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Abstract
Determining thc conditions for whtch a given learning aQorttbn is appropriate is an
open problem in machine learning. Methods for selecting a learning algortthrn for a
given domain or for a portton of the domain have met with limited success. This
paryr proposes a ne$, approach to predicting a given exarnple's class by locating it
in tlu "example space" and then choosing the best learner(s) in tlnt region of the
exantple spdce to make predictions. The regions of thc emmple space are defined
by the prediction patterns of the learners being used.The learner(s) chosenfor
prediction are selected accordtng to their past performance in that region. This
dynamic approach to learning bias selection ts compared to other methods for
selecting from multiple learning algorithms.

I Introduction
Determining theconditions for which a given learning algorithm is appropriate is an open
problem in machine leaming. Methods for selecting a learning algorithm for a given domain
(e.g. Aha, 1992; Breiman, et al, 1984) or for a poftion of the domain @rodley, 1993 and
1994) have met with limited success. This paper proposes a new approach which
dynamically selects a learning algorittrm for each test example by locating it in the "example
tpace" and ttren choosing ttre best learner(s) in that part of the example space for prediction.
The regions of the example space are formed by the observed prediction patterns of the
learners being used. The learner(s) chosen for prediction are selected according to ttreir past
performance in that region which is defined by ttre "cross-validation history."

This paper introduces DS, a method for the dynamic selection of a learning algorithm(s).
DS has been evaluated on several real-world domains and frequently outperforrns a cross-
validation algorithm for selecting a learning algorithm and occasionally ouperforms the
single algorithm with the best test accuracy.

The paper begins by discussing the limitations of previous work (Section 2) and giving
motivation for the DS algorithm (Section 3). Section 4 describes the method for building a
"cross-validation history" for a collection of learning algorithms which is then used in the
DS algorithry for making predictions on novel examples (Section 5). Experiments
comparing DS to two other methods for selecting a learning algorithm(s) are described and
m4yrea in Sections 6 and 7. Future research issues in dynamic bias selection are outlined
in Section 8. Finally, the conclusion section provides a simmary of the work.

2 Related Work
A common method for deciding which classification algorithm to use on a given domain is
ctoss-validation (Breiman, et al, 1984) where the examples are divided randomly into v
(approximately) equal partitions or folds. Each algorithm being evaluated is then trained on
v-1 partitions and tested on the remaining partition y times. For that domain, the
appropriateness of each algorithm's learning bias is judged by the corresponding average
cross-validation accuracy and the algorithm with the best accuracy is chosen for ttrat
domain.
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There are a couple of limitations to this approach. One is that a single learning algorittrm is
selected as the "appropriate" one for an entire domain. An alternative we explore here is to
select a learning algorithm(s) for a given example. Another potential drawback to the cross-
validation approach is that several algorithms may have the same cross-validation accuracy
but may give different classifications for many examples. Which one is really the "best" if
they are not classifying the same examples correctly? Ideally, we would like to use these
patterns of predictions to identify regions in the example space where each learning bias is
more (or less) accurate. This paper addresses both of these limitations by considering the
actual prediction patterns of a set of learning biases rather than a summary of those
predictions (i.e., accuracy) to dynamically select the algorithm(s) with the best performance
history for similarly classified training examples.

Another approach for selecting the best algorithm for a given domain is given by Aha
(L992) where ruIes are derived which characterize the conditions under which various
learning algorithms do well based on certain high-level properties of a domain (e.g.,
number of examples, number of attributes, number of classes, types of attributes, class and
attribute noise). However, this method relies on having a good characterization of the
domain, which is often difficult to obtain. DS emphasizes the selection of a learning
algorithm at the example level rather than at the domain level since it avoids the need for
characterization rules by instead considering each learning algorithm's past performance on
"similar" examples from that domain.

Brodley (1993) proposes a knowledge-based approach to building hybrid decision
structures by using heuristics to select the best algorithm at a given stage of learning. These
heuristics are created from practical knowledge about how to detect when a generalization is
a good fit or when to switch to a different search bias during the course of learning.
Conditions in these nrles include checks for certain pathologies in the learning process such
as how often features are tested. Also, they use information about the domain such as the
ratio of the number of examples to the number features. The development of these
heuristics is a difficult ad hoc manual process based on the practitioner's past experience.
DS avoids this process by building a collection of models and dynamically choosing which
one(s) to use based on past performance in the given region of the domain.

