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SUMMARY

A method is given which uses subject matter assumptions to discriminate recursive models a,nd

thus point toward possible causal explanations. The assumptions alone do not specify any order

4mong the va,riables - rather just a theoretical absence of direct association. We show how these

assumptions, while not specifying aay orderingr calr when combined with the data through the

likelihood function yield information about an underlying recursive order. We derive dsfails of the

method for multinormal random va,riables and apply the procedure to a simulated exa,mple.

Key words: DIRECTED ACYCTIC GRAPES; LINEAR RECURSwE REGRESSION; MAXI-
MUM TIKELIHOOD; MONTE CAR^IO; CAUSAT ORDERJNG.

1 INTRODUCTION

Starting from Sewall Wright (1934), directed graphs have been used to represent structures in whici.

variables tcause' or 'influence' other variables. Nodes of the $aph are used to represent variables

a,nd an a,rrow from one variable to another indicates that the first has a direct causal influence on

the second, an inf.uence not blocled by holding constaat others considered.

If the graphs are restricted to directed acydic graphs (DAGs) by prohibiting directed cydes, then

there o<ists an ordering of the vertices in the DAG consistent with the direction of the edges, in that
all variables a,re ordered after their causes in a causal or temporal sense. ConverselS an ordering

of the va^riables can specify a recursive model for which statistical analysis is routine (see section

3), and which will define a DAG.

Thus there is a correspondence betweesl causal descriptions, DAGs, and recursive statistical models.

A search for likely causal explanations can be implemented as a search for good-fitting recursive

'The authors th.nk David Andrews, Paul Corey, Michael &coba,r, Wayne Oldford, Judea Pea,rl aud Robert

Tibshhani fot hdpftl commeuts a,nd discussion.
fsupported by a fellowship ftom the Natural Sciences a,od Engiaeering Research Council of Canada'
tsupported by a resea"rch graat ftom the Natural Sciences and Eugineering Rcsea,rcL Council of Canada.

520



models. The interpretation of such a model is controversial. Cox and Wermuth (1993) prefer to
restrict the term causal to (situations when there is some underslaading of an uaderlying process'
and indicate that recursive models (could be consistent with a causal explanation'. Pearl and
Verma (1991) and Spirtes et aI (1993) rega.rd directed association in a good-fitting DAG as a
defiaition of causality. Our view is similar to Cox a,od Wermuth's, but the causal iaterpretation
of recursive models is not cmtral to this paper; our focus is the identffication of recursive models.
Throughout, we use the term causal to iadicate a directed edge in a DAG, as this corresponds with
the intuition for such models; we ma,ke no claims about an underlying mechanism. We use the term
'causal ordering' sJmonymously with 'recursive ordering', the sequence of variables io a recursive
model, again in accorda.nce with intuition.

It is standa.rd practice to rely on purely subject matter considerations to specify the causal ordering
of rra.riables. An important question is: can we obtain any information on the ordering from the
data? We argue in section 3 that, in the absence of external 6ssumptions, we cannot. Some
resea,rchers (Pearl and Verma, 1991; Spirtes et al, 1993) have emphasized stability assumptions
which a priori rule out certain probability models, in a way that allows causal inferences to be
made. We discuss these assumptions in section 8 and state reservations about relpng on them.

We agree with Cox and Wermuth (1993) that "it is unrealistic to think that causality could be
established from a shgle empirical study or even from a number of stud.ies of similar form without
injection of external information". In this paper we grve a method which uses subject matter
assumptions to discriminate recursive models and thus point toward possible causal explanations.
The assumptions alone do not specify aoy order anong the variables - rather just a theoretical
absence of direct association. We show how these assumptions, while not specifying a.ny ordering,
caa when combined with the data through the likelihood firnction yidd information about the
uaderlying recursive order.

The next section introduces DAGs, linear orders, and recursive models. Section 3 describes the
recursive analysis of normally distributed data a,rtd gives a method for extracting and interpretiag
information about causal order, deriving 1[g dgfails for the Gaussian linear model. Sectioa 4
describes the information yielded by the method, which can ta^ke the form of a partial order whici.
indicates the relative order of pairs of rariables. The method is applied to a simulated data in
section 5. Section 6 gtves a Bayesian Monte Ca,rlo computational method based on importance
sa,mpling. Section 7 discusses causation in the context of our method. The last section discusses
some limitatirons of our method and other methods, a,nd ma.kes some concluding comments.

