Likelihood-based Causal Inference*

Qing Yaof David Tritchler*
Harvard University Ontario Cancer Institute
qyao@hsph.harvard.edu and

University of Toronto
tritchle@oci.utoronto.ca

SUMMARY

A method is given which uses subject matter assumptions to discriminate recursive models and
thus point toward possible causal explanations. The assumptions alone do not specify any order
among the variables — rather just a theoretical absence of direct association. We show how these
assumptions, while not specifying any ordering, can when combined with the data through the
likelihood function yield information about an underlying recursive order. We derive details of the
method for multinormal random variables and apply the procedure to a simulated example.
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1 INTRODUCTION

Starting from Sewall Wright (1934), directed graphs have been used to represent structures in which
variables ‘cause’ or ‘influence’ other variables. Nodes of the graph are used to represent variables
and an arrow from one variable to another indicates that the first has a direct causal influence on
the second, an influence not blocked by holding constant others considered.

If the graphs are restricted to directed acyclic graphs (DAGs) by prohibiting directed cycles, then
there exists an ordering of the vertices in the DAG consistent with the direction of the edges, in that
all variables are ordered after their causes in a causal or temporal sense. Conversely, an ordering

of the variables can specify a recursive model for which statistical analysis is routine (see section
3), and which will define a DAG.

Thus there is a correspondence between causal descriptions, DAGs, and recursive statistical models.
A search for likely causal explanations can be implemented as a search for good-fitting recursive
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models. The interpretation of such a model is controversial. Cox and Wermuth (1993) prefer to
restrict the term causal to “situations when there is some understanding of an underlying process”
and indicate that recursive models “could be consistent with a causal explanation”. Pearl and
Verma (1991) and Spirtes et al (1993) regard directed association in a good-fitting DAG as a
definition of causality. Our view is similar to Cox and Wermuth’s, but the causal interpretation
of recursive models is not central to this paper; our focus is the identification of recursive models.
Throughout, we use the term causal to indicate a directed edge in a DAG, as this corresponds with
the intuition for such models; we make no claims about an underlying mechanism. We use the term
‘causal ordering’ synonymously with ‘recursive ordering’, the sequence of variables in a recursive
model, again in accordance with intuition.

It is standard practice to rely on purely subject matter considerations to specify the causal ordering
of variables. An important question is: can we obtain any information on the ordering from the
data? We argue in section 3 that, in the absence of external assumptions, we cannot. Some
researchers (Pearl and Verma, 1991; Spirtes et al, 1993) have emphasized stability assumptions
which a priori rule out certain probability models, in a way that allows causal inferences to be
made. We discuss these assumptions in section 8 and state reservations about relying on them.

We agree with Cox and Wermuth (1993) that “it is unrealistic to think that causality could be
established from a single empirical study or even from a number of studies of similar form without
injection of external information”. In this paper we give a method which uses subject matter
assumptions to discriminate recursive models and thus point toward possible causal explanations.
The assumptions alone do not specify any order among the variables — rather just a theoretical
absence of direct association. We show how these assumptions, while not specifying any ordering,
can when combined with the data through the likelihood function yield information about the
underlying recursive order.

The next section introduces DAGs, linear orders, and recursive models. Section 3 describes the
recursive analysis of normally distributed data and gives a method for extracting and interpreting
information about causal order, deriving the details for the Gaussian linear model. Section 4
describes the information yielded by the method, which can take the form of a partial order which
indicates the relative order of pairs of variables. The method is applied to a simulated data in
section 5. Section 6 gives a Bayesian Monte Carlo computational method based on importance
sampling. Section 7 discusses causation in the context of our method. The last section discusses
some limitations of our method and other methods, and makes some concluding comments.

