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INTRODUCTION

One of the most popular and enduring paradigms in the intersection of machine-learning and

computational statistics is the use of recursive-partitioning or "tree-sEuctured" methods to "learn"

classification trees from data sets [Buntine, 193; Quinlan, 1986]. This approach applies to independent

variables of all scale types (binary, categorical, ordered categorical, and continuous) and to noisy as well as to

noiseless training sets. It produces classification trees that can readily be reexpressed as sets of expert

systems rules (with each conjunction of literals corresponding to a set of values for variables along one

branch through the nee). Each such rule produces a probability vector for the possible classes (or dependent

variable values) ttrat the object being classified may have, thus automatically presenting confidence and

uncertainty information about its conclusions. Classification trees can be validated by methods such as

cross-validation @reiman et d., 1984), and they can easily be modified to handle missing data by

constructing rules that exploit only the information contained in the observed variables.

Despite these powerful advantages, classification tree technology, as implemented in commercially
available software systems, is often more useful for pattern recognition than for decision support. Practical
business and engineering decisions require some new considerations to be incorporated into the recursive
partitioning paradigm. The most important ones include

(i) Costsof informationacquisition(CoxandQiu, 1994). If aclassificationtreerequiresteststhatare
infeasible or that are too expensive to perform in practice, then it will be rejected by practitioners no matter
how well it perfonns on training samples.

(ii) Ability to make clnnges based on the tree. If the best tree for predicting a response uses information
(e.g., about time-varying covariates) that does not become available in practice until after key decisions must
be made, then the inferences supported by the ree, while perhaps very valuable for scientific research
purposes, will not be suitable for real-time decision support and guidance of actions. An example from the
domain of cancer risk prediction is as follows. The best predictor of liver carcinomas in mice exposed to
certain chemicals turns out to be the presence of liver adenomas. This is useful to scientists studying the
relation between benign and malignant tumors, but it is useless for predicting whether a specific mouse will
develop a liver carcinoma, since neither adenomas nor carcinomas can be observed until autopsy.

(iii) Pursuit of muhiple objectives that may be differently affected by the actions taken. Actions that affect
the values of variables in a causal model may lead to (perhaps probabilistic) changes in several outcome
measures. For example, in an analysis of employee survey data presented below, the multiple objectives
include improving employee job satisfaction, increasing the productivity of work groups and the quality of
work done, reducing job'related stress, and improving the perceived performance of management. Although
these goals are largely consonant, there is some conflict among them, e.g., between reducing job stress and
increasing productivity. The challenge in this setting - to find a small core set of actions that is
undominated by other available actions in improving measurements of all these performance dimensions
simultaneously -- is typical of many real-world applications.
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In summary, a theory is needed of how tolearnprescriptive, rather than merely descriptive, classification

nees and models from data. The goal is to identify and recommend changes (actions or decisions) that are

predicted to have high impacts on improving the criteria. This contrasts with the usual goal of existing

classification tree systems, which focus on recommending tests that will be most useful in accurately

predicting the values of some quantities from observations of the values of other quantities.

This paper presents results of an applied research effort focused on how to modiff conventional

recursive partitioning programs (e.g., CART, Knowledge Seeker, ID3) so that they will learn useful decision

rules (prescriptions for action) from data. The desired output is no longer a probabilistic prediction of the

value of a dependent variable, based on the observed values of independent variables. Instead, it is a

prescription for what potentially costly actions to take (i.e., what values to assign to different controllable

input variables), based on (perhaps costly) measurements of multiple independent variables, so as to bring

several dependent variables simultaneously into a desired "efficient" (undominated) target set ofjoint values.

The resulting methodology has been applied to several real problems in the telecommunications industry,

including selecting actions to improve customer service (Cox and Bell, 1995) and identifring a strategy for

improving employee performance and morale, discussed in the last part of this paper.