2 DAGS AND RECURS TE MoDELS

A directed $aph is a graph representing random va,riables and the statistical dependencies arnotrg
them. Random variables are represented by nodes of the Braph, and the direct influence of a
variable U upon V is depicted by a-n a,rrow (synonymously, directed edge) from node U to node V.
If there is a directed edge [r - Vr we call U a parent a.nd V a chi]d of U, and U is considered a
cause of V. A directed path is asequence Zi + Z;2 +... -i. Z;oof distinct nodesl here we say
that Z;- is a descendent of Z;r'and, Z;, is an ancestor of Z;-. A cycle is a directed path from a
node to itself. A directed acyclic graph is a directed graph with no cycles.
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2.1 Markov properties of DAGs

Kiiveri and Speed (1982) related causal influences represented by a directed graph without cycles
to conditional independence constraints. The coanection, by what are called Markov coaditions
assnres that any direct depeadencies between raadom ra^riables X a,ad Y can not be explained away
by holding constant others considered.

The (local) Markov condition specifies that every verte:c is statistically independent of its non-
descendaats given its parents. This is equivalent to the recursive factorization of the joint distri-
bution ofthe vertices

/(v) = fI l@lp"rents(a)), (1)
o€V

where f (o) * 0. This factorization uniquely determines the joint distribution. The Markov condi-
tion is intuitively desirable in a model for causal influence in that immediate causes should shield
o from every na,riable that is not a consequence of o. Recent work allows us to deduce from the
DAG alt conditional and marginal independencies implied by the factorization (1) (Pea,rl, 1988;
Lauritzen et al, 1990).

2.2 Orderings and recursive models

Suppose that we label the nodes by numbering them so that i < j + i e nd(i) in any feasible
DAG model, where nd(i) is the set of noa-desceudents of node j. That is, axrows always point
from low numbers to higher numbers in accordance with causal or temporal order. Thus if i is
a potential canse ol j, i < j. This labding maps a va.riable to its lemporal or causal order i,
while the inverse maps i to .K(i). Thus i and X(i) are Bynonymous for a variable ordered ith.
Wewrite X(i) < X(j)wheneveri < j. Forsets A-- {a*} andB = {Dr},wewrite A< B
whenever ap I bl for all such pairs. There are several ootions implicit in the numbering process.
We cannot have i ( i, so causation is irrefle"xive. For aay two va^riables we must have either f < j
or i < i, but not both. Thus causation is asymmetric. Also, there is an underlying temporal or
causal order determining for every pair of variables which one influences the other assuming that
a direct association orists, so we are defining a complete relation. This is in tune with two ideas:
i) every direct statistical association not due to latent factors is causal (Reichenbach, 1956) and
thus directed and ii) our set of va,riables is comprehensive and no associations a,re due to latmt
va,riables which a,re commop. canses of pairs of observed rrariables, since such an association would be
symmetric. Finallg properties of the integers erpress the requirement that causation or temporal
precedence is transitive.

The numbering of variables defines a complete, irreflexive, ass5metric, transitive relation, which is
formally referred to as a linea,r order or ordering. Viewed as a relation, it is the set of all ordered
pairs of variables (X(i), X(iD,i < j. We may also write such an ordered pair as X(i) < X(j) for
emphasis. An ordering can be written as .f,(1)X(2) - ..X(n) or, alternativeln as X(1) < X(2) . . . <
X("). It can also be viewed as a complete directed graph with edges X(i).* Xff) for i < j. The
transitivity of the relation implies that the graph is acyclic, so the ordering is equivalent to a
complete DAG. We can obtain DAG models for the data by deleting edges from the complete DAG
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specified by an ordering. Pearl (1988) and Lauritzen et al (1990) show that the following property,
the local well numbering property, is equivalent to the Markov property.

x(i)r {x(i);i<i}lparents(x(i)) (2)

The set {X(i); i < i}, will be referred to as yred(.)((i)), the predecessors of X(f ). Giveu an ordering
we can determine the pa.rents of every variable by a recursive series of analyses of the ordered sets

{X(2), X(1)}, {X(3), X(2), X(1)}, . . . , {X(n), X(n-l), . . ., X(1)}, where each rariable is regressed
on its predecessors. The resulting graph will possess the Markov property due to the equirnlence
of the Markov property and (2).