2 DAGS AND RECURSIVE MODELS

A directed graph is a graph representing random variables and the statistical dependencies among
them. Random variables are represented by nodes of the graph, and the direct influence of a
variable U upon V is depicted by an arrow (synonymously, directed edge) from node U to node V.
If there is a directed edge U — V, we call U a parent and V a child of U, and U is considered a
cause of V. A directed path is a sequence Z;, — Z;, — --- — Z;, of distinct nodes; here we say
that Z;, is a descendent of Z;, and Z;, is an ancestor of Z;,. A cycle is a directed path from a
node to itself. A directed acyclic graph is a directed graph with no cycles.
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2.1 Markov properties of DAGs

Kiiveri and Speed (1982) related causal influences represented by a directed graph without cycles
to conditional independence constraints. The connection, by what are called Markov conditions
assures that any direct dependencies between random variables X and Y can not be explained away
by holding constant others considered.

The (local) Markov condition specifies that every vertex is statistically independent of its non-
descendants given its parents. This is equivalent to the recursive factorization of the joint distri-

bution of the vertices
f(V) = [ f(v|parents(v)), (1)
veVY

where f(v) # 0. This factorization uniquely determines the joint distribution. The Markov condi-
tion is intuitively desirable in a model for causal influence in that immediate causes should shield
v from every variable that is not a consequence of v. Recent work allows us to deduce from the
DAG all conditional and marginal independencies implied by the factorization (1) (Pearl, 1988;
Lauritzen et al, 1990).

2.2 Orderings and recursive models

Suppose that we label the nodes by numbering them so that i < j = i € nd(j) in any feasible
DAG model, where nd(j) is the set of non-descendents of node j. That is, arrows always point
from low numbers to higher numbers in accordance with causal or temporal order. Thus if i is
a potential cause of j, i < j. This labeling maps a variable to its temporal or causal order 1,
while the inverse maps ¢ to X (). Thus ¢ and X (i) are synonymous for a variable ordered ith.
We write X (i) < X(j) whenever ¢ < j. For sets A = {ax} and B = {b;}, we write A < B
whenever a; < b; for all such pairs. There are several notions implicit in the numbering process.
We cannot have ¢ < %, so causation is irreflexive. For any two variables we must have either i < j
or j < %, but not both. Thus causation is asymmetric. Also, there is an underlying temporal or
causal order determining for every pair of variables which one influences the other assuming that
a direct association exists, so we are defining a complete relation. This is in tune with two ideas:
i) every direct statistical association not due to latent factors is causal (Reichenbach, 1956) and
thus directed and ii) our set of variables is comprehensive and no associations are due to latent
variables which are common causes of pairs of observed variables, since such an association would be
symmetric. Finally, properties of the integers express the requirement that causation or temporal
precedence is transitive.

The numbering of variables defines a complete, irreflexive, assymetric, transitive relation, which is
formally referred to as a linear order or ordering. Viewed as a relation, it is the set of all ordered
pairs of variables (X (7), X (7)), < j. We may also write such an ordered pair as X (i) < X(j) for
emphasis. An ordering can be written as X (1)X(2) - - - X(n) or, alternatively, as X (1) < X(2)--- <
X(n). It can also be viewed as a complete directed graph with edges X (i) — X(j) for ¢ < j. The
transitivity of the relation implies that the graph is acyclic, so the ordering is equivalent to a
complete DAG. We can obtain DAG models for the data by deleting edges from the complete DAG
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specified by an ordering. Pearl (1988) and Lauritzen et al (1990) show that the following property,
the local well numbering property, is equivalent to the Markov property.

X(3) L {X(4);7 < i} | parents(X (7)) (2)

The set {X(7); 7 < i}, will be referred to as pred(X (%)), the predecessors of X (¢). Given an ordering
we can determine the parents of every variable by a recursive series of analyses of the ordered sets
{X(2),X(1)},{X(3),X(2),X(1)},---,{X(n),X(n-1),---,X(1)}, where each variable is regressed
on its predecessors. The resulting graph will possess the Markov property due to the equivalence
of the Markov property and (2).

3 INFERENCE FOR LINEAR RECURSIVE MODELS

3.1 Linear recursive regression

Recursive equations have been related to path analysis and the statistical theory of covariance
selection (Wermuth, 1980), and later to graphical models (Wermuth and Lauritzen, 1983). Wer-
muth and Lauritzen (1990) and Cox and Wermuth (1993) extend the system to a broader context,
introducing systems of block-recursive regression for chain graphs.

