (2.2)

In a causal graph G = (V ,E), two nodes X and Y are adjacent if there

is an edge between them. We denote the set of all adjacencies of any node X

in G as AdjacenyG(X). The parents of a node X are all nodes from which an

arrow points to X. Correspondingly, all nodes to which an arrow points from

X are called children of X. A path is a sequence of distinct, adjacent nodes. A

path is directed if all edges on the path are directed in the same direction (e.g.,

Fig.2.1(a)). The ancestors of X are all nodes from which a directed path leads

to X. Correspondingly, the descendants of X are all nodes to which a directed

path leads from X. The skeleton of a causal graph is the undirected graph that

is obtained when ignoring the directions of the arrows.

X Z Y

X ̸ |= Y ;X |= Y | Z
(a) Directed path

X Y

Z

X ̸ |= Y ;X |= Y | Z
(b) Fork

X Y

Z

X |= Y ;X ̸ |= Y | Z
(c) Collider

Figure 2.1: Several typical DAGs for conditional independence.

Given an SCM, we can directly read out conditional independences by check-

ing its causal graph represented as a CBN. Fig.2.1 shows several typical patterns

and their conditional independence information. In Fig.2.1(a), X causally af-

fects Y through its influence on Z. We call it a directed path or chain with Z
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a blocking variable between X and Y . In Fig.2.1(b), X and Y are affected by a

common cause Z and they are not directly affected by each other. This pattern

is called a fork and the common cause Z is a confounder. In Fig.2.1(c), X and

Y are independent to each other, but have a common effect variable Z. This

is called a collider and acts as a key pattern used in constraint-based structure

learning we will introduce later.

2.1.2 The Potential Outcome Framework

In statistics and economics [5, 67], many researchers focus on estimating the ef-

fects of some intervention or policy, without reference to a structural and graph-

ical model. In these applications, the treatment (i.e., intervention or policy) and

the outcome variables are generally clear by background knowledge. Originated

from the literature on experimental and observational studies [44, 154, 155, 176],

Rubin’s potential outcome framework [74, 160] is the most popular language

for defining treatment effects and conducting treatment effect estimation. To

facilitate the introduction of different concepts and assumptions, we illustrate a

general causal graph used in the potential outcome framework in Fig.2.2.

Z T Y

XUT UY

Figure 2.2: Causal relationship between variables in the potential outcome frame-
work.

Our objective is to estimate the causal effect of the treatment T on some

outcome Y , i.e., the strength of the causal relationship T → Y . In observational

studies, both T and Y are influenced by the confounders X. There are also

independent errors UT and UY influencing them respectively. In many cases, we
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may also find some instrumental variables Z that influence the outcome Y only

through the treatment T .

In this framework, the treatment and outcome variables are clear from back-

ground knowledge. Potential outcomes are formally defined as

Definition 2.2 (Potential Outcome [55]). For a population of n individuals

{X1, X2, . . . , Xn}, the potential outcome of individual Xi under treatment t is

defined as the value the outcome variable Y would take if the treatment had been

set to t and is denoted as Yi(t).

In settings with binary treatment T , the treatment effect for individual i can

be easily defined as τi = Yi(1) − Yi(0). Estimation of the individual treatment

effect τi from observational data is fundamentally impossible since we can never

observe both treatment outcomes Yi(0) and Yi(1) simultaneously. This is called

the fundamental problem of causal inference [66, 155] in the causal inference

literature. Alternatively, we can estimate the average treatment effect (ATE)

for the population defined as

Definition 2.3 (Average Treatment Effect, ATE). In the setting with binary

treatment T , the ATE is defined as

τATE = E[Y (1)− Y (0)]

Similarly, the average treatment effect for the treated subpopulation is de-

fined as

Definition 2.4 (Average Treatment Effect for the Treated, ATT). In the setting

with binary treatment T , the ATT is defined as

τATT = E[Y (1)− Y (0)|T = 1]
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To incorporating the heterogeneity in treatment effects, the ATE for the

subpopulation with features X = x is defined as the conditional treatment effect

(CATE) or heterogeneous treatment effect (HTE) as follows

Definition 2.5 (Conditional Average Treatment Effect, CATE). Given a sub-

population with features X = x and binary treatment T , the CATE is a function

of x and is defined as

τCATE(x) = E[Y (1)− Y (0)|X = x]

To obtain consistent treatment effect from observational data, standard as-

sumptions are essential and two basic assumptions are given below:

Assumption 2.1 (Consistency). For any individual i, Ti = t implies Yi(t) = Yi.

Assumption 2.2 (Stable Treatment Value Assumption, SUTVA). Each indi-

vidual’s potential outcomes are independent to the actual treatment assignment

of other individuals.

The consistency assumption [27, 146, 149, 201] indicates that the potential

outcomes for an individual do not change no matter which treatment alternative

is observed. The SUTVA [158, 159] indicates no interference among individuals,

i.e., the potential outcomes of any individual are unrelated to other’s treatment

assignment.

2.2 Causal Discovery: Learning Causal Relation-

ship

The problem of learning causal relationship from observational data is also known

as causal structure learning or causal discovery. A broad range of methods
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has been developed for this task [60, 165, 184, 224], including independence

constraint-based structure learning [122, 184, 215], score and search-based struc-

ture learning [174, 185], and hybrid methods (e.g., the MMHC algorithm [195]

and the Hybrid HPC algorithm [48]). Specifically, constraint-based methods

learn causal Bayesian networks with conditional independence tests through

analysing the probabilistic relations entailed by a set of assumptions. Score-

based methods assign a goodness-of-fit score (e.g., the BIC score [173], the BDe

score [59] and the K2 score [30]) to each candidate network for measuring how

well the candidate network fits the dataset. Hybrid methods combine ideas from

constraint-based methods and score-based methods.

To facilitate theoretical foundations for learning causal relationship, we firstly

introduce several common assumptions for causal structure learning used in

this thesis. Based on these assumptions, we provide a brief review of existing

constraint-based structure learning methods, with an emphasis on the seminal

PC algorithm [184]. In addition, since we focus on causal modelling and learning

for dynamic causal systems, we also introduce existing models for representing

and learning dynamic causal systems.

2.2.1 Assumptions

The first assumption is the causal sufficiency condition defined as:

Assumption 2.3 (Causal Sufficiency Condition, CSC [184]). A set of observed

variables V is causally sufficient for a causal system if and only if for all potential

causal dependencies, all common causes are measured and included in V .

This condition indicates that all variables in the target causal system are

measured and there exists no latent confounder or selection bias. The second

assumption is the causal Markov condition (CMC) defined as
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Assumption 2.4 (Causal Markov Condition, CMC [184]). Let G be a causal

graph with a set of variables V and P be a probability distribution over V gener-

ated by a causal model structured as G. ⟨G, P ⟩ satisfies the Causal Markov Con-

dition if and only if for every X ∈ V , X is independent of its non-descendant

variables given its parents pa(X).

That is to say, every variable is independent of any subset of its non-descendant

variables conditioned on its parents. By utilizing the CMC, the distribution of

variables X in a Bayesian network ⟨G, P ⟩ can be factorized as Eq.(2.2). By virtue

of CMC and the d-separation criterion [130] in DAGs and the m-separation cri-

terion [145] in directed cyclic graphs, for distinct variables X , Y , and a disjoint

set S, we have:

X |= GY | S ⇒ X |= PY | S

where X |= GY | S is read as X and Y are d-separated [130] or m-separated [145]

in G conditional on S, and X |= PY | S indicates the probabilistic conditional

independence of X and Y given S. While the CMC specifies independence

relationships among variables, the following causal faithfulness condition (CFC)

specifies dependence relationships:

Assumption 2.5 (Causal Faithfulness Condition, CFC [184]). A probability

distribution P over a set of random variables V is called faithful relative to the

graphical structure G on variables V if and only if every conditional independence

relation of X and Y given S true in P is entailed by the CMC applied to G, i.e.,

X |= PY | S ⇒ X |= GY | S

If G is a causal graph and ⟨G, P ⟩ satisfies the Faithfulness Condition, we say

they are faithful to each other, and G is called a faithful causal graph. For a pair
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of ⟨G, P ⟩ that satisfies both CMC and CFC, we can conclude that

X |= GY | S ⇔ X |= PY | S (2.3)

This indicates that we can discover causal independence relations in the under-

lying causal graph G by testing probabilistic conditional independences in P .

And this is the key idea for the causal structure learning algorithms introduced

in the next section.

2.2.2 Constraint-based Causal Structure Learning

Independence constraint-based structure learning algorithms learn causal rela-

tionships by testing whether certain conditional independences between causal

variables hold [184]. We start with a fully connected graph. The conditional

independence constraints are propagated throughout the graph and edges in-

consistent with them are removed. A sound strategy for performing conditional

independence tests ultimately retains only the statistically equivalent graphs con-

sistent with the constraints. Typically, conditional independence tests are per-

formed using statistical or information theoretic measures (e.g., G2 test [123],

χ2 test [123], entropy-based test [39], kernel-based tests [119, 219] and non-

parametric [189] conditional independence tests). Examples of independence

constraint-based causal structure learning algorithms include the IC-algorithm

[136], Grow-Shrink [110], SGS algorithm [184], PC algorithm [83, 184], and many

others. Among them, the PC-algorithm is very popular and has been extended

into additional algorithms to relax assumptions of the original algorithm to dif-

ferent data representations (e.g., the FCI algorithm [184], the CPC algorithm

[143], the RPC algorithm [109] and the RFCI algorithm [29]).

As a core component used in the proposed structure learning method in this
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Algorithm 2.1 PC Algorithm
Input: A data set D of the set of observational variables V , and a conditional

independence test method
Output: The causal graph G
1: Begin with the fully connected undirected graph G on V ;
2: n = 0;
3: for Each adjacent pair X–Y with |AdjacenyG(X)\Y | ≥ n or
|AdjacenyG(Y )\X| ≥ n do

4: for Any S ⊆ AdjacenyG(X)\Y ∪ AdjacenyG(Y )\X and |S| = n do
5: Test whether X and Y are conditional independent given S;
6: if X |= PY | S then
7: Sepset(X, Y )← S;
8: Delete the edge X–Y in G;
9: n← n+ 1
10: end if
11: end for
12: end for
13: for Each triple of nodes X, Y, Z do
14: if (X,Z) and (Y, Z) are adjacent and (X, Y ) are not adjacent in G then
15: Orient X − Z − Y as X → Z ← Y if Z /∈ Sepset(X,Y ) [Collider

Detection];
16: end if
17: end for
18: for Each triple of nodes X, Y, Z do
19: if X,Y are not adjacent and X → Z − Y in G then
20: Orient Z − Y as Z → Y [Known Non-Collider Detection];
21: end if
22: end for
23: for Each pair of nodes X,Y do
24: if X − Y and there is a directed path from X to Y in G then
25: Orient X − Y as X → Y [Cycle Avoidance];
26: end if
27: end for

thesis, the PC algorithm is formalized in Algorithm 2.1 and can be outlined in

three steps [84]. In the first step, the skeleton of the DAG is estimated. For

doing this, the algorithm starts with a complete undirected graph. Then for

each edge (say X − Y ), we search and test whether there exists a separation set
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S (denoted as Sepset(X, Y )) such that X |= PY | S. If Sepset(X,Y ) is not null,

then according Eq.(2.3), we get that X |= GY | S and delete the edge X−Y from

the original graph. In the second step, the obtained separation sets are used to

orientate unshielded colliders. Given an unshielded triplet X−Z−Y , if Z is not

in Sepset(X, Y ), then Z is a collider and we can orientate them as X → Z ← Y .

In the third step, all undirected edges are checked and we orientate as many of

them as possible to avoid new colliders and cycles. In this step, we assume all

colliders have detected in the second step, and thus for an unshielded triplet

X → Z − Y , we orientate it as X → Z → Y to avoid new colliders. Similarly,

for a direct path X → Z → Y , if X and Y are adjacent, we orientate the edge

X → Y to avoid cycles in the causal graph.

2.2.3 Modelling Dynamic Causal Systems with Feedbacks

The causal graphs we have introduced so far are acyclic, i.e., there is no feedback

loops in the target causal system. However, causal feedbacks exist widely in real

world systems in economics, biology, environmental sciences, and engineering. In

general, these systems are dynamic in nature and data collected from them are

multivariate time series [19]. In this setting, time provides an additional source of

information as well as a new challenge for modelling and analysing these dynamic

systems. Whether it is possible and how to discover the causal structure with

feedbacks from time series is an essential problem for understanding the nature

and measuring the effect of interventions in these dynamic systems [40, 42, 134].

Eichler provided a comprehensive discussion on how to define causality for

time series in [42]. To model dynamic systems with feedbacks, we can assume

the observational data is obtained from the equilibrium distribution [117] and

represent the corresponding system by a static directed cyclic graph (DCG).

Though being able to model feedbacks among different variables via directed
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cycles, this category of models simply assume self-edges which are essential in

any self-excitatory or self-inhibitory dynamic process do not exist [113]. For this

reason, we give a brief review of two main approaches that are able to model

self-edge feedbacks [228]: Dynamic Bayesian Networks (DBNs) [46, 120] and the

Granger causality [52].

Dynamic Bayesian Networks

DBNs are dynamic versions of causal graphical models [93]. In a DBN, time is

modelled as proceeding in discrete steps. A DBN contains a graph G over the

set of random variables V at the current time-step t as well as nodes for V at

each previous time-step in which there is a direct cause of the current values of

V . A simple example DBN for three random process is illustrated in Fig.2.3.

X1

X2

X3

X1

X2

X3

t− 1 t

(a)

X1

X2

X3

(b)

Figure 2.3: An example first-order DBN. (a) Unrolled graphical representation;
(b) Compact graphical representation.

In a DBN, if the parents of variables at time t are those from the previous step

t−1, we call it a first-order DBN. For a first-order DBN, we can easily represent

the underlying causal dynamics using a Bayesian network of variables from two

adjacent time slices, V (t−1) and V (t). Such a graphical representation is called

a 2-time-slice Bayesian network (2-TBN) [93]. For more compact representation,

we can also model a 2-TBN in a direct graph with possible self-loops as in
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Fig.2.3(b). As can be seen from the figure, a key limitation of DBNs for modelling

dynamic causal systems is that no instantaneous causal relations are permitted.

That is, there are no direct causal relations between variables in the same time

step.

Granger Causality

Granger causality has been widely used for modelling causal relationships from

economic time series [52] and has a long history of applications across a wide

range of domains [162]. A random process X is said to Granger cause another

random process Y if and only if there is some unique information in X relevant

for Y that is not contained in Y ’s past as well as the past of “all the information

in the universe”. Granger causal analysis usually assumes a linear model and

can be written in the form of a Vector Auto-regressive (VAR) model [182] as:

V (t) = AV (t− 1) + ϵ(t)

where the coefficient matrix A contains temporal causal relations and is called

the causal transition matrix.

Granger causality and VARs are limited to temporal lagged causal relation-

ships. As an extension, the Structural Vector Auto-regressive (SVAR) model

[118] considers both instantaneous and lagged relations between variables and

can be formalized in a matrix form as

V (t) = AV (t− 1) +BV (t) + ϵ(t)

where the coefficient matrix B contains instantaneous causal relations.

Despite their popularity in prediction-oriented dynamic system modelling,

all these models are essentially regression models and can merely discover con-
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strained statistical associations. To make causal claims for the learnt relations,

we need additional domain constraints or assumptions.

2.3 Causal Inference: Estimating Causal Effects

In the last section, we have introduced models for representing causal relation-

ships and methods for learning causal structure from observational data. The

obtained causal structure indicates whether a variable has a direct effect on other

variables. However, it does not indicate how strong this effect is (or whether it is

positive or negative). In this section, we will review methods for causal inference,

i.e., estimating the causal effect from observational data.

Causal effects are usually measured as the difference between the treated and

control groups in a randomized control trial (RCT). Take precise medicine [8] as

an example, when doctors want to identify the efficiency of some medicine on a

disease, the golden standard is to conduct a double-blind RCT where patients

are randomly assigned into either the treated (taking medicine) or the control

group (not taking medicine) and the treatment effect of the medicine is measured

as the difference of recovery outcomes between the two groups. Through RCTs,

the randomized treatment assignment mechanism ensures the observed outcomes

will not be confounded by measured or unmeasured covariates, e.g., age, gender,

and health status of the patients.

However in many real world applications, RCTs are expensive, unethical, or

even impossible [61]. As a result, researchers have mainly focused on obser-

vational studies that conduct causal inference using purely observational data

[155, 74]. Causal inference from observational data is challenging because we

can only observe the outcome corresponding to the treatment received by an

individual, while the outcome under the alternative treatment is unobserved.
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This is called the fundamental problem of causal inference [155] and is known

in the machine learning literature as counterfactual learning [18] and learning

from logged bandit feedback [191, 192]. Moreover, the underlying treatment as-

signment mechanism that determines which outcome was observed is unknown

and generally not random. This results in a covariate imbalance issue among

the treatment groups and makes observational causal inference even more chal-

lenging. To tackle these problems, a range of methods using advanced machine

learning techniques have been proposed in the literature [57, 172, 178, 206] and

can be roughly grouped into three categories: Quasi-experiment methods, coun-

terfactual inference methods, and doubly robust methods.

Quasi-experiment methods try to transform the collected observational data

to mimic a balanced one as from RCTs. This is mainly realized via adjusting

the biased treatment assignment mechanism. There are mainly two groups of

Quasi-experiment methods for causal inference [88]: matching and weighting.

Matching methods [153, 188] assume that similar individuals should have similar

treatment outcomes, and estimate the unobserved counterfactual outcome for

each individual by matching him or her with individuals in the counterpart

group. Examples of matching methods include nearest neighborhood matching

[157], propensity score matching [188], kernel matching [227], genetic matching

[38] and optimal matching [85]. In general, matching methods are conceptually

intuitive in that they maintain the units of analysis intact in an attempt to

approximate an RCT [16]. One apparent drawback of matching methods is

that they do not necessarily use all the observed data, in that some unmatched

individuals are discarded and not used in the final treatment effect estimation

[188].

In contrast, weighting methods use all observational data for causal inference

and thus are more statistical efficient. There are two broad groups of approaches
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for weighting [65]. The first group derives the weight for each individual by

estimating the treatment model (e.g., inverse propensity weighting [63, 68]).

The second group of weighting methods derives weights by directly reducing

covariate imbalance across treatment groups. Examples include kernel balancing

[58], entropy balancing [56, 222], adversarial balancing [129], etc.

In the following sections, we give a brief review of matching and weighting

methods by estimating the treatment assignment model, counterfactual inference

methods that models the potential outcomes and doubly robust methods that

estimate both the treatment and the potential outcomes. In addition, we also

give a brief review of recent causal inference methods using advanced machine

learning techniques such as deep neural networks (DNNs) and latent variable

modelling.

2.3.1 Propensity Score Methods

The propensity score defined as the conditional probability of the assignment to

the treatment group given the observed covariates [155]: e(x) = P (T = 1|X =

x). Theoretically, we can account for the difference between the treatment and

control groups by directly modelling the assignment mechanism with propensity

scores, thus making populations from different groups more comparable [160].

In [155], the authors show that if the treatment assignment is ignorable given

the observed covariates, the ATE can be consistently estimated by adjusting

for the propensity scores alone. Given this balancing and de-biasing property,

propensity score-based approaches have been widely used for causal inference

from observational data [74], complete-case analysis for missing data [175], and

survey sampling [166]. They have also recently been adopted by the data mining

and machine learning communities for de-biasing in recommender systems [99,

167], information retrieval systems [207] and learning to rank systems [79].
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There are many methods for causal inference using propensity scores, such

as IPW [63, 68], stratification [155] and propensity score matching (PSM) [36,

111]. Propensity score methods for causal inference usually proceed in a two-step

procedure. In the first step, the propensity scores are estimated using statistical

methods (e.g., Logistic regression). Then the treatment effects are estimated by

weighting the outcome using the inverse of the estimated propensity score for

each individual or matching individuals from the control group to individuals

from the treated group based on the similarity of the estimated propensity scores.

These methods have been shown to be consistent and effective in estimating

ATEs [63, 188].

Despite their popularity and theoretical appeal, a practical problem of

propensity-based methods is that the true propensity scores are intrinsically

unknown and must be estimated from finite observational data in pure observa-

tional studies. Research indicates that misspecification of the propensity score

model can result in substantial bias in causal effect estimation. If the estimated

propensity scores are close to one or zero for a substantial fraction of the pop-

ulation, the estimated causal effect may be of high variability and difficult to

estimate precisely [11]. This is a particular concern in settings with many co-

variates, or simply when the assignment mechanism is highly skewed. When

many of the estimated propensity scores are close to zero, the distribution of

their reciprocals – the inverse propensity weights – are likely to have a heavy

right tail, which leads to unstable estimates of treatment effects, sometimes with

infinite variance.

To address the problem of variability, two methods for variance control in im-

portance sampling, weight truncation and weight self-normalization, have been

used to stabilize the importance weights-based estimators in the causal inference

community [61, 74]. Researchers from the sampling and weighting community
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have proposed a growing list of techniques for variance reduction [128]. We will

discuss this problem in detail and propose a new method in Chapter 4.

2.3.2 Counterfactual Inference Methods

Instead of matching or weighting, Hill [62] observed that, if there is no unobserved

confounders, we can estimate the treatment effect – the outcome difference be-

tween the treated group and the control group – by fitting the treatment outcome

models µ(x, t) = E[Y |x, t]. By this observation, we are actually transforming the

problem of causal inference into a predictive learning problem: learning the un-

known counterfactual outcome models from bandit observational data. As a

result, this method is also called counterfactual inference [62, 80, 169, 225].

Counterfactual inference for causal inference relies on a model of the potential

outcome defined in Definition 2.2. Note that these potential outcomes are com-

plementary in that, for any individual i, only one potential outcome is observable

and the others are counterfactuals [35]. To complete the task of treatment ef-

fect estimation, counterfactual inference methods approximate the underlying

treatment response functions using the conditional mean functions fitted via re-

gression or other supervised machine learning algorithms. Given its strength

in detecting interactions and discontinuities in modelling, the non-parametric

Bayesian additive regression tree (BART) model [24] has been widely used for

counterfactual inference. Recently, more advanced machine learning models such

as Gaussian process [2, 144, 169] and DNNs [80, 178] have also been adapted for

causal inference under the counterfactual inference framework.

Recently, Künzel et al. [95] categorize counterfactual inference methods for

treatment effect estimation into S -learning that infers a single treatment response

function for all treatments and T -learning that infers a treatment response func-

tion for each treatment. Although recent advances in non-parametric Bayesian
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models [3, 62, 89] and DNNs permit us to learn very complex conditional mean

functions and have achieved relatively good performance for treatment effect es-

timation [80, 178], counterfactual inference is originally designed for answering

counterfactual questions such as would this employee get higher salary had she

received some job training? For the task of treatment effect estimation, they

solve it in an indirect way. As a result, treatment outcome functions fitted

to minimize the prediction error for the observed outcomes are not guaranteed

to produce accurate treatment effect estimation. Recently, experiment results in

[225] indicate that counterfactual inference methods may learn the two treatment

outcome surfaces quite well, but in opposite error directions, resulting unstable

treatment effect estimations.

2.3.3 Doubly Robust Methods

While propensity score-based methods use information of the treatment assign-

ment mechanism and rely on correct specification of the treatment propensity

model e(x) = P (T = 1|X = x), the counterfactual inference methods rely on

correct specification of the treatment response model µ(x, t) = E[Y |x, t]. They

are sensitive to the misspecification of the propensity score model or treatment

response model [86]. To tackle this limitation, building on the basis of the semi-

parametric theory , doubly robust estimators [15, 47] model both the treatment

and outcome models and, remarkably, give consistent treatment effect estimates

as long as one of these two nuisance models is correctly specified.

Robins et al. [150] and Rotnitzky et al. [156] introduced the first doubly

robust method called augmented inverse probability weighting (AIPW) to com-

bine propensity score and treatment response modelling in estimating the ATE.

Later, this idea is further extended in [15, 198]. Another well-known doubly

robust technique is the targeted maximum likelihood estimation (TMLE, also
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called targeted learning) [104, 197, 199, 200]. Take ATE as an example, TMLE

requires initial estimates of the treatment propensity model e(x) treatment re-

sponse model µ(x, t), which can be flexibly estimated by ensemble and machine

learning algorithms. Then a substitution “targeting” step that optimizes the

bias-variance trade-off for the target ATE is conducted to get the final estimate.