3 INTERENcE FoR LINEAR REcUn,sfvE MoDELS

3.1 Linear recursive regression

Recursive equations have been related to path analysis and the statistical theory of cova,ria,nce
selection (Wermuth, 1980), and later to graphical models (Wermuth and Lauritzen, 1983). Wer-
muth and Lauritzen (1990) and Cox and Wermuth (1993) extend the system to a broader coutext,
iatroducing systems of block-recursive regression for chain graphs.

Throughout, we assume a linear relationship between the va,riables in a p-dimensional random
vector X = (Xr, X2r...,X)r. For simplicity, we also assume that X; follows aa origin-centered,
non-degenerate continuous distribution with cova^riance matrix E. Therefore for a linea,r order {,
if the variables are indexed, i.e. X(i) = Xi we may write the above recursive analysis in the form
of linear recursive equations as

X1 =€1
X2 = flzrXtlez
Xs = flfl2Xr*&ez.rXz*es

' (s)
Xp = Qpt.x-.p-rXt * 9pz.rs..7,-tXz * ... * 9po-r;r2..7.-zXp-r * ep,

where €;'s a,re errors assumed to be independently distributed with mean zero and va,riaace *;. Or
we cr.n write the above equations as

BX = er (4)

where B is a lower triangle matrix with diagonal elements 1, lower off-diagonal elements coefrcients
of the above equations, and e - .f(0, D) with D a diagoaal matrix (di;). h the equation corre-
sponding to X;, only predecessors of X; appear on the right hand side, so the non-zero coefrcients
correspond to pa,rents of Xr. Ta^king varia,nces of both sides of equation (a) gives

E = B-lDB-T. (s)

For a pa.rticular ord.er, (B,D) is a one.to-one transformation of E. Eence the linear recursive
equations completely capture the cova^riance structure of the data. We further impose the condition
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that e (and thus X) is normally distributed, so that

9;i.t...t-u+1,...i-r = 0 iff X; LXil(X1"'Xyr,Xi+r" 'x;-r). (6)

We may erpress this last conditional indepeadence as X; t & I pred(X;rX;).

If the ordering of variables is given, then we use maximum likelihood to estimate the regression
pa.ra,meters of the linea,r recursive equations, to lea.ra which independencies are implied by the
data. Because of the separability of pa,ra.meters (Whittaker, 1994) implied by (3), the MLEs of the
recursive system can be estimated by each regression sepa^rately; the MLEs for earch equation are
the LSEs of each regression.

3.2 Discriminatingorderings

The order of variables is often uaknown, a.nd it would be usefirl to be able to obtain some information
about the causal ordering of the variables from the data. Unfortunatelg without restrictions, all
orderings give the sa,me manimum likelihooil when linear recursive equations a,re fit. This is because
for a.ny ordering, with no restrictions, the decomposition (5) holds and (BrD) is a unique oae to
one transformation of E. Thus by the composition of functions there exists a unique one to one
transformation between the para,meters (Br,Dr) and (82,D2) for any two orderings. Thus the
likelihood of these para.meterizations will agree, and the observed data by itself will uot suggest
any ordering information.

Hourever, we can discriminate the fit of different orderings by injecting external information; if we fix
differmt para,meters, and ma:rimize the likelihood over the 1sp:ining para,meters, the ma:<imum
Iikelihoods will rnry. In a relatively well-understood domain, we may be able to specify that
some variables can not directly influence ea,ch other. That is, we may state that for a pair of
ra,riables, neither va.riable can be a parent of the other. By Verma and Pearl (1990), then they
are independent given their a,ucestorsl we write this as X; L Xl I Au(X;,X). Although this
information does not tell us anfihing directly about ordering of variables, we will show that it
will give us information about the underlying structure when combined with the data through the
likelihood function. [{e.king some assunptions about infeasible associations among the na,riables,
we will draw statistical inferences about the ordering of va,riables using maximum likelihood.

To assume X; aad XJ are not directly related mer.ns X; and X1 ate not adjacent in the underlying
DAG, which is modelled in the recursive system as 0x;xi.pred(x;,x;) = 0 6,gs63ding to (6). By
applying such assumptions to the recursive system, i;e. restricting some regression coeff.cients to
zero, for different orderings the likelihood will ra^ry. The assumptions have injected some ordering
information into the system by implying different pa,ra,meterizations and restrictions for different
orderings, in that the set yreil(X;,X;) va,ries for diferent orderings. Therefore given such assnmp-
tions or restrictions, the likelihood ca.lo tell us which orderirgs a^re consistent with the data and
assumptions. Note that these assumptions a.re symmetric with respect to X; aad X;; that is, they
do not directly o(press any information about order.