PROBLEM I'ORMULATION

Let Y be a vector of dependent variables, X a set of controllable independent variables, allid Z a set

of observable (empirically measurable) but not controllable variables. Values of these variables may differ

across the individuals ("cases" or "instances") to which the decision rule is applied. Areduced causal model

describing the (in general probabilistic) dependence of Y on X andZ is defined by a pair of functions [p(y I x,

z), f(z)J, where p(y I x, z) is the conditional probability density that Y = y, given that X = x and, Z = z. The

function f(z) is the marginal frequency disnibution of Z values in a population of individuals or cases under

study, i.e., f(z) =p117 - z). Such a "reduced" form can always be obtained from a directed graph

representation of a corresponding "structural" causal model, such as a path diagram or an influence diagram.

The idea of causality in this context is that X is not merely passively associated with Y -- e.9., because X

and Y have a joint frequency disnibution in the population that is not the product of their marginals - but

in fact that Y will change when X is changed (Spirites and Glymour,1994). Learning how to choose X so

as to obtain desired Y values is an exercise in valid prediction of how changes will propagate from controlled

variables to outcome variables - a task more difficult than statistical inference alone.

I.et vj(y, z) denote the "value", as measured on criterion scale j, of obtaining response y from an

individual described by covariate vector z. Let y(y, z) be the value vector whose jth component is v;(y, z),

for j - L,2, ..., K, where K is the numberof criteria. Then the problem addressed in this paper is to learn
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directly from a data set how to choose x so that the frequency distribution of v(y, z) induced by x in the

population of individuals is undominated (in the sense of multivariate first-order stochastic dominance,

FSD). The desired output is thus a prescribed choice of x from a set A of feasible alternatives such that no

other choice of x in A yields a higher probability of simultaneously obtaining at least as much of every

criterion (assuming that criteria are oriented so that more is better). According to the standard von Neumann-

Morgenstern (NM) theory of "rational" decision making (and to many more recent normative theories with

less stringent axioms), all rational decision makers who prefer more to less of each criterion will prefer x to

x' if and only if x dominates x' by multivariate first-order stochastic dominance (Hirschleifer and Riley,

1992). We will abbreviate this relation as x FSD x'.

If the reduced model (p, f) were known with certainty, then the preceding problem could be

formulated as a standard multicriteria statistical decision theory problem, e.g., ils the vector optimization

problem

max Ep,flv(r, z) lxl (1)
xtA

or as the scalar optimization problem

max Ep,f{u(v(y, z)) I xl Q)
xeA

where u is a multiattribute utility function mapping the vectors v(y, z) into "utilities" representing risk-

adjusted individual preferences for outcomes (Hirschleifer and Riley, 1992). Costs of control (i.e., the cost

needed to assign a specific value to a controllable variable) may be included in either fonnulation either as a

penalty term or as another criterion. @ither leads to the same set of undominated actions.) If the detailed

individual preferences and risk attitudes required to construct a multiattribute utility function are not

available, then the vector optimization problem (1) can still be solved by identifying values of x that are

undominated with respect to the FSD criterion. The resulting solution is typically a set of several x values,

each of which may be preferred by some rational decision maker to any of the others.

The significance of the concept of causality in this setting is that the standard statistical decision

theory formulation may generate inconect recommendations, as we shall now show.

Consider a causal model represented by the diagram

z----> Y
,|J

x

el e2

and described by the equations

y=z-x+e7
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x= il3 + e2, (4)

which together imply that

y=2x+(e1-3e2).

Assume that E(e1) =E(eD = 0 and that these error terms are uncorrelated. Then the regression relation
between x and y is found from equation (5) to be

E(y lx) = fu. (6)

On the other hand, the expected change in y when x is increased from 0 to x* > 0 directly (without
changing z) is found from equation (3) to be

E(y lx =x*)-E(y lx=Q)= [E(z)-x*] - [E(z) -0] =-1*. 0)

Thus, what might be termed the "causal regression line" relating y to x is

E(Ylx)=-x (8).