Kwok and Carter (1990) select several "good" models (i.e., rules/trees with high posterior
probabilities) manually and average their predictions. This avoids the difficult problem of
calculating posterior probabilities for rules @untine 1989). The t'wo main drawbacks to this
approach are the manual derivation of the models, and the assumption that the majority
prediction is always the best one to use. Our approach builds the models automatically and
retains models which may not have high posterior probabilities, but still may be useful in
certain regions of the example space.
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Figure 1. Dividing up the example space by response patterns.

3 Motivation
The main goal of this research was to take a collection of learning algorithms and determine
their strengths and weaknesses within a given domain. The approach taken was to
characterize the example space in terms of the performance of each algorithm. Given this
information, novel examples can be placed in the example qpace and the strongest learner(s)
for that region can be referred to for a prediction.

To characterize the example space, we simply use the patterns of predictions from the
constituent learners to define regions in the example space. For example, Figure 1 shows
how the models built by three learning algorithms can be used to create these regions.
Model V is made up of two vertical splits on Attribute I with three "leaves"; Vl, V2, and
V3. Model H has t'wo horizontal splits on Attribute 2 with three leaves; Hl, H2, and H3.
And model D has one split which is an oblique split on both attributes forming two leaves;
Dl and D2. The training examples are plotted according to their respective values for
Attribute 1 and 2, and the symbol used to plot each example is its class (i.e., "X" or "O").
The leaves of the three models divide the training examples up into t'welve areas. Each area
has an underlined triplet showing the prediction of V, H, and D, respectively. These
triplets form seven distinct "regions" characterizing the example space (i.e., OXX, XXX,
OXO, )O(O, OOO, XOO, and XOX).

Although Figure 1 is a contrived example, it does show the potential utility of having this
characterization of the example space. The bold dashed line highlights the learned
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boundaries we would like to use to partition the examples. For regions near the left side of
the top leg of the boundary, we would like to rely on model V's predictions more. Model
D's prediction would be the preferred for the diagonal leg of the boundary, and Model H
would be the preferred predictor for regions just below the right leg of the boundary. The
models are bolded in regions where they are more likely to predict accurately. Regions
further from the boundary may have more than one "reliable" predictor where there is more
agreement between the models.

Next, a way of determining which learner(s) are superior within a given region was
needed. Since most lealners are capable of attaining high training accuracies (i.e., decision
trees can continue to partition until purity or inconsistency within each partition is reached),
the strengths of the learners being used may not appear all that different for the examples of
a training partition. To obtain a more robust evaluation of how well each learner does on
each training example, several cross validation runs were done on the training data. As each
training example became a "test" example in these cross validation runs, the accuracy of
each learner was recorded to accumulate a history of how well each leamer classifies each
example.

Returning to the example in Figure 1, this approach would show that ttre training examples
which fell into the O)O( region tended to be more accurately classified by learner V than the
other two learner. Thus, we would defer to model V for test examples which produced an
OXX prediction pattern. The next two sections elaborate on how this "cross-validation
history" is built and how it is used.

4 Generating a Cross-Validation History for DS
The DS method relies on a cross-validation history to decide which algorithm(s) to use
for classifying a new (test) example. This history is generated from the examples in the
training partition. Given a set of training examples we form the history by building r.wo m
by n matrices where z is the number of training examples and n is the number of learning
algorithms. The first is the response matrix which contains the predictions of the
models built from the training data on the training data (i.e., the (i.7)th cell contains model
7's prediction for training example i).

The second matrix, the performance matrix, contains the number of times each model
was corect when that training example appeared as a test example in a cross-validation run
on the training partition. That is, ft v-fold cross validations are run for each model on the
trainir,g partition so the (r.l)th cell in the performance matrix is the number of times (out of
/c) that example i was correctly predicted by modelT when it appeared as a test example in a
cross-validation run.

Using the models built from the training data we can get a row vector of model responses
for a single test example. This row vector can be compared to the row vectors for the
training examples in the response matrix. The set of row vectors with the most similarl
response patterns then represent a region defined from the perspective of the models built.
The corresponding rows in the performance matrix are then used to determine the accuracy
of each of the models for the region defined by the examples with similar response
patterns. Section 5 describes the algorithm.

5 The DS Algorithm
The algorithm for dynamically selecting models, DS, for a given test example is described
in Figure 2.1\e first step is to let all of the learned models classify the test example to form

I We use the number of matched responses to measure similarity.
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a row-vector of responses, RBy. In step Z,the "closesC'rows are all the rows tied with the
highest level of agreement with RB;. The local accuracy computed in step 3 is calculated
by averaging the perfornances only on the rows selected in step 2.1\e algorithm with the
highest local accuracy is then selected in step 4.lf a tie occurs, the algorithms having the
highest local accuracy vote with equal weighting.