Throughout, we assume a linear relationship between the variables in a p-dimensional random
vector X = (X1, X3, ..., Xp)T. For simplicity, we also assume that X; follows an origin-centered,
non-degenerate continuous distribution with covariance matrix 3. Therefore for a linear order ¢,
if the variables are indexed, i.e. X(i) = X; we may write the above recursive analysis in the form
of linear recursive equations as

X1 = «a

X2 = PfaXit+e

Xz = Par2Xi1+P21X2+ €3

: 3)
Xp = Bpr23.p-1X1+ Bp213-p-1X2 + - + Bpp-112--p—2Xp-1 + €p,

where ¢;’s are errors assumed to be independently distributed with mean zero and variance d;;. Or

we can write the above equations as
BX =, (4)

where B is a lower triangle matrix with diagonal elements 1, lower off-diagonal elements coefficients
of the above equations, and € ~ f(0,D) with D a diagonal matrix (d;;). In the equation corre-
sponding to X;, only predecessors of X; appear on the right hand side, so the non-zero coefficients
correspond to parents of X;. Taking variances of both sides of equation (4) gives

»=B"!'DBT. (5)

For a particular order, (B,D) is a one-to-one transformation of ¥. Hence the linear recursive
equations completely capture the covariance structure of the data. We further impose the condition
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that € (and thus X) is normally distributed, so that
Biagagajimip =10 iff X; L XjI(Xl vee X1, Xipy e 'X,'._l). (6)
We may express this last conditional independence as X; 1L X | pred(X;, X;).

If the ordering of variables is given, then we use maximum likelihood to estimate the regression
parameters of the linear recursive equations, to learn which independencies are implied by the
data. Because of the separability of parameters (Whittaker, 1994) implied by (3), the MLEs of the
recursive system can be estimated by each regression separately; the MLEs for each equation are
the LSEs of each regression.

3.2 Discriminating orderings

The order of variables is often unknown, and it would be useful to be able to obtain some information
about the causal ordering of the variables from the data. Unfortunately, without restrictions, all
orderings give the same maximum likelihood when linear recursive equations are fit. This is because
for any ordering, with no restrictions, the decomposition (5) holds and (B, D) is a unique one to
one transformation of 3. Thus by the composition of functions there exists a unique one to one
transformation between the parameters (B1,Dj) and (Bg,D3) for any two orderings. Thus the
likelihood of these parameterizations will agree, and the observed data by itself will not suggest
any ordering information.

However, we can discriminate the fit of different orderings by injecting external information; if we fix
different parameters, and maximize the likelihood over the remaining parameters, the maximum
likelihoods will vary. In a relatively well-understood domain, we may be able to specify that
some variables can not directly influence each other. That is, we may state that for a pair of
variables, neither variable can be a parent of the other. By Verma and Pearl (1990), then they
are independent given their ancestors; we write this as X; 1 X; | An(X;, X;). Although this
information does not tell us anything directly about ordering of variables, we will show that it
will give us information about the underlying structure when combined with the data through the
likelihood function. Making some assumptions about infeasible associations among the variables,
we will draw statistical inferences about the ordering of variables using maximum likelihood.

To assume X; and X; are not directly related means X; and X are not adjacent in the underlying
DAG, which is modelled in the recursive system as Bx,x;.pred(x;,x;) = 0 according to (6). By
applying such assumptions to the recursive system, i.e. restricting some regression coefficients to
zero, for different orderings the likelihood will vary. The assumptions have injected some ordering
information into the system by implying different parameterizations and restrictions for different
orderings, in that the set pred(X;, X;) varies for different orderings. Therefore given such assump-
tions or restrictions, the likelihood can tell us which orderings are consistent with the data and
assumptions. Note that these assumptions are symmetric with respect to X; and Xj; that is, they
do not directly express any information about order.