The causal association between x and y has the opposite sign from their statistical association. This
continuous version of Simpson's paradox, adapted from Lindley (1990), can readily be extended to
probabilities by interpreting y as the logit for occurrence of a binary event (e.g., crurcer among
individuals in a population exposed occupationally to a dose, x, of an anticarcinogenic chemical
whose ambient concentration is positively correlated with the ambient level of a carcinogenic
chemical, z.) Treating conditional probabilities (or conditional expected values of y) given x as the
values that would be obtained by setting values of x will in general lead to incorrect decisions because
of misspecification errors in the model relating decisions to their probable consequences.

Even if the causal relation between controllable variables and outcomes is known, however, there is

another pragmatic difficulty. In applications ranging from statistical quality control to design of new

products, neither the population "mixing disfibution" f nor the probabilistic response function (or

probabilistic choice function, in marketing applications), p, is likely to be well known. Instead, an

approximation to the model must be learned directly from the data. Thus, the full problem is to examine a

sample of cases with different (x, y, z) values, some of which may be missing, and then to make a decision

based on the observed sample values -- and on any knowledge, beliefs, and inforrnation (e.g., on mental

models of the causal relations among the x, y, and z variables) that are expected to lead to a more favorable

subjective distribution of outcomes. The decision to be made is typically a choice of either a specific value

of x to apply to the population as a whole - for example, in decision contexts such as public health decision

making, where x might represent a permissible exposure limit for a chemical that has been statistically

associated with adverse health outcomes -- or else choice of adecision rule to be applied to individual cases -
for example, a rule for examining and treating patients arriving with certain symptoms. In either case, the

novel challenge faced by practitioners is to select a decision rule or value based on an incompletely known

probability model that has been partially revealed through sample values of the (x, y, z) variables.

(5)
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Before turning to strategies for solving this problem, it is worth noting the following additional

complexities that often arise in practice.

The choice set, A, of possible values of x may be specified through a complex set of rules or
constraints, e.g., stating that choosing some components of x restricts the permissible values of the
remaining components.

Some of the Z variables may be observable only if others have already been observed, or only of
certain actions have already been taken.

More generally, the feasible sequences of activities (observations and actions) may be partially ordered by a

"causally enables" relation between sets of completed activities and as-yet unattempted activities. Such

constraints embody the rypes of temporal/causal restrictions that have been incorporated in most automatic

planning systems since STRIPS, in which the "enables" relation is interpreted in terms of satisfaction of

preconditions. If such constraints are important in an application, the task of discovering a minimum

expected cost undominated smtegy may be computationally intractable. Indeed, even without these

restrictions, discovery of minimum expected cost decision rules is in general NP-hard (Cox and Qiu, 1994).

Therefore, we turn next to a class of heuristics that have proved useful for solving the types of problems

described here.

A SOLUTION HEURISTIC

'We next present an algorithm, somewhat similar in spirit to Box's EVOP methodology for

combined experiment design and process improvement @ox and Draper, 1969), ttrat has proved useful in

learning robust, efficient decision rules (and reduced models supporting them) from data. The process

requires searching through a space of classification trees to discover locally efEcient (undominated) ones that

are also robust to small changes in the observed data. Tree evaluation and selection criteria include

o Actionability. Tte tree should consist of nodes that represent controllable variables, and the
actions that it prescribes should not require information or other preconditions that violate causal

knowledge.

o Causality and fficiency. The actions in the prescribed tree should lead to an undominated
improvement in the evaluation criteria of the multi-criteria design or decision problem.

o Robustness. The set of recommended actions in the prescribed tree should remain the same or
nearly the same if another "neighboring" effrcient tree is selected instead. This criterion may be

formalized in terms of "core strategies", i.e., sets of actions that constitute kernels or quasi-kernels

of underlying binary comparison digraphs.