Given: R: 
*L?rf#;ffJ,'"?Nfr?tTJl*"
n = the number of models

P: Anm Xn performance matrix
EX: A test example

Return: C, the predicted class of EX

1. Get row vector of responseS, REx, by polling each of the n models for EX.
2. Find set of "closest" row(s) to Rgy in R.
3. Use corresponding rows in P to compute local accuracy for each model.
4.|*tmodels tied wittr highest local accuracy vote to choose C.

Figure 2.The DS classification algorithm.

6 Experimentation and Analysis
For our experimentation, DS used 24 vaiations of the OCI program (Murthy, et. al.,
1993) as its different learning algorithms. The different entropy measures (6), pruning
options (off/on with 20Vo of training data for pruning), and types of splits
(univariate/multivariate) combined for 24 unique configurations of OC1. AII other
parameters had the default settings. In forming the history, 3-fold cross-validation was
done ten times.

Thrce domains with all numeric attributes (Glass, Iris, Breast Cancer Wisconsin, and Liver
Disorders) were chosen from the UCI repository for evaluation because OCl is limited to
datasets with numeric features. The Glass dataset consists of 214 examples with nine
attributes describing forensic information of a glass sample. The class attribute specifies ten
possible glass types. The his dataset contains 150 examples, each with four numeric-attributes-describing 

an Iris flower's sepal and petal measurements, and a class attribute
specifying the three types of Iris flowers. In the Breast Cancer dataset of 470 examples,
there were nine attributes describing a tumor, and the class attribute specifying whether it
was malignant or benign. For the Liver Disorders dataset, there are five blood test attibutes
and one alcohol consumption attribute and a class amribute specifying whether a disorder
existed.

DS was compared to two other methods for selecting learning algorithms. The Select-All
Majority (SAM) method weighs each algorithm's prediction equally and returns the most
frequent prediction as its prediction. The cross-validation majority (CVM) method returns
the prediction of the algorithm having the highest cross-validation accuracy in the
performance table, and, in the case of ties, returns the majority vote of ttre tied algorithms.
Tables 1 through 4 report the test accuracies for each methods for each domain where25%o
of the examples were held back for testing and various numbers of training examples were
used. Each cell entry is an accuracy averaged over 30 runs. Bold cell ennies in the SAM
and CVIvI rows indicate a statistically significant difference between that method and DS2.
Also included in the tables is a row reporting the best individual model's performance. The

2 Using a paired two-tailed t-test at the .05 confidence level.
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number in parentheses next to these entries is the corresponding configuration of OCl
which had that performance and is meant to tack which configuration is best as the number
of examples changes.

The Glass domain results gtven in Table I show a significantly better performance for DS
over SAM with fewer examples and for CVM for larger example sets. DS has the best a
performance overall for all example set sizes. The best individual model changes for each
training set size, thus no one configuration is doing well across the learning curve. The
performance of CVM is not as good as the best individual model because that configuration
is not identified as the unique best model based on cross-validation performance if it is
selected as one of the best models at all. Therefore, its predictions rnay be considered along
with ottrer models' predictions.

Table 1. Glass domain results.

Table 2 shows that DS does as well as or better than the other selection methods in ttre kis
domain. This difference is most prevalent with fewer examples. The best individual model
configuration changes as the training size increases and consistently does the best.
However, CVIVI fails once again to recognize ttre best individual learning algorithm.

Table 2. Iris domain results.

In Table 3, we see that for the Breast Cancer dataset DS consistently outperforms CVM.
However, the SAM method maintains a slight (|Vo or less) but significant edge over DS.
One possible explanation for this is that the majority of OCl configurations are well suited
for this domain giving SAM a consistent edge. Whether the SAM approach is robust in
general will be tested in future research where heterogeneous constituent learners will be
used and are less likely to be in agrcemenl

Table 3. Breast Cancer domain results.

Medtod Number of Examoles

50 100 150

SAM 54.01 65.25 69.57

CVM s5.65 63.23 67.12
DS s8.90 65.25 70.48
Best Individual vlodel 58.62 (#9) il.35 (#t2\ 68.09 (#10)

Method Number of Examples

25 s0 100

SAM 88.22 94.66 9s.33
CVM 89.55 94.11 9s.6
DS 89.55 95.00 95.33
Bestlndividual Model 90-55 (#ll) 95.77 ff2\ 96.4s #2\

Mehod Number of Examoles
r00 200 300

SAM 93.65 94.59 9 5.s0
cvM 91.95 93.38 94.16
DS 92.6r 93.79 94.81
Bestlndividual Model 92.37 Gt7) 94.08 (#17) 94.51 (#18)
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Performance in the Liver Disorders domain is similar to the Breast Cancer domain. DS
does better than CVM and significantly worse than SAM. The performance of SAM on the
last nro domains led to further experimentation discussed in the next section.

