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Abstract
This paper compaxes two formalisms for uncertain inference, Kyburg's Combinatorial Semantics
and Dempster-Shafer belief function theory, on the basis of an example from the domain of
medical diagnosis. I review Shafer's exa.m.ple about the imagrnary disease ploaorna and show
how it would be represented in Combinatorial Semantics. I conclude that belief function theory
has a qualitative advantage because it offers greater flexibility ofexpression, and provides results
about more specific classes of patients. Nevertheless, a quantitative comparison reveals that the
inferences sanctioned by Combinatorial Semantics a,re more reliable than those of belief function
theory.

1 Introduction
This paper compaxes Kyburg's Combinatorial Semantics (CS) and Dempster-Shafer belief function the

ory (BFT), two formalisms for representing uncertain inference from statistical data. I reconsider a medical
diagnosis exa^rnple introduced by Shafer [13] concerning the imaginary disease ploaorna. In Section 2, I cite
Shafer's exa,mple and sketch the steps of its treatment using BFT. Section 3 presents a pr6cis of Combi
natorial Semanticsl, and Section 4 shows how the ploxoma exa^mple ca^n be handled in the CS framework.
Section 5 draws conclusions from this comparison. One of the operations applied in the BFT analysis cannot
be translated into CS, and CS groups together two classes of patients that BFT can distinguish. I compute
new belief functions after eliminating from 11rg sxample those elements that are problematic for CS. While
BFT appears on qualitative grounds to be more flexible and informative, a quantitative comparison shows
that the conclusions sanctioned by CS ure more reliable. BFT's results may not couform to frequencies
observed in the real world; those of CS do.

Many authors, including [6, 10, 12], have observed that belief functions lack a simple frequency inter-
pretation. The contribution of this paper is a comparison between BFT and CS, discussed here for the
first time. In the tradition of Smets [14, 15], I center my investigation on a concrete instance chosen not as
a counterexa,rrple, nor as a philosophical conundrum like the three prisoner problem [4, 5], but as a basis
for contrasting alternative analyses. A good exarnple is a valuable tool to isolate the points of difierence
among theories, and to identify their strengths and weaknesses. Shafer's ploxoma story suits this purpose
well because it is fairly realistic and has a rich structure that calls for a variety of belief function operations.

2 Shafer's Ploxoma Example
Shafer [tg, p. 331] uses the exarnple of an imaginary disease ploxoma to illustrate how belief functions

could be used to model uncertainty iu medical diagnosis.

Imagine a disorder called "ploxoma" which comprises two distinct "diseases": 9r : "virulent
ploxoma", which is invariably fatal, and dz : "ordinary ploxoma", which varies in severity and
ca^n be treated. Virulent ploxoma ca.n be identified unequivocally at the time of a victim's death,
but the only way to distinguish between the two diseases in their early stages seems to be a blood
test with three possible outcomes, labelled n1, n2 atd ca. The following evidence is available:
(i) Blood tests of a la"rge number of patients dying of virulent ploxoma showed the outcomes
fit, fi2 and ca occurring 20,20 and 60 per cent of the time, respectively.
(ii) A study of patients whose ploxoma had continued so long as to be almost certainly oydinssy
ploxoma showed outcome or to occur 85 per cent of the time and outcomes 02 and s3 to occur
15 per cent of the time. (The study was made before methods for distinguishing between 12
and 13 were perfected.) There is some question whether the patients in the study represent a

lCombinatorial Sema,ntics [7] provides the semantic underpinnings for Evidential Probability [8]
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BEhzs 0r fi; BEhzs\ 0z lci) BBhzsl ovozl t;
fi1
I2
fi3

0.014
0.062
0.165

0.965
0.918
0.782

0.021
0.020
0.053

Table 1: BEhze conditioned on results of blood test

fair sample of the population of eldinavy ploxoma victims, but experts feel fairly confident (say
75 per cent) that the criteria by which patients were selected for the study should not afiect the
distribution of test outcomes.
(iii) It seems that most people who seek medical help for ploxoma axe suffering from orrlinary
ploxoma. There have been no careful statistical studies, but physicians are convinced that only
5-15 per cent of ploxoma patients suffer from virulent ploxoma.