Doubly robust estimators, in contrast to the causal estimators introduced in

the previous two sections, provide us a double guarantee to make valid causal in-

ference. Existing simulation-based evidence shows that they often perform better

than their propensity score-based or counterfactual inference-based counterparts

[104, 125, 199].

2.3.4 Other Machine Learning Methods

Besides the methods introduced in the above sections, researchers have also pro-

posed various advanced methods that use machine learning for treatment effect

estimation, including Lasso [142], support vector machines [72], trees and forests

[10, 206], ensemble methods [141], meta learners [95], DNNs [23, 57, 80, 179] and

Bayesian machine learning [2, 62, 102], seeking to provide more accurate treat-

ment effect estimation under certain assumptions for different causal problems.

Recently, Schwab et al. [172] summarizes existing treatment effect estima-

tion methods based on machine learning into the following five categories: (1)

Matching-based methods that estimate the unobserved counterfactual outcome

of an individual using the observed outcomes of other individuals by matching

on some metric space; (2) Adjust regression methods that fit a single treat-

ment outcome model with both covariates and the treatment indicator as inputs

or multiple treatment outcome models, one for each treatment; (3) Tree-based

methods that train many weak learners to build expressive ensemble models

to non-parametrically learn the treatment outcome surfaces ( e.g., BART [62])
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or the CATE function (e.g., the Causal Tree [10] and Causal Forests [206]);

(4) Representation-balancing methods that seek to learn balanced representa-

tions that are similar between the treated and control groups so as to allevi-

ate the imbalanced treatment assignment in observational studies. Methods

in this category include kernel balancing [58], entropy balancing [56, 222], bal-

anced neural networks (BNN) [80], counterfactual regression (CFR) [178] and

the local Similarity-preserved Individual Treatment Effect method (SITE) [212];

(5) Distribution-modelling methods that model the underlying treatment re-

sponses using probabilistic machine learning. Specifically, Causal Multi-task

Gaussian Process [2] adapts multi-task Gaussian process to model the two treat-

ment response surfaces. Causal Effect Variational Auto-encoder (CEVAE) [102]

and Causal Effect Implicit Generative Model (CEIGM) [225] use deep latent-

variable modelling approaches to model and infer the outcome generative proba-

bility. Generative Adversarial Nets for inference of Individual Treatment Effects

(GANITE) [213] uses generative adversarial networks (GANs) to learn the coun-

terfactual and ITE generators.

Among these methods, except for the Causal Tree and Causal Forests, other

methods estimate the target treatment effect by modelling either the treatment

responses or the treatment assignment mechanism using various machine learning

techniques, and are thus indirect methods.
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Chapter 3

First-order Causal Process for

Causal Modelling with

Instantaneous and Cross-temporal

Relations

In this chapter, we propose a new causal model for representing and learning

the causal relationship between variables in dynamic systems with both instan-

taneous and cross-temporal causal relations. Our proposed model is motivated

by the causal process idea [40, 163] from the philosophy of science and some

real physical systems. We introduce a novel 2-stage evolution semantic for dy-

namic systems with both instantaneous and cross-temporal causal relations. The

first-order causal process (FoCP) is proposed to model these dynamic systems,

compact graphical representations and a conditional independence test based

structure learning algorithm are also proposed for FoCP.

The main content of this chapter has been published in [226], and the remain-

der of this chapter is organised as follows: in Section 3.1, we introduce a classic
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dynamic system as a motivating example. Based on our observations about this

motivating example, in Section 3.2, we conclude the 2-stage evolution semantic

for dynamic systems and propose the FoCP model; properties of the new model

are also discussed. In Section 3.3, we introduce graphical representations for the

FoCP model. In Section 3.4, we propose an unified conditional independence

based structure learning algorithm for the model by using a similar structure

learning procedure of the classical PC algorithm [184] and the identified useful

properties. Experiments on both simulated and real data are conducted in Sec-

tion 3.5 to validate the model and algorithm. Finally, we summarize this chapter

in Section 3.6.

3.1 A Motivating Example

Our illustrative example is adapted from [205]. Consider in a damped simple

harmonic oscillator (SHO) system, a block of mass m is suspended from a spring

in a special viscous fluid. There are several sources of forces acting on this block,

including the gravity, the support, the spring force, and the fluid resistance.

Denote the displacement and velocity of the block at time t as x(t) and v(t) re-

spectively. In mechanics, the spring force and the fluid resistance at the moment

t are determined by the displacement x(t) and the velocity v(t). Thus, we denote

them as Fx(t) and Fv(t) respectively. In addition, denote the time interval as ∆t,

according to the momentum formulam(v(t+∆t)−v(t)) = (Fx(t) + Fv(t))∆t and

Newton’s law of motion, we can easily conclude that x(t+∆t)− x(t) = v(t)∆t,

Fx(t) = −kx(t) and Fv(t) = −δv(t), where k and δ are damping coefficients of

the spring and the viscous fluid respectively. Obviously, since the coefficients k

and δ are constant, the SHO system is a linear dynamic system.

In this SHO system, we observe that there are two kinds of causation be-
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tween the system variables: the cross-temporal causation from an antecedent

variable to a later variable, such as the influence from Fx(t), Fv(t) to x(t+∆t),

and the instantaneous causation between contemporary variables, such as the

influence from v(t) to Fv(t). Moreover, we notice that a variable can be influ-

enced by at most one kind of causation, either instantaneous or cross-temporal.

Specifically, the displacement x(t) and the velocity v(t) are directly determined

by cross-temporal causation, and the forces Fx(t) and Fv(t) are determined by

instantaneous causation from the current system variables. This is a very im-

portant property of many physical dynamic systems and will be used to develop

graphical models and structure learning algorithms in the following sections.

Denote the state vector of this linear dynamic system at time t as s(t) =

(Fx(t), Fv(t), v(t), x(t))
T , the coefficients matrix for instantaneous causal tran-

sitions as Binst, and the coefficient matrix for temporal causal transitions as

Btemp, then the discrete approximation of the underlying causal mechanism (as-

sume additive noises) can be formalized as the following structural equations:

Fx(t)← binst14 x(t) + e1(t)

Fv(t)← binst23 v(t) + e2(t)

v(t)← btemp33 v(t−∆t) + btemp31 Fx(t−∆t) + btemp32 Fv(t−∆t) + ϵ3(t)

x(t)← btemp44 x(t−∆t) + btemp43 v(t−∆t) + ϵ4(t)

(3.1)

where binstij and btempij are elements from the instantaneous coefficients matrix

Binst and the temporal coefficients matrix Btemp respectively. We can also write

the structural equations in E.q(3.1) in a compact formalization as:

s(t) = B̂inst
(
Btemps(t−∆t) + ϵ(t)

)
+ e(t)

= B̂instBtemps(t−∆t) + B̂instϵ(t) + e(t)
(3.2)
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where B̂inst is the augmented instantaneous transition matrix which augments

the instantaneous transition matrix Binst by setting the diagonal elements of

zero rows to 1 to make sure the value of variables without contemporary parents

are unchanged after this transformation; ϵ(t) = (0, 0, ϵ3(t), ϵ4(t)) and e(t) =

(e1(t), e2(t), 0, 0) are additive temporal transition error and instantaneous error

vectors. In this research, we assume causal sufficiency (Assumption 2.3) and all

error terms are additive and mutually independent.

We can easily conclude from the above state evolutions in E.q(3.1) that,

the displacement x(t) is determined by the previous displacement x(t−∆t) and

velocity v(t−∆t); similarly, the velocity v(t) is determined by the previous spring

force Fx(t−∆t), viscosity Fv(t−∆t) and velocity v(t−∆t). While for Fx(t) and

Fv(t), their values are directly determined by the contemporary variables x(t)

and v(t) respectively, but not directly influenced by any variables from previous

time slices. To obtain the state of the dynamic system at time t+∆t, s(t+∆t),

from s(t), we can imaginably decompose the state evolutionary process into two

stages: firstly, the velocity v(t+∆t) and displacement x(t+∆t) get their values

from their directed parents at time t by the cross-temporal transition matrix

Btemp; then, Fx(t + ∆t) and Fv(t + ∆t) are instantaneously determined by the

values of v(t + ∆t) and x(t + ∆t) through the instantaneous transition matrix

Binst. This is directly entailed by the compact representation in E.q (3.2).

3.2 First-order Causal Process

3.2.1 Two-stage State Evolution

Motivated by the SHO example in the previous section, we postulate that a

dynamic system is intrinsically a series of functional transformation of states. As

a process, the system state s(t) at time t is first transformed via a temporal causal
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transformation H to the latent state sin(t +∆t), and then reaches its observed

state sout(t+∆t) at time t+∆t by the instantaneous causal transformation F .

Mathematically, we can generalize the underlying dynamics of the SHO system

as the following state evolution process:

sin(t+∆t) = H(sout(t))

sout(t+∆t) = F̂
(
sin(t+∆t)

) (3.3)

where F̂ is the augmented instantaneous transformation which augments the in-

stantaneous causal transformation F by leaving variables without contemporary

parents unchanged. We coin a causal dynamic system with such a 2-stage evo-

lution semantic a first-order causal process (FoCP). The term first-order means

that we only consider lag-one cross-temporal causal relations for the temporal

causal transformation H. Apparently, the equivalent observational model of a

FoCP is sout(t+∆t) = F̂ ◦ H (sout(t)).

In practice, most real-world dynamic systems are intrinsic stochastic, even

in deterministic systems, noises coming from unobserved exogenous variables

and measurements are often unavoidable. In this research, we assume all noises

are additive and mutually independent. Thus, the 2-stage state evolution of a

dynamic system can be generally formalized as:

sin(t+∆t) = H (sout(t)) + ein(t+∆t)

sout(t+∆t) = F̂ (sin(t+∆t)) + eout(t+∆t)
(3.4)

For the simplest case, i.e., the additive noise linear dynamic system, the

underlying causal dynamics is:

sin(t+∆t) = Btempsout(t) + ein(t+∆t)

sout(t+∆t) = B̂instsin(t+∆t) + eout(t+∆t)
(3.5)
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Further define u(t + ∆t) = B̂instein(t + ∆t) + eout(t + ∆t), we have the

observational version of the 2-stage state evolution as the following equation:

s(t+∆t) = B̂instBtemps(t) + u(t+∆t) (3.6)

By the observation that, in a dynamic system that falls into the scope of

FoCPs, there may exist at most one kind of causal relation from Xj to Xi, either

the instantaneous causation Xj → Xi or cross-temporal causation Xj 99K Xi,

or neither of them, it is easy to verify that B̂ inst
ij B temp

ij = 0. Moreover, by the

intuition feedbacks need time to take effect, existing static models that represent

the causal system by a DAG or DCG can be regarded as special cases of the

proposed model since they cannot model the self-loop feedbacks.

3.2.2 The FoCP and Properties

We now give a formal definition of the first-order causal process model:

Definition 3.1 (First-order causal process, FoCP). Denote the state vector of

a discrete time-invariant dynamic system at time t as s(t). A discrete time-

invariant dynamic system is called a first-order causal process if (i) the value of

any variable Xi is directly determined either by some variables at the previous

time slice or some contemporary variables, or neither of them; (ii) feedbacks

occur only through cross-temporal causal relations.

Set the time interval of a discrete-time dynamic system to ∆t = 1, a very

similar model is the lag-one structural VAR (SVAR(1))[118], which models a

linear dynamic system and is formalized in a compact matrix formation as:

s(t) = Bs(t) +As(t− 1) + e(t) (3.7)
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where the matrix B illustrate the instantaneous causal relations between vari-

ables, and A contains their cross-temporal causal relations. However, this is

actually a regression model where regression coefficients are interpreted into

causality. By transforming the formula into the reduced form in E.q(3.8) which

is similar with E.q(3.6), we claim that the SVAR(1) model can be treated as a

special FoCP with additive errors.

(I −B)s(t) = As(t− 1) + e(t)

s(t) = (I −B)−1As(t− 1) + (I −B)−1e(t) (3.8)

We now conclude several properties of the FoCP, which will be used to develop

graphical representations in the next section and the structure learning algorithm

in Section 3.4. Specifically, in a dynamic system whose dynamics can be modelled

by a FoCP with T time slices, the following properties hold:

• Property 1. A direct cross-temporal causal relation is only possible from

an antecedent variable to a later one;

• Property 2. At any time slice t, the contemporary causal structure over

variables forms a DAG;

• Property 3. For any two variables Xi and Xj, Xi(t)→ Xj(t)⇔ Xi (t
′)→

Xj (t
′) where t, t′ ∈ {1, 2, . . . , T};

• Property 4. For any two variables Xi and Xj, if t2 − t1 = t′2 − t′1 > 0,

then Xi (t1)→ Xj (t2)⇔ Xi (t
′
1)→ Xj (t

′
2);

• Property 5. Any variable can at most be determined by either instan-

taneous causation from contemporary variables or cross-temporal causa-

tion from antecedent variables. This property can be further divided into:

Property (5a): If Xi(t) → Xi(t + ∆t), then Xi has no contemporary
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parents; Property (5b): If Xi(t)→ Xj(t+∆t), then Xj has no contem-

porary parents; and Property (5c): If Xi(t) → Xj(t), then Xj has no

antecedent parents.

In general, Property 1 is obvious by the arrow of time. Property 2 is en-

tailed by the assumption that “ feedbacks take time to happen”. Property 3 and 4

represent the time-invariant property of a dynamic system we assumed earlier.

Property 5 together with its three sub-properties is entailed by our assumption

of the FoCP model: the value of a system variable Xi can only determined either

by some antecedent variables or contemporary variables, or neither of them.

3.3 Graphical Representations for FoCPs

Denoting the ith variable at time t as Xi(t) or X t
i , We can define a class variable

for the set of temporal variables {Xi(t), t = 1 : T} as a feature Xi. Based on

these notations, we introduce two equivalent graphical representations for the

FoCP model in this section: the 2-time variable causal graph (2TVCG), and the

more compact feature causal graph (FCG).

3.3.1 The 2-time Variable Causal Graph

Similar to the compact graphical representation of 2-time-slice Bayesian networks

(2TBN) in DBN introduced in Chapter 2.2.3, the 2TVCG of a FoCP is a DAG

obtained by truncating the unrolled full causal graph and leaving only variables

and edges in two adjacent time slices, let us say time slice t and (t + 1). In a

2TVCG, instantaneous causal relations among variables in time slice (t+ 1) are

explicitly illustrated while those among variables in time slice t are implicitly

entailed by their latter copies; cross-temporal causal relations are illustrated
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by arrows from temporal variables Xi(t) at time slice t to temporal variables

Xj(t+ 1) at time slice (t+ 1).

3.3.2 Feature Causal Graph

While the 2TVCG provides us an intuitive and compact tool to illustrate a first-

order time-invariant dynamic system, an FCG is more compact by using the

notation of features and different edge types to simultaneously encode instanta-

neous and cross-temporal causal relations. In an FCG Gf for an n-variate FoCP,

there are n feature nodes and three types of edges:

• Solid directed edge (→): A solid directed edge Xi → Xj, means that

there is a instantaneous causal relation from the variable Xi(t) to the vari-

able Xj(t) for all t = 1 : T ;

• Dashed directed edge (99K): A dashed directed edge Xi 99K Xj repre-

sents a time delayed cross-variable causal relation from variable Xi(t) to

variable Xj(t+ 1);

• Dotted Self-edge: A dotted self-edge from feature Xi to itself represents

a time delayed causal relation from Xi(t) to Xi(t+ 1).

3.3.3 A Transformation Procedure

We can easily derive a one-to-one mapping between the 2TVCG and the FCG

representations of a FoCP. Denote the 2TVCG as Gv and its corresponding FCG

as Gf , we can conclude that: (1) the edge Xi → Xj exists in Gf if and only if

Xi(t) → Xj(t) in Gv for every time slice; (2) the edge Xi 99K Xj exists in Gf if

and only if Xi(t)→ Xj(t+1) in Gv; and (3) the dotted self-edge from Xi to itself

exists in Gf if and only if Xi(t) → Xi(t + 1) in Gv. This mapping is formalized

as the function variableToFeatureGraph defined in Algorithm 3.1
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Procedure 3.1 variableToFeatureGraph(Gv)
For i, j = 1 : n do
if X t+1

i → X t+1
j exists in Gv, then draw Xi → Xj in Gf

if X t
i → X t+1

j exists in Gv, then draw Xi 99K Xj in Gf
if X t

i → X t+1
i exists in Gv, then draw Xi � Xi in Gf

By this transformation procedure, the 2TVCG and its corresponding FCG

of the SHO system is illustrated in Fig. 3.1.

Figure 3.1: The 2TVCG (left) and FCG (right) representations for the SHO
system.

3.4 Structure Learning for FoCPs

Based on the two graphical representations for FoCPs, the FoCP structure

learning problem can be posed in the following way: given a set of multi-

variate time series over features V , derive a 2TVCG over the set of variables

V t ∪ V t+∆t from two adjacent time slices. Using the transformation procedure

variableToFeatureGraph, we can then easily transform it to the corresponding

FCG over V .
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3.4.1 Conditional Independence based Structure Learning

Our proposed FoCP learning algorithm belongs to the conditional independence

constraint-based structure learning paradigm [184], which is mainly based on the

following d-separation criteria:

Definition 3.2 (d-separation [130]). In a DAG G, a disjoint set of nodes Z is

said to block a path p from X to Y if either (i) p contains at least one arrow-

emitting vertex that is in Z, or (ii) p contains at least one collision vertex that

is outside Z and has no descendant in Z.

Specifically, under the causal sufficiency (Assumption 2.3), causal Markov

(Assumption 2.4), and causal faithfulness (Assumption 2.5) conditions, the

probabilistic conditional independence X |= Y |Z is equivalent with graphical d-

separation assertion Dsep(X, Y |Z), i.e., X |= Y |Z ⇔ Dsep(X,Y |Z). This indi-

cates that we can discover causal independence relations in the underlying causal

graph G by testing probabilistic conditional independences in the data distribu-

tion P . Typically, conditional independence tests between causal variables are

performed using statistical or information theoretic measures. The algorithms

start with a fully connected undirected graph. The conditional independence

constraints are propagated throughout the graph, and edges inconsistent with

them are removed. A sound strategy for performing conditional independence

tests ultimately retains only the statistically equivalent graphs consistent with

the constraints.

3.4.2 FoCP Learning

Following the above conditional independence constraint-based structure learn-

ing scheme, the procedure for learning the structure of a FoCP from a time series

dataset is: firstly, initialize the graph P0 over V = V t∪V t+∆t with directed edges
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Algorithm 3.2 FoCP Learning Process
Input: A time series data set D = {x(t), t = 1 : T}, and an oracle for conditional

independence between variables
Output: A FoCP feature causal graph Gf
1: P0 ← a graph over V = V t∪V t+∆t with directed edges from every X t ∈ V t

to every Y t+∆t ∈ V t+∆t and undirected edges between every pair of nodes
from V t+∆t;

2: P1 ← instantaneousCausationSearch(P0,D);
3: P2 ← crossTemporalCausationPrune(P1,D);
4: P3 ← instantaneousCausationOrientation(P2,D);
5: P ← variableToFeatureGraph(P3)

from every antecedent variable X t ∈ V t to every latter variable Y t+∆t ∈ V t+∆t

and undirected edges between every pair of variables in V t+∆t; secondly, search

for adjacencies and orientations of instantaneous causal relations between vari-

ables in V t+∆t; thirdly, prune cross-temporal causal relations between variables

from two adjacent time slices; and at last orientate more undirected instanta-

neous edges by constraints such that no cross-temporal and instantaneous causal

relations can occur to a variable at the same time, and no cycles or new collid-

ers can be introduced by orientations of undirected edges. The FoCP learning

procedure is illustrated in Procedure 3.2 where we re-scale the time interval ∆t

of the target dynamic system to 1.

In the learning procedure, the procedure instantaneousCausationSearch

inputs the initialized graph P0 (with fully connected contemporary and cross-

temporal edges) and the time series data D. Conditional independences between

variables in V t+∆t are tested to identify adjacencies among them. Since the

contemporary causal structure over variables in V t+∆t forms a DAG, the same

orientation rules with the PC algorithm [184] are adopted to orientate as many

instantaneous causal relations as possible.

To identify the correct set of cross-temporal causal relations, we only need to

identify the adjacency relations between variables in V t with variables in V t+∆t
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Procedure 3.3 instantaneousCausationSearch(P0,D)
1: P1 ← P0

2: for order = 0 : 2m− 2 where m is the number of feature variables do
3: for every ordered pair of variables (X t+∆t, Y t+∆t) ∈ V t+∆t do
4: neighbors← neighbors(X t+∆t) ∪ neighbors(Y t+∆t) \ {X t+∆t, Y t+∆t}
5: if |neighbors| ≥ order then
6: for S ⊆ neighbors with card(S) = order do
7: if X t+∆t |= Y t+∆t|S is entailed by the data D then
8: Eliminate the edge X t+∆t—Y t+∆t

9: SepSet(X t+∆t, Y t+∆t)← S
10: end if
11: end for
12: end if
13: end for
14: end for
15: Let G be the sub-graph by deleting all variables V t and edges collecting

with them from P1. Use the same orientation rules with the PC algorithm
(Algorithm 2.1) to orientate edges in G;

16: Orient edges between variables V t+∆t in P1 the same as edges in G.
Output: P1

since their orientations are automatically entailed by their chronological order.

The Property (5c) of FoCPs and conditional independence test are used in this

stage. The resulting P2 theoretically contains all cross-temporal causal rela-

tions. The pruning procedure is formalized as crossTemporalCausationPrune

in Procedure 3.4.

After the above identification procedures, the partially oriented causal

graph P2 may contain some undirected instantaneous edges. We may

further orientate some of them according to property (5) and by avoid-

ing cycles and new colliders. Formally, this procedure is formalized as

instantaneousCausationOrientation in Procedure 3.5.

In general, the proposed FoCP structure learn-

ing procedures can be modularized into the following

stages:
�� ��search preliminarily for instantaneous causal relations
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Procedure 3.4 crossTemporalCausationPrune(P1,D)
1: P2 ← P1

2: Create an augmented dataset D̂ = {(x(t), x(t+ 1), t = 1 : (T − 1)}
3: for any Y t+∆t ∈ V do
4: if exist X t+∆t ∈ V ∩X t+∆t → Y t+∆t then
5: Eliminate all cross-temporal arrows shooting from variables at time t to

Y t+∆t from P2

6: end if
7: end for
8: for order = 0 : 2m− 2 where m is the number of feature variables do
9: for every cross-temporal arrow X t → Y t+∆t ∈ P2 do
10: neighbors← neighbors(X t+∆t) ∪ neighbors(Y t+∆t) \ {X t+∆t, Y t+∆t}
11: if |neighbors| ≥ order then
12: for S ⊆ neighbors with card(S) = order do
13: if X t+∆t |= Y t+∆t|S is entailed by the data D then
14: Eliminate the edge X t+∆t—Y t+∆t

15: SepSet(X t+∆t, Y t+∆t)← S
16: end if
17: end for
18: end if
19: end for
20: end for
Output: P2

→
�� ��prune cross-temporal causal relations →

�� ��fine-tune instantaneous causal relations .

To obtain the final output FCG, the transformation procedure

variableToFeatureGraph in Algorithm 3.1 is adopted to transform the

causal graph P3 over V t ∪ V t+∆t to its equivalent FCG Gf .

3.4.3 Computational Complexity

In the FoCP learning procedure, the computation is mainly used for testing con-

ditional independences. For am-variate FoCP, for searching instantaneous causal

relations, the number of conditional independence tests is theoretically upper-

bounded by (m2 )
[
1 + ( 2m−2

1 ) + · · ·+
(
2m−2
2m−2

)]
= m(m− 1) · 22m−3; for searching
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Procedure 3.5 instantaneousCausationOrientation(P2,D)
1: P3 ← P2

2: Orientation undirected edges between variables V t+∆t by the following rule
while avoiding cycles and new colliders:
If ∃X t → Y t+∆t and Y t+∆t—Zt+∆t, then Y t+∆t → Zt+∆t

Output: P3

cross-temporal causal relations, the number of conditional independence tests is

upper-bounded by
[
1 + ( 2m−2

1 ) + · · ·+
(
2m−2
2m−2

)]
= m2 · 22m−2. The number of

other rule checks is linear with the number of variables in the system. From this

theoretical analysis, the computational complexity will become very high when

the dimension of system variables increase. However, the above upper bounds

will not practically be reached since the 2TVCG of a first order causal process is

normally a sparse DAG given the Property (5) of FoCPs. As an initial work, we

restrict ourselves to propose a reasonable model and correct learning algorithm

for temporal causal modelling, but not focus on computational efficiency. How-

ever, for high dimensional dynamic systems, we recommend to manually set the

maximum order of conditioning sets for conditional independence tests according

to some prior knowledge for the sake of computational efficiency.