The focus of the following discussion is on methods that have been used in practical applications at U S

WEST over the past several years. Therefore, our solution approach is presented as a general "meta-

heuristic", i.e., a generalized algorithm whose steps can be instantiated in various ways. An implementation
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that we have used to analyze several data sets consisting of responses to customer and employee surveys is

then described in the context of an application to finding actions to improve employee survey results. Given

the complexity of the class of problems addressed by this method, many interesting theoretical and empirical

research questions remain open about the best techniques for carrying out the steps in the meta-heuristic.

These are topics of ongoing research at U S WEST.

The following tenns will be used. An action consists of a measurement that can be perforrred (its

preconditions are satisfied) or an actthat can be taken. (Thus, "actions" and "activities" are synon5nnous in

this paper.) Actions may be partially ordered by precedence constraints reflecting causal enablement. (For

example, mouse liver tumors cannot be observed -- a measurement -- until the mouse has been sacrificed -
an act.) There may be a cost (dollars, time, or other resources) required in order to undertake an act.

Effective heuristics for identifying low-cost inspection strategies when inference, rather than action, is the

goal have been presented by Cox and Qiu (194). The following discussion focuses on cases in which

economic cost is only one of many criteria and the goal is to discover effective sequences of actions (i.e.,

"plans" ttrat tend to produce desired outcomes).

Our proposed heuristic approach is as follows. (This version is for decision problems in which a

set of actions is to be selected to apply to an entire population, e.g., an employee body or a set of

customers. A similar heuristic applies when decision trees incorporating diagnostic tests or other possibly

expensive observations are allowed and can be applied to individuals one at a time.)

HEURISTIC SEARCH FOR UNDOMINATED ACTION PLANS

0. Start with an empty set of actions. Search over action sequences of length 1 (i.e., individual
actions) to identify actions that leads to an undominated (via FSD) improvement in the causal
disfibution of consequences. (As suggested previously, a "causal distribution" refers to the
probability distribution that is expected to hold once the action has been taken. This distribution
typically cannot be derived from observed data alone, but requires use of a hypothesized causal model,
e.9., represented as an influence diagram or Bayesian belief net, relating actions to their probable
consequences.) An action that leads to an undominated improvement in the perforrrance criteria is
called an "undominated action". It may also be called an undominated panial plan of length 1.

Phase 1: Generate undominated partial plans. For each undominated partial plan of
length k, consider appending each action that is feasible once the actions in the undominated partial
plan have been taken. If an action can be found that leads to a stochastically dominating
(multivariate FSD) improvement in the perfonnance criteria (with respect to the estimated causal
distribution of consequences induced by the plan), then append it to the partial plan to create a new
partial plan of length k + l. Repeat until no further FSD improvements can be found. Delete all
partial plans that have been improved (in the sense of FSD) by one or more extensions. The result
of this phase is a set of undominated partial plans of various lengths.

Phase 2: Identify a "core set" of actions for initial implementation. Each
undominated partial plan identified in Phase I consists of an ordered set of actions. To identify
which specific actions to take first (continuing with the case where one or more actions must be
selected for application to an entire population of cases), each initially feasible action is assigned a
numerical score equal to the number of "votes" that it receives from the set of undominated partial
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plans (i.e., the number of such plans that it appears in). The initially feasible actions with the
highest scores are recommended for implementation.

In practice, both phases are often carried out using only the benefits-related criteria, and then the top-scoring

actions are evaluated for cost , practical feasibility, and confidence that the predicted consequences will occur

- i.e., that conditional frequency distributions obtained from data are causally predictive). The output of

Phase 2 is a set of top-ranked actions recommended for implementation. By construction, they meet the

criteria of actionability (they are actions), efficiency (it is not easy to find plans that dominate the best plans

starting with the recommended actions), causality (udgments abut causal distributions have been

incorporated into the search for FSD-improving extensions of partial plans), and robustness (since FSD is

used as the criterion in generating plans for consideration).