The three items of evidence are represented by three belief functions (BEtr1, BEI4, BEh) whose fra,rre of
discernment is the cross product of disease and blood test result: lv = {fu,02} x {cr, r2,fis}. The study of
virulent ploxoma can be represented by a belief function BEf,o defined over O = { (0r , cr ), (h, az) , (il, ss)} .

But we need a belief function defined over all of A, not just a subset of A. We conditionally embed BEL,
in A to obtein BEh. The study of ordinary ploxoma can be represented by a belief function BEtrp defined
over O : {(0z,rt),(0z,rz),(0z,rs)}. To capture the experts' misgivings about the sa,mple selection in
this study, we d,iscount BELp at the rate of 0.25, yielding BEI1. We conditionally embed BEIa ia lt to
obtain BEI4. The third item of information can be represented by a belief firnction BEL5 defined over
O : {0r, 02}. We minimally extend BELy to obtain BEIa defined over A. The belief functions for the three
pieces of evidence are then combiued using Dempster's rule of combination, yielding BELps. The last step
is to condition BEhzs on the results of the patient's blood test (Table 1, corresponds to Shafer's Table 3

[13, p. 332]). Complete details of this derivation may be found in [1].

3 Pr6cis of Combinatorial Semantics

When we have data that are not entirely conclusive, but that support a particular hypothesis to some
degree, we may choose to accept the the hypothesis, provided the uncertainty does not seem unacceptably
high. Kyburg's Combinatorial Semantics [7] seeks to formalize inference from a set of sentences I to a
sentence /, where I does r.ot entail {, but to some extent justzfies 4.

3.1 Syntax ofthe Language
Kyburg's logic is two-sorted. The empirical sort is used to describe the domain of discourse. The

mathematical sort is intended to represent real numbers. Predicate symbols, function symbols, and variables
for the empirical part of the language are as in standard first order logic. The mathematical sort includes
mathematical rariables, the constants 0 and 1, and the standard operations and relations for real numbers.
Kyburg introduces a special variable binding operator, denoted by 'To', that relates formulas and real
numbers. 'Vo($,d,p,g)'is awell-formedformulaif (i) r/ and @areopenformulashavingnofreemathematical
variables, and the free empirical variables of @ include all those of {;2 (ii) p ed q are mathematical variables
or rigid real number designators. This type of formula will be called stotisticol, ar.d we will refer to '%'
as the statistiu,l operator. This sentence means: among those objects in the empirical domain that satisfy
{, the proportion of objects that also satisfy ry' lies between p and {, inclusive. For exarnple, the formula
'%(practices-sports(r),resideut-of(o,Colorado),0.70,0.80)' says that somewhere between TOVo and
80% of Colorado residents practice sports.

3.2 Semantics for the Language
A model M for this language is a tuple (D*,D",€^,$) where D- and €^ (D" and €", respectively)

are the domain and interpretation function for the mathematical (empirical) part of the language. The
empirical domain D" is constrained to be finite so that the "proportion" involved in the semantics of
the statistical operator is well-defined. The definition of truth for statistical statements involves a new

2In addition, ry' must belong to the class of target formulas and { to the class of reference formulas--see [7] for details.
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concept, the satisfaction set of a formula / with respect to a model M: SSpl(g). If O is a closed formula,
then SSr't (d) = D" iff d is true in M, and SSu@) : 0 otherwise. If { is an open formula having n
free empirical variables and no free mathematical variables, the satisfaction set of @ is the subset of. D!
for which yt4 makes @ true. SSu@) is undefined when @ has free mathematicat rariables. If @ consists
of an n-ary empirical predicate symbol 'pred' followed by n empirical variables, then SSu@) is simply
{"('pred'). For exa,rrple, SSy('plays-sport(p,s)') is the set of pairs (p,s) of elements in the empiriial
domain of vtZ such that person p plays the sport s. But not all the terms following the predicate symbol
need be variables. S,Sp1 ('p1ays-sport(p, tenais)') is the set of tennis players. Note that the free variables
in @ may occur as arguments to function symbols. SSs('plays-sport(brother-of(p, john),tennis),) is
the set of tennis-playing brothers of John.