To determine which orders are consistent with the data under the assumptions we use the gener-
alized log-likelihood ratio test. For a particular ordering ¢, define I(¢) to be the log-likelihood for
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the system (4) when the vector X is ordered as ¢. The log-likelihood I(¢) is subject to restrictions
on regression coefficients based on subject matter knowledge and maximized over the remaining
parameters, for ordering ¢. For large samples, goodness of fit is tested using the statistic

R(¢) = —2[Maz{l(¢)} — Maz{lo}] ~ X3 ;., (7

where ¢ is the linear order determining the recursive model, Maz{l(¢)} is the maximum log-
likelihood for the restricted model, Maz{lo} is for the unrestricted model and does not depend
on the ordering, and d.f. = Number of restrictions (Whittaker, 1990). For different orderings
the restrictions are on different parameters, i.e. Bjjpreq(i,j) = 0 changes meaning since the set
pred(i,j) depends on the ordering. If the assumptions are true, in the limit the true ordering fits
the data perfectly, and gives the same likelihood as the unrestricted case (Yao, 1994). Generally, if
assumptions are true, for sufficiently large samples the true ordering should fit the data well and
give a relatively high maximum likelihood. Theory does not, however, indicate that an incorrect
order must be rejected. Conceivably a wrong ordering could also fit the data well; other external
information or subject matter knowledge is the only way to choose among the orderings which
yield a high maximized likelihood. If no ordering gives good fit, the assumptions should be re-
investigated, or there may be important variables omitted from the analysis.

4 INTERPRETING SETS OF ORDERINGS

4.1 Equivalent sets

The general idea of the algorithm is to permute orders of variables, then for each ordering ¢ to
calculate the maximum likelihood with restrictions, and finally select the orderings with low values
of R(¢) of (7). However, there is no need to calculate the restricted maximum likelihood for all
linear orders, as some orderings are equivalent with respect to the restrictions. Equivalent orderings
are determined by the following theorems.

Theorem 1 If we have assumptions iy L ji|pred(iy,j1), -+ im L jm|pred(im,jm), and all iy < jg,
then for an order Ag < j1 < Ay < +++ < jm < Am, where A} ’s are the sets between jx_, and Ik
permutation within any Ay’s, k = 1, 2, -- -, m, does not affect the mazimum likelihood.

Theorem 2 Under the conditions of Theorem 1, if ix and ji are adjacent in the ordering, they
may be permuted without affecting the mazimum likelihood.

Corollary 1 If the only assumption is i L j|pred(i,j), then for an order A < j < B, where i € A,
A is the set preceding j and B is the set following j, permutation within A and B does not affect
the mazimum likelihood.

Corollary 2 If the only assumption is i L j|pred(i) U pred(j), then for an order A < i < j < B,
switching ¢ and j in the ordering does not affect the mazimum likelihood.
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Corollary 3 If the only assumption is i L j|pred(i)Upred(j), then for an order A <i < B < j <
C, switching © and j in the ordering does not affect the mazimum likelihood.

Thus an assumption about 7 and j does not yield information about the relative order of ¢ and j.

Proofs of these Theorems and further details can be found in Yao (1994). The theorems indicate the
resolution of the method. When no assumptions are made, there is a single equivalent set composed
of all orderings. As more assumptions are introduced, the ability to discriminate between orderings
improves, in that the equivalent sets become smaller.

We call the set of orderings with the same maximized likelihood by Theorem 1 and 2, the equivalent
set. The first step in interpreting the outcome of the above analysis is to eliminate orderings which
conflict with subject-matter knowledge about order. We will assume that all infeasible orderings
have been eliminated from the equivalent sets.

4.2 Partial orderings

Since directed graphs are so useful for representing causal relations, a graphical interpretation of
equivalent sets is desirable. We do this by defining the partial order corresponding to an equivalent
set. Any set O of orderings, and in particular an equivalent set, defines a partial order I' as follows:
for an ordered pair (z,y), (z,y) € T & (z,y) € ¢ for every ordering ¢ € © (Dushnik and Miller,
1941). We can thus interpret the equivalent set with the lowest value of R(-) given by (7) as defining
the partial order of the variables which is the most consistent with the data and assumptions. The
ordered pairs in the partial order derived from an equivalent set are directed edges in the underlying
causal graph.