Many refinements may be made in the implementation of this basic framework. In applications to

large data bases (involving thousands ofsurvey questionnaires -- the in the training sample -- and

typically several dozen to over 100 variables, some actionable and some merely observable ), we use a "best-

first" rule to select partial plans for possible extensions. Then, we search among actions that have already

been automatically rank-ordered in terms of their ability to improve prediction of one of the criteria" using

the KNOWLEDGE SEEKER(TM) recursive partitioning algorithm (Biggs et al., 1991). Undominated

distributions are screened for by Iooking for disributions that maximize the proportion of cases giving

extremely high performance on the selected criterion. The process is repeated for one criterion at a time,

since the KNOWLEDGE SEEfERGM) program is constructed to deal with only one dependent variable at

a time, and the intersection of the resulting recommended action sets is used to make a final

recommendation. This multi-pass implementation is admittedly only an approximation to the ideal two-

phase approach based on multivariate FSD, but it has proved successful in identifying small sets of

recommended actions that have won immediate creience and strong support from decision makers

knowledgeable about the selected application domains.

AN EXAMPLE: USING EMPLOYEE SURVEY DATA TO PLAN IMPROVEMENTS

We conclude with insights gleaned from a recent application to employee survey data. The study

had multiple goals: to understand drivers of employee job satisfaction, morale, and performance and to

recommend management actions that would improve all three. The data were obtained from questionnaires

filled out by several thousand U S WEST employees covering many aspects of work life, including

perceptions of one's own job perfonnance, rating of one's immediate supervisor along various dimensions,

descriptions of one's work group and the quality of its work, ratings of top management on different

dimensions, and attitudes and beliefs about the company as a whole, both in absolute tenns and compared to
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other companies. Each questionnaire contained approximately 110 detailed questions (including about a

dozen demographic and career history questions). Most questions involved ratings on a conventional five-

point scale (ranging from strongly disagree to strongly agee). Responses were treated as ordinal categorical

variables. The sample was designed to be exhaustive and the response rates were high enough so that

selection artifacts could not signifrcantly affect the conclusions.

The large volume of data generated by this study was analyze.dusing the approach outlined in the

previous section. Some instructive lessons from the analysis are as follows:

l. The automated KNOWLEDGE Serfen(f\t[) procedure produced trees that clearly revealed the need to
introduce causal knowledge into the analysis in order to achieve useful results. For example, a classification
tree for predicting the rating of the GROUP'S WORK QUALITY variable (reflecting agreement with "My
work group produces high-quality work") showed a mix of potentially actionable variables (such as "WE
COOPERATE TO GET TIIE JOB DONE", which may be affected by srong team management) and factors

that cannot be directly manipulated (such as "I LIKE THE KIND OF WORK I DO" or "MY WORK GMS
ME A FEELING OF PERSONAL ACCOMPLTSHMENT").

2. We introduced basic causal lotowledge in the simplest way: by separating variables into potentially
actionable ones [represented by input nodes, i.e., nodes with only outwarddirected arrows in a directed acyclic
gaph (dag) model of the causal relations among variables]; consequence or outcome measures
(corresponding to output or "sink" nodes in the dag model), and intervening variables (represented by nodes

with both inward and outward directed arows.)

3. A dag model representing causal relartons among variables was developed by an inforrral but useful
process familiar to many researchers and practitioners in this field. First, a table of Spearrran rank
correlations was used to identify the pain of variables that are most strongly associated. Then, "common
sense" (i.e., knowledge of the meanings of the variables and how they might causally affect each other) was

used to make tentative assignments of causal directions between strongly linked pairs. Next, other variables

that might plausibly "explain away" the association were tested to see whether the binary association in fact
disappeared when it was conditioned on the value of the new variable(s) (i.e., whether d-separability could be

established). Conversely, third variables were interposed between strongly linked pairs (as in x -) z --) Y,
where z has been interposed between x and y) or introduced as common factors (as in x <- z --> y) where
doing so would successfully "explain away" the association between the two variables. (Human judgment
was used to select variables to try interposing and to suggest other aspects of model structure, such as

directions for arcs.) This process was used to grow larger and larger digraphs such that any pair of variables
joined by a directed arc had a positive association not explained by any third variable. The largest dag
generated is a model for the data. It is consistent both with the binary associations and the conditional
independence structures implicit in the data, as well as with the causal knowledge used to suggest the graph

structure (by selecting triples of variables to test for conditional independence.) A more formal approach in a
similar spirit is the TETRAD program (Spirites and Glymour,1994 and references therein).