A statistical formula '%(1h,$,p,g)' is true with respect to a model M atd a variable assignment u exactly
when (i) SS*r@) is non-empty, and (ii) p S {#ffi < q. If either condition fails to hold, the statistical
formula is false in M. Since the empirical domain D" is constrained to be finite, SSu@) a.ud SSr{(d A U)
are likewise finite and the ratio in condition (ii) is well-defined (so long as SSu@) is non-empty).

3.3 Partial Entailment
The criterion of validity for deductiue inference is: I entails / if and only if every model that makes

the sentences of I true also ma^kes / true. This criterion is too strong for uncertoin inference. Kyburg
proposes the criterion of. partial entailment, which captures the idea that the inference from I to / is
justified (although not valid) if / is true in some proportion (elmes{, all) of the models in which I is true.
We say that I portially entails, to the degree fp,ql, the formula { (writteu I Fp,rt /) if, among the models
that make I true, the proportion that also make { true lies between p and g, inclusive.s The proportion is
well-defined: there can only be a finite number of models for the empirical part of the language, because
the language itself is ffnits and the empirical domain is finite.

What is the relation between partial entailment and uncertain inference? If I pp,o1 Q md p is sufficiently
close to 1, then we regard the inference from I to @ as warra;oted. f justifies the acceptance of. $. How do
we decide if p is "sr'fficiently close" to 1? That depends on the situation: we set the threshold of acceptaace
at a level appropriate to the contoct in which we axe reasoning.

3.4 Statistical Formulas and Partial Entailment
Suppose we know that betweet T0% and 90% of all lap swimmers wear swim goggles, and Jane is a lap

swimmer.
%(rears-goggles(r), tap-swimer(c), 0.70, 0.90)
1ap-suinmer(j aae)

What can we conclude about whether Jane wears swim goggles? Theorem 1 tells us that fr pa,rtially entails,
to the degree [0.70,0.90], the sentence 'vears-goggres(jaae)'. We may or may not want to accept this
sentence based ou our knowledge of the two premises. It depends whether we think 0.70 is sufficiently close
to 1 for us to consider the inference warranted.

Theorem 1
'Vo(A(r) ,B(r) , p, q)'
'B(a)' Fh,ql 'A(a)'

It turns out that lap swimmers who prefer the backstroke do not need swim goggles as much as other
lap swimmers do. So among backstroke lap swimmers, only 50% to 60% wear swim goggles. F\rrthermore,
we learn that Jane is a lap swimmer who prefers the backstroke. Our database of knowledge now contains:

fr=

lz=

Of course, we know that all backstroke lap swimmers are lap swimmers.
Vr ( (Iap-suimer(c) A backstroke- svinmer(r) ) -r f ap- srinner(r) )

sThe idea of partiat entailment explained here is a simplification: the full definition of this concept is much more complex
(see [7, Section 5]). But this simplified version will be adequate for our purposes.

% (wears-goggles(r), lap-snimer(o), 0.70, 0.90)
% (wears-goggles(c), lap-swinmer(r) n backstroke-swimer(c), 0.50, 0.60)
1ap-swiuner(j ane)
backstroke- suimer( j ane)
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What do we Dow conclude about whether Jane wears swim goggles? We have gqnfisllsg statistics for lap
swimmers in general and for lap swimmers who prefer the backstroke. But since we know that Jane herself
prefers the backstroke, we select the more specific reference class instead of the broader one. Theorem 2
tells us that Iz partially entails, to the degree [0.50,0.60], the sentence 'wears-goggles(jaae)'.

Theorem 2, the principle of specificity, says that when we have conflicting statistical information, we
guide our judgment by the most specific reference class. What is meant by "conflicting" statistical infor-
mation? We say that two intervals [p,q] aod lr,s) d,ifier when neither is included in the other (they may
partially overlap, or they may be disjoint).

Theorem 2 If DIF(Lr,gl,[r,s]), then
'%(t(r),t(r),p,q)'
'%(t(r),c(a), r, s)'
'Ya(c(r) -r B(r))'

F1,,"1 'A(a)'

The case of two statistical statements in which the interval of one is wholly included in the interval
of the other falls under a difierent principle, that of strength [7, Section 8][8, pp. 380-331]. The principle
of strength requires a more complex definition of partial entailment than the one given above. I have
summarized here only the concepts of CS that are necessaxy for the analysis of the ploxoma o<a,mple.