There may be multiple equivalent sets which are accepted by the test (7). These may be entertained
as competing explanations of the data and judged individually on their scientific merit. Alterna-
tively, we may pool a number of equivalent sets strongly supported by the data. This expanded
set of orderings will determine a partial order in the same fashion as a single equivalent set, by
intersecting ordered pairs according to Dushnik and Miller’s definition. To guide the pooling of
equivalent sets, we may use a hypothesis test based on equation (7) to form a test based confidence
set which is a union of equivalent sets. That is for each order ¢, use the null distribution (7)
to accept or reject ¢ at level . Then the set composed of all accepted equivalent sets will have
confidence level a. i.e. P(true order in the confidence set) = P(true order is not rejected by (7)) =
1 - P(order rejected | order is true) = 1 - a or P(order is not in the confidence set | order is true) =
a. When the true ordering is in the confidence set, if every member of that set shares an ordered
pair (X, y), then the true order must possess that property. As a result, every pair in the resulting
partial order agrees with that implied by the underlying true ordering at the significance level a.

4.3 Non-graphical information

Section 4.2 described the relationship, expressible graphically, implied by selecting a set of order-
ings. However, a set of orderings also implies non-graphical relationships. For example, consider
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variables A, B, and C, along with the condition A L B | C. An equivalent set for that condition
is {CAB,CBA,BCA, ACB}. The partial order that is the union of these four orderings is null -
there are no ordered pairs in the relation. However, selecting that equivalent set does rule out the
orderings ABC and BAC. This tells us that we should not consider models for which C is preceded
by both A and B. However, this information is not a binary relation, and thus is not expressible
graphically.

5 AN EXAMPLE

For example, consider four variables U, V, W, Z from a multivariate normal distribution. Among
these variables, we assume that V is not feasibly directly associated with W, nor is U with Z.
Expressed statistically, we assume U L Z|pred(U,Z) and V L W|pred(V,W). With these two
restrictions on the linear recursive coefficients, we calculate the maximum likelihood for all equiv-
alent sets. The equivalent sets and their goodness-of-fit statistics (on 2 degrees of freedom) for a
simulated data set are given below.

1) ZWUV, WZUV, WUZV, TWZV R = 0.75;
2) UZVW, ZUVW, ZUWV, UZWV R = 55.04;
3) ZVUW, VZUW, VUZW, UVZW R = 225.18;
4) UVWZ, UWVZ, WUVZ, VUWZ R = 355.54;
5) ZWVU, WZVU, VZWU, ZVWU R = 381.27;
6) WVZU, WVUZ, VWUZ, VWZU R = 565.92.

A 95 percent confidence set of orderings consists only of equivalent set 1. This set corresponds to
the partial ordering {U <V, W <V, Z < V}. The relative order of U, W and Z is unknown, but
we have been able to conclude that they all precede V with 95 percent confidence, which agrees
with the model used to generate the data. If equivalent set 2 had been included in the confidence
set we would have inferred only U <V and Z < V.

6 AN ALTERNATIVE STRATEGY

Our method involves permutation and hence exponential computational complexity. Thus, to
evaluate posterior probabilities of arbitrary properties of the underlying linear order, we denve an
alternative Bayesian importance sampling method.

Let f(x;B|#:) be the restricted likelihood function for a given linear order ¢; where restrictions
express assumptions as described in section 3. We denote f(x;3|¢;) as the maximized estimate of
the function. If we sample linear orders ¢;,i = 1,2,---, M from a prior distribution p(¢), then for
any function g(¢), we prove the following convergence property (Yao, 1994).

Theorem 3 Under regularity conditions such that the MLE of 8 is strongly consistent, as the
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number of observations n and M go to infinity,

M M
> 7 Blea)] ™1 Y () F(x; Bl#i) == Egixla(4)], 8)

=1 =1

where Eyx[-] is an ezpectation over the posterior disiribution of the orderings.

Let g(¢) be an indicator function for any given pair of variables, eg. for the pair X and Y, we
define

1, if X <Y€o
0, o.w.

sl { ©

Then Ejjx[gzy(#)] measures the posterior probability of “X <Y implied in the ordering ¢” under
the restrictions. Geweke (1989) gives the importance sampling error of the estimated posterior
probability.

