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Abstract

Several recent machine learning publications demonstrate the utility of using fea-
ture selection algorithms in supervised learning tasks. Among these, sequential fea-
ture seleclion algorithms are receiving attention. The most frequently studied vari-
ants of these algorithms are foruard and backward, sequential selection. Many studies
on supervised learning with sequential feature selection report applications of these
algorithms, but do not consider variants of them that might be more appropriate
for some performance tasks. This paper reports positive empirical results on such
variants, and argues for their serious consideration in similar Iearning tasks.

1 Motivation
Feature selection algorithms attempt to reduce the number of dimensions considered in a task so

as to improve performance on some dependent measures. In this paper, we restrict our attention to
supervised learning tasks, where our dependent variables are classification accuracy, size of feature
subset, and computationa.l efficiency.

Feature selection has been studied for several decades (e.g., Fu, 1968; Mucciardi & Gose, L971;

Cover & van Campenhout, 1977). Several publications have reported performance improvements
for such measures when feature selection algorithms are used (e.g., Almuallin & Dietterich, 199L;

Doak, 1992; Kononenko, 1994; Caruana & Frietag, 1994; Skalak, 1994; Moore & Lee, 1994; Aha
& Bankert, lgg4; Townsend-Weber & Kibler, 1994; Langley & Sage, 1994). Feature selection
algorithms are typicaliy composed of the following three components:

1. Search algorithm This searches the space of feature subsets, which has size 2d where d is
the number of features.

2. Evaluation function This inputs a feature subset and outputs a numeric evaluation. The
search algorithm's goal is to maximize this function.

3. Performance function The performance task studied in this paper is classification. Given
the subset found to perform best by the evaluation function, the ciassifier is used to classify
instances in the dataset.

Doak (1992) identified three categories of search algorithms: exponential, randomized, and sequen-
tial. Exponential algorithms (e.g., branch and bound, exhaustive) have exponential complexity in
the number of features and are frequently prohibitively expensive to use (i.e., they have complexity
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O(2\, where d is the number of features). Randomized algorithms include genetic and simulated
annealing search methods. These algorithms attain high accuracies (Doak, 1992; Vafaie & De Jong,
1993; Skalak, 1994), but they require biases to yield small subsets. How this is best done remains
an open issue. Sequential sea,rch algorithms have polynomial complexity (i.e., O(d2)); they add
or subtract features and use a hill-climbing search strategy. We are investigating frequently used

va.riants of these algorithms (Aha & Bankert, 1994).

The most common sequential search algorithms for feature selection arc forward sequential
selection (FSS) and, backward sequential selection (BSS), and we focus on these algorithms in this
paper. FSS begins with zero attributes, evaluates all feature subsets with exactly one feature, and
selects the one with the best performance. It then adds to this subset the feature that yields the
best performance for subsets of the next larger size. This cycle repeats until no improvement is
obtained from extending the current subset. BSS instead begins with all features and repeatedly
removes a feature whose removal yieids the maximal performance improvement.

Doak (1992) reported that BSS frequently outperformed FSS, perhaps because BSS eva,luates

the contribution of a given feature in the context of all other features. In contrast, FSS can evaluate
the utility of a single feature only in the limited context of previousiy selected features. Caruana
and Frietag (1994) note this problem with FSS, but their results favor neither algorithm. Based

on these observations, it is not clear whether FSS will outperform BSS on a given dataset with an

unknown a,mount of feature interactions. Therefore, we study both in this paper.

Doak (1992) evaluated a bea,rr search va,riant of FSS and noted that it frequently outperformed
FSS. He predicted that a similar variant of BSS would outperform BSS. We investigate both
variants in this paper.

This paper focuses on variants of BSS and FSS and their application to a sparse data set of
particular interest to the Naval Research Laboratory's Marine Meteorology Division. We define a

space of parameterized algorithms in which these algorithms a,re two of many possible instantiations.
We show that feature selection improves the performance of a case-based classifier on this dataset,
provide evidence for John, Kohavi, and Pfleger's (1994) conjecture that wrapper models outperform
filter models, and provide evidence against Doak's (1992) ciaim that BSS should be preferred over
FSS. Finally, we show that variants of BSS and FSS can frequently outperform them, and argue
that simila^r variants should always be tested when possible.

2 Cloud Pattern Classification Task

Feature selection algorithms hold the potential to improve classification performance for sparse
datasets with many features. Thus, when we encountered a cloud pattern classification dataset
provided by the Marine Meteorology Division of the Naval Research Laboratoryl that contains
98 features but only 69 instances, we expected it to be an ideal dataset for testing sequential
selection variants that use classifiers which perform poorly in the presence of many features with low
relevance. It is well known that nearest neighbor algorithms perform poorly under such situations
(e.g., Aha, 1992). However, such non-parametric classifiers a,re excellent choices for evaluation
functions since manual parameter-tuning is not feasible whenever a la,rge number of (different)
feature subsets must be evaluated. Therefore, we chose IB1 (Aha, 1992) as the ciassifier; it is an
implementation of the nearest neighbor classifier.

