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Abstract

We present an analysis of the com-
parative performance of non-linear
fimensionality reduction methods
such as Non-Linea^r Mapping, Non-
Metric Ivlultidimensional Scaling
and the Kohonen SeH-Orga"ising
Feature Map for which data sets
of different dimensions a,re used.
To obtain comparative measures of
how well the mapping is performed,
Procrustes analysis, the Spearman
rank correlation coefficient a,nd the
scatter-plot diagram a,re used. Re.
sults indicate that, in low dimen-
sions, Non-Linear Mapping has the
best performance especiaily when
measured in terms of the Spear-
maJr rank correlation coefrcient.
The output from the Kohonen Self-
Organising Feature Map is easier to
interpret than the output from the
other methods as it often provides
a superior qualitative visual output.
Also, the Kohonen Self-Organising
Feature Map may outperform the
other methods in a high-dimensional
setting.

L lntroduction

In many applications, dimensionality reduc-
tion is used to explore a data set to try to ob-
tain some insight into the nature of the phe-
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!.omenon that produced the data. We are of-
ten interested in understanding the structural
relationships that exist in the feature space,
such as clusters or data point density discon-
tinuities. Measures that could be used to re-
veal such structural relationships include the
inter-point distance, the ushape" of the data
distribution etc...Such an understanding is
very domain-dependent and may require a
deep understanding of the structures, causal-
ity etc. . . that may exist between the features.
In some crxes, the application may impose a
constraint on the serialisation or ordering of
the topological mapping as in, for example,
chronological ordering in a time series or re-
gression analysis [CtN91].

In many applications, one important objec-
tive of dimensionality reduction is that it pre-
serves as much as possible the structural re-
lationships that exist in the data set when
performing the mapping from a high dimen-
sion to a lower one (usually two or three di-
mensions) while, at the same time, remov-
ing any redundancy in the data. For data
characterised by iow dimensions (i.e. where
the number of features is small), the "im-
portant" or "interesting" relationships may
be detected relatively easily by using picto-
rial methods such as histograms (one or two
dimensions), scatter-plot diagrams, or even
kinematic graphic techniques (such as small
angle rigid body rotations in three dimen-
sions). For a high-dimensional feature space,
we have to resort to techniques that reduce or
project the feature space into one, or more,
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Iower two- or three-dimensional representa-
tions. Such techniques must be able to ef-

fectively handle the "curse of dimensionality"
(due to the fact that high-dimensional space

is sparse for small-to-medium sample sizes)

and be able to ignore redundant and noisy
features.

The most popular dimensionality reduc-
tion techniques are linear transformations,
such as principal components analysis
(PCA) [Fuk90]. However, PCA and many
other similar approaches assume a linear
constraint of input space and therefore
would not perform satisfactorily for nou-
Iinea.r constraints of input space common
in high-dimensional data. Furthermore, the
covariance structure of data does not neces-

sarily relate to the clustering of data points.
Some limited work has been undertaken on
the comparative performance of PCA as

a dimensionality reduction technique (".g.

[BDel] and [MEPea]).

More general approaches to dimensionality
reduction are those of non-linear methods
which do not impose any input space con-

straints. Such techniques include Non-Linear
Mapping (NLM) [Sam69], Multidimensional
Scaling (MDS) [8L87] and various cluster-
ing algorithms [Fuk90]. Several neura.l net-
works techniques have also been introduced
more recently as in, for example, Kohonen
Self-Orgaaising Feature Map [Koh88] and the
Back Propagation algorithm [Sau89]. How-
ever, neither the comparative performances
nor the quality of the results produced by
these methods have been sufrciently investi-
gated.

In this paper, we present three non-Iinear
dimensionality reduction techniques: Non-
metric Multidimensional Scaling, Non-Linear
Mapping and the Kohonen Self-Organising
Peature Map (SOFM), and provide a compar-
ative analysis of the performance of each tech-

nique. We briefly give the theoretical back-
ground for each method and the techniques
used for evaluating the comparative perfor-
mance of each method.

2 DimensionalityReduction
Methods

2.L Kohonen Self-Organising Feature
MaP

The Kohonen SOPM algorithm [Koh88]
attempts to produce a distorted, but
topographically-organ ised, projection of the
input space where the similarity of the input
vectors is converted into a proximity relation-
ship in the projection. The map will attempt
to preserve the "important" similarity reia-
tionships present in the high-dimensional in-
put space whils, at the same time, factoring
out any redundancy latent ia the input fea-
tures [LGZ93].