3.5 Experimental Analysis

To validate the FoCP model and the corresponding structure learning algorithm,

we simulate data from the SHO system discussed in Section 3.1, and evaluate

whether the proposed algorithm can discover the underlying causal structure

from the observed data. In addition, we apply our method to a real-world

climate dataset to demonstrate the viability of the FoCP model for modelling

the causal structure of real dynamic system with possible instantaneous and

cross-temporal causation. We implement the proposed algorithm using Matlab
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and all experiments are run on a PC with four 2.30GHz i5 CPUs.

3.5.1 Baselines and Evaluation Metrics

To the best of our knowledge, there exists no temporal causal models [42] with

such a 2-stage evolution semantic as the proposed FoCP model. As a result, no

available algorithms are exactly suitable for comparison with our method. Even

so, there are two similar works that are able to learn the structure of a dynamic

system from time series when both instantaneous and cross-temporal causal re-

lations may exist: Entner and Hoyer [43] extend the fast causal inference (FCI)

algorithm [184] to time series data and propose the tsFCI algorithm; Hyvärinen

et al. [71] take advantages of non-Gaussian noises to learn the structure of the

SVAR model and their algorithm is named VARLiNGAM. Recently, Meek [113]

proposed a similar causal process concept and the δ∗-separation for causal discov-

ery from discrete-time continuous-valued time series. Unfortunately, the author

only proposed a conceptual framework but did not provide any working algo-

rithm. As a result, for experimental comparison, we choose the VARLiNGAM

and tsFCI as our baseline methods.

Note that the two baseline algorithms are based on different assumptions.

Specifically, VARLiNGAM makes the same CSC assumption as our FoCP learn-

ing algorithm, i.e., all system variables are observed; while tsFCI allows latent

variables. As a consequence, the causal graph outputted by VARLiNGAM will

only contain directed edges while tsFCI outputs a partial ancestral graph (PAG)

[184] that may contain partially directed, undirected and bi-directed edges. For

the sake of comparison, in this work, all cross-temporal edges in the learned PAG

are replaced by directed edges from antecedent variables to latter variables, all

bi-directed edges are replaced by undirected edges, and all partially directed

edges are replaced by directed edges.
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Following similar evaluation metrics in [26] and [185], we define the following

edge error rates to evaluate the performance on edge identification of the afore-

mentioned algorithms. The first evaluation metric is the edge omission error

rate defined as:

Eom =
# edge omission errors

# edges in the true 2TVCG

The second metric is the edge commission error rate defined as:

Ecom =
# edge commission errors

Maximum# of possible edge commission errors

In the above formulas, an edge omission error occurs when two variables

are adjacent in the true 2TVCG but not in the learnt causal graph. An edge

commission error occurs when two variables are adjacent in the learnt causal

graph but not in the true 2TVCG. For a m-variate dynamic system with lag one

cross-temporal causation, the maximum number of possible edge commission

errors is equal to
(
m2 + m(m−1)

2
−# edges in the true 2TV CG

)
.

Similarly, we define the following arrowhead error rates to evaluate algorithm

performances regarding edge orientations among contemporary variables. The

arrowhead omission error rate is defined as

Aom =
# arrowhead omission errors

# contemporary arrowheads in the learned graph+1

and the arrowhead commission error rate is defined as

Acom =
# arrowhead commission errors

# contemporary arrowheads in the learned graph+1

We only consider instantaneous arrowheads because the orientations of cross-

temporal edges are instinctive from antecedent variables to latter variables ac-

cording to the arrow of time.
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3.5.2 Simulated Data

We simulate the data from the toy SHO system with Btemp =

(
0 0 0 0
0 0 0 0
0.1 0.1 1 0
0 0 0.1 1

)
,

Binst =

(
0 0 0 −0.3
0 0 −0.2 0
0 0 0 0
0 0 0 0

)
and time interval ∆t = 0.1. The initial state of the sys-

tem is set to x(0) = (0,−1, 5, 0). Thus, the augmented instantaneous transition

matrix B̂inst =

(
0 0 0 −0.3
0 0 −0.2 0
0 0 1 0
0 0 0 1

)
and the composited causal transition matrix for

the system B = B̂instBtemp =

(
0 0 −0.03 −0.3

−0.02 −0.02 −0.2 0
0.1 0.1 1 0
0 0 0.1 1

)
. Since the VARLiNGAM

algorithm takes advantages of the non-Gaussianity of noises to learn causal struc-

tures, we simulate data with both additive Gaussian noises and non-Gaussian

errors (specifically super-Gaussian noises are simulated). Furthermore, four time

series data sets with sample size of 500, 1000, 1500 and 2000 are synthesised re-

spectively in each noise context. Experimental results of the three algorithms in

two noise contexts are illustrated in Fig. 3.2 and Fig. 3.3.

Generally, our FoCP learning algorithm has an overall lower error rates than

the other two algorithms, except for the edge omission error rate compared

with VARLiNGAM. Specifically, the VARLiNGAM algorithm tends to learn

many suspicious cross-temporal relations from the antecedent time slice to the

latter time slice (almost fully connected), and thus leading to zero edge omission

errors while very high edge commission error rates in all experiments. This may

be because VARLiNGAM are based on the VAR model, which is actually a

multivariate regression model.

Basically both the tsFCI and our FoCP learning algorithm belong to the

constraint-based structure learning paradigm. They both rely on some graphi-

cal separation criteria and conditional independence test, so they are very likely

to output common edges. However, in our FoCP learning algorithm, the well de-

signed cross-temporal causation identification and the additional instantaneous

causation fine-tuning process theoretically guarantee us to make less edge com-
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Figure 3.2: Comparisons of (a) edge omission error rates, (b) edge commission
error rates, (c) arrowhead omission error rates, and (d) arrowhead commission
error rates in the Gaussian noises context.

mission errors and arrowhead emission errors. This primary judgement is par-

tially validated by Fig.3.2(c) and Fig.3.3(c).

Another finding from the results is that though not very significant, all al-

gorithms tend to make less errors as the sample size gets larger. In addition,

by comparing the results in Fig.3.2 with that in Fig.3.3, we find that Non-

Gaussianity does benefit VARLiNGAM to identify the correct orientations of

contemporary edges as theoretically expected.

3.5.3 Application to Climate Data

We also apply the FoCP model to the Global Summary of the Day (GSOD)

climate data1. The collected data contains a number of 18159 daily records
1https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
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Figure 3.3: Comparisons of (a) edge omission error rates, (b) edge commission
error rates, (c) arrowhead omission error rates, and (d) arrowhead commission
error rates in the non-Gaussian noises context

of the temperature (Temp), sea level pressure (SLP), and average wind speed

(AWS ). The kernel based independence criteria, Hilbert Schmidt Independence

Criteria (HSIC), is adopted for conditional independence test. The causal graphs

learned by the VARLiNGAM algorithm, the tsFCI algorithm and our FoCP

learning algorithm are illustrated in Fig.3.4. The original output PAG of the

tsFCI algorithm is converted by the same transformational rules discussed in

Section 3.5.1.

Without access to the ground truth, it is hard to say which learned causal

graph is better than the others. However, we may still get some understanding of

the underlying causal relationships among climate variables, and further validate

our proposed method by the overlapping causal relations learned by our method

and the other two methods.

In Fig.3.4, we may conclude some common causal relations. Specifically, all
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Figure 3.4: The learned causal graphs for the GSOD climate data learned by
the VARLiNGAM algorithm (left), the tsFCI algorithm (middle), and our FoCP
learning algorithm (right)

three causal graphs indicate that the SLP is directly influenced by the previous

day’s SLP ; the AWS is also directly influenced by the previous day’s AWS,

while the daily temperature is directly influenced by the AWS in the same day.

Both the FoCP and the tsFCI learning algorithm identify the feedback influence

from temperature to the next day’s AWS, while VARLiNGAM fails to learn

this influence. Meanwhile, both causal graphs by VARLiNGAM and the FoCP

learning algorithm indicate that no direct instantaneous causation exists between

the SLP and the AWS.

As we have discussed in Section 3.3, the FCG representation of a FoCP

encodes the instantaneous causation and cross-temporal causation (including

self-edge feedbacks) by different kinds of edges. The 2-stage state evolution

semantic guarantees the learned FCG to be generally more compact and simpler

than its counterparts identified by the other two algorithms. Thus, the analysis

on climate data indicates that the proposed FoCP model as well as the structure

learning algorithm acts as a potential tool for temporal causal modelling to

discover simple and meaningful causal structures.
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3.6 Summary

In this chapter, we consider the issue of temporal causal modelling when both

instantaneous and cross-temporal causal relations may exist. Although the con-

cept of causal process has been discussed in previous work, there has not as yet a

unified graphical representation or structure learning algorithms for it. As an ini-

tial work, we try to contribute this line of research by first drawing some insights

from physical systems, and refine them into the 2-stage state evolution semantic

further. Based on this new interpretation and its entailed properties, practi-

cal graphical representations and a structure learning algorithm are proposed to

identify the underlying causal structure of a dynamic system. Experiments on

simulated and real data validate the proposed method.
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A Pareto-smoothing Method for

Causal Inference using Generalized

Pareto Distribution

In this chapter, we consider the problem of causal inference via weighting. We

reframe causal inference using the IPW estimator to the importance sampling

framework and introduce a new smoothing method for importance weight sta-

bilization using the smoothing property of the generalized Pareto distribution

(GPD) from the extreme value statistics [28]. Based on the new interpretation

of the IPW estimator and the proposed Pareto-smoothing method, we propose

two IPW estimators for treatment effect estimation.

Our contributions are as follows: (1) We introduce the classic IPW causal es-

timator from the perspective of importance weighted estimation of expectations

using data from a different proposal distribution. To the best of our knowl-

edge, we are the first to formalize such an interpretation of the IPW estimator,

which renders the high variability problem of importance weight-based estima-

tors straightforward and easy to understand. (2) Building upon the above im-
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portance sampling interpretation of the IPW estimator, we analyse the high

variability problem of the IPW estimator with estimated propensity scores and

conclude two existing stabilization methods for importance weight stabilization,

i.e., weight truncation and self-normalization. (3) We propose a new Pareto-

smoothing method for importance weight stabilization using GPDs and two

Pareto-smoothed causal estimators based on the proposed method. We also dis-

cuss the selection of related parameters in the proposed method. Comprehensive

experiments were conducted using both simulated and real data to demonstrate

the practical validity of the proposed method.

The remainder of this chapter is organized as follows. In Section 4.1, we

introduce notations, formalize the causal inference problem, and discuss the as-

sumptions for identification. In Section 4.2, we reframe the classic IPW estima-

tor for causal inference in the importance sampling framework, which leads to

a straightforward understanding of its high variability problem in finite-sample

settings. Within this framework, we briefly review two conventional methods for

stabilizing the IPW estimator. In Section 4.3, we introduce the details of our new

Pareto-smoothing method and the two proposed Pareto-smoothed causal estima-

tors. Experiments on simulated data and an application on a real-world health

dataset are conducted in Section 4.4 and Section 4.5. Section 4.6 summarizes

this chapter.

4.1 Problem Setup

Consider a population of n individuals indexed by i = 1, 2, . . . , n. Every in-

dividual i is characterized by a d-dimensional vector of features (also called

pre-treatment covariates or attributes), Xi ∈ Rd. Elements of these covariates

might include age, gender, race, education, etc. For convenience, we use Xi and
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i interchangeably to represent the ith individual, and X to represent a general

individual from the population. Each individual makes a decision to choose an

action or is assigned to a treatment T ; for example, the treatment T could be

whether to take a particular medicine or whether to receive a certain training pro-

gram. We consider binary treatments and denote the treatment for an individual

i as Ti, where Ti = 0 indicates that individual i received the control treatment

and Ti = 1 indicates that individual i received the active treatment. Let Y be the

outcome variable of interest. For any individual X, following Rubin’s potential

outcome framework [74], there is a pair of potential outcomes YX(0) and YX(1),

denoting the outcome value of X if he or she had been in the control group or

the treatment group respectively. By the principle of consistency, the observed

outcome of individual Xi, denoted as Y obs
Xi

or simply Yi, is the potential outcome

corresponding to the received treatment, i.e., Y obs
Xi

= Yi = YXi
(Ti) = Yi(Ti)

With these notations, the individual treatment effect for the ith individual

is defined as the difference of the two potential outcomes τi = Yi(1)−Yi(0). The

conditional average treatment effect is defined as τ(x) = E [τi|Xi = x] and the

ATE of treatment T on the outcome Y is its expectation for this population,

τATE = E [τ(X)] = E[Y (1)]− E[Y (0)] (4.1)

Rather than the ATE for the whole population, sometimes we may only be

concerned about the ATE for the treated individuals, i.e., the ATT defined as

τATT = E [τ(X) | Ti = 1]. While we can analogously define the average treatment

effect on the control (ATC), it is seldom of interest in practical applications. We

formulate the ATE estimation problem for concreteness. The estimation of ATT

is straightforward and is introduced in the Appendix.

Given the observational data D = {(Xi, Ti, Yi) : i = 1, 2, . . . , n}, where n is

the number of observations. Referring to the individuals with Ti = 1 as treated
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individuals and the individuals Ti = 0 as control, we also denote the number of

treated as n1 =
∑n

i=1 Ti and the number of controls as n0 =
∑n

i=1 (1− Ti). For

each i = 1, 2, . . . , n, Yi(Ti) = Yi is the observed factual outcome and Yi(1−Ti) is

the counterfactual outcome, i.e., the outcome for individual i had she received

the treatment (1−Ti) instead of Ti. If we have access to both potential outcomes,

ATE can be estimated by

τATE = E[Y (1)]− E[Y (0)]

= EX [E[YX(1)]− E[YX(0)]]

=
1

n

n∑
i=1

Yi(1)− Yi(0)

(4.2)

The ATE measures the average causal difference of a population if all in-

dividuals are treated versus all are untreated, which is generally different from

the conditional difference between the outcomes of the treated group and the

control group in the observational data. As a baseline, we denote the empirical

conditional difference calculated in Eq.(4.3) as a naive ATE estimator,

τ̂Naive
ATE =

1

n1

n∑
i=1

TiYi −
1

n0

n∑
i=1

(1− Ti)Yi (4.3)

Estimating the ATE from observational data is generally impossible because

of the fundamental problem of causal inference [74]: for each individual, only

one of the potential outcomes is observed. As a result, causal inference from

observational data is by nature a missing data problem [100]. To ensure the

identifiability [131], we assume unconfoundedness (or conditional exchangeabil-

ity) defined in Assumption 4.1.

Assumption 4.1 (Unconfoundedness, or conditional exchangeability). Con-

ditional on the observed pre-treatment covariates X, the potential outcomes

YX(0),YX(1) are independent of the treatment T , i.e.,{YX(0), YX(1)} |= T |X
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This is to say that all confounders that affect both the treatment and outcome

are observed. Under this assumption, the back-door adjustment criterion [131]

suggests that we can identify the expected potential outcome E[YX(t)] by the

conditional mean outcome via

E[YX(t)] = E[Y |X,T = t]

As a result, we can fit two conditional mean outcome models E [Y |Xi, Ti = 0]

and E [Y |Xi, Ti = 1] from the observational data D, and estimate the ATE in

Eq.(4.2) by calculating the average of the covariate-stratified differences weighted

by the probabilities of each stratum. Although feasible in principle, adjusting for

all observed covariates to eliminate confounding bias may not be possible, espe-

cially when the covariates are continuous. So we need to find a lower-dimensional

proxy for them that will suffice for removing the bias associated with imbalance

in the pre-treatment covariates.

The propensity score in Definition 4.1 is such a low-dimensional proxy and

plays a key role in many existing propensity score-based causal estimators.

Definition 4.1 (Propensity score [74]). The propensity score, e(X), of an

individual X is its conditional probability to be assigned to the treatment group,

i.e., e(X) = p(T = 1 | X).

For any individual, the treatment assignment T is independent of the pre-

treatment covariates X conditional on the true propensity score e(X). More-

over, the unconfoundedness assumption implies that {YX(0), YX(1)} |= T |e(X).

In practice, to guarantee enough randomness in the data-generating process so

that unobserved counterfactuals can be estimated from the observed data, we

also make the Positivity assumption.

Assumption 4.2 (Positivity, or overlap). 0 < e (Xi) < 1 for any i = 1, . . . , n
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This assumption means that the treatment assignment is not deterministic.

In words from the literature of observational studies, the observations are gen-

erated by a probabilistic assignment mechanism [74].

4.2 Preliminaries

As we can see from Eq.(4.1), a key task for treatment effect estimation is to es-

timate the expected potential outcomes of the population, E[Y (0)] and E[Y (1)].

In this section, we introduce importance weighted expectation estimators from

the importance sampling literature [128]. Within this importance weighting

framework, we further introduce the IPW estimator, the truncated and the self-

normalized estimators for causal inference.

4.2.1 Estimating Expected Potential Outcomes

To explain the deduction, let us first consider treatment effect estimation via

RCTs and imagine there is a randomized control experiment in which the treat-

ment propensity p(Ti = 1|Xi) is constant for any i = 1, 2, . . . , n. Using the Bayes

rule, we can easily derive that the covariate distribution for the treated group,

pt=1
X := p(X|T = 1), and the control group, pt=0

X := p(X|T = 1), all equals

the population distribution, pX := p(X). Thus, we can identify both expected

potential outcomes via

E[Y (1)] = EXE [Y |X,T = 1] = Ept=1
X

E [Y |X,T = 1] (4.4)

E[Y (0)] = EXE [Y |X,T = 0] = Ept=0
X

E [Y |X,T = 0] (4.5)
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As a result, ATE can be directly identified from the experimental data via

τATE = E [Y (1)]− E [Y (0)]

= Ept=1
X

E [Y |X,T = 1]− Ept=0
X

E [Y |X,T = 0]

However, in observational studies, the treatment assignment is generally not

random, i.e., pt=1
X ̸= pX and pt=0

X ̸= pX . Consequently, we cannot calculate the

population expectations E[Y (1)] and E[Y (0)] from the observed data directly via

Eq.(4.4) and Eq.(4.5). Importance sampling is one of the most generally appli-

cable procedures for computing expectations when it is not possible to sample

directly from the target distribution. Denote the target distribution as π(x) and

a proposal distribution q(x). The expectation of any function h(x) with respect

to the target distribution π(x) can be consistently estimated by the following

importance weighting formula [128]

Eπ[h(x)] =
∫
h(x)π(x)dx =

∫
h(x)q(x)

π(x)

q(x)
dx

Denote w(x) = π(x)/q(x) and call w(xs) = π (xs) /q (xs) the importance

weight for the sth sample. If we have S draws
{
x1, x2, . . . , xS

}
from q(x), then

we can approximate Eπ[h(x)] using Monte Carlo by

Eπ[h(x)] =
∫
q(x)h(x)

π(x)

q(x)
dx

= Eq[w(x)h(x)]

=
1

S

S∑
s=1

w(xs)h (xs)

(4.6)

In our causal inference setting, the observational data D =

{(Xi, Ti, Yi) : i = 1, 2, . . . , n} comes from the propensity model p (Ti = 1|Xi) =

e (Xi) , p (Ti = 0|Xi) = 1−e (Xi) and the outcome model Yi = YXi
(Ti). Knowing
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that p(Ti = 1) = n1

n
, using the above importance weighting formula Eq.(4.6)

and the Bayes rule, we can consistently estimate the expected treated outcome

for the population by

E[Y (1)] =
1

n1

∑
i:Ti=1

p(Xi)

p(Xi|Ti = 1)
Yi

=
1

n1

∑
i:Ti=1

p (Ti = 1)

p (Ti = 1|Xi)
Yi

=
1

n

n∑
i=1

1 [Ti = 1]

p (Ti = 1|Xi)
Yi

(4.7)

where 1 [Ti = t] is the indicator function. Similarly, the expected control outcome

for the population can be estimated by

E[Y (0)] =
1

n

n∑
i=1

1 (Ti = 0)

p (Ti = 0|Xi)
Yi (4.8)

4.2.2 IPW Estimator

Substituting Eq.(4.7) and Eq.(4.8) into the ATE definition in Eq.(4.2), we get

the following ATE estimator

τ̂ATE = E [Y (1)]− E [Y (0)]

=
1

n

n∑
i=1

1 [Ti = 1]

p (Ti = 1|Xi)
Yi −

1

n

n∑
i=1

1 [Ti = 0]

p (Ti = 0|Xi)
Yi

(4.9)

Define the importance weight, Wi, for individual i in a general form as the

reciprocal of its probability of receiving the observed treatment Ti. Formally,

Wi :=
1

p(Ti|Xi)
=
1(Ti = 1)

e(Xi)
+
1(Ti = 0)

1− e(Xi)
(4.10)

Then we can rewrite the estimator in Eq.(4.9) as the following importance
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weighting estimator

τ̂ IPWATE =
1

n

n∑
i=1

1[Ti = 1]WiYi −
1

n

n∑
i=1

1[Ti = 0]WiYi

=
1

n

∑
i:Ti=1

WiYi −
1

n

∑
i:Ti=0

WiYi

(4.11)

This is called the IPW estimator [63, 68] and is one of the most commonly

used unbiased estimators for treatment effect estimation. In observational stud-

ies, the propensity score e(Xi) for each individual is not available and need to be

estimated from data by some statistical procedure (for example, Logistic regres-

sion). By using the estimated propensity scores ê(Xi) directly, the finite-sample

performance of the IPW estimator τ̂ IPWATE could be poor. The reason is that the

estimated propensity scores ê(Xi) occur in the denominator in the definition of

importance weight in Eq.(4.10), and small inaccuracies in ê(Xi) can induce very

high inaccuracies in the estimated ATE, especially when ê(Xi) is close to zero or

one. In this case, the importance weights Wi will be of high variability or even

have unbounded variance, thus simple substitute estimators based on them may

be unstable and misleading.

To remedy the high variability of the estimated importance weights, we in-

troduce two existing methods for importance weighting estimator stabilization

adopted from the importance sampling literature [61]: weight truncation and

weight self-normalization.

4.2.3 Truncated IPW Estimator

Weight truncation is a common approach for variance reduction in the impor-

tance sampling literature [76, 128]. For the purpose of causal effect estimation,

the truncated IPW estimator is defined as
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τ̂TruncATE =
1

n

n∑
i=1

1[Ti = 1]WTrunc
i Yi −

1

n

n∑
i=1

1[Ti = 0]WTrunc
i Yi

=
1

n

∑
i:Ti=1

WTrunc
i Yi −

1

n

∑
i:Ti=0

WTrunc
i Yi

(4.12)

where the truncated importance weight WTrunc
i is derived by truncating the

vanilla importance weight Wi by:

WTrunc
i :=


a, if Wi < a

Wi, if a ≤ Wi ≤ b

b, if Wi > b

(4.13)

A consequence of weight truncation is the introduction of bias in the trun-

cated importance weights, which in turn causes bias in the importance weight-

based estimates. Moreover, the truncation thresholds are usually unknown and

choosing them relies on experience or intuition. Crump et al. [31] proposed to

keep individuals with estimated propensity score within the range [0.1, 0.9]. As a

baseline, we follow this heuristic to truncate the importance weights in Eq.(4.13)

by a = 10
9
and b = 10. We denote the truncated IPW estimator with this trun-

cation thresholds as TruncCrump. Recently, Yang and Ding [211] proposed to

use a smooth weight function to approximate the existing sample truncation.

Their method seems theoretically promising. However it requires us to tune the

smooth weight function hyper-parameter and no open source code is available

for comparison. In addition, Ju et al. [82] proposed a data-adaptive trunca-

tion algorithm which adaptively selects the optimal truncation threshold for the

estimated propensity scores, but it is especially designed for target maximum

likelihood estimators [171, 199]. In this work, we compare our proposed estima-
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tors with the TruncCrump estimator and two other truncated IPW estimators

in the experiment sections.