The features used to describe each instance consist of shape, size, spectral, and textural measures

lBankert (1994b) describes feature selection experiments with a varia.nt ofthis dataset, but the differences in these
datasets prevent a direct comparison. Evaluations on additional datasets will be discussed in extended versions of
this paper.

2



Inputs:
S: Search algorithrn
E: Evaluation function
q: Size of the queue
rn: Number of states evaluated per iteration
z: Number of subsets evaluated per state

Partial Key:
queue: An ordered queue of states
best: The best-performing state

BEAM (S,E,q,m,n)
1. queue = Initialize-queue(5,.E)
2. best = Initialize-best(queue)
3. I{hile (queue is not enpty) do:

A. states = Select-states(queue,rn)
B. evaluations = Evaluate-states(,5,-E,states,n.)
C. queue = Update-queue(states,evaluations,queue,g)
D. best = Update-best(best,queue)

4. Output: best

1: BEAM: A Framework for S uential Feature Selection

for each cloud pattern region. p;amples of each group include such features as compactness,
perimeter size, maximum pixel value, and cluster prominence, respectively. All features are defined
over a continuous range of values. Bankert (1994a; 1994b) describes these features in more detail.

3 Eramework

In our experiments, we investigated using FSS and BSS as the search algorithm, and we used
IB1 as the classifier. We used both IB1 and the Calinski-Harabasz sepa,rability index measure
as the eva.luation function.2 Our selection of these two evaluation functions was motivated by the
hypothesis that wrapper models, which use the classifier itself as the evaluation function, outperform
fi,ltermodels, which do not. This was conjectured by John, Kohavi, and Pfleger (1994). Doak (1992)
cited some informal evidence for this conjecture but did not describe a detailed analysis.

Three additional search-related variables were varied in our experiments that allowed us to test
variants of FSS and BSS. These variables constra.in how a beam search is conducted. Figure 1

describes our parameterizable fra,mework, which we refer to as BEAM. Briefly, BEAM implements
beam-search variants of the given search algorithm. A queue of states is maintained, where a state
is a subset of features and an indication as to which subsets immediately derivable from it have not
yet been evaluated. The evaluation of each state is maintained with it on the queue. Initialize-queue
initializes the queue with either the complete set of features (for BSS) or the empty set (for FSS).
Its evaluation is computed, and this is recorded as the initial besf state. BEAM then loops until the
queue is empty. The first step of the loop stochastically selects rn states from the queue, where states

2Miligan and Cooper (1984) found this index to perform best among 30 separability indices in their experiments.
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Table 1: Best and Averages (Accuracy, Size of Selected Subset, and Number of Subsets Evaluated)
for IB1 When Using FSS and BSS (with a Queue Size of One) for Two Different Evaluation
Functions

Search EvalFn Best Averages
Acc Sz #Eval Acc Sz fEval

IB1 62.3T0 98 1

FSS IB1 8e.e% 6 4,852 88.1% 13.1 4,852.0

BSS IBl 84.L% 18 4,699 79.97 30.8 4,343.8

FSS Index 66.7% 20 4,852

BSS Index 68.1% 45 4',849

higher in the queue have a higher probability of being selected.3 The next step evaluates n subsets
derivable by search algorithm ^9 from each of these rn states using evaluation function -E. The
queue is then updated; states that have been exhaustively searched by ^9 are dropped, and newly-
evaluated states that are among the current top g states are integrated into their appropriately
ordered locations in the queue. Finally, the best state located so far is maintained in best. After
the queue has been exhausted, this best state is output for use by the classifier.

4 Empirical Comparisons

All experiments were run using a leave-one-out strategy. We report averages for ciassification
accuracy, size of selected feature subset, and number of subsets evaluated. Averages were computed
over ten runs for all the experiments in which IB1 was used as the evaluation function. Our
implementation of the separability index measure is deterministic, so only one run was used for
experiments where it was used as the evaluation function.

The following subsections report on our results from exploring four hypotheses.

4.1 Appropriateness of feature selection

Since this dataset is sparse (i.e., 98 features, only 69 instances) and several features have un-
known and possibly low classification relevance, we expected feature seiection to improve IBL's
performance.a Table 1 displays the results for IB1 and for four feature selection algorithms (i.e.,
the FSS and BSS search algorithms were tested using both IBl and the Calinski-Harabasz sep-

a.rability index as the evaluation function). Feature selection consistently increased accuracy and
reduced feature set size. These results support this hypothesis.

4.2 Superiority of wrapper model

Two evaluation functions were compared: IB1 and the Calinski-Harabasz separability index. We
expected that, since IB1 was also used as the classifier, using it as the evaluation function would
yield superior results.