\J i{gzy(@) - Egixlg(o)1} 2w}/ f} w?, (10)

t=1 =l
where w; = f(x;ﬂy &:)-

To illustrate, we apply the procedure to the example of the previous section. For this small example
we exhaustively sample all orderings. Defining g,,(¢) = 1if U < V in ¢, and zero otherwise,
we compute Prob(U < V) = E[gu,(¢)] &~ 1.0. Similar calculations give Prob(W < V) = 1.0,
Prob(Z < V)=~ 1.0 and Prob(W < Z) = 0.5.

7 CAUSATION

A key assumption attached to the system of equations (4) is that

€ f(O,D), (11)

with D a diagonal matrix (d;;). We now show how this assumption relates to causation, and to the
validity of our method.

Stone (1993) shows that if
fiJ-Xjl{Xla---aXi—l}/Xjals.iSi—l (12)

in the Gaussian linear model, then §; = 0 implies that X; causes X;, assuming that the temporal
or causal order is consistent with the indexing of the variables. For any positive distribution, (12)
holds for all j = 1,...,7— 1 if and only if

€; L X],...,Xi_l. (13)

This is the usual requirement for the consistency of the least square estimate (Bowden and Turk-
ington, 1984). It is easy to show that in the recursive system (4), the assumption (11) is sufficient
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to establish (12) and (13) for ¢ = 1,...,p. Thus the usual assumption about error structure im-
plies that causation can be tested by examining the regression coefficients when the linear model
is correct and the variables are ordered correctly.

The validity of our proposed method rests on the assumption that if subject-matter knowledge
specifies that X; L X; | An(X;, X;), i.e. they are not directly related in the underlying DAG, then
X; L X; | pred(X;, X;) in the correctly ordered recursive model. Note that pred(X;, X;) consists of
variables actually observed and may be a proper subset of An(Xj;, X;) since the underlying system
could include unobserved ancestors. It can be shown that the diagonal covariance structure (11)
insures that X; 1 X; | An(X;, X;) implies X; 1L X | pred(X;, X;).

We have thus shown that the usual assumptions about the error structure of the linear recursive
system validate our method, and also allow zero regression coefficients to indicate causation when
the ordering is correct. This is not to say that causal inferences may be made routinely. Rather, it
emphasizes what an extremely strong assumption (11) is. It amounts to assuming that all relevant
variables have been observed, i.e. there is no confounding. For observational data the domain being
studied must be very well-understood before we can confidently assume that all relevant factors are
being modelled.

8 DISCUSSION

Pearl and Verma (1991) and Spirtes et al. (1993) give valuable algorithms for generating causal
models from data. Verma and Pearl (1992) give an algorithm which decides if there is a DAG
which explains a list of conditional independence statements. These methods assume, besides the
Markov condition, two more conditions, minimality and stability, which enable causal inference from
observed data (cross-sectional) without prior assumptions about the nature of variables. Informally,
the minimality condition says that each edge in the DAG prevents some conditional independence
that would otherwise obtain, and the stability condition says that the only independencies in data
are a consequence of the Markov assumptions and can not be caused by a mere cancellation of the
effects of other dependencies. Though theoretically cancellation occurs with measure zero (Spirtes
et al., 1993), judging independencies in practice relies on statistical tests which will support null
association with appreciable probability for a range of parameter values. For limited sample size,
the range may be great. Hence in practice we can not assume that approximate cancellation is
impossible, and prefer to rely on assumptions that have subject matter justification, as opposed to
stability which demands that probabilities in general behave in a certain way.

As in any observational study, omitted variables can lead to false inferences with our method, and
results should be interpreted with the appropriate caution. We are proposing this as a method for
the generation of possible causal explanations, not a substitute for randomized experiments.

If we are investigating a domain where there is confidence that all the relevant variables are known,
and there is sufficient knowledge to make solid assumptions of the type required here, the infer-
ences yielded by the method of this paper will have commensurate validity. Essentially, the more
knowledge we start with, the more we can confidently infer.
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The method is more general than the multivariate normal case. It pertains to any recursive model
for which the parameters are separable and can express pairwise independence.
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