4.2.4 Self-normalized IPW Estimator

We can also apply the control variates technique [128] for variance reduction

and divide the importance weights by their empirical mean in each treatment

group. Denoting the average importance weight for the treated group as W t :=

1
n

∑
i:Ti=1Wi and the average importance weight for the control group as W c :=

1
n

∑
i:Ti=0Wi, the self-normalized importance weight for each individual is then

defined as

WNorm
i := 1[Ti = 0]

Wi

W c

+ 1[Ti = 1]
Wi

W t

By replacing the importance weights Wi in Eq.(4.11) by the self-normalized

importance weights WNorm
i , we get the following self-normalized IPW estimator

τ̂Norm
ATE =

1

n

n∑
i=1

1[Ti = 1]Wi

W t

Yi −
n∑
i=1

1[Ti = 0]Wi

W c

Yi

=
1

n

∑
i:Ti=1

WNorm
i Yi −

1

n

∑
i:Ti=0

WNorm
i Yi

(4.14)

In general, the self-normalized IPW estimator τ̂Norm
ATE has lower variance than

the original IPW estimator τ̂ IPWATE. In the experimental study section, we evaluate

the performance of the stabilized IPW estimator, which combines our proposed

Pareto-smoothing method with the self-normalization method.

4.3 Methodology

In the previous section, we reframe importance weight-based causal estimators

from the perspective of importance sampling estimation of expectations. A com-
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mon phenomenon in the importance sampling literature is that the importance

weighting estimator for expectations are subject to the instability problem in

settings with finite samples. To cope with this problem so as to establish stable

importance weight-based causal estimators, we also introduced weight trunca-

tion and self-normalization, leading to the truncated IPW estimator and the

self-normalized estimator. As a complementary of these estimator stabilization

methods, in this section, we introduce our Pareto-smoothing method for im-

portance weight stabilization. Based on this method, we further propose two

ATE estimators: the Pareto-smoothed IPW estimator and the Pareto-smoothed

self-normalized IPW estimator.

Our proposed method builds upon results from the extreme value theory [28].

In extreme value statistics, if an unknown distribution function F (w) lies in the

“domain of attraction” of an extreme distribution function, then F (w) has a

generalized Pareto upper tail. As a result, we can approximate its upper tail by

a GPD if the location µ of the tail can increase as the sample size increases.

Within the framework of importance weight-based causal inference, we es-

timate the importance weight for each individual and obtain the importance

weights {W1,W2, . . . ,Wn}. To remedy the influence of extreme weights, rather

than truncating the importance weights in a brute-force way, we fit a GPD over

the upper tails of the estimated importance weights and smooth them by the fit-

ted GPD. By this smoothing method, we try to stabilize the importance weights

while retaining the information of their relative order.
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4.3.1 GPD Fitting

The GPD probability density function for a scalar random variable W with

parameter θ = (µ, σ, κ) is defined as

f(w) =

 1/σ
(
1 + κ(w−µ)

σ

)−1/κ−1

, κ ̸= 0

1/σe−
w−µ
σ , κ = 0

(4.15)

where µ is the location parameter, σ > 0 is the scale, and κ is the shape of

the distribution. In addition, we will also use the cumulative density function

F (w;µ, σ, κ) defined in E.q(4.16) to calculate its expected order statistics as the

replacement of large importance weights

F (w) =

 1−
(
1 + κ(w−µ)

σ

)−1/κ

, κ ̸= 0

1− e−w−µ
σ , κ = 0

(4.16)

In this section, we describe the procedure for fitting a GPD over the upper tail

of the estimated importance weights {W1,W2, . . . ,Wn}. This includes heuristics

for choosing the location parameter µ, estimating the positive scale parameter σ

and the shape parameter κ. In general, we only consider fitting the parameters

with κ ̸= 0.

Selecting µ

The location parameter µ of a GPD F (w;µ, σ, κ) determines the cut-point of

the ordered importance weights and thus how many importance weights will be

smoothed. In this section, we refer to existing literature and propose to choose

it heuristically.

In order to obtain asymptotic consistency, Pickands [140] proposed that the

lower bound parameter µ should be chosen so that the sample size M of to-be-
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smoothed weights in the tail increases to infinity while M/n goes to zero. In

addition, by extensive empirical comparisons, Vehtari et al. [202] recommended

to choose µ so that the sample size M satisfies

M = min(⌊0.2n⌋, ⌊3
√
n⌋) (4.17)

This is a reasonable heuristic for deciding the location parameter and the

empirical study in [203] shows that the majority of results are not sensitive to

the choice ofM . In this work, following this routine, we first sortW1,W2, . . . ,Wn

in an ascending order and obtain the order statistics of these importance weights,

W[1],W[2], . . . ,W[n] whereW[1] ≤ W[2] ≤ · · · ≤ W[n]. Then the location parameter

µ is chosen by

µ̂ = W[n−M ] (4.18)

where M is derived according to Eq.(4.17).

Estimating k and σ

Having selected the location µ, we now estimate the scale σ and shape k of

the GPD over the upper tail {W[n−M+1],W[n−M+2], . . . ,W[n]}. In statistics, for a

GPD F (w;µ, σ, κ) over {W[n−M+1],W[n−M+2], . . . ,W[n]}, define

Om = W[n−M+m] − µ, m = 1, 2, . . . ,M

then {O1, O2, . . . , OM} follow the GPD F (w; 0, σ, κ).

There are many methods to estimate k and σ using the M residuals

{O1, O2, . . . , OM} in the literature [106]. Among these methods, Zhang and

Stephens [216] reparametrized the GPD F (w; 0, σ, κ) by two parameters (ρ, κ),

where ρ = κ/σ. With this reparameterization, we can easily derive the log-
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likelihood for the samples {O1, O2, . . . , OM} as

ℓ(ρ, κ) =M log
ρ

κ
− κ+ 1

κ

M∑
i=1

log(1 + ρOi) (4.19)

Set the gradient over κ to 0,

∇κℓ = −
M

κ
+

∑M
i=1 log(1 + ρOi)

κ2
= 0

We get

κ =
1

M

M∑
i=1

log(1 + ρOi) (4.20)

Substituting Eq.(4.20) into Eq.(4.19), we get the following profile log-

likelihood function for ρ

ℓ(ρ) =M log
ρ

κ
−M(κ+ 1) (4.21)

where κ is a function of ρ as indicated in Eq.(4.20). Thus, the key is to get

an estimate of ρ. Zhang and Stephens [216] proposed to estimate it using the

Bayes-flavoured estimation method as

ρ̂ =

∫
ρ · π(ρ)L(ρ)dρ/

∫
π(ρ)L(ρ)dρ (4.22)

where L(ρ) = eℓ(ρ) is the profile likelihood function and the prior π(ρ) is specified

in a way such that the estimates always exist and can be expressed as explicit

functions of the observations. For more details of its derivation, we refer the

readers to [216].

The estimate has a small bias, is highly efficient, and is simple and fast to

compute. With an esitmation ρ̂ from Eq.(4.22), the final estimates for κ and σ
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are given by

κ̂ =
1

M

M∑
i=1

log (1 + ρ̂Oi) , σ̂ =
κ̂

ρ̂
(4.23)

4.3.2 Weight Smoothing

The original importance weights, {Wi, i = 1, . . . , n}, are smoothed by replacing

the M largest weights with the expected values of the order statistics of the

fitted GPD F (w; µ̂, σ̂, κ̂), i.e.,

W[n−M+m] = F−1

(
m− 1/2

M

)
, m = 1, . . . ,M (4.24)

where F−1(·) is the inverse cumulative distribution of the fitted F (w; µ̂, σ̂, κ̂).

Denote the resulting Pareto-smoothed importance weight for Xi asW PS
i , the

above weight replacement procedure is equivalent with

W PS
i :=

 Wi if Wi ≤ µ̂

F−1
(
mi−n+M−0.5

M

)
, otherwise

(4.25)

wheremi is the order number ofWi in the ascendingly sorted importance weights

used in the previous section.

By this procedure, we obtain the Pareto-smoothed importance weights

{WPS
1 ,WPS

2 , . . . ,WPS
n }, which are the basis of the Pareto-smoothed IPW estima-

tor (τ̂PSATE) and the Pareto-smoothed self-normalized IPW estimator (τ̂PSNorm
ATE )

introduced in the following section.

4.3.3 Estimators

Given a set of n observations D = {(Xi, Ti, Yi), . . . , (Xn, Tn, Yn)}, we fit the

importance weights by Logistic regression, obtain the Pareto-smoothed impor-
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Algorithm 4.1 Pareto-smoothed IPW ATE Estimator
Input: Observation data D = {(Xi, Ti, Yi), . . . , (Xn, Tn, Yn)}
Output: The estimated τ̂ATE
1: Fit the Logistic regression propensity model e(X) = p(T = 1|X) from D;
2: Calculate the importance weights for each individual {Wi, i = 1, . . . , n} via

E.q(4.10);
3: Sort the importance weights {Wi, i = 1, . . . , n} ascendingly to obtain the

sorted importance weights {W[1],W[2], . . . ,W[n]}
4: Choose the location parameter µ̂ by E.q(4.18)
5: Estimate the parameters σ and k by E.q(4.23)
6: Smooth the importance weights {W1,W2, . . . ,Wn} by E.q(4.25) to obtain

the Pareto-smoothed importance weights {WPS
1 ,WPS

2 , . . . ,WPS
n }

7: Estimate the ATE τ̂ATE via E.q(4.26)

tance weights {WPS
1 ,WPS

2 , . . . ,WPS
n } using the above procedures, and estimate

the ATE by

τ̂PSATE =
1

n

n∑
i=1

1[Ti = 1]WPS
i Yi −

1

n

n∑
i=1

1[Ti = 0]WPS
i Yi

=
1

n

∑
i:Ti=1

WPS
i Yi −

1

n

∑
i:Ti=0

WPS
i Yi

(4.26)

The process of ATE estimation by our proposed estimator is summarized in

Algorithm 4.1. The corresponding process for ATT estimation is described in

the Appendix. In addition, we can also make use of the self-normalization trick

after weight smoothing and estimate the ATE by

τ̂PSNorm
ATE =

1

n

(∑
i:Ti=1

WPS
i

W
PS
t

Yi −
∑
i:Ti=0

WPS
i

W
PS
c

Yi

)
(4.27)

where W
PS

t = 1
n

∑
i:Ti=1W

PS
i and W

PS

c = 1
n

∑
i:Ti=0W

PS
i . This Pareto-

smoothed self-normalized IPW estimator proceeds as Algorithm 4.1 by estimat-

ing the ATE using E.q(4.27) in the last step.

In general, the Pareto-smoothed IPW Estimator τ̂PSATE stabilizes the IPW es-
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timator with a novel weight smoothing trick. The self-normalized IPW estimator

tries to stabilize the estimate by standardizing the importance weights by the

average weight in each group. The Pareto-smoothed self-normalized IPW esti-

mator (τ̂PSNorm
ATE ) takes advantage of the self-normalization trick used by τ̂Norm

ATE

and further stabilizes τ̂PSATE by standardizing the smoothed importance weights.

4.3.4 Asymptotic Analysis

To analyse the asymptotic property of the propoed estimators using results from

existing literature, define the weight function

λ(Xi) :=
1[Ti = 1]n1

n

WPS
i

W
PS
t

+
1[Ti = 0]n0

n

WPS
i

W
PS
c

(4.28)

We can conclude according to Eq.(4.25) that λi = λ(Xi) is a function of the

covariates Xi parameterized by the propensity model parameters and the fitted

GPD parameters. With this notation, we can rewrite τ̂PSNorm
ATE in Eq.(4.27) as a

standard weighting estimator

τ̂PSNorm
ATE =

1

n1

∑
i:Ti=1

λiYi −
1

n0

∑
i:Ti=0

λiYi (4.29)

where the weights λi satisfy the following two summation restrictions:

1

n1

∑
i:Ti=1

λi =
1

n

∑
i:Ti=1

WPS
i

W
PS
t

= 1

and
1

n0

∑
i:Ti=0

λi =
1

n

∑
i:Ti=0

WPS
i

W
PS
c

= 1

Define the two conditional variance functions σ2
0(x) := V(Y (0)|X = x) and

σ2
1(x) := V(Y (1)|X = x). According to the results in [31, 211] and [74, Chap. 19],

74



4.4. SIMULATION STUDIES Chapter 4

if the weighting function λ(Xi) is continuous and differentiable, the estimator

τ̂PSNorm
ATE is asymptotic linear and its asymptotic variance can be approximated

by
V(τ̂PSNorm

ATE ) =
1

n2
1

∑
i:Ti=1

λ2i · σ2
1(Xi) +

1

n2
0

∑
i:Ti=0

λ2i · σ2
0(Xi)

However, it is easy to verify that the weighting function λi = λ(Xi) in

Eq.(4.28) is not smooth nor differentiable. In this case, we cannot guarantee

the consistency of the proposed estimator τ̂PSNorm
ATE . Moreover, the inference of

its asymptotic variance is an open problem in the causal inference literature and

existing methods are unable to conduct inference to the population [31, 211].

Analogously, the Pareto-smoothed IPW estimator τ̂PSATE is also inconsistent. To

quantify the estimation uncertainty of the causal estimators, in the simulation

and experiment sections, we replicate the experiments multiple times and report

the empirical standard error of each estimator.

We summarize this section by comparing the proposed Pareto-smoothing

method with the weight truncation method for causal estimator stabilization.

Both methods are biased. while the weight truncation method truncate the

extreme weights by fixed values, our proposed method tries to smooth them and

keep their relative order. As a result, the proposed Pareto-smoothed estimators

are expected to be less biased than truncated estimators. This is validated by

the empirical results in the simulation experiments.

4.4 Simulation Studies

Since the ground truth counterfactual outcomes are not available in real-world

observational datasets, evaluating causal inference algorithms is not straightfor-

ward. In this section, we validate our proposed method using simulated and

semi-simulated data, where the ground truth is available to us such that we
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Table 4.1: Abbrivation (Abbr.) and description of ATE estimators

Estimator Abbr. Description
τ̂Naive
ATE Naive Naive estimator for ATE as in E.q(4.3)
τ̂ IPWATE IPW IPW estimator for ATE as in E.q(4.11)
τ̂TruncATE Trunc Truncated IPW estimator for ATE as in

E.q(4.12) with the truncation thresholds
a = 1 and b specified by E.q(4.17)

TruncNorm Truncated IPW estimator for ATE by
normalizing the truncated importance
weights used in the Trunc estimator

TruncCrump Truncated IPW estimator for ATE with
weight truncation thresholds a = 10

9
and

b = 10 in (4.13)
τ̂Norm
ATE Norm IPW estimator for ATE with weight

self-normalization for ATE as in E.q(4.14)
τ̂PSATE (Ours) PS Pareto-smoothed IPW estimator for ATE as

in E.q(4.26)
τ̂PSNorm
ATE (Ours) PSNorm Pareto-smoothed self-normalized IPW

estimator for ATE as in E.q(4.27)

can evaluate the performance of different methods. Descriptions of all ATE

estimators used in the work are listed in Table 4.1. Specifically, according to

the criterion used for choosing the truncation thresholds, we specify three vari-

ants of the truncated IPW estimator. The first truncation estimator, Trunc,

uses the same criterion, E.q(4.17), to specify the truncation thresholds as our

Pareto-smoothed estimators. The second truncation estimator, TruncCrump

uses the truncation threshold in [31] (discussed in Section 4.2.3). In addition,

we also use the self-normalization trick used in the proposed Pareto-smoothed

self-normalized IPW estimator to the Trunc estimator and denote the resulting

estimator the TruncNorm estimator. In all the experiments, we follow most of

the literature on propensity score estimation and use Logistic regression to fit the

propensity scores. In all simulations, the underlying potential outcomes Yi(0)
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and Yi(1) for each individual are known, so we can calculate the true sample

ATE empirically by τATE = 1
n

∑n
i=1 (Yi(1)− Yi(0)). For an estimator τ̂ATE, its

estimation bias is calculated by

BiasATE = |τ̂ATE − τATE| =

∣∣∣∣∣τ̂ATE − 1

n

n∑
i=1

(Yi(1)− Yi(0))

∣∣∣∣∣
4.4.1 Simulated Data

We simulated data in the context of both low dimensional and relatively high

dimensional covariates.

Low dimensional covariates

There are two pre-treatment covariates in the first simulation: one binary

Xi1|Ti = 0 ∼ Bernoulli (0.4),Xi1|Ti = 1 ∼ Bernoulli (0.5) and one continu-

ous Xi2|Ti = 0 ∼ N (−1.0, 1), Xi2|Ti = 1 ∼ N (1.0, 1). We simulated data

with sample size n = 100, 200, 300, 500, 1000, 1500, 2000. For each sample size,

we assigned exactly half of the subjects to the treatment group T = 1, and

the other half to the control group T = 0. The potential outcomes for each

subject i are adapted from [124] with Yi(0) = 0.85Xi2 + 0.05X2
i2 + 2 and

Yi(1) = 0.25Xi1 + (1 + exp (1− 0.85Xi2))
−1. With this data generating process,

the true ATE is approximately −1.52. For each sample size n, we replicated

the experiment 1000 times. The result on ATE estimation biases and standard

errors is listed in Table 4.2. To clearly compare the estimation performance, we

also illustrate the estimation bias in terms of the sample size in Fig. 4.1.

As we can see from the result, as the sample size increases, all importance

weight-based estimators obtain better estimates. In general, estimators based on

our proposed Pareto-smoothing method, i.e., the PS estimator and the PSNorm

estimator, achieve the best performance in all sample sizes. As two unbiased
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Figure 4.1: ATE estimation bias and standard error in terms of sample size n
over 1000 replicates for the simulated low-dimensional covariate data.

estimators, the IPW estimator and the Norm estimator achieve similar perfor-

mance. Among the three weight stabilization methods, weight truncation, self-

normalization and Pareto-smoothing, our proposed Pareto-smoothing method is

the least biased and is more stable than the self-normalization method. By fur-

ther comparing TruncNorm and Trunc as well as PSNorm and PS, we find that

self-normalization is likely to worsen the estimation when the sample size is small

and one weight stabilization strategy has already been used, either truncation

or Pareto-smoothing.

High dimensional covariates

With finite data, the estimated importance weights are more likely to be

highly variable in settings with high dimensional covariates. To investigate

the performance of the proposed Pareto-smoothing method in this setting, we
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Figure 4.2: ATE estimation bias and standard error in terms of sample size n
over 1000 replicates for the simulated high-dimensional covariate data.

adapt the simulation in [124] and generate data by assigning half of the sam-

ples to the treatment group T = 1, and the other half to the control group

T = 0. In this simulation, there are 10 confounders, 5 binary and 5 contin-

uous. The values of the binary confounders are generated by Xi|T = 0 ∼

Bernoulli(0.4), Xi|T = 1 ∼ Bernoulli(0.45), i ∈ {1, 2, 3, 4, 5} and that of the

continuous confounders was generated by Xi|T = 0 ∼ N (−1, 32), Xi|T = 1 ∼

N (1.25, 32), i ∈ {6, 7, 8, 9, 10}. The potential outcomes were generated so that

they exhibit non-linear trends in the estimated propensity scores. For each in-

dividual i, the two underlying potential outcomes are generated by Yi(0) = 5 +

0.2 (Xi1 +Xi2 +Xi3 +Xi4 +Xi5)+(1 + exp(1− 8Xi5))
−1+Xi7+Xi8+Xi9+Xi10

and Yi(1) = −5+0.2(Xi1+Xi2+Xi3+Xi4+Xi5)−0.5(Xi6+Xi7+Xi8+Xi9+Xi10)

We simulate data with sample size n = 500, 1000, 1500, 2000, 2500, 3000. The

treatment propensity scores are unknown and are estimated via simple Logistic
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regression, which is clearly misspecified. Estimation biases of different estimators

are listed in Table 4.3. The estimation biases and corresponding standard errors

in terms of the sample size are illustrated in Fig.4.2. The result is similar with

that in the low-dimensional covariate setting, the proposed PS estimator obtains

the lowest estimation biases in all sample sizes. The proposed PSNorm estimator

performs slightly worse than IPW but better than the other estimators. Results

for this high-dimensional covariate setting further validate the superiority of our

proposed Pareto-smoothing method.

4.4.2 Semi-simulated Data: IHDP

In this section, we evaluate the performance of our algorithm through the semi-

simulated dataset based on the Infant Health and Development Program (IHDP)

which was introduced in [62] and used as a benchmark dataset in the causal in-

ference literature [102, 178, 225]. The IHDP is a real randomized experiment to

enhance the cognitive and health status of low birth weight, premature infants

through paediatric follow-ups and parent support groups. The observed covari-

ates and treatments in the semi-simulated data are from the IHDP program,

while all outcomes (response surfaces) are simulated so that the true treatment

effects are known. In total, the IHDP dataset consists of 747 individuals (139

treated, 608 control), and 25 covariates measuring the properties of children and

their mothers. The binary treatment T indicates whether the child was assigned

into a program where both intensive high-quality childcare and home visits from

a trained provider are provided. Examples of covariates include the sex and birth

weights of the child, and the age and education attainment level of the mother.

We conduct experiments on all three response simulation settings proposed

in [62]. In setting A, the response surfaces are linear and parallel across the two

treatment groups and there is no treatment effect heterogeneity. The response
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surfaces for settings B and C are nonlinear and not parallel across treatment

conditions. The outcomes are simulated so that the underlying treatment effects

are 4.0. For more details of the three simulation settings, refer to [62]. We

simulated the outcomes using the NPCI package1 and ran the experiment 1000

times. The boxplot of the ATE estimates of different estimators in three settings

is illustrated in Fig.4.3. Results of estimation biases are listed in Table 4.4.

Table 4.4: Results for the IHDP dataset. A, B and C stand for three outcome
simulation settings. Estimation biases and standard errors (SE) are computed
by replicating the experiment 1000 times.

A B C
Bias SE Bias SE Bias SE

Naive 0.949 (0.048) 0.711 (0.016) 0.491 (0.014)

IPW 0.744 (0.029) 0.652 (0.015) 0.461 (0.014)

Trunc 6.854 (0.178) 4.989 (0.029) 2.744 (0.030)

TruncNorm 0.733 (0.037) 0.542 (0.013) 0.371 (0.010)

TruncCrump 2.104 (0.059) 1.447 (0.019) 0.519 (0.015)

Norm 0.696 (0.036) 0.539 (0.013) 0.432 (0.013)

PS 0.779 (0.030) 0.678 (0.015) 0.456 (0.013)

PSNorm 0.697 (0.036) 0.538 (0.013) 0.428 (0.012)

As we can see from Fig.4.3, the Norm and PSNorm estimators perform sim-

ilarly in all three settings, with estimated ATEs around the true ATE. The

estimators IPW, Trunc, TruncCrump and PS tend to under-estimate the ATE

in setting A and B. Furthermore, the result in Table 4.4 indicates that the Norm

estimator and the PSNorm estimator achieve the lowest bias in settings A and

B respectively. While in setting C, the TruncNorm estimator performs the best.

In addition, we find that weight truncation or Pareto-smoothing alone deterio-

rates the ATE estimation performance in settings A and B. The reason may be

that since the treatment assignments in the IHDP data are random, the nega-

tive influence of weight truncation and Pareto-smoothing proposed for handling

1https://github.com/vdorie/npci
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Figure 4.3: Box plot of ATEs estimated by different estimators for the IHDP
data in different settings. The underlying true ATE is 4 (the red dashed line) in
all settings.

extreme importance weights surpasses the benefit they bring for this balanced

dataset. Fortunately, by combining them with weight self-normalization, the re-

sulting TruncNorm and PSNorm estimators acheive better estimation than the

naive IPW estimator.

4.5 Application to the NHEFS Data

The National Health and Nutrition Examination Survey (NHANES) is a popu-

lation survey designed to assess the heath and nutritional status of adults and

children in the United States. It was jointly initiated by the National Center

for Health Statistics (NCHS), which is part of the Centers for Disease Control

and Prevention, and the National Institute on Aging in collaboration with other

agencies of the US Public Health Service. The datasets, with a detailed descrip-

tion and documentation, are publicly available online2. Under the NHANES,
2https://wwwn.cdc.gov/nchs/nhanes/nhefs/default.aspx/
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the NHANES I Epidemiologic Follow-up Study (NHEFS) was designed to in-

vestigate the relationships between clinical, nutritional and behavioural factors

assessed in NHANES I.