Method Number of Examoles

100 200

SAM 67.02 70.25
CVM &.42 67 -37

DS (A.65 68.62
Be.stlndividual Model 65.19 68.75

Table 4. Liver Cancer domain results.

A couple more comments are in order for these results. First, one can argue that the CVM
method could do better with a greater number of folds and/or runs. However, in at least
nvo of the domains, even if CVM were to choose ttre best model configuration, DS would
consistently do as well or better. Second, for two of the domains evaluated (Glass and
kis), DS has better relative performance when fewer examples are available.

7 Further Experimentation
The significant edge ttrat SAM has for the Breast Cancer and Liver Disorder domains in the
initial experimentation led to furttrer experimentation and analysis to determine if DS would
take advantage of SAM if it were also a constituent learner. Table 5 shows that DS
maintains its edge in the glass domain indicating that the inclusion of a learner which does
worse for that domain does not interfere with DS's performance. Table 6 shows ttrat DS is
capable of taking advantage of SAM to narrow the difference between the accuracies of the
nvo approaches to an amount which is no longer statistically significanr

Table 5. Glass domain results.

Table 6. Liver Cancer domain results.

8 Future Research

A number of ideas remain unexplored in dynamic bias selection. The main thrust of the
next phase of research will be to do further evaluation on a more heterogeneous suite of

Method Number of Examoles
50 100 150

SAM ss.26 65.25 6 9.60
CVM 55.80 6 3.13 67.69
DS 62.42 70;7t 72-51
Bestlndividual Model 5E.34 65.25 6 9.50

Method

SAM 67 -02 70.25
cvM @.71 70.28
DS 6s.83 69.0?
Best Individua Model 67.02 70-25
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constituent learners (i.e., CN2 (Clark and Niblett, 1989), Ca.5 (Quinlan, 1993),
packprypagation (Rumelhart, et. a1., 1986), AUTOCLASS (Cheeseman, et. al., 1988),
PEBLS (Cost and Salzberg,1993), etc.). The inclusion of such learners will broaden the
number of domains which can be evaluated and allow for a more direct comparison
between DS and other methods for leaming bias selection such as MCS (Brodlet, 1993
and 1994). In addition, this broader range of biases will test the robustness of SAM.

Another future research issue is that of dynamic weighting rather than dynamic selection.
The curent approach can be viewed as a restricted weighting scheme where the weights are
either zero or one. Methods for weighting the model's votes need to be developed and
compared to DS to see how performance is effected.

Also, DS is unique in its handling of multiple models because it attempts to select
dynamically an appropriate learner(s) for a subset of the example space rather than the
entire_example space as in cross validation. Currently, the example space is divided up
according to the responses of each of the learners. An interesting problem can occur when
this approach to dividing up the example space results in different areas of the example
space having the same response pattern. Figure 3 shows a modified version of Figure 1

with the same three models, V, H, and D, but the center square has two less X's. This
leads to three areas having the response pattern OXX (for models V, H, and D,
respectively). But in one area we would like to rely on model V and in the other two we
would like to rely on model D. This problern can be overcome by introducing another level
of granularity by labeling the areas of the example space according to the rule or leaf of
each model which made the prediction. For example, in the top right region, leaf 3 of
ryo{el V predicts an X, leaf 1 of model H predicts an X, and leaf 2 of model D predicts an
X. Obviously, this approach to dividing up the example space can lead to many more
rggtons which may not always be useful or necessary. Methods for (dynamically) choosing
the appropriate granularity of the example space characterization need also to be
investigated. One approach might be to choose the granularity according to a confidence
measure of the models selected in each characterization.
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Figure 3. Dividing up the example space by leaf/rule label patterns.

9 Conclusion
A method for dynamically selecting a learning bias, DS, based on past prediction patterns
was described. This approach differs from previous work by avoiding ad hoc construction
of heuristics for matching learning algorithms to domains. The experiments conducted on
four real-world domains demonstrate ttre synergistic effect of dynamic bias selection as DS
did as well and frequently did better ttran any individual leaming bias and a cross-validation
algorithm. Although this trend was not always statistically significant, it was consistent for
varying training set sizes while the best individual leamer changed. This indicates that even
an omniscient single learning bias selector would not do as well on these domains. Plans
for the expansion of the method include the incorporation of more (heterogeneous)
learners, the experimenation on more domains, and the development of other methods for
characterizing the example space.
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