4 Combinatorial Semantics Analysis of Ploxoma Example

T'lo compute interval estimates, we need to know how many patients participated in the epidemiological
studies. Suppose we were told that the study of virulent ploxoma involved a total of 200 patients, of whom
40 had blood test result 11, 40 had test result 02, and 120 had test result 13. The study of ordinary ploxoma
involved a total of 1000 patients, of whom 850 had test result 01, &Ild 150 had test result 12 or 13. Since
ordinary ploxoma is more common than virulent ploxoma, it is not surprising that the second study had a
much larger sample size tha,n the first. Flom these data we calculate intervals at the 99% confidence level,
which we then incorporate into the statistical formulas (1)-(5).

(1) %(blood-xt(y), virulent(y),0.137, 0.282) (4) %(b1ood-x1(y), ordiuary(y),0.819,0.877)
(2) %(blood-x2(g), virulent(y),0.137, 0.282) (5) %((brooa-x2(s) v blood-x3(y)),
(3) %(blood-x3(y), virulent(g), 0.509, 0.685) ordiuary(g),0.123,0.181)

Formulas (6) and (7) capture the opinion of doctors concerning the preralence of virulent ploxoma.

(6) %(virulent(y),ploxona(g),0.05,0.15) (7) %(ordinary(y),ploxona(y),0.85,0.95)

What about the complication that scientists are only (as Shafer puts it) 75% sure that the results of the
second ploxoma study are reliable? There is no good way to represent this information in the CS fra,mework.
One could consider two ways to take this aspect into account: (i) broaden the intervals in formulas (a) and
(5), to indicate greater ignorance about the true proportion of blood test result frt (rz, ca) among orrlinary
ploxoma patients, or (ii) compute intervals at a lower confidence level. The problem with (i) is: by how
much do we broaden the interval? What principle would sanction the choice of this number? The problem
with (ii) is: the confidence level associated with a,n intenral estimate does not represent a judgment of how
well the experiment was designed. The 75% confidence interval would in fact be narrower than the 99%
interval. AII in all, it seems wise to refrain from adjusting our confidence intervals in ways that have no
foundation in statistical theory. We will therefore proceed as if we had no doubts about the quality of the
data from the second ploxoma study.

John walks into the doctor's office, sufiering from ploxoma.a His blood test result is 11. We cannot
infer anything about John from the statistical statements (1)-(5), because we do not know whether John
belongs to the reference class of virulent or of ordinary ploxoma patients: indeed, this is precisely what we
want to find out. Obviously we need to turn these statistics around to get an estimate of the incidence of
virulent ploxoma a.rnorrg ploxoma patients with test result 11. Bayes' Rule allows us to do this.

pr(A.t,n.\ - 
Pr(oiPr(rtlo;)

P r (0 1) Pr (ar 
I 

gr ) + P r (0 2) P r (r110 2)

ashafer assumes that we already know the patient is suffering from ploxoma; the task is to estimate the risk of virulent
ploxoma based on the result of the blood test. Apparently there is no danger of confusing ploxoma with some other disease.

'B(")'
'c(a)'
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In this equation we consider only ploxoma patients, so 01 (virulent) and 0z (ordinary) together partition
the sa.mple space. We a^re interested in an interlal, not a point estimate, for Pr(011r1). To calculate the
lower bound on this interval, we minimize fhs nrrrnslalor of the fraction by taking the lower bound for
Pr(01) and' Pr(r101), which forces us to take the upper bound for Pr(02) and, Pr(r1102). To calculate the
upper bound on this interval, we ma,:<imize the numerator of the fraction by taking the upper bound for
Pr(0) and' Pr(r1101), which forces us to take the lower bound for Pr(02) and Pr(a1102). Substituting the
appropriate values from formulas (1), (4), (6), and (7), we obtain the desired statistical statement.