To determine which orders are consistent with the data under the assumptions we use the gener-
a.lizgd log-likelihood ratio test. tr'or a particular ordering {, define I({) to be the log-likelihood for
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the system (4) when the vector X is ordered as d. The log-likelihood I(/) is subject to restrictions
on regression coefrcients based on subject matter knowledge and ma:rimized over f,[s lgpaining
pa^ra.meters, for ordering {. For la,rge sa.mples, goodness of fit is tested uging the statistic

R(6) = -2fMax{t(il} - Mae{ts}l - X3.y., (z)

where d is the liuear order determining the recursive model, Maa{l($)} is the ma:rimum log-
likelihood for the restricted model, Moa{ls} is for the unrestricted model and does not depend
on the ordering, and, d,.t. = Number of restrictions (Whittaker, 1990). For different orderings
the restrictions are on different parameters, i.e. 9ii.prcd(i,j\ = 0 chaages meaning since the set
yred(i,i) depends on the ordering. If the assumptions a.re true, in the limit the true ordering fits
the data perfectly, and gives the same likelihood as the unrestricted case (Yao, 1994). Generally, if
assumptions are true, for sufrciently large sa.mples the true ordering should fit the data well and
give a relatively high maximum likelihood. Theory does not, however, indicate that an iacorrect
order must be rejected. Conceirrably a wrong ordering could also fit the data well; other external
information or subject matter knowledge is the only way to choose among the orderings which
yield a high ma:<imized likelihood. If no ordering gives good ft, the assumptions should be re-
investigated, or there may be important va,riables omitted from the aaalysis.

4 IN?ERPRETING sETS or. oRDERINGs

4.L Equivalent sets

The gmeral idea of the algorith- is to permute orders of riariables, then for each ordering t' to
calcnlate the maximum likelihood with restrictions, and finally select the orderiags with low values
of B({) of (7). Eowever, there is no need to calculate the restricted maximum likelihood for all
linear orders, as some orderings are equivalent with respect to the restrictions. Equivalent orderings
are determined by the following theorems.

Theorem L If we hooe assumptions \ L jlpred(it, jt), ..., i^ t j*lyred,(i*, j*), and allix I jr,

permutation within any Ay's, k = 1, 2, ,.., m, iloes not affut the maairnum likelihood.

Theorem 2 Under the anditions of Theotzm 7, it ip ond, j* arc adjacent in the ordering, they
may be permutd without affecting the masimum likelihmd,.

Corollary L If the only assumptionisi t jlpred(i,j),thenforanorderA< j <8, whercieA,
A' is the set prcceding j and B is the set follouing j, permutation within A. anil B des not aff*t
the madmum likelihood.

Corollary 2 If the only assumptionisi t jlpred,(i)upred(j),thentor on order A<i< j <8,
switching i and j in the ord,ering does not affect the maaimum likelihood.
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Corollary S If the only assumptionisi t jlpred,(i)upred(j),thentor an otder A<i < B <i <
C, suitching i and j in the otdedng does not affect the maoimum likelihooil.

Thus an assumption about i ail, j does not yield information about the relative order of i aad j.

Proofs of these Theorems and further details can be found in Yao (1994). The theorems indicate the
resolution of the method. When no assumptions are made, there is a single equivalent set composed
of all orderings. As more assumptions are introduced, the ability to discriminate between orderings
improves, in that the equirralent sets become smaller.

We call the set of orderings with the sa,me maximized likelihood by Theorem L and 2, the equirralelrt
set. The first step in interpreting the outcome of the above analysis is to elimiaate orderings which
conflict with subject-matter knowledge about order. We will assume that all infeasible orderings
have been eliminated from the equivalent sets.

4.2 Partial orderings

Since directed graphs axe so usefirl for representing causal relations, a graphical interpretation of
equivalent sets is desirable. We do this by defining the pa,rtial order corresponding to an equivalent
set. Any set O of orderings, and in particular an equivalent set, defines a partial order I as follows:
for an ordered pair (c, U), (a,y) € f # (a, g) e dfor every ordering d e O (Dushnik and Miller,
1941). We can thus interpret the equivalent set with the lowest value of .B(.) given bV (7) as defining
the partial order of the variables which is the most consistent with the data and assumptions. The
ordered pairs in the pa,rtial order derived from aa equivalent set are directed edges in the underlying
causal graph.