2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is based on
dissimilarity data which reflect the amount of
disimilarity between pairs of objects, events
or concepts [Kru6 ]. Typicalln the dissim-
ila,rity data are distances between all pairs
of points in multidimeosional space. Thus
similar objects are close together and dis-
similar objects are far apart. Consider a

set of input patterns (also called configura-
tion) {:qi in z-dimensional space, with dis-
similarity data which can be calculated from
inter-point distances 6,, =ll x, - xs ll. The
method attempts to find a configuration {y;}
in ne-dimensional space, where rn < z, with
inter-point distances d,, =ll y, - ys ll such
that d," = 6r" for all r and s. In achieving
d* N 5"" V r and s, a transformation from
{x;} to {y;} ir effected. MDS modeis with
such dissimilarity data, together with finear
transformations, are known as reetric Multi-
dimensional Scaling [Bt87]. Rather than us-
ing distance magnitudes, it is possible to pre-
serve the rank ordering of d* to be the same
as that of 6r". In this case, the search for the

{y;} configuration should satisfy :

d,,rx f(6,") (1)

where / is a monotonica^lly increasing func-
tion satisfying:

6rrr, 16rr"" <+ -f(6rr"r)< /(6rr*)
(2)
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for some r1,s1 &rrd. r2,s2. This variant is
referred to as non-metilc Multidimensiona/
Scaling.

Major operations on non-metric MDS are it-
erative calculations of the {y;} configuration
for which the monotonicity between dr" aud
6r" must always hold. In order to ensure
this condition, a measure of departure from
monotonicity is defined so that adjustments
on the {y;} configuration can be made to im-
prove the degree of monotonicity. This mea-
sure is ca,lled the sfress value, ^9. The al-
gorithm invoives computing d," which min-
imises [Kru64]:s'=ftiffi (3)

while holding the monotone constraint:

4r", S drrr,I..-Sdr^"^ (4)

Typicaliy, d," rr" computed using a mono-
tonic regrerrioa e.lgorithm and the iterative
calculation of the nz-dimensional configura-
tion {y,} is achieved by using the gradient
descent method.

2.3 Non-Linear Mapping

Non-Linear Mapping (NLM) is a similar con-
cept to that of MDS and was introduced by
Sammon in 1969 [Sam69]. Similar to met-
ric MDS, NLM tries to preserve distances be-
tween points in the original data and the re-
duced dimensional data. The NLM method
is also based on iterative calculations of the

{y;} configuration which minipisss the error:

s r (6',-d'")2
UUr<sTE---: (5)

As in the case or -,rir?;;llnt descent is a
typical minimisation procedure employed. ln
all SOFM, non-metric MDS and NLM meth-
ods the gradient descent procedure may be-
come trapped in local minima.

3 ComparativePerformance
Analysis Techniques

Two methods of comparing the performance
of each dimensionality reduction technique

are presented: Procrustes analysis and the
Spearman rank correlation coefficient. A
third, empirical method, the scafter-p,lot, is
used to plot inter-point distances in the orig-
ina.l data space versus distances in the re-
duced d.imension data space. This enables
the data correlation to be visualised as a two-
dimsnsisaal scatter-plot.

3.1 Procrustes Analysis

The Procrustes analysis method is aimed
at measuring how well the shapes of two
data configurations match one another. The
"shape" of a configuration is commonly un-
derstood to refer to the geometrical attributes
that remain invariant when the configura-
tion is subject to a rigid body transformation
(translation and rotation) and dilatation.

Let the input data configuration, viewed as a
geometrical figure h ft', consist of p labeled
points and represented by a p x n matrix X.
Similarlg define the output data configura-
tion as apxrn matrix Y in ft-, where m I n.
It is assumed that the output configuration Y
is in the X subspace i.e. point f in X, X(i),
corresponds to point f in the Y configuation,
1'(;). 6 an attempt to match confilurations
X and Y, n - rz columns of zeros are added
to the Y configuration to obtain m = n. A
typical measure of the degree of coincidence
between the two configurations is the sum of
the square of distances between correspond-
ing points (M2), i.e.

p

M2=Dllxt'l-y(;)112 (6)
r=1

The two configurations are first translated,
rotated aad dilatated to obtain the best pos-
sible fit. M2 measures the "lack of fi.t", or
residua,l sum of sguares. Small values of. M2
result in a good match between two given
shapes [Kar82].

3.2 Spearman Rank Correlation
Coefrcient

The Spearman rank correlation coefrcient is a
method which measures how much the rank-
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ing of two groups of data agree with one an-
other. Using the distance data calculated
from scatter-plot diagrams (a graph of the
inter-point distances in the original and re-
duced data spaces), the coefficient provides a
measure of the correlation between the origi-
nal data set and the reduced dimension data
set.

The Spearman rank correlation coeffcient, I,
is defined as follows [Hay81]:

iments and optimisation procedure are given
in [tdvCea] .

Results of the experiments are summarised
in Figures 1a) and 1 b). For completeness,
results for the linear PCA method are also
included. As to be expected, the performance
ofthe PCA techniques degrades rapidly as the
dimensionality of the data increases.