(8) %(virulent(y), (ploxona(y) n bLood-x1(g)),0.008,0.052)

When we try to do the sa,me with formula (2), we run into difficulty. To calculate Pr(01x2), we would have
to know Pr(a2102). But we have only Pr((r2v q)102), because the az patients and the os patients were
grouped together in the study of ordinary ploxoma. Instead of. Pr(01r2), we must content ourselves with
Pr(011(r2 v cs)). We have to rer-examine the data from the first ploxoma study to compute a confidence
interval for Pr((r2 v o3)101). Of the 200 virulent ploxoma patients who participated in the study, the
combined total for rz a\d, o3 test results is 160. This yields the confidence interrral in (g). We ca^n now
calculate the upper and lower bounds for Pr(011(r2 V os)), as well as Pr(021a) and, Pr(021(n2v ns)).

(9) %((blooa-x2(y) v blood-x3(y)),virulent(y),0.718,0.863)
(10) %(virulent(y), (ploxona(y) n (urooa-x2(y) Vbrood-x3(y))),0.173,0.853)
(11) %(ordinary(y), (ptoxona(y) n blood-x1(y)), 0.948,0.992)
(12) %(ordiuary(gr), (ptoxona(g) n (blooa-x2(y) V brood-x3(y))),0.447,0.822)

Now what can we say about John the ploxoma patient with blood test result 11? There are two pairs
of statistical statements that apply to John: (6) and (7), (8) and (11). By the principle of specificity
(Theorem 2), (8) takes precedence over (6), and (11) takes precedence over (7). Our knowledge base
partially entails, to the degree [0.008,0.057], the sentence'viruleut(jou)'; it partially entails, to the
degree [0.943,0.992], the sentence 'ordinary(john)'. Depending on our tbreshold for acceptance, we may
want to accept the latter sentence. What about Peter, a ploxoma patient whose blood test result is 12?
Again, there are two pairs of statistical statements that apply to Peter: (6) and (7), (10) and (12). By the
principle of specificit5 (10) takes precedence over (6), and (12) takes precedence over (7). Our knowledge
base partially entails, to the degree [0.173,0.553], the sentence (viruleut(peter)'; it partially entails, to
the degree 10.447,0.82\, the sentence'ordinary(peter)'. We cannot accept either of these, because in each
case the lower bound of the confidence interval does not exceed 0.5. If Peter's test result had been ca,
we would have drawn the same conclusion: we do not have enough information to distinguish between the
r2's and the e3's when it comes to judging their risk of virulent ploxoma. Iu sum, a blood test result of
c1 strongly suggests that the patient has ordinary ploxoma, but a result of a2 or 13 does not give a clear
indication either way.

5 Comparison of the Two Approaches

Having represented the ploxoma gxa-ple using belief functions and Combinatorial Semantics, we can
compaxe these approaches both qualitatively and quantitatively. Qualitatively, BFT seems to be more
flexible. The discounting operation (applied in the derivation of. BEIa) allows us to express the doubts we
may have s6ngsming the reliability of the evidence at our disposal As we have seen, there is no counterpart
to this operation in CS. With BFT, we can condition BEL1y2s on ,2 or on ca individually, even though the
second ploxoma study does not distinguish between them. With CS, we have to merge these two classes of
patients. We seem to be losing information that the first study gives us about the difference between 12
and ca: result 13 is more common than c2 among virulent ploxoma patients.

To make 6 glganingful quantitative comparison of the two techniques, we must be sure the numbers we
compaxe are based on the sa,me problem description. First, we must recompute BEIa without discounting
the second item of evidence. This in turn forces us to recompttte BEIa23, giving w BEL/rrr. Second, we
must condition BELlr2s on the set {o2,o3} instead of the singleton sets {c2} and {r3}. tle results are
shown in Table 2. (See [1, Appendix] for the details of this recalculation.) We now consider the interval
[belief,plausibility] for virulent and ordinary ploxoma according to the blood test result. Table S sets side
by side the belief-plausibiiity intervals and the degrees of partial entailment from CS. In each case, the
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BEL\,A( 0r 'lx;) BEUr"(l0zl fri BEUr"l 0u0z fii
trrl

{rz,tsl
0.016
0.431

0.963
0.521

0.021
0.048

Table 2: BEL{* conditioned on results of blood test

Belief F\rnctions Combin. Semant. Naive Probability
0tl
0tl
0zl
0zl

t1
fr2Y ts
l1
{t2 Y as

0.016 0.037
0.431 0.479
0.963 0.984
0.521 0.569

0.008 0.057
0.173 0.553
0.943 0.992
0.447 0.827

0.012 0.040
0.219 0.485
0.960 0.988
0.515 0.781

Table 3: Comparison of intervals

belief function intervals are properly included in the intervals derived by statistical methods. How shall we
interpret this relationship?