There may be multiple equivalent sets which a,re accepted by the test (7). These may be entertained
as competing ocplanations of the data and judged individually on their scientific merit. A.lterna-
tivelg we may pool a number of equivalent sets strongly supported by the data. This expanded
set of orderings will determine a partial order in the sa,me fashion as a single equivalent set, by
intersecting ordered pairs according to Dushnik and Miller's definition. To guide the pooling of
equivaleat sets, we may use a hypothesis test based on equation (7) to form a test based confdence
set which is a union of equivalent sets. That is for each order /, use the null distribution (7)
to accept or reject / at level a. Then the eet composed of all accepted equivalent sets will have
confidence level o. i.e. P(true order in the confidence set) = P(true order is not rejected by (Z)) -1-P(orderrejectedlorderistrue)=1-corP(orderisnotintheconfidmcesetlorderistrue)=
a. When the true ordering is in the confidence set, if every member of that set sha,res an ordered
pair (x, y), then the true order must possess that property. As a result, every pair in the resulting
partial order agrees with that implied by the underlying true ordering at the siglificance level o.

4.9 Non-graphical information

Section 4.2 described the relationship, expressible graphically, implied by selecting a set of order-
ings. However, a set of orderings aJso implies non-graphical relationships. For oca.mp1e, consider

526



na^riables A,B, aad. C, along with the condition A ! B I C. Ao equinalent set for that condition
is {CAB,CBA,BCA,ACB}. The pa,rtial order that is the union of these four orderings is null -
there a,re no ordered pairs in the relation. Eowever, selecting that equivalent set does rule out the
orderings ABC and, BAC. This tells us that we should not coosider models for which C is preceded
by both A and 8. However, this informatioa is not a bina.ry relation, and thus is not expressible
graphically.

5 AN ExAMPLE

For exa,mple, consider four va.riables U, V, W, Z from a multivariate normal distribution. Amoag
these rrariables, we assume that V is not feasibly directly associated with W, nor is U with Z.
Expressed statistically, we assnme U L Zlpred(U,Z) and Iz tWlpred(Y,W). With these two
restrictions on the linear recursive coefrcients, we calculate the ma:<imum likelihood for all equiv-
alent sets. The equivalent sets and theh goodness-of-ft statistics (on 2 degrees of freedom) for a
simulated data set a.re given below.

1) ZWIry, WZUV, WUZV, UWZV
2) VZVW, ZUVW, ZUWV, UZWV
3) ZVUW, VZVW,VAZW, UVZW
4) U\ ryZ, IJ-VWZ,WTJYZ,]i/0WZ
5) ZWYU, WZVA, VZWU, ZVWU
6) WVZU, V,IYVZ,\trWVZ, VWZU

R = 0.75;
R = 55.M;
R = 225.18;
R = 355.54;
R = 381.27;
R = 565.92.

A 95 percent confidence set of orderings consists only of equinalent set 1. This set corresponds to
the partial ordering {U <V,W 1V, Z <V}. The relative order of a,W and Z is unknown, but
we have been able to conclude that they all precede y with 95 percent confi.dence, which agrees
with the model used to generate the data. If equivalent set 2 had been included in the confidence
set we wonld have inferred only A <V and Z <V.

6 AN ALTERNATTvE sTRATEGY

Our method involves permutation and hence orponential computational complo<ity. Thus, to
evaluate posterior probabilities of arbitra.ry properties of the underlying linea,r order, we derive an
alternative Bayesian importance sa.mpling method.

Let /(x; 916) be the restricted likelihood function for a given linear order fi where restrictions
express assumptions as described in section 3. We denote i!;|!il as the ma:rimized estimate of
the firnction. If we sa,mple liaea,r orders 6;,i = 1,2,- .., M from a prior distribution p({), then for
any functiot g(O), we prove the following convergence property (yao, 1gg4).

Theorem 3 Under rc4ularitg conditions such that the MLE ol P is shongly unsistent, as the
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nambr of obseruations n and M go to infinitg,

M M

tD f(*; 914i1-r D g@) i (x; gl0) !* E 6".ls(6)), (8)
j=1 i=1

uherc Ea6[.] is on expectation ooer the psterior distributbn of the orderings.

tet g(f,) be an indicator function for any given pair of va,riables, eg. for the pair X and Y, we

define

s,o(6) = {l:
iI x <Y eo
o.w.