We use the subset of the NHEFS dataset used in [61] to estimate the ATE

of smoking cessation on weight gain. There are 1746 cigarette smokers in the

original data with a baseline visit in the year of 1971-1975. After removing

missing and censored records, there are 1566 individuals left, aged 25-74 years old

and with a follow-up visit in 1982. Individuals who reported having quit smoking

before the follow-up visit are classified as treated T = 1, and as untreated T = 0

otherwise. The outcome variable – weight gain Y – of each individual is the

body weight at the follow-up visit minus the body weight at the baseline visit,

measured in kg. Examples of pre-treatment covariates X include the age, sex,

race, baseline weight, and smoking intensity of each individual.

Figure 4.4: The mean and standard deviation of weight gains for smoking non-
quitters and quitters in the NHEFS data.

Of the selected 1566 individuals, 1163 are non-quitters and the other 403 are

quitters. The mean weight gain of non-quitters and quitters is 1.98kg and 4.53kg

respectively (see Fig.4.4), which means that for the studied individuals, quitters

experience approximately 2.55kg more weight gain than non-quitters on average.

However, as we have discussed, this associational mean difference E [Y |T = 1]−

E [Y |T = 0] is not the causal effect E [Y (1)]−E [Y (0)] of quitting smoking because
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of the existence of confounding bias. For example, in the observational data,

older people are more likely to quit smoking and gain less weight than younger

people regardless of whether they quit smoking. Moreover, more males quit

smoking than females. As a result, naive estimation from the observational data

may underestimate the true treatment effects and we need to adjust for these

possible confounders for the purpose of treatment effect estimation. Following

[61], we assume unconfoundedness conditional on the observed covariates.

Table 4.5: Estimation results for the NHEFS dataset. The ATE and standard
errors (SE) are computed from 1000 replications. The reference estimation in
[61] is 3.4kg with a 95% confidence interval of 2.4 ∼ 4.5kg.

ATE SE
Naive 2.534 (0.010)

IPW 3.412 (0.010)

Trunc 2.466 (0.009)

TruncNorm 3.245 (0.010)

TruncCrump 3.354 (0.010)

Norm 3.432 (0.010)

PS 3.412 (0.010)

PSNorm 3.438 (0.010)

We use the same Logistic regression model used in [61] to fit the treatment

propensities and replicate the estimation 1000 times by randomly sampling 70%

individuals from each group (quitter and non-quitter) in each replication. The

estimated ATE and corresponding empirical standard errors are listed in Table

4.5. As we can see from the result, except for the Naive estimator, the Trunc

estimator and the TruncNorm estimator, all the other estimators have a similar

estimated ATE of about 3.4kg, i.e., quitting smoking increases weight by about

3.4kg for the investigated population. This estimate is quite close to that in

[61], which is 3.4kg with a 95% confidence interval of 2.4 ∼ 4.5kg. Though the

ground truth is unknown, we can conclude from the result that the estimates
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of the proposed Pareto-smoothed estimators match existing unbiased estimators

(the IPW estimator and the self-normalized IPW estimator). In addition, by

comparing the estimates of different truncated IPW estimators, we find that the

estimate of truncated estimators is sensitive to the selected truncation thresholds.

4.6 Summary

In this chapter, we reframe the classic IPW estimator for causal inference into

the framework of expectation estimation using importance sampling. To handle

extreme importance weights commonly existed in importance weight-based es-

timators using finite samples, we take advantage of the smoothing property of

the GPD from the extreme value statistics and propose a new Pareto-smoothing

method to stabilize the IPW causal estimator. Based on this method, we further

propose two Pareto-smoothed causal estimators, the Pareto-smoothed IPW esti-

mator and the Pareto-smoothed self-normalized IPW estimator. Comprehensive

experiments using both simulated and semi-simulated data indicate that, for

causal inference from finite observational data, the proposed Pareto-smoothed

estimators generally achieve lower bias than estimators using weight truncation

or weight self-normalization. Moreover, they are more stable than the vanilla

IPW estimator and the self-normalized IPW estimator. We also validate the

proposed method with a real-world health dataset.

Note that although we focus on IPW-based estimation of the ATE in this

work, the key component of the proposed method is in principle to stabilize the

estimated importance weights by fitting a GPD over the tail to smooth the ex-

treme weights. This is quite general and can be easily adapted for the estimation

of other causal estimands (e.g., ATT and ATC) with any other propensity score

based causal estimators. As a result, one of our future research undertakings
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will be to investigate the application of the proposed method in other causal

estimators such as propensity score matching and weighted outcome regression.

In addition, we assume unconfoundedness and estimate the treatment

propensities with all the observed pre-treatment covariates for simplicity in this

work. Many researchers have recently noticed that variable selection in propen-

sity score estimation using the outcome adaptive LASSO [181] or the highly

adaptive LASSO [81] can also stabilize the resulting propensity score-based es-

timators. We believe this will also be beneficial for our proposed estimators and

leave that item for future study.
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Counterfactual Inference with

Hidden Confounders Using Implicit

Generative Models

As we have introduced in Chapter 2, counterfactual inference tries to fulfil the

problem of causal inference by learning the treatment exposure surfaces. One

of the biggest challenges in counterfactual inference is the existence of unob-

served confounders, which are latent variables that affect both the treatment

and outcome variables. Building on recent advances in latent variable modelling

and efficient Bayesian inference techniques, deep latent variable models, such as

variational auto-encoders (VAEs) [91], have been used to ease the challenge by

learning the latent confounders from the observations [102].

However, for the sake of tractability, the posterior of latent variables used in

existing methods is assumed to be Gaussian with diagonal covariance matrix.

This specification is quite restrictive and even contradictory with the underlying

truth, limiting the quality of the resulting generative models and the causal

effect estimation. In this chapter, we propose to take advantage of implicit
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generative models to detour this limitation by using black-box inference models.

In addition, to make inference for the implicit generative model with intractable

likelihood, we take advantage of recent advances in implicit variational inference

based on adversary training to obtain a close approximation to the true posterior.

This work has been published in [225]. The remainder of this chapter is or-

ganized as follows: in Section 5.2, we firstly introduce preliminary knowledge

on causal models and implicit models; details of the proposed method are pre-

sented in Section 5.3; Section 5.4 illustrates our experiments on two benchmark

datasets; we conclude this chapter in Section 5.5.

5.1 Problem Setup

Denote the treatment space by T , the set of contexts by X , and the set of possible

outcomes by Y . For example, for an employee with covariates x ∈ X , the set of

treatments T might be whether he or she joined a specific training program and

the set of outcomes might be Y = [0, 10K] indicating his/her monthly salary in

dollars. For an individual x (e.g., an employee), let Yt(x) ∈ Y be the potential

outcome of x under the treatment t ∈ T . The fundamental problem of causal

inference is that only one of potential outcomes Yt(x), t ∈ T is observed for

a given individual x. In the machine learning literature, this kind of partial

feedback is often called bandit feedback [191, 192].

Without loss of generality, we consider the case of a binary treatment set,

i.e., T = {0, 1}, where t = 1 indicates the individual is allocated into the treated

group and t = 0 the control group. In this setting, the individual treatment

effect ITE(x) = Y1(x) − Y0(x) for individual x is of high interest. Know-

ing this quantity enables us to choose the best treatment options and to give

personalized recommendations. Based on ITE, the average treatment effect,
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ATE = Ex∼p(x)[ITE(x)], for a population with distribution p(x) quantifies the

average treatment effect difference between the two actions. Sometimes, we are

only interested in the ATE for the treated group, i.e., the average treatment

effect on the treated, ATT = Ex∼p(x)[ITE(x)|t = 1].

The problem of causal effect estimation from observational data has been

studied extensively in the literature [18, 192, 80, 178, 102]. One of the

most widely used approaches is counterfactual inference, also known as po-

tential outcome modelling. The main idea is: given n samples D =

{(x1, t1, y1), . . . , (xn, tn, yn)}, where the observed factual outcome yi = tiY1(xi)+

(1 − ti)Y0(xi), if we can unbiasedly learn the potential outcome model Yt(x) =

h(x, t) using the observed data, the estimated ITE is then

ÎTE(xi) =

 yi − h(xi, 0), ti = 1

h(xi, 1)− yi, ti = 0
(5.1)

Therefore, the key is to learn the potential outcome function h(x, t). In

the literature, Y0(x) = h(x, 0) and Y1(x) = h(x, 1) are also called the response

surfaces. As a learning problem, this is different from classic learning in that we

never see the individual-level treatment effect in the observations. Because of the

existence of unobserved confounders that affect both the treatment assignment

and the outcome, naïvely fitting the outcome model from observational data is

subject to confounding bias [74, 61].

5.2 Preliminaries

In this section, we introduce two basic components of our proposed method

introduced in the next section: the structural causal models and IGMs.
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5.2.1 Structural Causal Models

Structural causal models [131], or functional causal models, defined in Definition

5.1, represent variables as deterministic functions of their parents and exogenous

noises. They take advantages of the functional causal semantics of structural

equation models (SEMs) [196] and the representa-tion and reasoning power of

Bayesian networks [130].

Definition 5.1 (Structural causal model, SCM). A structural causal modelM is

a tuple (V , U, F, P (u)) that consists of (i) a set of observed endogenous variables

V = {V1, · · · , Vn}; (ii) a set of unobserved background (or exogenous) variables

U ; (iii) a set of causal mechanisms F = {f1, · · · , fn} that determines the en-

dogenous variables V ; and (iv) the joint distribution P (u) over the background

variables U . Each causal mechanism fi tells us the value of Vi ∈ V given the

value of all other variables, i.e., Vi ← fi (PAi, U) , U ∼ P (u), where PAi ⊆ V \Vi
is called the parents of Vi.

In this definition, the endogenous variables V are regarded as deterministic

functions of other variables and randomness comes from unobserved exogenous

variables U . Together with Pearl’s do-calculus and counterfactual notations

[131], it permits us to answer intervention and counterfactual questions. In

this chapter, we consider causal models with the observed set V including a

treatment variable t, an outcome variable y, and some evidence variables x that

act as proxies of the unobserved confounders z. The corresponding causal graph

(or data-generating process) is illustrated as in Fig.5.1. In this setting, the

following Theorem 5.1 gives the identifiability condition of causal effect.

Theorem 5.1. [102] If we can recover the joint distribution P (x, z, t, y), then

we can identify the ITE under the causal model represented in Fig.5.1.
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Figure 5.1: Left: The underlying causal model (the generative model). Mid-
dle: The inference model for with-in-sample observations. Right: The inference
model for out-of-sample data. Solid nodes are observed and hollow nodes are
unobserved.

5.2.2 Implicit Generative Models

In probabilistic machine learning, IGMs [116, 194] capture an unknown distribu-

tion by hypothesizing about its data-generating process. For a distribution p(x)

of observations x, we define a function g that takes in noise ϵ ∼ p(ϵ) and output

x given parameters θ (including possible null set of parents),

x = g(ϵ|θ), ϵ ∼ p(ϵ)

The induced implicit density of x ∈ S given θ is derived via

p(x ∈ S) =
∫
{g(ϵ|θ)=x∈S}

p(ϵ)dϵ (5.2)

In an IGM, the function g is usually a deep neural network that is a universal

approximator to any continuous function. By separating randomness (noise ϵ)

from the transformation (function g), IGMs imitate the structural invariance

of causal models [193]. A weakness of IGMs is that the integral in Eq.(5.2)

is typically intractable and does not admit a tractable likelihood, making the

inference of the parameters very difficult.
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In its general form, an SCMM defined in Definition 5.1 is a non-parametric

causal model, and each structural equation in F is a nonlinear, nonparametric

generalization of linear SEMs [134]. SCMs work regardless of the type of equa-

tions, linear or nonlinear, parametric or non-parametric. That means, SCMs

provide us a framework to conduct causal modeling and reasoning. Existing

simple parametric models apply simple nonlinearities such as polynomials, hand-

engineered low order interactions between variables, and assume additive inter-

actions with Gaussian noise. Deep neural networks provide us rich models to

encode the causal mechanisms in high-dimensional complex causal systems. Re-

cently, Tran and Blei [193] proposed to use implicit causal models (ICMs). Anal-

ogous to the well known approximator theorem of feedforward neural networks

[34], they present a similar universal approximation theorem for using implicit

models to approximate causal models, as formally described in Theorem 5.2.

Theorem 5.2. In an SCMM = (V, U, F, s(u)), assume each causal mechanism

is a continuous function on the n-dimensional unit cube f ∈ C([0, 1]n). Let σ

be a non-constant, bounded, and monotonically increasing continuous function.

For each causal mechanism f and any error σ > 0, there exist parameters θ =

(α, β, b) for a H layer neural network, where αh, bh ∈ R and βh ∈ Rn, h =

1, 2, , H, such that the following function approximates f :

∀v ∈ [0, 1]n g(v|θ) =
H∑
h=1

αhσ
(
βTh v + bh

)
, |g(v|θ)− f(v)| < δ

Besides the universal approximation property of deep implicit models for

causal mechanisms, recent advances in the machine learning community, for

example, approximate Bayesian computation [77], adversarial training [50, 78],

and probabilistic programming [194], permit us to use fast algorithms for their

Bayesian inference of the parameters.
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5.3 Counterfactual Inference Using IGMs

In this section, we firstly introduce our proposed counterfactual inference method

using implicit models. The lower bound objective and implicit variational infer-

ence method based on adversary training are then presented.

5.3.1 Latent Variable Modelling for Causal Models

As discussed in Section 5.1, we need to learn the potential outcome function

Yt(x) = h(x, t). If the latent confounders are available, we can estimate the

potential outcome by the following adjustment formula [131, 61]:

Yt(x) = h(x, t) = E [Y |x, t] (5.3)

However, when the underlying confounders are unobserved and the data-

generating process is illustrated as the generative model in Fig.5.1, we need to

uncover the posterior of the unobserved confounders z and then estimate the

potential outcomes via:

Yt(x) = h(x, t) = E [Yt|x] =
∫
z

E[Y |z, t]p(z|x)d(z) (5.4)

Learning confounders for causal inference has its root from the abduction-

action-prediction procedure for counterfactual inference [134, Chap. 4]. Instead

of such a multi-stage induction process, in this work, we propose to jointly learn

the response surfaces and latent confounder space. This is analogous to deep gen-

erative models which learn the generative and inference models jointly. The gen-

erative and inference models for our proposed method are illustrated in Fig.5.1.

For an observed tuple (xi, ti, yi), the log-likelihood is
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log p (xi, ti, yi) =

∫
log pθ (xi, ti, yi|zi) p (zi) dzi (5.5)

where θ denotes the generative parameters. The generative model for each com-

ponent in the tuple (xi, ti, yi) is

xi ∼ pθ (x|zi)

ti ∼ pθ (t|zi)

yi ∼ pθ (y|ti, zi)

(5.6)

We put Gaussian priors on the latent confounders zi, i.e., zi ∼ N (z|0, IM)

zi = zϕ (xi, ti, yi, ϵ) , ϵ ∼ s(·) (5.7)

where ϕ denotes the variational parameters. Based on Eq.(5.2), the induced

implicit density is denoted as qϕ(z|x, t, y). According to the generative models

in E.q(5.6), we can obtain the decoder from latent variables zi to the observed

tuple (xi, ti, yi) as

log pθ (xi, ti, yi|zi) = log pθ (yi|ti, zi) + log pθ (ti|zi) + log pθ (xi|zi) (5.8)

How can this joint learning framework account for the confounding bias? This

can be realized because the posterior of the latent confounders z, qϕ(z|x, t, y),

depends on both the outcome y and the treatment t. Moreover, the learning of

latent confounders z are tailored to good generative models for the outcome y and

the treatment t. This joint learning process will hopefully extract information

from the observations to learn a good representation of the latent confounder

that will account for the confounding bias. Such a philosophy is also discussed

in [102] and [193].
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5.3.2 Lower Bound Objective

To maximize the log-likelihood of the observed data

ℓ =
∑

(x,t,y)∈Dobs

E[log p(x, t, y)] (5.9)

variational inference minimizes the Kullback-Leibler (KL) divergence from the

variational approximation qϕ(z|x, t, y) to the posterior pθ(z|x, t, y), denoted as

KL [qϕ(z|x, t, y)||pθ(z|x, t, y)]. This is equivalent to maximizing the evidence

lower bound (ELBO)

ELBO =
∑

(x,t,y)∈Dobs

Eqϕ(z|x,t,y) [log pθ(z, x, t, y)− log qϕ(z|x, t, y)] (5.10)

Note that in observational causal effect estimation, the treatment assign-

ment t and corresponding outcome y required for inferring qϕ(z|x, t, y) are not

observed for new test samples. For this reason, we need to take two auxiliary

approximation models into consideration in our variational lower bound.

ti ∼ qϕ (t|xi) , yi ∼ qϕ (y|xi, ti) (5.11)

This is first recognized in [102] and formalized as the following causal effect

lower bound

LCE = ELBO+
n∑
i=1

(log qϕ (t
∗
i |xi) + log qϕ (y

∗
i |xi, t∗i )) (5.12)

where (xi, t∗i , y∗i ) are the observed values in the training set. We try to maximize

LCE to learn the generative parameters θ and the variational parameters ϕ for

counterfactual inference via Eq.(5.4).

96



5.3. COUNTERFACTUAL INFERENCE USING IGMS Chapter 5

5.3.3 Inference

Notice that the ELBO in Eq.(5.10) can be written as

ELBO =
∑

(x,t,y)∈Dobs

Eqϕ(z|x,t,y)
[
log pθ(x, t, y|z)− log

qϕ(z|x, t, y)
p(z)

]
(5.13)

When we have an explicit representation qϕ(z|x, t, y) such as the neural net-

work parameterized Gaussian distribution used in VAE [91] and the CEVAE,

the ELBO L can be maximized using the reparameterization trick [91] and

stochastic gradient descent. Unfortunately, when we use black-box approxima-

tion families, the implicit density qϕ(z|x, t, y) becomes intractable. In this work,

we follow [114] and define the log density ratio (also called prior contrastive)

r(z, x, t, y, ϕ) = log
qϕ(z|x,t,y)

p(z)
. Then we have

ELBO = Eqϕ(z|x,t,y) [log pθ(x, t, y|z)− r(z, x, t, y, ϕ)] (5.14)

By introducing the following objective for the discriminator D(z, x, t, y;ψ)

max
ψ

Eqϕ(z|x,t,y)[log σ(D(z, x, t, y;ψ))] + Ep(z)[log(1− σ(D(z, x, t, y;ψ)))]

where σ(·) is the sigmoid activation function, the following proposition indicates

that we can obtain the value of the prior contrastive via optimizing the discrim-

inator.

Proposition 5.1. For fixed generative model pθ(x, t, y|z) and inference model

qϕ(z|x, t, y), the optimal discriminator parameter ϕ∗ is given by

D (z, x, t, y;ψ∗) = r(z, x, t, y, ϕ) = log qϕ(z|x, t, y)− log p(z) (5.15)

Proof. The proof is analogous to the proof of Proposition 1 in [50].
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As we get the optimal discriminator D (z, x, t, y;ψ∗), Proposition 5.1 allows

us to use it as a proxy of the log density ratio r(z, x, t, y, ϕ) and the ELBO can

be calculated by

ELBO = Eqϕ(z|x,t,y) [log pθ(x, t, y|z)−D (z, x, t, y;ψ∗)] (5.16)

Substitute Eq.(5.16) into Eq.(5.12), we get the causal effect lower bound

objective as

LCE =
n∑
i=1

{
Eqϕ(zi|xi,ti,yi) [log pθ(xi, ti, yi|zi)−D(zi, xi, ti, yi;ψ

∗)]+

log qϕ(t
∗
i |xi) log qϕ(y∗i |xi, t∗i )}

(5.17)

5.4 Experiments

Evaluating causal inference methods using observational data is always challeng-

ing because we do not have access to the ground-truth for the target causal

effects. Common evaluation approaches include creating synthetic or semi-

synthetic datasets, where real data is modified in a way that allows us to know

the true causal effect. In this section, we firstly introduce several metrics and

baseline methods used for comparison. Experiment performances on two existing

benchmark datasets, IHDP (continuous outcomes) and Jobs (binary outcomes),

are then discussed to validate the proposed method. Our experiments are con-

ducted using the TensorFlow [1] platform. The noise distributions s(ϵ) used in

implicit inference networks are standard multivariate Gaussians.

5.4.1 Evaluation Metrics and Baselines

For causal inference evaluation, the absolute error of the ATE estimator, ϵATE,

is defined as
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ϵATE = |ÂTE − ATE|

=

∣∣∣∣∣ 1n
n∑
i=1

(ŷ1(xi)− ŷ0(xi))−
1

n

n∑
i=1

(Y1(xi)− Y0(xi))

∣∣∣∣∣
where ŷt(xi) = h(xi, t), t = 0, 1. Analogously, the absolute error of the ATT

estimator, ϵATT , is defined as

ϵATT = |ÂTT − ATT |

=

∣∣∣∣∣ 1n1

∑
ti=1

(ŷ1(xi)− ŷ0(xi))−
1

n1

∑
ti=1

(Y1(xi)− Y0(xi))

∣∣∣∣∣
where n1 is the number of units that are in the treatment group.

To evaluate the estimation of ITE, when the underlying ground truth are

known, the metric precision in estimation of heterogeneous effect (PEHE) [62]

is defined in Eq.(5.18). We will report its square root.

PEHE =
1

n

n∑
i=1

[(ŷ1 (xi)− ŷ0 (xi))− (Y1 (xi)− Y0 (xi))]2 (5.18)

When the true ITEs are unknown, we can not calculate PEHE. Alterna-

tively, the policy risk defined in Eq. (5.19) can be used as a proxy to the ITE

performance

Rpol(πτ̂ ) = 1− {p(πτ̂ (x) = 1) · E [Y1 | πτ̂ (x) = 1]+

(1− p(πτ̂ (x) = 1)) · E [Y0 | πτ̂ (x) = 0]}
(5.19)

where πτ̂ : X → {0, 1} is an policy induced from an ITE estimator τ̂(·) with

πτ̂ (x) = 1 if τ̂(x) > 0, and τ̂(x) = 0 otherwise.

Since our method is based on implicit generative models, we call it CEIGM.

Baseline methods used for comparison include Ordinary Least Squares (OLS-1,
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for continuous outcomes) / Logistic Regression (LR1 for binary outcomes) with

treatment as feature, Ordinary Least Squares (OLS-2, for continuous outcomes)

/ Logistic Regression (LR2 for binary outcomes) with separate regressors for

each treatment, k-nearest neighor (k-NN), the double robust method Targeted

Maximum Likelihood Estimation (TMLE) [199], Bayesian Additive Regression

Trees (BART) estimator [24, 62], Random Forest (Rand. For.) [20, 13], Causal

Forest (Caus. For.) [206], Balancing Linear Regression (BLR) and Balancing

Neural Network (BNN) by [80], and CEVAE [102]. Following [80] and [102], we

report both the within-sample and out-of-sample results.

5.4.2 Semi-simulated Data: IHDP

The benchmark dataset IHDP was first compiled by Hill [62] based in the Infant

Health and Development Program (IHDP), which aims at studying the effect

of high-quality child care and home visits on future cognitive test scores. The

dataset consists of 747 subjects (139 treated and 608 control), each represented

by 25 covariates measuring aspects of children and their mothers. We illustrated

the 2D projection of covariates using the UMAP projection algorithm [112] and

histogram of samples sizes in the treatment and control groups in Fig. 5.2.