3More specifically, this function selects ordered state d with probability P(i) : (O - i ." 1) I D|=rj, where g is the
size of the queue.

{When this dataset was constructed, all 98 features were chosen under the assumption that they moy provide
useful information for classifying cloud patterns. However, no verification was performed to ensure that the chosen
features are predictive of particular cloud patterns. Some of the features are known to be relevant for discriminating
some cloud pattern classes, but their relevance for distinguishing all cloud patterns is unknown.
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Best Averagesrn n
Acc Sz fEvaJ Acc Sz ffEvaI

Search

1 1 9L.3To 20 57,L22 87.8% 27.8 56,387.4FSS

110,058 89.3% 19.7 117,015.1FSS 1 all 94.2Y0 22

114,850 94.2To L3.7 114,854.9FSS all all 95.7Yo 16

BSS 1 1 89.9Yo t2 2,877 86.8% 10.0 3,918.9

1 all 9l.3Yo 10 8,031 86.5% 10.6 10,764.5BSS

23.6 i04,837.3BSS all ali 87.0% 11 110,881 84.7%

Table 2: Best and A when IB1 as the Evaluation Function and a ueue Size of 25

As shown in Table 1, the performance of the standard FSS and BSS algorithms (i.e., q = l,
rn = L, n = all) is much lower when using the separability index measure rather than IBl as

the evaluation function. This supports our hypothesis. We believe the reason for this is that the
separability index measure's bias is difierent than IBI-'s bias. Therefore, the index measure will
not necessa,rily select a good-performing subset for IB1.

4.3 BSS outperforms FSS

Doak (1992) found that BSS often outperformed FSS in his studies, but he examined smaller

numbers of features in his task. We were unsure which algorithm would yield better results.

The differences in accuracy for FSS and BSS were significant according to a one-tailed t-test
(p < 0.05). FSS also found significantly (p < 0.05) smaller subset sizes but required significantly
more evaluations (p < 0.1).

Table 2 summarizes the results for the two search algorithms when we varied the number of
states selected per evaluation (rn) and the number of subsets eva,luated per selected state (n) while
using a queue size (q) of.25. Although FSS's average accuracy is higher for all three variants, it is
significantly higher only for the third variant (p < 0.01), it yields significantly larger-sized subsets

only for the first variant (p < 0.1), and evaluated significantly more subsets (p < 0.05) in all three

cases.

The accuracy results differ from the majority of results found by Doak (1992). We suspect that
BSS is more easily confused by la,rge numbers of features because the deletion of a single feature,
though perhaps relevant, can have less effect in the presence of a larger number of features. We

plan to explore this hypothesis further in systematic experimentation with artificially generated

data. However, the general pattern found here suggests that FSS is preferred when the optimal
number of selected features is small while BSS is preferred if otherwise. This also suggests that
BSS's performance can be enhanced in these situations when it is biased towards using small-sized

subsets of features. We show evidence for this in (Aha & Bankert, 1994). Similarly, in situations
when most features are relevant, the performance of FSS can probably be enhanced when it is

biased to begin searching with large-sized subsets of features.

4.4 Beam search variants outperform standard FSS and BSS

Caruana and Frietag (1994) report evidence for this hypothesis when using combinations of these

algorithms, but not for simple extensions of them. Doak (1992) found that a beam search version

of FSS was preferable to it, but did not eva.luate such extensions of BSS.
The accuracies for the beam searching variants in Table 2, for which the queue size was 25,
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were aII higher than when the queue has size one (Table 1). These diferences were significant for
the third variant of FSS and all variants of BSS (p < 0.05). Furthermore, the BSS beam-search
variants also significantly reduced the size of the selected feature subsets (p < 0.1). However,
these sizes increased significantly for two of the FSS variants (p < 0.05). Finally, the number of
evaluated subsets significantly increased for five of the variants (p < 0.005), though this decreased
significantly for BSS (m = \,n = 7) (p < 0.1).

In summary, many beam search variants of the standard sequential feature selection approaches
can significantly increase classification accuracies on this task. Simultaneously, some can also
significantly reduce the size of the subsets located, but they tend to significantly increase sea.rch

requirements (i.e., the number of subsets evaluated).

5 Conclusions

This paper examines variants of forward and backward sequential feature selection algorithms for
a cloud pattern classification task defined by a sparse dataset with numerous features. When using
a nearest neighbor algorithm as the classifier, our results show that (1) feature selection improves
accuracy on this task, (2) using the classifier as the evaluation function yields better performance
than when using a sepa^rability index, (3) BSS does not always outperform FSS (contrary to some
claims), and ( ) beam sea,rch variants of these algorithms can improve accuracy, at least on this
task.

We found similar results with other datasets and plan to discuss them in extensions of this paper.
Additional studies also showed that using random initial subset selection with a comparatively small
number of features drastically reduced the amount of search performed by BSS without sacrificing
accuracy.
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