Classical probability theory provides a corlmon framework in which to evaluate BFT and CS. Kyburg
shows in [9] that to any belief function BEL, defined over a frarne of discernment O, there corresponds a
closed, convex set P of classical probability functions, where

P = {Pr : Pr is a probability tunction and V/ gA @EL(A) < Pr(/) < Pf(,4)) }.
If we understand the belief-plausibility intervals in this way (although Shafer would disapprove), it might
seem that they grve us more information than CS, because they place tighter bounds on the frequencies that
interest us. Unfortunately, in this case the "information" is simply 'nisleading. Consider Pr(9yla2 V o3):
BEL\B says that this probability is no lower than 0.431 and no higher than 0.479, but the 99% confidence
intenral extends as low as 0.173 and as high as 0.553. Given the evidence at hand, there is a 1% risk that
the true value lies outside [0.173,0.553]. But the risk is greater that the true value lies outside [0.431,0.479].
BELI% is wrong, and CS right, about the possible worlds in which Pr(iixzv13) falls in [0.173,0.431) or in
(0.479,0.553]. If we use BFT to guide us in making decisions-for instance, when choosing arnong various
treatment protocols for ploxoma-we will make mistales more often thaa if we rely on CS.

Suppose we now ignore the issue of confidence intervals entirely and accept the observed frequencies of
the three blood test results as point estimates for the corresponding probabilities. That is, since 20% of.the
virulent ploxoma patients tested o1, w€ will ta,ke Pr(r110) = 0.20, and similarly for the other percentages
mentioned in the first and second items of evidence. Doubt remains about the incidence of the virulent form
of the disease, which according to doctors strikes 5-15% of all ploxoma patients (the third item of evidence).
Again we use Bayes' Rule to calculate probability internals for Pr(011r1), etc., substituting point estimates
for all the conditional probabilities, and the upper and lower limits for Pr(01) and Pr(02). The resulting
intervals appeax in the third column of Table 3. As one would expect, the "naive probability" intenals are
narrower than CS's confidence intervals, because we have removed the uncertainty arising from the limited
sa,mple sizes in the epidemiological studies. However, the naive probability intervals are wide enough to
properly include the belief-plausibility intervals.s Even if we had huge sa,mple sizes and could get highly
accurate estimates of the proportion of {virulent, ordinary} ploxoma patients with test results {r1,r2,xsl1,
we still could not attain the level of certainty that BFT purports to give us.

6 'Where's the Beef?

The preceding discussion supports the judgmerrt that Combinatorial Semantics is superior to belief
function theory as a formalism for uncertain inference (if we interpret belief functions in terms of convoc
sets of classical probability functions). CS may be Iess flexible in its representation of knowledge, may yield
less "informative" conclusions, but at least the inferences it does sanction are not rnislea.d.ing. However, the

sThis comes as no surprise in light of Theorem A.3 in [9, pp. 286-287], which states that the lower and upper bounds on
the conditional probability derived using Bayes' Rule are always as wide (and often wider) than the belief-plausibility intenrals
resulting from Dempster conditioning. This point is mentioned as early as [2].
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practical usefulness of CS has yet to be demonstrated. Dempster and Kong [3, p. 33] emphasize that we
c4nnot evaluate a theory of uncertain inference without reference to its practical applications.

Belief function methodology does introduce more complexity into the class of available represen-
tations of uncertainty . . . The importaat question is whether the added flexibility is necessary
in practice to permit satisfactory representation of an analyst's state of uncertainty about the
real world. We believe that it is literally impossible to answer the question outside the context
of real exa^rnples based on attempts to construct formal representations of uncertainty reflecting
actual q1ssft,ain kuowledge of the real world.

I agree with Dempster and Kong that the true test of a formalism for uncertain reasoning is its application
to real problems in the real world. Loui's experiment in predicting computer network usage [11] is the only
such application of Combinatorial Semantics reported to date.
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