Figure 5.2: Visualization of the 2D projection of the covariates and a histogram
of sample sizes by treatment groups for the IHDP dataset.
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Table 5.1: Within-sample and out-of-sample results on the IHDP dataset.√
ϵinPEHE and

√
ϵoutPEHE are the in-sample and out-sample squared PEHE errors

respectively. ϵinATE and ϵoutATE are the in-sample and out-sample ATE estimation
errors respectively. Estimation errors and corresponding empirical standard er-
rors are calculated by replicating the experiments 10 times.√

ϵinPEHE ϵinATE
√
ϵoutPEHE ϵoutATE

OLS1 5.8± .3 .73± .04 5.8± .3 .94± .06
OLS2 2.4± .1 .14± .01 2.5± .1 .31± .02
BLR 5.8± .3 .72± .04 5.8± .3 .93± .05
k-NN 2.1± .1 .14± .01 4.1± .2 .79± .05

TMLE 5.0± .2 .30± .01 − −
BART 2.1± .1 .23± .01 2.3± .1 .34± .02

Rand.For 4.2± .2 .73± .05 6.6± .3 .96± .06
Caus.For 3.8± .2 .18± .01 3.8± .2 .40± .03

BNN 2.2± .1 .37± .03 2.1± .1 .42± .03
CEVAE 2.7± .1 .34± .01 2.6± .1 .46± .02
CEIGM 2.0± .1 1.1± .2 2.0± .2 1.2± .2

For the sake of comparison, we follow [102] and use the noiseless outcome to

compute the true effects. The results are presented in Table 5.1. The results

shows that the proposed CEIGM method gets the lowest within-sample and

out-of-sample PEHE errors. This indicates CEIGM fits both response surfaces

E[Y0|x] and E[Y1|x] quite well. Unfortunately, CEIGM gets the highest errors

for estimating the ATE. This is beyond our expectation. One possible reason

is that, though the two response surfaces are well fitted, they differ from the

underlying true response surfaces in opposite directions. For example, the fitted

potential outcomes for the control E[Y0|x] tend to be smaller than the true control

outcomes, while the fitted potential outcomes for the treated E[Y1|x] tend to be

larger than the true treated outcome. As a result, even though both of them

have small errors, the average of their difference may induce a relatively large

error.
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5.4.3 Real World Data: Jobs

We also validate the proposed CEIGM method using the real-world Jobs dataset,

which combines a randomized study R based on the National Supported Work

(NSW) program with observational data O to form a larger dataset. For more

details of the data, refer 1. The 2D projection of the features and histogram of

the samples sizes for two groups are illustrated in Fig.5.3.

Figure 5.3: Visualization of the 2D projection of the covariates and a histogram
of sample sizes by treatment groups for the Jobs dataset.

Instead of the ATE, the NSW program aims at estimating the effect of job

training on employment after training, i.e., the true average treatment effect on

the treated (ATT). Since all the treated individuals come from the randomized

study R, we can easily estimate ATT by

ATT :=
1

|T1|
∑
i∈T1

(Y1(xi)− Y0(xi))

=
1

|T1|
∑
i∈T1

yi −
1

|T0 ∩R|
∑

i∈T0∩R

yi

where T1 and T0 are the treated and control group in the full dataset. Following

[178] and [102], we use the NSW experimental sample (297 treated and 425

control) and the PSID comparison group (2490 control) and report the ϵATT =

1http://users.nber.org/ rdehejia/data/nswdata2.html
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|ÂTT − ATT |. For evaluating ITE estimation, we use the policy risk Rpol. The

results are list in Table 5.2.

From the result in Table 5.2, we can conclude that our proposed CEIGM

method achieves lower out-of-sample ATT error and policy risk than most of the

benchmarks. Specifically, CEIGM gets the second smallest values for both the

out-of-sample policy risk and ATT error. Compared with CEVAE, our proposed

CEIGM method has lower out-of-sample policy risk but higher ATT error. The

result validate again that the proposed CEIGM method is able to learn better

potential outcome functions because the implicit posteriors are theoretically able

to approximate arbitrarily complex distributions.

Table 5.2: Within-sample and out-of-sample results on the IHDP dataset. Rin
pol

and Rout
pol are the in-sample and out-sample policy risk respectively. ϵinATT and

ϵoutATT are the in-sample and out-sample ATT estimation errors respectively. Es-
timation errors and corresponding empirical standard errors are calculated by
replicating the experiments 10 times.

Rin
pol Rout

pol ϵinATT ϵoutATT

LR1 .22± .0 .01± .00 .23± .0 .08± .04
LR2 .21± .0 .01± .01 .24± .0 .08± .03
BLR .22± .0 .01± .01 .25± .0 .08± .03
k-NN .02± .0 .21± .01 .26± .0 .13± .05

TMLE .22± .0 .02± .01 − −
BART .23± .0 .02± .00 .25± .0 .08± .03

Rand.For .23± .0 .03± .01 .28± .0 .09± .04
Caus.For .19± .0 .03± .01 .20± .0 .07± .03

BNN .20± .0 .04± .01 .24± .0 .09± .04
CEVAE .15± .0 .02± .01 .26± .0 .03± .01
CEIGM .22± .0 .02± .00 .23± .0 .05± .01
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5.5 Summary

In this chapter, we model the causal mechanisms in a causal model by IGMs,

which are proved universal approximators for the underlying causal mechanisms.

The proposed CEIGM method is a generalization of the CEVAE method pro-

posed in [102]. Specifically, we generalize the Gaussian inference model of latent

confounders used in CEVAE to general black box inference models parametrized

by deep neural networks. To tackle the intractability of implicit inference model,

we adopt an adversary training scheme using a discriminator to learn the pa-

rameters.

We validate the proposed method via experiments on two benchmark

datasets. Results of both experiments indicate that the proposed method tend

to learn better potential outcome functions with opposite error directions, lead-

ing to better ITE estimation but worse ATE/ATT estimation. This issue is out

of our expectation and we leave it as future investigation. We also notice that

recent research [70, 180] on implicit model inference indicate that discriminator-

based adversary training may lead to noisy gradients and thus unstable results.

In future work, more implicit variational inference algorithms will be investigated

to realize methods that are more robust.
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Direct Treatment Effect Estimation

using Deep Neural Networks

In this chapter, we propose the idea of direct treatment effect estimation, which

parametrizes the target treatment effect function with DNNs and learn it via

gradient-based optimization directly without a detour of learning the treatment

response function or the treatment assignment mechanism. This idea is pretty

intuitive and motivated by policy gradient methods for policy optimization from

the reinforcement learning literature [190]. Unlike other value-based algorithms,

e.g., Q-learning, that learn an optimal policy indirectly by estimating the state-

action function (i.e., the Q function) first, policy gradient methods parametrize

the target policy directly and learn it using gradient-based optimization. We

also note that several algorithms have recently been proposed to model the indi-

vidual treatment effect (ITE) function directly. Specifically, Wager et al. [206]

proposed to directly estimate the ITE non-parametrically using random forests

with an ad-hoc leaf splitting criteria. By this causal forest method, individ-

uals in each leaf can be regarded as randomly assigned as an RCT. However,

tree-based methods need manual feature engineering which are not as automatic
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as our DNN-based method. We will also compare it with our proposed mod-

els in the experiment section empirically. Nie et al. [126] also parametrize the

target treatment effect function directly and propose to learn it using their pro-

posed R-loss objective function. However, the proposed R-learner still learns the

parametrized treatment effect function in a two-step manner by first estimating

two auxiliary functions, the propensity score function and the mean outcome

function.

Our main contributions are: (1) We introduce the idea of direct treatment

effect estimation that learns the target treatment effect function directly from ob-

servational data; (2) We propose a novel Causal Effect Network (CENet) model

for direct treatment effect estimation using DNNs. The proposed CENet learns

the target treatment effect function and two auxiliary treatment response func-

tions jointly. (3) We further combine the idea of direct treatment effect esti-

mation and balanced representation learning to propose the Balanced Causal

Effect Neural Network (BCENet) model; (4) We validate the proposed methods

with comprehensive experiments on synthetic, semi-simulated and real world

datasets. Experiment results suggest that our proposed models generally have

better or competitive performance than existing state-of-art models. Moreover,

estimations of our direct estimation models are generally more stable than the

other models since they are estimated directly in an end-to-end manner rather

than indirectly by a two-stage process.

The remainder of this chapter is organized as follows: In Section 6.1, we

introduce definitions, notations and formalize the causal inference problem. In

Section 6.2, we give a brief review of related work. As the core section, Section

6.3 introduces the direct treatment effect estimation idea and two neural network

architectures for direct treatment effect estimation. Experiments on simulated

data and an application on real health data are conducted in Section 6.4. Section

106



6.1. PROBLEM SETUP Chapter 6

6.5 summarizes this chapter.

6.1 Problem Setup

The causal inference literature stresses the importance of defining the causal

estimands of interest (or the target parameter ) first and thinking carefully about

necessary assumptions for identification. In this section, we demonstrate the

problem of causal inference from observational data via an illustrative example,

introduce preliminary definitions and assumptions for identifiability.

6.1.1 Treatment Effect Estimation: An Illustrative Exam-

ple

Consider a number of n = 400 individuals with a scaler covariate xi ∼ U(−2, 2)

for i = 1, . . . , n. For each individual x, suppose there is a binary treatment with

t = 1 indicating treated and t = 0 not treated (i.e., control). The target outcome

after treated/ control is denoted as y. For an individual with covariate value x,

denote the underlying treatment response functions if she is assigned into the

treated group and the control group as µ1(x) and µ0(x) respectively. In causal

inference, we are interested in the treatment effect of the treatment t on the

outcome, which is defined as the expected difference between the two potential

treatment responses, i.e., τ(x) = µ1(x)− µ0(x).

This is called the ITE or CATE in the causal inference literature [74], and

is intrinsically important in settings where we want to evaluate the efficiency

of some policy and make personalized recommendations. Suppose in the ob-

servational data, we observed n1 = 150 individuals got treated and the other

n0 = 250 individuals not treated. The treatment assignment mechanism that

allocated the observed treatment to each individual is not random and depends
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Figure 6.1: Illustration of (a) the treatment propensity function and (b) the
observational data. There are n = 400 individuals in (b), n1 = 150 of them
are treated and the other n0 = 250 are assigned into the control group. The
x-axis is the feature x and y-axis is the observed outcome y. The dashed green
and magenta curves are respectively the treatment responses under control and
treated. The black line is the target treatment effect function.

on the covariate value x via

t ∼ Bern

(
x2 + 0.5

5

)

We illustrate the underlying treatment propensity function, i.e., the prob-

ability of an individual is assigned into the treatment group P (t = 1 | x) in

Fig.6.1(a). Obviously, individuals with value x far away from 0 is more likely to

be treated, and individuals with value x in a normal range near 0 are more likely

be assigned into the control group. This kind of imbalanced treatment selection

preference is called selection bias in the causal inference community [74].

Moreover, the two underlying treatment response functions are µ0(x) = x2 +

|x| and µ1(x) = x2 + |x|+ 2x. Then the target treatment effect function is

τ(x) = µ1(x)− µ0(x) = 2x

However, in real world observational data, we do not have access to the treat-
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ment assignment mechanism or the underlying treatment response functions. For

an individual xi, we only know her assigned treatment ti and the corresponding

observed outcome yi = yi(ti), while the potential outcome for the alternative

treatment option yi(1 − ti) can never been observed in principle. The observed

data for this illustrative example is depicted in Fig.6.1(b). We also draw the

unobserved treatment response curves, µ0(x) and µ1(x), as well as the treatment

effect function τ(x) in the figure.

With the n = 400 observed examples, D = {(xi, ti, yi) , i = 1, . . . , n}, we want

to learn the treatment effect function from the observational data, which then

can be utilized to answer the following questions:

• Question (1): What is the overall effect of the treatment t over the whole

population?

• Question (2): How efficient is the treatment t over the n1 = 150 treated

individuals?

• Question (3): For a new individual with covariate value x, should we

assign her into the treated or the control group?

Note that, since real world treatment assignment mechanisms are usually

not randomized and the probability of an individual to be treated depends on

her own covariate values, the collected data in real world observational studies

are imbalanced (as illustrated in Fig.6.1(b)). Moreover, the fundamental issue

that we can only observed the outcome corresponding to the assigned treatment

renders treatment effect estimation from observational data generally impossible.

In the next section, we formally introduce definitions and assumptions needed

for solving this problem.
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6.1.2 Definition and Assumptions

Consider an observational study consisting of n observations D = {(xi, ti, yi), i =

1, . . . , n} of the variables (X,T, Y ) drawn i.i.d. from some underlying distribu-

tion such that for each i, xi ∈ X denotes the baseline pre-treatment covariates,

ti ∈ T the assigned treatment, and yi ∈ Y the observed outcome. Take job train-

ing as an example, for an employee with covariate x ∈ X , the set of treatments

T might be whether she joined a specific job training program, and the set of

outcomes might be Y = [0, 10K] indicating her monthly salary in dollars. In

this work, we only consider the binary treatment case, i.e., T = {0, 1}. Denote

the treated group as T1 = {i : ti = 1} and the control group as T0 = {i : ti = 0}.

For an individual i, let Yi(t) ∈ Y be her potential outcome under the treatment

option t. The fundamental problem of causal inference is that only one of the

two potential outcomes, Yi(0) and Yi(1), can be observed for a given individual,

i.e., yi = tiYi(1) + (1 − ti)Yi(0). In the machine learning literature, this kind of

partial feedback is called bandit feedback [192, 191].

Two key functions mentioned in the last section are the treatment response

functions µ0(x) and µ1(x). In the language of Pearl’s do-calculus [131], they are

defined as
µt(x) = E[Yi|Xi = x, do(Ti = t)]

= E [Yi(t)|Xi = x] , t = 0, 1
(6.1)

where do (Ti = t) is the do-operator meaning to “set” the treatment as t rather

than “seeing” the treatment t. By this definition, the difference between the

two treatment responses is defined as the CATE, which measures the covariate-

specific treatment effect

τ(x) = µ1(x)− µ0(x)

= E [Yi(1)|Xi = x]− E [Yi(0)|Xi = x]
(6.2)
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This is a fundamental component in the causal inference literature. We can

use it to answer Question (1) in the last section by estimating the ATE via

ATE = E [τ(xi)] and Question (2) by the ATT via ATT = E [τ (xi) |ti = 1].

Question (3) can be answered by denoting a treatment policy that depends on

the pre-treatment covariates x as π (xi) = P (ti = 1|xi), then τ(x) is a sufficient

statistics for evaluating an existing policy π : X → T and for optimizing any

treatment policy since we can re-write the policy optimization objective as the

difference to the always-control policy π0(x) ≡ 0, i.e.[127],

π∗ ∈ argmin
π∈X→T

E[(µ0(xi) + π(xi)τ(xi))− µ0 (xi)]

= argmin
π∈X→T

E [π(xi)τ(xi)]

Despite of its importance, treatment effect estimation from observational

data is fundamental impossible without causal assumptions since we can never

observe both treatment responses for any individual. For identifiability, besides

Consistency (Assumption 2.1) and SUTVA (Assumption 2.2), we also make the

following Ignorability assumption common in the causal inference literature [74].

Assumption 6.1 (Ignorability). For each individual Xi, the potential outcome

variables Yi(t), t ∈ T are statistically independent of the treatment actually taken.

That is, Yi(t) |= Ti | Xi for all i = 1, 2, . . . , n.

This assumption means that there exist no unobserved confounders. It is gen-

erally uncheckable from data only and must be determined by domain knowledge.

Under these assumptions, we provide a self-contained proof of the identifiability

of various treatment effects in the Appendix A.2. In practice, we also make the

following Positivity assumption to guarantee enough randomness in the data-

generating process so that unobserved counterfactuals can be estimated from

the observed data.
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Assumption 6.2 (Positivity, or Common Support). The treatment propensity

is positive for any covariate x ∈ X i.e., 0 < P (t = 1 | x) < 1.

6.2 Preliminaries

In this section, we introduce two groups of methods that are related to our

proposed method: treatment response modelling for treatment effect estimation

and DNNs for treatment effect estimation.

6.2.1 Treatment Effect Estimation via Response Modelling

Note that the ITE of an individual Xi = x is defined as the difference of the

outcome if treated versus that if untreated. An intuitive method would be to

use any supervised learning method (e.g., linear regression, random forest, neural

networks) to fit the two treatment response functions µ0(x) and µ1(x). Then for

an individual xi in the training data (also called in-sample individual), the CATE

is estimated by

τ̂ (xi) =

 yi − µ0 (xi) , ti = 1

µ1 (xi)− yi, ti = 0
(6.3)

For an out-sample individual with covariates x, the CATE is estimated via

τ̂(x) = µ1(x)− µ0(x) (6.4)

Therefore, τ(x) is estimated indirectly by a two-stage procedure, and the

key is to obtain a good estimate of the underlying conditional mean functions

µ0(x) and µ1(x). This is called simulated twins, G-computation [146, 147, 148],

outcome regression or counterfactual inference in the literature [61, 225, 170].

In practice, this is realized by regressing the observed outcomes on the co-
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variates in the control group T0 to fit the control response function µ0 and

in the treated group T1 to fit µ1. Künzel et al. [95] call this approach T -

learning (T for “two models” or “twins”). In T -learning, we treat the treatment

indicator t ∈ {0, 1} as a function indicator and learn separate treatment re-

sponse models for each treatment. This is favourable when the two treatment

response functions µ0(x) and µ1(x) have drastically different properties (e.g.,

different explanatory covariates and different interactions among these covari-

ates). Alternatively, we can regard t as just another covariate and define treat-

ment responses under different treatments as a single conditional mean function,

µ(x, t) = t · µ1(x) + (1 − t) · µ0(x). CATE is then derived by replacing µ0(x)

and µ1(x) with µ(x, 0) and µ(x, 1) respectively in the above estimators (6.3) and

(6.4). This is called S -learning (S for “single model”) in [95]. Besides T -learning

and S -learning, Künzel et al. [95] also proposed X -learning that estimates the

two treatment response functions µ0(x) and µ1(x) as in T -learning first, and

then impute the estimated ITEs for individuals in the treated group T1 using

τ̂(xi) = yi − µ0(xi) and individuals in T0 using τ̂(xi) = µ1(xi) − yi. Lastly, X -

learning learns the target treatment effect function τ(x) with the imputed ITEs

in a supervised manner.

As a learning problem, treatment effect estimation via treatment response

modelling is different from classic learning in that the explicit label – the true

ITEs – can never been observed. For each individual, we can only observe her

response to the treatment she actually received. This kind of bandit feedback is

called the fundamental problem of causal inference [155]. As we have discussed in

Chapter 2.3.2, treatment response modelling is originally designed for answering

counterfactual questions and fulfils the task of treatment effect estimation in an

indirect manner. As a result, treatment response functions fitted to minimize

the prediction error for the observed outcomes are not guaranteed to produce
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accurate treatment effect estimation.

6.2.2 DNNs for Treatment Effect Estimation

DNNs [49] have proved to be successful in a plenty of machine learning applica-

tions due to their automatic feature engineering ability and universal approxi-

mation property. Compared with other machine learning techniques, DNNs are

able to extract complex nonlinear features from raw inputs so that minimiz-

ing the need for manual feature engineering, and can be trained continually in

an end-to-end manner. This allows us to train a single neural network target-

ing several distinct objectives and allows multiple networks to be co-trained on

the same set of data while keep them coupled with shared layers. By virtue

of the powerful representation learning ability of DNNs, Johansson et al. [80]

proposed the BNN network, which learns a single treatment response function

µ(x, t) = h(ϕ(x), t) for treatment effect estimation. The covariate imbalance be-

tween the two treatment groups are handled by learning a shared representation

ϕ(x) of the pre-treatment covariates. Later in [178], they argued that such a

S -learning method may lose the influence of the scaler treatment indicator t on

the shared high-dimensional representation during training. To avoid this issue,

they proposed two neural networks, TARNet and CFR, to learn two separate

outcome models h0(ϕ(x) and h1(ϕ(x) on top of the shared representation layers

ϕ(x). In these models, the treated and control groups are able to share informa-

tion in the process of learning the two treatment response functions. Moreover,

to guide the learning of the shared representation layers so as to realize the goal

of covariate balance in the representation space, BNN and CFR add a balancing

constraint on the shared representation using integral probability metrics (IPMs)

[186].

Besides deep representation learning for balancing, researchers have also
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adapted recent advances in deep generative models and GAN training for the

task of treatment effect estimation. Specifically, The CEVAE method [102] uses

variational auto-encoders to model and infer the outcome generative probability

in a latent-variable modelling framework. The CEIGM model [225] uses more

general implicit generative models to model the underlying data-generating pro-

cess. The GANITE method [213] uses GANs to learn the counterfactual and

ITE generators. Other researchers have adopted DNNs into the instrumental

variable framework [57] and the multi-task learning framework [2] for treatment

effect estimation.

In general, balanced representation learning methods realize the goal of treat-

ment effect estimation via treatment response modelling. Methods based on deep

generative models such as CEVAE and CEIGM are from a probabilistic machine

learning perspective and rely on different assumptions of the underlying data-

generating mechanism to ours. Building on the idea of X -learning, Stadie et al.

[187] proposed a DNN architecture called Y -learner for treatment effect estima-

tion. The Y -learner is also a direct treatment effect estimation method which

learns the treatment response functions and treatment effect function jointly.

However, as we will describe in the next section, our method goes further than

the Y -learner by incorporating the idea of balanced representation learning in

the learning of the auxiliary treatment response functions. We argue that this

should be beneficial for the target treatment effect estimation. However, since

the source code of the Y -learner is not available yet, we are unable to compare

it with our proposed methods.
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Figure 6.2: The joint neural networks for direct treatment effect estimation. Blue
and orange nodes are hidden layers or estimated values. Gray nodes corresponds
to observed values. Hollow diamonds are decision nodes which decide the input
is a treated sample or a control sample according to the corresponding t.

6.3 Direct Treatment Effect Estimation Using

DNNs

In this section, we first introduce the idea of direct treatment effect estimation by

learning the treatment effect function directly. Two DNN-based models, CENet

and BCENet, for direct treatment effect estimation are then described in details.

6.3.1 Direct Treatment Effect Estimation

Since our target of interest is the CATE, we may be better off modelling it

directly without a first stage estimation of other functions. To motivate and

have a better understanding of such a direct estimation process, suppose we

have access to an oracle of the true ITE τ ∗i = τ ∗(xi) for each individual xi,

then we can cast the problem of treatment effect estimation into a supervised

learning problem: Given a class C (usually interpretable like linear models or

tree-based models) and a set of observational data D∗ = {(xi, τ ∗i ), i = 1, . . . , n},
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learn the best-in-class CATE function with the following minimum mean square

error (MSE)

min
τ∈C

1

n

n∑
i=1

(τ(xi)− τ ∗(xi))2

Moreover, if we have some prior knowledge of the treatment effect function

class C, we can learn it by the following regularized objective

min
τ∈C

1

n

n∑
i=1

(τ(xi)− τ ∗(xi))2 + Ω(τ)

where Ω(τ) is the regularization term represents possible prior knowledge of τ(·).

Though the idea to modelling the target CATE function directly via machine

learning is appealing, the problem is that we never observe τ ∗i directly but only

the bandit feedback data D = {(xi, ti, yi), i = 1, . . . , n}. To detour this problem

and still to learn the CATE function directly, we need to find conditions that

relates τ(x) with other quantities that can be estimated from the observational

data.

Based on the analogy between the covariates-treatment-outcome data struc-

ture (xi, ti, yi) in observational causal inference with the state-action-reward

bandit feedback data structure (s, a, r) in reinforcement learning, the idea of

direct treatment effect estimation, which parametrizes and learns the target

CATE function τ(x) directly, is motivated by deep policy gradient methods that

parametrize the target policy by DNNs and optimize it using gradient-based

optimization in the reinforcement learning literature [190]. In direct treatment

effect estimation, we model the treatment response functions and the target

CATE function with DNNs and couple them via their relationship formulated

in (6.2). The computation process of the joint neural networks is depicted in

Fig.6.2.

The joint neural network architecture comprises the target CATE network
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and two auxiliary outcome prediction networks. In this architecture, our target

is the CATE function τ(·; θ). In order to update its parameters, we bridge it

with the observed outcome via two treatment outcome networks µ0(x; β0) and

µ1(x; β1). On one hand, µ0(x; β0) and µ1(x; β1) are parametrized by separate

neural networks, which are able to model complex treatment responses as T -

learning. On the other hand, they are coupled via the target CATE network

τ(·; θ) and can be trained efficiently using the whole observational dataset. To

optimize the neural network parameters, we use the standard back propagation

based training paradigm. Note that in the joint neural network architecture,

the two auxiliary treatment response functions τ0(x) and τ1(x) still need to be

learned in the training stage, but they are only intermediate estimands used

to bridge the unknown ITE with the observed outcome for each individual so

as to provide guidance for optimizing the target treatment effect function in

the training stage. We do not need them for out-sample predictions. In the

following sections, we introduce two practical models for direct treatment effect

estimation.