NLM and, to a lesser extent, non-metric MDS
appear to have an overall best performance
in terms of the Spearman coefrcient, whereas
non-metric MDS has the best performance in
terms of Procrustes analysis, particularly for
low input dimensions. Non-metric MDS has a
better performance in terms of reducing the
residual sum of squares and preserving the
shape of the data point distribution, whereas
NLM is superior in terms of the rank correla-
tion between the input and reduced data sets.

The SOFM algorithm generates output maps
with better visualisation and interpretation
capabilities; data points are more evenly dis-
tributed in the output space with the classes
often clearly distinguished. However, in gen-
eral, the performance of the SOFM algorithm
is inferior to the other non-linea,r dimension-
ality reduction techniques in low dimensiona.l
input spaces. Some of the structure in the
data point distribution is iost in the mapping
process. Also, the SOFM algorithm is not al-
ways sensitive to outlers (particularly in the
case of the thyroid data set), whereas out-
liers are easily identifiable when using NLM
or MDS.

As the dimensionality of the input space
increases, the reiative performance of the
SOFM algorithm improves significantly (par-
ticularly when using the Spearman rank cor-
relation'coefficient as the performance mea-
sure, where the value of the coefrcient actu-
ally increases with dimensionaiity) and the
SOFM algorithm may actually outperform
both NLM and non-metric MDS when the
dimension of input data is high. This sug-
gests that the SOFM algorithm would seem to
avoid the curse of dimensiona.lity better than
the other non-linear methods. Higher dimen-
sionality may also improve the convergence

(7)

where Dr is the sca.lar difference between each

element of two ranked vectors / and /[ is the
number of data. A strong correlation is indi-
cated by a value close to 1., 0 meaning no cor-
relation at aJI, and -1 meaaing irrelevance.

4 Performance Results and
Discussion

Experiments are undertaken on three data
sets; (i) thyroid data, (ii) glass data, and (iii)
fish data. The dimension of these data sets is

5, 10 and 12, respectively; the number of in-
put pattern vectors is 100, 50 and 34, respec-
tively, and the number of ciasses is 3, 4 and
3, respectively. The thyroid and glass data
sets include outliers. All experiments produce
two-dimensional data from the high dimen-
sional input data, and the Euciidean distance
is used as a standard distance measure in all
techniques. All input data are transformed
using one or more of the following: the Z-
transform, the log transform, mean-centering
and double-centering. For the SOFM, the
algorithm is run several times with differ-
ent parameters (size of feature map, number
of training iterations etc...), for each data
set, to achieve optimal performance (mini-
mal over-fitting and maximum output reso-

lution). A typical map size was 10 x 10, and
the number of iterations was 80,000. Scatter-
plots are generated from the output produced
by each reduction method and the compara-
tive performance is evaluated by using Pro-
crustes analysis and the Spearman rank cor-
reiation coef,frcient. More details of the exper-

N ' 6 DL,D?r =r-Irrayf
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rate of the SOFM algorithm, although this
was not verified (see, however, [MSRK9l]).

All dimensionality reduction methods, partic-
ularly the NLM and non-metric MDS; were

shown to be sensitive to the presence of out-
liers. The presence of an outlier produced an

unbalanced and distorted output map. This
is as expected, given the sensitivity of the Eu-
clidean metric to distance. Careful prepro-
cessing (which was undertaken in the exper-
iments reported here) must be implemented
to remove all outliers and ensure robust di-
mensionality reduction.

5 Conclusions

The use ofProcrustes analysis and the Spear-
man rar,L correlation coefficient in comparing
and contrasting non-linear dimensionality re-
duction methods was described. Both non-
metric MDS and Non-Linear Mapping per-
form relatively well for low dimensional data.
Non-metric MDS has a better performance
ia terms of minimising the residual sum of
squares and preserving the shape of the data
point distribution. NLM is superior to non-
metric MDS in terms of the rank correlation
between the input and reduced data sets. The
performance of both non-metric MDS and
NLM degrade quite rapidly as the dimension-
ality increases.

The SeH-Organising Feature Map generates a
more superior visual output than the other
two methods in that it is relatively easy
to interpret and the data points are well-
clustered. Eowever, in low dimensions, the
performance of the SOFM algorithm is iafe-
rior to that of NLM and noa-metric MDS.
Unlike NLM and MDS, the performance of
the SOFM algorithm increases with dimen-
sionality (when performance is measured in
terms of the Spearman rank correlation coef-
ficient) and may outperform non-metric MDS
and NLM for high-dimensiona.i data. It would
seem that the SOFM algorithm avoids the
curse of dimeusionality better than the other
non-linear methods.

Further work using large scale simulations
will need to undertaken to establish more
rigorously the superiority of the SOFM in a

high-dimensional context and its ability to ig-
nore noisy and information-poor features.
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