4. The causal knowledge represented in the dag model allowed the number of distinct variables in the

analysis to be reduced from over 100 to 24. The reduction process (described by thejargon name
"homomorphic aggregation") is conceptually simple. If any two variables are related to the rest of the
variables in the dag model by identical directed arcs, then the two variables arc aggegated into one combined
variable and interpreted as two measures of the same underlying construct. The final *t of 24 variables
included 13 input variables, 3 ouput variables (intention to stay with the company, quality of work
produced, and rating given to one's supervisor), and 8 intervening variables (including job satisfaction, job
stess, and possession of skills needed to do a good job). The abbreviated titles of the input variables include
"job security", "teamwork", "can speak one's mind around here", "urgency ofjob", "employees are well
trained", "can get needed skills", "my boss asks my opinion", and "my boss rewards improved work
quality".) Some of these inputs affected (either directly or along a chain) many oulput variables. For
example, "my boss asks my opinion" dircctly affecs "supervisor rating" and indirectly affects "quality of
work" through the intervening variable "I can take action". It also indirectly increases (in the sense of FSD)
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'job satisfaction" and decreases "job stress" through paths that involve the intervening variable "my job
makes good use of my skills and abilities".

5. Following these pre-processing steps, we applied the two-phase method of the previous section (using

KNOWLEDGE SEEKER(ftI) as a tool to search for FSD-undominated partial plans for one output variable
at a time). The dag model was used to identif actionable input variables and to relate them not only to the
three output variables, but also to intervening variables ofinterest such asjob stress andjob satisfaction.

The main results were that the method successfully identified a small set of core actions and implementable

policies that simultaneously led to predicted improvements in all of the main outcome measures (ob

satisfaction, employee retention, perceived quality of work, and appraisal of management). Few undominated

partial plans exceeded four actions in length. (Precedence constaints were not active in this problem, so

plans were just unordered ses of activities.) A plan that remained undominated even when various subsets of

variables were eliminated from the model (indicating a form of "robustness") emphasized the following three

clusters of actionable principles (synthesized from items in the questionnaire):

Challenge employees to find new and better ways of doing things that affect external customers
positively. (Listen to and actively seek their ideas, then follow up with actions.)

Enable employees to improve their skills so that they can do their jobs well. (Coach/develop
them and keep them informed and involved in decisions that affect theA work.)

Reward employees for demonstrating continuous quality improvement.

These recommendations, extracted from the large volume of data and many competing items on the

questionnaire, are remarkably consistent with recent popular books on effective management of research and

technology organizations. The dag causal model behind them identifies sense of personal accomplishment as

the key intervening variable mediating between these types of inputs and the outcome criteria of job

satisfaction and employee retention, perceived work quality, and evaluation of U S WEST management.

Specific plans based on the preceding analysis were predicted to dramatically increase the proportion

of employees expressing top levels of job satisfaction and work quality. (This prediction involved a causal

judgmenu that the selected factors actually affect scores on outcomes. An alternative hypothesis that was

consistent with the data was that an unmeasured latent variable -- "toughness in grading" -- could explain

away some or all of the association between these inputs and the various outcome measures.) In 1994,

management changes based on the preceding analysis were trialed in a small group of approximately 50

employees. Results collected in the &ird quarter showed that the trial group ou@erformed the rest of its

department and the rest of the company in almost all (25 out of 27) measured categories. Although causality

has not been proved (e.g., because no pre-measures were performed), use of the heuristic approach outlined in

this paper so far appears to be associated with dramatic improvements in performance metrics.
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