6.3.2 CENet: Causal Effect Neural Network

Our first direct treatment effect estimation model, CENet, consists of two com-

ponents: the outcome prediction component and the CATE component.

The Outcome Prediction Component

Note that the observational dataset D = {(xi, ti, yi), i = 1, . . . , n} can be di-

vided into the treated subset D1 = {(xi, yi), i ∈ T1} and the control subset

D0 = {(xi, yi), i ∈ T0}. A naive method for learning the two treatment response

functions µ0(x; β0) and µ1(x; β1) is to minimize the following loss functions over
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D0 and D1 respectively,

Lµ0 = 1

n0

∑
i∈T0

L (µ0 (xi) , yi)

Lµ1 = 1

n1

∑
i∈T1

L (µ1 (xi) , yi)
(6.5)

Possible loss functions are the L2 loss L(µ(xi), yi) = (µ(xi) − yi)
2

for continuous outcomes and the log-loss L (µ (xi) , yi) = −yi log µ (xi) −

(1− yi) log (1− µ (xi)) for binary outcomes. This naive method is actually the

main idea of T -learning [95], which is statistical inefficiency and biased. That

is, the estimated control outcome function µ0(x; β0) trained solely over the con-

trol subset D0 will not generalize well to the treated subset D1 and the treated

outcome function µ1(x; β1) trained over D1 will not generalize well to D0.

In Section 6.3.2, we will introduce the joint learning process that, besides

factual outcome prediction errors, the counterfactual prediction error for indi-

viduals in subset D1 and counterfactual predictions for individuals in subset D0

also guide the learning of µ0(x; β0) and µ1(x; β1). By this training scheme, we

can use all observations in D = {(xi, ti, yi), i = 1, . . . , n} to train both µ0(x; β0)

and µ1(x; β1) simultaneously and the training process is targeted to the CATE

function. Obviously, this is more flexible than S -learning and more data efficient

than T -learning.

The CATE Component

The target CATE function, τ : X → R, is a mapping from an observation x ∈ X

to a real-valued treatment effect. Suppose we parameterize this function with

a neural network τ(·; θ), to optimize the neural network parameters θ using the

observed data D, we need to bridge τ(xi; θ) with the observed outcome yi for

each individual xi. To understand our derivation, first let us assume we have
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Figure 6.3: Neural network architecture of CENet. The diamond toggle is
switched according to the observed treatment for each individual to obtain the
unobserved counterfactual outcome.

an oracle the counterfactual outcome ycfi for each individual xi, several lines of

algebra then imply that

E [yi] = (2ti − 1) τ(xi) + E
[
ycfi

]
(6.6)

This then permits us to learn the target CATE function τ(x; θ) in a supervised

learning manner. However, we do not have access to such an oracle. We replace

it using the following formula

E
[
ycfi

]
= tiµ0(xi) + (1− ti)µ1(xi) (6.7)

where µ0(xi) and µ1(xi) are the expected treatment responses for xi predicted

using the outcome prediction networks introduced in the last section. Overall,

this supervised learning process is formulated as

E [yi] = (2ti − 1) τ (xi) + tiµ0 (xi) + (1− ti)µ1 (xi) (6.8)

Thus we can obtain the loss function for learning the CATE function as
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Algorithm 6.1 Learning Process for CENet
Input: Observation data D = {(xi, ti, yi), . . . , (xn, tn, yn)}, hyper-parameters

γ, λ > 0, training batch size B, number of epochs K, and learning rate
η

Output: The learned parameters (θ, β0, β1)
1: Initialize parameters (θ, β0, β1) for the CATE network τ(·; θ) and outcome

prediction networks µ0 (·; β0), µ1 (·; β1);
2: Split D into training and validation sets Dtrain and Dvalid;
3: for k = 1, 2, . . . , K do
4: Sample Dbatch =

{(
xk1, t

k
1, y

k
1

)
, . . . ,

(
xkB, t

k
B, y

k
B

)}
from Dtrain

5: Update (θ, β0, β1) to minimize Eq.(6.10) on Dbatch via

θ ← θ − η∇θLCENetB

β0 ← β0 − η∇β0LCENetB

β1 ← β1 − η∇β1LCENetB

6: Test convergence using Dvalid, if converge
7: break
8: end for

Lτ = 1

n

n∑
i=1

{(2ti − 1)τ(xi) + tiµ0(xi) + (1− ti)µ1(xi)− yi}2 (6.9)

The Objective Function

By combining the learning objectives in (6.5) and (6.9) together and adding a

model complexity regularization term, we obtain the following joint loss function

for the CENet model:

LCENetn =
1

n

n∑
i=1

Lτi + γ0Lµ0 + γ1Lµ1 + λΩ(τ) (6.10)

where γ0, γ1, λ > 0 are hyper-parameters. Normally, the two treatment groups

have different sample sizes, we use the following parameter configuration to com-
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pensate for this difference

γ1 = γ, γ0 =
p

1− p
γ

where p , p(t = 1) = 1
n

∑n
i=1 ti is simply the treatment proportion in the

training dataset. As a result, we get the following objective function

LCENetn =
1

n

n∑
i=1

Lτi + γ

(
Lµ1 + p

1− p
Lµ0
)
+ λΩ(τ) (6.11)

The neural network architecture for the CENet model is illustrated in Fig.6.3.

We use the stochastic optimization method Adam [90] to train the model. The

pseudocode for the joint learning process is summarized in Algorithm 6.1.

6.3.3 BCENet: CENet with Balanced Representation

Layers

In observational causal inference, it is well-acknowledged that covariate imbal-

ance between the treated and control groups biases treatment effect estimation.

Theorem 1 in [178] derives an upper bound of the treatment effect estimation

error using the factual outcome prediction error and the distance between the

covariate distributions of the treated and control groups. This suggests that

treatment response modelling under a constraint that encourages better distri-

butional balance between the two treatment groups will theoretically benefit

treatment effect estimation. In this section, we adopt this idea and propose to

add shared representation layers into the above CENet model. The resulting

neural network architecture is illustrated in Fig.6.4. Since we are in principle

introducing a balancing constraint into CENet, we call the resulting model Bal-

anced Causal Effect Neural Network (BCENet).
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Balanced Representation Layers

Denote the shared representation layers in the BCENet by ϕ : X → Φ and

parametrize the corresponding transformation function by ϕ(·;W ). For each

individual xi, the observed covariate will first be transformed into ϕW (xi) ∈ Φ.

By this transformation function, we obtain two samples, Φ0 = {ϕW (xi) : i ∈ T0}

and Φ1 = {ϕW (xi) : i ∈ T1}. Denote the distribution density of Φ0 and Φ1 as pt=0

and pt=1 respectively. We follow [178] and quantify the distributional distance

between the two treatment groups by the IPM between pt=0 and pt=1, i.e.,

Disc(pt=0, pt=1) = IPMF(p
t=0, pt=1) (6.12)

IPMs are a class of metric for measuring the distance between distributions

[186]. For two probability distributions p and q defined on X , the IPM between

them with related to a function family F : X → R is defined as

IPMF(p, q) = sup
f∈F

∣∣∣∣∫ f(x)(p(x)− q(x))
∣∣∣∣

With this definition, one goal of BCENet is to predict the observed outcome

while minimizing IPMF(p
t=0, pt=1). Empirically, given the two transformed sam-

ples Φ0 and Φ1, it is calculated by IPMF(Φ0,Φ1) via

IPMF(Φ0,Φ1) = sup
f∈F

∣∣∣∣∣ 1n0

∑
i∈T0

f(ϕW (xi))−
1

n1

∑
j∈T1

f(ϕW (xj))

∣∣∣∣∣ (6.13)

According to the choice of the function family F , popular examples of IPMs

include the maximum mean discrepancy (MMD) [53] with F = {f : ∥f∥Hk
≤ 1}

where H is the Hilbert space induced by a kernel function k : X × X → R; and

the Wasserstein distance [186] with F = {f : f is 1-Lipschitz}. The calculation
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Figure 6.4: Neural network architecture of BCENet. The diamond toggle is
switched according to the observed treatment for each individual to obtain the
unobserved counterfactual outcome.

of the MMD with linear kernel and the Wasserstein distance are provided in the

Appendix A.3.

The Objective Function

As illustrated in Fig.6.4, the two outcome prediction networks build on top of

the shared representation layers. As a result, the outcome prediction risks in

(6.5) becomes

Lµ0 = 1

n0

∑
i∈T0

L (µ0 (ϕW (xi) ; β0) , yi)

Lµ1 = 1

n1

∑
i∈T1

L (µ1 (ϕW (xi) ; β1) , yi)
(6.14)

Similarly, the loss function for CATE learning will also indirectly depends on

the transformation function ϕ(·;W ) as

Lτ = 1

n

n∑
i=1

{(2ti − 1)τ(xi) + tiµ0(ϕW (xi); β0) + (1− ti)µ1(ϕW (xi); β1)− yi}2

(6.15)

Combining the outcome prediction risks in (6.14), the CATE risk in (6.15),
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Algorithm 6.2 Learning Process for BCENet
Input: Observation data D = {(xi, ti, yi), . . . , (xn, tn, yn)}, hyper-parameters

γ, α, λ > 0, training batch size B, number of epochs K, and learning rate η
Output: The learned parameters (θ,W, β0, β1)
1: Initialize parameters (θ,W, β0, β1) for the CATE network τ(·; θ), the bal-

anced representation network ϕ(·;W ) and the outcome prediction networks
µ0 (·; β0), µ1 (·; β1);

2: Split D into training and validation sets Dtrain and Dvalid;
3: for k = 1, 2, . . . , K do
4: Sample Dbatch =

{(
xk1, t

k
1, y

k
1

)
, . . . ,

(
xkB, t

k
B, y

k
B

)}
from Dtrain

5: Update (θ,W, β0, β1) to minimize Eq.(6.16) on Dbatch

θ ← θ − η∇θL
BCENet
B

W ← W − η∇WL
BCENet
B

β0 ← β0 − η∇β0L
BCENet
B

β1 ← β1 − η∇β1LBCENetB

6: Test convergence using Dvalid, if converge
7: break
8: end for

and the representation balancing regularizer in (6.13) as well as the model com-

plexity regularization term, we get the joint loss function for the BCENet model

as

LBCENetn =
1

n

n∑
i=1

Lτi + γ(Lµ1 + p

1− p
Lµ0) + α ·Disc(Φ0,Φ1) + λΩ(τ) (6.16)

where γ, α, λ ≥ 0 are hyper-parameters. According to the IPM used in (6.16),

we get two BCENet models: BCENet with the MMD metric (BCENet-MMD),

and BCENet with the Wasserstein distance (BCENet-Wass). The pseudocode

for BCENet learning is summarized in Algorithm 6.2.
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6.4 Experimental Studies

In this section, we evaluate our proposed direct treatment effect estimation mod-

els: CENet, BCENet-MMD, and BCENet-Wass. In general, it is hard to validate

treatment effect estimation models on observational datasets since we have no ac-

cess to the underlying ITEs. To cope with this problem, we used semi-simulated

data, experimental data from real world applications and simulated data. Details

on hyper-parameter configurations are described in the Appendix A.4.

6.4.1 Baselines and Evaluation Metrics

Baseline methods used for comparison include: Least square regression with the

treatment as a covariate (OLS/LR-1); separate least square regressions for dif-

ferent groups (OLS/LR-2); BART [62]; S -learning (S -Learner), T -learning (T -

Learner), and X -learning (X -Learner) with gradient boosting as the base out-

come model and random forest classifier as the base propensity model; domain

adaptation learner (DA-Learner), which is a variant of the X -Learner that uses

domain adaptation weighting techniques to learn the outcome models via cost-

sensitive learning; double robust learner (DR-Learner) that estimates the poten-

tial outcomes with double robust statistical techniques [86]; PSM [188], CF [206];

BNN [80], TARNet [178], CFR with MMD discrepancy (CFR-MMD), and CFR

with Wasserstein discrepancy (CFR-Wass) [178]. They are grouped into four

categories: regression-based methods (OLS/LR and BART); meta-learners (S -

Leaner, T -Learner, X -Learner, DA-Learner and DR-Learner), non-parametric

methods (PSM, CF), and the other methods are DNN-based methods.

To evaluate the estimation performance, the following metrics are used for

ITE, ATE and ATT estimation respectively when the ground truth are known
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ϵITE =

√√√√ 1

n

n∑
i=1

(τi − τ̂i)2 =

√√√√ 1

n

n∑
i=1

((µi(1)− µi(0))− τ̂i)2

ϵATE = |ÂTE − ATE| = 1

n

∣∣∣∣∣
n∑
i=1

((µi(1)− µi(0))− τ̂i)

∣∣∣∣∣
ϵATT = |ÂTT − ATT | = 1

n1

∣∣∣∣∣∑
i∈T1

((µi(1)− µi(0))− τ̂i)

∣∣∣∣∣
For all evaluation metrics, we report both the within-sample error and the

out-of-sample error, where the former is computed over the training and valida-

tion sets, and the later is computed over the test set. Standard deviations for

multiple replications are also reported.

6.4.2 Semi-simulated Data

In this section, we evaluate the proposed methods using semi-simulated data.

The covariates are collected from real world applications, but the treatment re-

sponses or the treatment assignments are simulated in order to form an observa-

tional dataset. We validate the methods in settings with binary and continuous

outcomes respectively.

Binary Outcome: Twins Dataset

The Twins dataset [4] comes from the all twins birth in the USA between 1989-

1991 and first used as a benchmark for evaluating causal inference algorithms

in [102]. In Twins, the treatment t = 1 is being born the heavier twin, and the

binary outcome y corresponds to the mortality of each of the twins in their first

year of life. Since we have records for both twins (the heavier twin t = 1 and

the lighter twin t = 0), their outcomes could be considered as the two potential
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outcomes with respect to the treatment of being born heavier. We focus on

the same sex twin-pair whose weights are less than 2kg and follow the same

pre-processing procedure in [212]. There are in total 5409 records in the final

processed data, each record contains 40 pre-treatment covariates related to the

parents, the pregnancy and the birth. In order to simulate an observational

study with selection bias, one of the twins in each record is selectively chosen as

the observation and the other is unobserved. The biased treatment assignment

is simulated by

ti|xi ∼ Bern
(
σ
(
wTxi + ϵi

))
where σ(z) = 1

1+exp(−z) is the sigmoid function, w ∼ U ((−0.1, 0.1)40×1) and

ϵi ∼ N (0, 0.1).

We run the experiments 10 times with a 63/27/10 train/validation/test split

ratio. The mean and standard deviation of estimation errors are listed in Ta-

ble 6.1. In general, all estimators except for BART and PSM obtained pretty

similar performance while our proposed models performs generally better than

other baselines. Specifically, our BCENet-MMD model obtained the lowest out-

of-sample errors in both ITE and ATE estimations. Moreover, for this dataset,

balanced representation learning benefits all estimations slightly except for the

in-sample ATE estimation. Among the baselines, on one hand, CF obtains simi-

lar performance with our proposed models but with a higher out-of-sample ATE

error; on the other hand, BART and PSM get relatively much higher estimation

errors than the other methods.

Continuous Outcome: IHDP Dataset

The continuous outcome dataset IHDP was first compiled by[62] based on the

Infant Health and Development Program (IHDP), which is a randomized exper-

iment to enhance the cognitive and health status of low birth weight, premature
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Table 6.1: Within-sample and out-of-sample results on the Twins dataset

ϵinITE ϵoutITE ϵinATE ϵoutATE

LR1 0.366± 0.020 0.366± 0.025 0.018± 0.011 0.015± 0.013

LR2 0.403± 0.015 0.411± 0.024 0.034± 0.035 0.039± 0.030

BART 0.465± 0.047 0.478± 0.061 0.186± 0.062 0.182± 0.065

T -Learner 0.383± 0.007 0.437± 0.024 0.012± 0.008 0.020± 0.015

S -Learner 0.309± 0.007 0.346± 0.018 0.012± 0.007 0.025± 0.015

X -Learner 0.334± 0.012 0.361± 0.022 0.016± 0.012 0.027± 0.015

DA-Learner 0.376± 0.005 0.391± 0.018 0.011± 0.009 0.025± 0.020

DR-Learner 0.302± 0.003 0.317± 0.014 0.008± 0.006 0.012± 0.009

PSM 0.357± 0.044 0.358± 0.049 0.140± 0.092 0.140± 0.097

CF 0.303± 0.002 0.307± 0.015 0.008± 0.007 0.012± 0.009

TARNet 0.329± 0.005 0.333± 0.019 0.014± 0.012 0.015± 0.008

BLR 0.306± 0.002 0.308± 0.014 0.014± 0.006 0.015± 0.010

BNN 0.307± 0.002 0.309± 0.015 0.009± 0.006 0.013± 0.006

CFR-MMD 0.329± 0.005 0.333± 0.019 0.015± 0.008 0.014± 0.008

CFR-Wass 0.329± 0.005 0.335± 0.017 0.014± 0.013 0.017± 0.015

CENet 0.306± 0.002 0.307± 0.014 0.005± 0.004 0.009± 0.006

BCENet-MMD 0.305± 0.002 0.306± 0.014 0.007± 0.004 0.008± 0.006

BCENet-Wass 0.305± 0.002 0.307± 0.014 0.007± 0.005 0.008± 0.007

infants through paediatric follow-ups and parent support groups. To create an

observational study dataset, records with non-white mothers in the treatment

group were omitted to make the treatment and control groups unbalanced. The

resulting IHDP dataset consists of 747 individuals (139 treated, 608 control), and

25 covariates (6 continuous and 19 binary) measuring properties of children and

their mothers. The binary treatment t indicate whether the child was assigned

into a program where both intensive high-quality childcare and home visits from

a trained provider are provided. Examples of covariates include sex and birth

weights of the child, and age, education attainment of the mother.

The observed covariates and treatments in the semi-simulated data are from

the IHDP program while all treatment responses are simulated so that the true

treatment effects are known. In order to simulate heterogeneous treatment effects
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for different children, we used the nonlinear response surface B setting in [62],

where the two treatment response functions are simulated as follows:

µ0 (xi) = exp
(
(xi + 0.5I)T β

)
µ1 (xi) = xTi β − ω

where the 25-dimensional vector of regression coefficients was randomly sampled

from [0, 0.1, 0.2, 0.3, 0.4] with probabilities [0.6, 0.1, 0.1, 0.1, 0.1], and the offset ω

was chosen such that the true ATE equals 4. The noisy observational outcome

is simulated as

yi = tiµ1 (xi) + (1− ti)µ0 (xi) +N (0, I)

The simulated noiseless outcomes are used to compute the true effects and

results for 10 experiments with a 63/27/10 train/validation/test split ratio are

demonstrated in Table 6.2.

As we can see from Table 6.2, the BCENet-MMD model obtained the best

out-of-sample performance in both ITE and ATE estimation. Comparing CENet

with its two BCENet variants, we found that balancing constraints with the

MMD and Wasserstein distance metrics both improve ITE estimation. However,

balancing with MMD is preferred than Wasserstein distance for this dataset.

This is also indicated by comparing the performance between CFR MMD and

CFRWass. In regard to estimation deviations, estimates of CENet and BCENets

are likely to be more stable in the sense of lower standard deviations than that of

other estimators. We argue that this is because we estimate the target individual

treatment effect in a direct end-to-end manner while other methods do this

indirectly. In addition, since the two treatment response function µ0(x) and

µ1(x) are very different to each other, we find that baseline methods using a

single outcome model µ(x, t), including OLS1, S -Learner, DR-Learner, BLR and

BNN all get very high estimation errors and standard deviations. This further

130



6.4. EXPERIMENTAL STUDIES Chapter 6

Table 6.2: Within-sample and out-of-sample results on the IHDP dataset

ϵinITE ϵoutITE ϵinATE ϵoutATE

OLS1 7.218± 6.052 7.190± 6.595 0.812± 0.936 0.810± 0.828

OLS2 2.749± 2.378 2.791± 2.657 0.135± 0.113 0.314± 0.375

BART 1.137± 0.605 1.837± 1.512 0.087± 0.073 0.204± 0.105

T -Learner 2.121± 1.512 2.835± 2.287 0.078± 0.072 0.388± 0.617

S -Learner 4.607± 4.422 4.544± 4.630 0.550± 0.780 0.932± 1.538

X -Learner 3.239± 2.776 3.357± 2.943 0.252± 0.323 0.291± 0.344

DA-Learner 2.032± 1.457 2.804± 2.414 0.089± 0.075 0.319± 0.557

DR-Learner 3.766± 3.573 3.906± 3.878 0.473± 0.686 0.780± 1.243

PSM 7.860± 6.490 7.758± 6.816 2.707± 3.135 2.624± 2.477

CF 5.916± 5.088 5.922± 5.529 0.355± 0.261 0.864± 0.961

TARNet 2.035± 1.172 1.986± 1.000 0.433± 0.391 0.458± 0.407

BLR 2.276± 1.048 2.223± 1.013 0.247± 0.185 0.247± 0.124

BNN 2.734± 1.216 2.721± 1.205 0.415± 0.221 0.379± 0.251

CFR-MMD 1.790± 0.599 1.868± 0.924 0.501± 0.355 0.468± 0.466

CFR-Wass 2.858± 1.786 2.680± 1.735 0.792± 0.591 0.890± 0.566

CENet 1.186± 0.123 1.202± 0.157 0.158± 0.137 0.159± 0.117

BCENet-MMD 1.147± 0.279 1.086± 0.210 0.205± 0.111 0.134± 0.130

BCENet-Wass 1.150± 0.206 1.103± 0.183 0.300± 0.190 0.300± 0.188

validates the superiority of our direct estimation models to classical treatment

response modelling models.

6.4.3 Real World Data

We also validate the proposed method using the real Jobs dataset, which com-

bines a randomized study R based on the National Supported Work program

with a larger observational dataset O. This dataset was collected to evaluate

the effect of job training programs on the employment status. In the original

LaLonde randomized sample R by [98], there are 722 employees (297 treated

and 425 control) with 8 covariates such as age, education, and previous earn-

ings. The binary treatment is whether an employee was enrolled in the job
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training program. For more details of the randomized study and data, refer1.

To evaluate causal inference algorithms, Shalit et al.[178] constructed the Job

dataset by combining the LaLonde randomized sample R with the observational

PSID comparison sample O (2490 control) to predict unemployment after job

training. In the Jobs dataset, the original 8 covariates are transformed into a

17 dimension feature set. As a result, we obtain a real world binary-treatment

binary-outcome dataset with 3212 examples and 17 dimensional features.

For the Jobs dataset, since the true ITEs are unknown, we are unable to

calculate the RMSE ϵITE. Following [178] and [102], we use the policy risk

estimated for the randomized subset R as a proxy to the ITE performance

Rpol(πτ̂ ) = 1− {p(πτ̂ (x) = 1) · E [Y1 | πτ̂ (x) = 1]+

(1− p(πτ̂ (x) = 1)) · E [Y0 | πτ̂ (x) = 0]}

where πτ̂ : X → {0, 1} is an policy induced from an ITE estimator τ̂(·) with

πτ̂ (x) = 1 if τ̂(x) > 0, and τ̂(x) = 0 otherwise. This measures the average regret

when treating with the induced policy πτ̂ and thus can serve as a proxy of the

ITE estimation error. Instead of ATE, the NSW program aims at estimating the

effect of job training on employment after training for employees enrolled in the

training program, i.e., the ATT. Since all the treated individuals came from the

randomized study R, we can easily estimate ATT by

ATT :=
1

|T1|
∑
i∈T1

(Y1(xi)− Y0(xi))

=
1

|T1|
∑
i∈T1

yi −
1

|T0 ∩R|
∑

i∈T0∩R

yi = ATE

where T1 and T0 are the treated and control group in the full dataset. We

1http://users.nber.org/ rdehejia/data/nswdata2.html
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Table 6.3: Within-sample and out-of-sample results on the Jobs dataset

Rin
pol Rout

pol ϵinATT ϵoutATT

LR1 0.268± 0.000 0.334± 0.000 0.008± 0.000 0.045± 0.000

LR2 0.274± 0.000 0.275± 0.000 0.132± 0.000 0.156± 0.000

BART 0.204± 0.009 0.346± 0.011 0.123± 0.008 0.048± 0.007

T -Learner 0.071± 0.003 0.338± 0.010 0.012± 0.003 0.045± 0.003

S -Learner 0.140± 0.009 0.274± 0.016 0.021± 0.003 0.044± 0.005

X -Learner 0.100± 0.006 0.320± 0.017 0.006± 0.003 0.046± 0.007

DA-Learner 0.067± 0.007 0.364± 0.026 0.011± 0.002 0.042± 0.011

DR-Learner 0.066± 0.004 0.410± 0.026 0.007± 0.003 0.051± 0.023

PSM 0.288± 0.000 0.321± 0.000 0.350± 0.000 0.300± 0.000

CF 0.156± 0.008 0.291± 0.016 0.013± 0.004 0.032± 0.005

TARNet 0.199± 0.016 0.333± 0.028 0.041± 0.034 0.042± 0.046

BLR 0.219± 0.000 0.296± 0.000 0.047± 0.023 0.051± 0.023

BNN 0.219± 0.000 0.296± 0.000 0.049± 0.030 0.051± 0.034

CFR-MMD 0.197± 0.015 0.345± 0.020 0.025± 0.021 0.060± 0.025

CFR-Wass 0.200± 0.008 0.350± 0.014 0.028± 0.022 0.057± 0.041

CENet 0.167± 0.016 0.265± 0.021 0.025± 0.015 0.058± 0.028

BCENet-MMD 0.183± 0.014 0.285± 0.039 0.020± 0.015 0.016± 0.015

BCENet-Wass 0.186± 0.017 0.292± 0.043 0.027± 0.009 0.035± 0.019

replicated the experiment 10 times with a 56/24/20 train/validation/test ratio.