(e)

Thm E6gx[9rv(/)] measures the posterior probability of. "X < Y implied in the ordering d" under
the restrictions. Geweke (1989) gives the importance sa,mpling error of the estimated posterior
probability,

,n m

E{g*(d;) - E6pls@)1}'r? lDr?, (10)
i=1 i=1

where w;-- i(x;9,6).
To illustrate, we apply the procedure to the exa,mple of the previous section. For this small exa,mple

we orhaustively sa,mple all orderings. Defining 9""(O) = 1 if a < V in /, and zero otherwise,
we compute Prob(U < V) = Elg""(O)l er 1.0. Simila,r calculations give ProD(W < V) ny 1.0,
Prob(Z <V) o 1.0 and Prob(W < Z) : 0.5.

7 cAUsATroN

A key assumption attached to the system of equations (4) is that

€ - f(0, D), (11)

with D a diagonal matrix (4;). We now show how this assumption relates to causation, and. to the
validity of our method.

Stone (1993) shows that if

e; LXl l{X1,...,X;-r}lXi,L1i <i- 1 (12)

in the Gaussian linear model, then B; = 0 implies that Xi causes X;, assuming that the temporal
or causal order is consistent with the indexing of the variables. For any positive distribution, (12)
holds for all, = 1,...,i - 1 if and only if

ei I Xr,...,X;-r. (13)

This is the usual requirement for the consistency of the least square estimate (Bowden and Turk-
ington, 1984). It is easy to show that in the recursive system (4), the assumption (11) is suff.cient
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to establish (12) and (13) for i = L,...,p. Thus the usual assumption about error structure im-
plies that causation can be tested by exe.mining the regression coefrcieots when the linear model
is correct and the rrariables a,re ordered correctly.

The nalidity of our proposed method rests on the assumption that if subject-matter knowledge
specifies that X; L Xi I Aa(X;,X;), i.e. they are not directly related in the underlying DAG, then
X; L Xi I yeil(X;,Xr) i" the correctly ordered recursive model. Note that yred,(X;rX;) consists of
va^riables actually observed and may be a proper subset of, An(X;rX;) since the underlying system
could indude uaobserved ancestors. It can be shown that the diagonal covariance structure (11)
insures that X; L Xi I An(X;,X;) implies X; L Xi I yred.(X;,X).

We have thus shown that the usual assumptions about the error structure of the linear recursive
system validate our method, and also allow zero regression coefrcients to indicate causation when
the ordering is correct. This is not to say that causal inferences may be made routinely. R.ather, it
emphasizes what an extremely strong assumption (11) is. It a.mounts to assuming that all relena,nt
va,riables have been observed, i.e. there is no confounding. For observational data the domain bei.g
studied must be very well-understood before we ciul confidently assume that all relevant factors are
being modelled.

8 DrscussroN

Pearl and Verma (1991) and Spirtes et al. (1993) grve valuable algorithms for generating causal
models from data. Verma and Pearl (1992) give an algorithm whie,h decides if there is a DAG
which explains a list of conditional independence statements. These methods assume, besides the
Ma,rkov condition, two more conditions, vninimslify and stability, which enable causal inference from
observed data (cross-sectional) without prior assumptions about the nature of variables. Informally,
the minimality condition says that each edge in the DAG prevents some conditional independence
that would otherwise shain, and the stability condition says that the only independencies in data
a.re a consequence of the Ma.rkov assumptions and can not be caused by a mere cancellation of the
effects of other dependencies. Though theoretically cancellation occurs with measure zero (Spirtes
et al., 1993), ju,lging independencies in practice relies on statistical tests which will support null
association with appreciable probability for a range of pa,ra,meter nalues. For limited ga.mple size,
the range may be great. Hence in practice we can not assume that approximate cancellation is
impossible, and prefer to rely on assumptions that have subject matter justffication, as opposed to
stability whic.h demands that probabilities in general behave in a certain way.

As in any observational studS omitted rra^riables can lead to false inferences with our method, and
results should be interpreted with the appropriate caution. We a,re proposing this as a method for
the generation of possible causal orplanations, not a substitute for ra,ndomized orperiments.

If we ale iavestigating a domain where there is confidence that all the relevant rra,riables are known,
and there is sufrcient knowledge to ma,ke solid assumptious of the type required here, the infer-
ences yielded by the method of this paper will have coulmensurate rnalidity. Essentially, the more
knowledge we sta,rt with, the more we can confidmtly i:rfer.
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The method is more general than the multiriariate normal case. It pertains to any recursive model
for which the pa,ra,meters a,re separable aad can express pairwise independence.
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