Average performances and their standard deviations are list in Table 6.3.

As indicated in Table 6.3, CENet obtained the best out-of-sample perfor-

mance in ITE estimation and BCENet-MMD obtained the best out-of-sample

performance in ATE estimation. For this extremely imbalanced dataset, bal-

anced representation learning does not helps ITE estimation but does benefit

ATE estimation. Meta-learners based on ensemble algorithms tended to overfit

the training data while performed relatively worse for out-of-sample estimation.

6.4.4 Experiment on Synthetic Data

To further check the robustness of the proposed models and their performance

in different sample size and imbalance settings, we adapted the data simulation
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Figure 6.5: Visualization of (a): the treatment propensity function
trimη (sin (πxi1xi2)) when η = 0.05, and (b): the underlying heterogeneous treat-
ment effect function in terms of the first two dimensions.

setup A in [126] and simulate data by the following data-generating process:

xi ∼ U(0, 1)5, ti|xi ∼ Bern (trimη (sin (πxi1xi2)))

where trimη(z) = max{η,min(z, 1 − η)} and η ∈ (0, 1) is the imbalance param-

eter. To illustrate the selection bias in the underlying treatment assignment

mechanism, we plot the treatment propensities in terms of the first two dimen-

sions for η = 0.05 in Fig.6.5(a). The treatment response functions and the

observed outcome for each individual are respectively

µ0(xi) = sin(πxi1xi2) + 2(xi3 − 0.5)2 + xi4 + 0.5xi5

µ1(xi) = µ0(xi) + (xi1 + xi2)
2

yi = tiµ1(xi) + (1− ti)µ0(xi)

134



6.4. EXPERIMENTAL STUDIES Chapter 6

As a result, the underlying CATE function is

τ(xi) = µ1(xi)− µ0(xi) = (xi1 + xi2)
2

and is illustrated in Fig.6.5(b). We simulated data with sample size n =

500, 1K, 3K, 5K, 7K, 10K and η = 0.005, 0.01, 0.05, 0.1, 0.5. For each simulation

setting, we split the data into train/validation/test sets with a ratio of 56/24/20

and replicated the experiments 10 times. We compared CENet and BCENet

with other DNN-based baselines, BLR, TARNet, BNN, CFR-MMD and CFR-

WASS. All neural networks have similar configurations, with 2 hidden layers for

each component and 50 neurons each layer. Hyper-parameters are set as γ = 1

and α = λ = 0.0001. The training batch size was 200.

We first evaluated the performance of the proposed models in different imbal-

ance settings. Error bar plots for out-of-sample ITE and ATE estimation errors

in terms of the imbalance parameter η in the setting of sample size n = 1000

are illustrated in Fig.6.5. More estimation performances for other sample sizes

are provided in Appendix A.4. As we can see from the results, as the imbalance

parameter η increases, estimation errors of all methods generally decreased. For

ITE estimaiton, BLR and BNN have higher errors than other estimators in each

η level, and our BCENet models obtained the lowest errors and have smaller

standard deviations. As for ATE estimation, BCENet models also perform the

best in most imbalance settings except when η = 0.005. We also investigated the

influence of sample size n on estimation performances. Plots of out-of-sample

estimation errors in terms of sample sizes when η = 0.05 are illustrated in Fig.6.7

(plots for other settings are provided in Appendix A.5).

In general, as sample size gets larger, the performances did not change very

much. Both BCENet models obtained the lowest error in ITE estimation but

obtained slightly larger errors than TARNet and CFR in ATE estimation. How-
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Figure 6.6: Comparisons of out-of-sample errors (left: ITE error ϵITE, right: ATE
error ϵATE) and corresponding standard deviations in terms of the imbalance
parameter η when sample size n = 1000.

Figure 6.7: Comparisons of out-of-sample errors (left: ITE error ϵITE, right:
ATE error ϵATE) and corresponding standard deviations in terms of the sample
size n when the imbalance parameter η = 0.05.

ever as the sample size increase, this gap is getting smaller. Similar with that

in ITE estimation, our proposed models generally obtained estimations with

smaller standard deviations.

From these simulations, we can conclude that our BCENet models outper-

form other competitors in ITE estimation and match them in ATE estimation in

different imbalance and sample size settings, moreover, they are generally more

stable. Comparing them with the naive CENet, we further know that adding

balanced representation learning layers improves both ITE and ATE estimations.
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6.5 Summary

In this chapter, we proposed the idea of direct treatment effect estimation and

related models for causal inference from observational data. Compared with

existing methods that fulfil the task in an indirect way by first learning some

auxiliary functions, direct treatment effect estimation parametrizes and learns

the target treatment effect function directly. With this idea, we proposed a

causal effect neural network, CENet, which parametrizes the treatment effect

function with DNNs and learns it directly. In addition, we adopted the idea

of learning balanced representations with IPMs to further reduce the impact of

selection bias in observational data. This results in our second direct effect es-

timation model, BCENet. An obvious strength of the proposed models is that

the target treatment effect function is learned directly in an end-to-end manner,

which is very simple and intuitive. We conducted comprehensive experiments

and compared the proposed models with a range of baselines. Experiment re-

sults showed that the proposed models performed generally better than existing

baselines and tended to obtain more stable estimates. Note that we focused on

treatment effect estimation with binary treatments and a possible future research

question is how to extend the direct treatment effect estimation to settings with

multivariate treatment and even continuous treatments.
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Conclusion and Future Directions

In this chapter, we summarize the thesis and discuss several future research

directions.

7.1 Conclusion

In this thesis, we study models and algorithms for learning causal relationships

and estimating causal effects from observational data.

For the purpose of learning causal relationships, most of existing models are

unable to model feedbacks or instantaneous and cross-temporal causal relations

commonly existed in real world causal systems. To handle this limitation, in

Chapter 3, we propose the FoCP for modelling dynamic causal systems with both

instantaneous and cross-temporal causal relations. In addition, an algorithm

based on the classic PC algorithm is also proposed to learn the causal structure

of FoCPs from time series data. The proposed FoCP and corresponding structure

learning algorithm are validated using simulated data and are also applied for

modelling real world climate data.

For the purpose of estimating treatment effects, we propose three methods
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within different frameworks. In Chapter 4, we consider weighting estimators

for causal inference. To stabilize the traditional IPW estimator, we proposed

a pareto-smoothing method and two pareto-smoothed IPW estimators for ATE

and ATT estimation. Experiments on simulated and semi-simulated data indi-

cate that the proposed method performs generally better than other methods.

In addition, an application of the propose method to a health survey dataset

confirms its efficacy.

In Chapter 5, we consider the counterfactual inference framework for treat-

ment effect estimation. Specifically, we consider causal inference with unobserved

confounders and observed proxies and model the underlying data-generating pro-

cess using IGMs. Based on recent advances in Bayesian inference and deep gen-

erative models, we proposed the CEIGM for treatment effect estimation. We

evaluate the proposed CEIGM using both semi-simulated and real-world exper-

imental datasets, and experiment results indicate that CEIGM can learn better

treatment outcome functions.

In Chapter 6, we propose direct treatment effect estimation that models

the target CATE function with deep neural networks and learns it directly from

observational data. By considering different constraints, we further proposed two

neural network architectures for direct treatment effect estimation, the CENet

and BCENet. The proposed direct treatment effect estimation idea is simple and

intuitive. Results from comprehensive experiments show that our proposed direct

estimators perform generally better and tend to obtain stable causal estimates

in various settings.
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7.2 Future Directions

Causality is a very broad and emerging topic in the field of AI. In recent years,

a range of interesting and promising problems and methods have sprung up.

In this section, I summarize several research topics that are unexplored in this

thesis as future directions.

7.2.1 Learning Causality for General Entities

Existing studies on learning causality are mostly for observations of random

variables or random processes. In these settings, the definition of cause and

effect variables is clear and observations can be organized in a data frame or

matrix. However, when the objects to be analysed are general entities with

complex inner structures(e.g., images and documents), the concept of random

variables is not as obvious as what we have considered in this thesis. For example,

a theorem consists of words and equations; an image is made up by a set of pixels

representing different objects. How to learn causal relationships between these

general entities and estimate treatment effects for them is an important while

almost untouched problem.

As a first attempt, Carulla et al. [151] proposed to extract random proxy

variables using a proxy projections for causal discovery from static entities such

as images and documents. For causal inference, Veitch et al. [204] use text

embedding to conduct causal inference from text documents. In general, research

for learning causality for general entities is limited in the literature. Challenges in

this setting include that the data is usually unstructured and of high-dimension.

In addition, how to define the treatment and outcome variables in these setting

remains a problem. We leave it as a future research topic.
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7.2.2 Causal Inference with Continuous Treatment

Most methods for causal inference consider the treatment to be binary. The

justification is that either the individual received the treatment or not. In reality,

many treatments are continuous and can take a range of values. The response

to these continuous treatments is usually dose-dependent and non-linear [137].

For instance, drugs often have a recommended dosage. An insufficient does will

fail to be effective and an excessive dose can have a negative effete.

Recently, causal inference with continuous treatments (e.g., dose, duration,

and frequency) has received many attentions [87, 45, 137, 210]. Importantly,

such treatments lead to effects that are naturally described by curves (e.g., dose-

response curves) and extending causal inference methods for binary treatments

to continuous settings is non-trivial [87]. As a result, research on either extending

existing methods for binary treatments or developing ad-hoc methods for causal

inference with continuous treatments will be a theoretical and practical promising

direction.

7.2.3 High-dimensional Causal Inference and Variable Se-

lection

Causal inference from observational data requires adjustment for all confound-

ing variables. In this thesis, we generally assume no unobserved confounders

(Assumption 4.1) and estimate treatment effects by controlling for all observed

covariates. However, in high-dimensional settings, the set of candidate control

variables is often quite large relative to the available sample size, and control-

ling for all observed covariates becomes infeasible in practice. Researchers have

recently noticed the importance of variable selection for causal inference with

high-dimensional covariates [81, 181].

141



Chapter 7 7.2. FUTURE DIRECTIONS

There are many methods for variable selection in high-dimensional predictive

machine learning. However, as we have discussed in Chapter 1, causal prediction

is different from associational prediction and the set of covariates useful for

prediction may be very different from that for causal estimation. In the age of big

data, with the use of high-dimensional electronic health records, administrative

databases, and large-scale genomic and imaging datasets getting increasingly

common [6]. The problem of high-dimensional causal inference and variable

selection for causal inference is getting even more urgent.

7.2.4 Learning Treatment Policy from Observational Data

Existing literature on causality has mainly focused on learning causal relation-

ships and estimating causal effects from observational data. Apart from causal

relationships and causal effects, a very important problem for learning with ob-

servational data is how to get an optimal treatment policy for future planning.

Given a set of treatment options, policy optimization or learning is the problem of

choosing the best option for each individual. To learn such policies, it is essential

for us to be able to evaluate the efficacy of an existing policy using observational

data. This is essentially a causal inference problem – estimating the treatment

effect of each treatment option induced by the target policy – and models and

techniques for causal inference can be adopted for this problem. Since the data

used for policy evaluation and optimization is off-line observations. This problem

is also called as off-policy optimization.

Recently, Lu et al. [103] proposed to combine RL with causal inference for

learning good polices from historical data with confounding bias. Their research

indicates that causality and RL are complementary and can be integrated from

the causal perspective to enhance both. Given the growing observational data

in healthcare [51] and online advertising [18], how to adapt techniques for ad-
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justing confounding bias from causal inference to develop effective algorithms for

learning treatment policies from observational data is an interesting direction for

future research.

7.2.5 Causality-based Machine Learning

We have shown that the research of learning causality from observational data,

including learning causal relationships and estimating causal effects, benefits

greatly from recent advances in machine learning. As indicated in [168] and

[220], causal information about the underlying data-generating process can in

turn help to understand the behaviour of the target system under changing,

unseen environments, and thus is able to facilitate solving a number of machine

learning problems such as semi-supervised learning, covariate shift, and transfer

learning [108, 151, 168, 218].

There is a growing interest in causality-based machine learning. Schölkopf et

al. [168] classify existing predictive machine learning tasks into causal learning

(predicting effect from cause) and anti-causal learning (predicting cause from

effect). More recently, causal models and causal inference techniques have been

adapted for learning generative models that we can intervene [92], for quanti-

fying algorithmic fairness [96, 107, 217] and for interpreting machine learning

algorithms [22, 121].

Causality focus on the underlying data-generating process of a system and

the causal relationships between variables. Causal information should be more

stable and robust to possible environment changing than the purely associational

information widely used in existing machine learning algorithms. As a result,

developing new machine learning algorithms and applications with causality in

mind is another promising research direction.
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A.1 Estimation of ATT

In the main text, we demonstrate the proposed method by focusing on the

estimation of ATE. If the estimand of interest is the ATE for the treated,

τATT = E[Y (1)−Y (0)|T = 1], the covariate distribution for our target population

is then pt=1
X := p(X|T = 1). The expected potential outcomes E[Y (0)|T = 1]

and E[Y (1)|T = 1] are estimated using importance sampling via

E[Y (1)|T = 1] = Ept=1
X

E[Y |X] =
1

n1

∑
i:Ti=1

Yi

E[Y (0)|T = 1] = Ept=1
X

E[Y (0)|X]

= Ept=1
X

E[Y |X,T = 0]

=
1

n0

∑
i:Ti=0

p(Xi|Ti = 1)

p(Xi|Ti = 0)
Yi

=
1

n0

∑
i:Ti=0

e(Xi)

1− e(Xi)
Yi

Apparently, we only need to weight the individuals in the control group to

match the treatment group. Define the importance weight for Xi as

Wi =

 1, if Ti = 1

e(Xi)
1−e(Xi)

, if Ti = 0
(A.1.1)

After Pareto-smoothingWi for individuals in the control group, we obtain the

Pareto-smoothed importance weights {W PS
1 ,W PS

2 , . . . ,W PS
n }, and the Pareto-

smoothed IPW estimator for ATT is defined as
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τ̂PSATT =
1

n1

∑
i:Ti=1

WPS
i Yi −

1

n0

∑
i:Ti=0

WPS
i Yi

=
1

n1

∑
i:Ti=1

Yi −
1

n0

∑
i:Ti=0

WPS
i Yi

(A.1.2)

The implementation procedure is summarized in Algorithm A.1.1

Algorithm A.1.1 Pareto-smoothed IPW ATT Estimator
Input: Observation data D = {(Xi, Ti, Yi), . . . , (Xn, Tn, Yn)}
Output: The estimated τ̂PSATT
1: Fit a treatment propensity model e(X) form D;
2: Calculate the importance weights for each unit by E.q(A.1.1) to obtain
{Wi, i = 1, . . . , n}

3: Sort the importance weights {Wi, i = 1, . . . , n} ascendingly to obtain the
sorted importance weights W[1],W[2], . . . ,W[n]

4: Choose the location parameter µ̂ by E.q(4.18)
5: Estimate the parameters σ and k by E.q(4.23)
6: Smooth the importance weights {W1,W2, . . . ,Wn} by E.q(4.25) to obtain

the Pareto-smoothed importance weights {WPS
1 ,WPS

2 , . . . ,WPS
n }

7: Estimate the ATE τ̂PSATT via E.q(A.1.2)

Moreover, in the case of estimating the ATT, the corresponding estimation

bias is defined as

BiasATT = |τ̂ATT − τATT | =

∣∣∣∣∣τ̂ATT − 1

n1

∑
ti=1

(Yi(1)− Yi(0))

∣∣∣∣∣
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A.2 Identifiability of Counterfactuals and Treat-

ment Effects

Since the training process of the CATE funciton τ(x) in our proposed mod-

els needs an estimation of the counterfactual outcome as an intermediate esti-

mand as in (6.7), we give a brief proof of the identifiability of the treatment

response function µt(x) = E [Yi(t)|Xi = x] from a set of observational data

D = {(xi, ti, yi) , i = 1, . . . , n}. This is realized by

E [Yi(t)|Xi = x] = E [Yi(t)|Xi = x, Ti = t] (by Assumption 6.1)

= E [Yi|Xi = x, Ti = t] (by Assumption 2.1)

As a result, under Assumption 2.1 and Assumption 6.1, we can estimate

µt(x) by fitting a prediction model E [Yi|Xi = x, Ti = t] from D. In practice,

this is realizable when the observational data satisfies the positivity assumption

(Assumption 6.2).

Furthermore, by the definition τ(x) = µ1(x) − µ0(x) = E [Yi(1)|Xi = x] −

E [Yi(0)|Xi = x], it is obvious that τ(x) is identifiable given that we can es-

timate µt(x) from observational data. Since ATE = E [τ (xi)] and ATT =

E [τ (xi) |ti = 1]. They are also identifiable.

A.3 Representation Balancing Metrics

In this section, we introduce the calculation of the IPM between two samples

when the function family F is F = {f : ∥f∥Hk
≤ 1} (MMD) where Hk is

a universal reproducing Hilbert kernel space and F = {f : f is 1-Lipschitz}

(Wasserstein distance) used in our experiments.
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A.3.1 Calculating the Empirical MMD

Denote the size of treated and control groups in a batch as B0 and B1. Samples in

the two treatment groups are then transformed into S0 =
{
ϕW (x01), . . . , ϕW (x0B0

)
}

and S1 =
{
ϕW (x11), . . . , ϕW (x1B1

)
}
by the representation learning network ϕW (·).

For a kernel k(·, ·) in the feature space Φ, the MMD of the two samples can be

written as

MMDk (S0, S1) =
1

B0 (B0 − 1)

B0∑
i=1

B0∑
v=1,v ̸=i

k
(
ϕw
(
x0i
)
, ϕw

(
x0v
))

+
1

B1 (B1 − 1)

B1∑
j=1

B1∑
v=1,v ̸=j

k
(
ϕw
(
x1j
)
, ϕw

(
x1v
))

+
2

B0B1

B0∑
i=1

B1∑
j=1

k
(
ϕw
(
x0i
)
, ϕW

(
x1j
))

In the experiment, we use the linear kernel k(x, x′) = |x− x′|. The corre-

sponding linear MMD is the distance between the embedded means of the two

groups, i.e.,

MMDk (S0, S1) = 2

∥∥∥∥∥ 1

B0

B0∑
i=1

ϕW
(
x0i
)
− 1

B1

B1∑
j=1

ϕW
(
x1j
)∥∥∥∥∥

2

A.3.2 Approximating the Wasserstein Distance

In the main text, the Wasserstein distance between two samples is defined as

an IPM with the function family F = {f : f is 1-Lipschitz}. However, it is not

clear how to compute it or its gradients with such a definition. In this section,

we introduce its original definition as a distance induced by solving an optimal

transport (OT) problem [139]
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WassC (S0, S1) := min
P∈Γn0,n1

⟨C,P ⟩

= min
P∈Γn0,n1

n0∑
i=1

n1∑
j=1

Ci,jPi,j

(A.3.1)

where Γn0,n1 =
{
P ∈ Rn0×n1

+ : P1n1 = n−1
0 , P T

1n0 = n−1
1

}
is the set of n0 × n1

matrices with non-negative entries and is called the set of couplings between S0

and S1; C is the transportation cost matrix with C(i,j) := c(ai, bj) the cost of

transporting a unit mass from ai ∈ S0 to bj ∈ S1. By this definition, computing

the Wasserstein distance involves solving a linear program and the solution P ∗ ∈

Γn0,n1 is called the optimal transport matrix. Historically, the IPM definition of

the Wasserstein distance is derived by recasting the OT problem in (A.3.1) into

its Lagrangian dual problem and several lines of algebraic manipulations.

Solving the linear program in (A.3.1) is prohibitively expensive for high-

dimensional covariates. In our experiment, we followed [178] and approximated

the empirical Wasserstein distance between the two transformed samples S0 ={
ϕW (x01), . . . , ϕW (x0B0

)
}
and S1 =

{
ϕW (x11), . . . , ϕW (x1B1

)
}
through the Sinkhorn-

Knopp matrix scaling algorithm from [32]. In the implementation, the B0 × B1

transportation cost matrix C in for each batch is calculated by

Ci,j = c (xi, xj) =
∥∥ϕW (x0i )− ϕW (x1j)∥∥2

With this transportation cost matrix, the optimal transport matrix P ∗ is

approximated using Algorithm 3 of [33].

A.4 Hyperparameters

In all experiments, we applied the Xavier initialization for weight matrices, bias

vectors are initialized by 0, and scalar biases are initialized by 0.1, dropout
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Table A.3.1: Hyperparameters and ranges

IHDP Twins Jobs
Outcome prediction parameter, γ

{
10−k

}2
k=0

{
10−k

}2
k=0

{
10−k

}2
k=0

Representation balancing parameter, α
{
10−k

}4
k=2

{
10−k

}4
k=2

{
10−k

}4
k=2

Weight-decay parameter, λ
{
10−k

}4
k=2

{
10−k

}4
k=2

{
10−k

}4
k=2

Num. of hidden layers 2,3 2,3 2,3
Dim. of hidden layers 50,100,200 50,100,200 50,100,200
Batch size 200,500 200,500 200,500

Table A.3.2: Optimal hyper-parameters for CENet on each dataset

IHDP Twins Jobs
Outcome prediction parameter, γ 1 1 1
Weight-decay parameter, λ 0.01 0.01 0.0001
Num. of outcome prediction layers 3 3 3
Num. of CATE layers 2 3 3
Dim. of outcome prediction layers 200 200 200
Dim. of CATE layers 200 50 50
Batch size 500 200 500

Table A.3.3: Optimal hyper-parameters for BCENet on each dataset

IHDP Twins Jobs
Outcome prediction parameter, γ 1 1 1
Representation balancing parameter, α 0.0001 0.001 0.0001
Weight-decay parameter, λ 0.01 0.01 0.0001
Num. of representation layers 2 2 3
Num. of outcome prediction layers 3 3 3
Num. of CATE layers 2 3 3
Dim. of representation layers 200 200 200
Dim. of outcome prediction layers 200 200 200
Dim. of CATE layers 200 50 50
Batch size 500 200 500

rates in all hidden layers are set to 0.1. The search range of neural network

hyperparameters are listed in Table A.3.1. Hyperparameter configurations of

the proposed CENet and BCENet models for the three benchmark datasets are

listed in Table A.3.2 and Table A.3.3 respectively.
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A.5 Additional Experimental Results

More results for simulation studies are illustrated in Fig.A.5.1-A.5.4.

Figure A.5.1: ϵoutITE in terms of the imbalance parameter η for different sample
size n.
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Figure A.5.2: ϵoutITE in terms of sample size n for different imbalance parameter
η.

Figure A.5.3: ϵoutATE in terms of the imbalance parameter η for different sample
size n.
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Figure A.5.4: ϵoutATE in terms of sample size n for different imbalance parameter
η.
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